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Abstract. We provide a reduction of the Ring-LWE problem to Ring-
LWE problems in subrings, in the presence of samples of a restricted
form (i.e. (a, b) such that a is restricted to a multiplicative coset of the
subring). To create and exploit such restricted samples, we propose
Ring-BKW, a version of the Blum-Kalai-Wasserman algorithm which
respects the ring structure. Off-the-shelf BKW dimension reduction
(including coded-BKW and sieving) can be used for the reduction phase.
Its primary advantage is that there is no need for back-substitution,
and the solving/hypothesis-testing phase can be parallelized. We also
present a method to exploit symmetry to reduce table sizes, samples
needed, and runtime during the reduction phase. The results apply to
two-power cyclotomic Ring-LWE with parameters proposed for practical
use (including all splitting types).

1. Introduction

Ring Learning with Errors (Ring-LWE) [24] [25], and Learning with Er-
rors (LWE) [27] more generally, are leading candidates for post-quantum
cryptography. The cryptographic hard problem (Search Ring-LWE ) is for-
mally similar to discrete logarithm problems, so that protocols can be trans-
ferred from the latter context to the former. But it also allows for new ap-
plications, such as homomorphic encryption [8]. Ring-LWE is also fortunate
in having security reductions from other lattice problems.

Ring-LWE is distinguished from Learning with Errors (LWE) by the use
of lattices from number fields. This injection of number-theoretical struc-
ture leads to performance improvements, but may add vulnerabilities. So
far, the number-theoretical structure has been only weakly exploited for
attacks. The ring structure plays a role in security when the error distribu-
tion is skewed [9] [10] [11] [15] [16], or the secret is chosen from a subring
or other ring-related non-uniform distribution [7]. In the related NTRU
cryptosystem, the norm and trace maps to subfields play a role in attacks
[1, 12, 17, 23].
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However, the best known attacks on Ring-LWE parameters suggested for
implementation are still generic attacks for LWE, e.g. [3]. The Blum-Kalai-
Wasserman (BKW) algorithm is one such attack, which proceeds (in the
first phase) combinatorially to create new samples in a linear subspace of
the original problem, while controlling error expansion [5]. BKW has the
drawback of requiring exponentially many samples, unless sample amplifi-
cation is used [21]. Nevertheless, its performance has been of significant
interest: for analysis and recent improvements, see [2] [14] [18] [19] [20]
[22]. (Note that sample amplification does not immediately transfer from
the LWE to the Ring-LWE setting, at least if one wishes the amplified sam-
ples to have Ring-LWE, and not just underlying LWE, format; the analogue
would be the ‘sample rotation’ described below.)

This paper focuses on two-power-cyclotomic unital (but equivalently, dual
[13] [26]) Search Ring-LWE, with no restriction on the splitting behaviour
of the prime q. The core of the paper is a reduction from higher-dimensional
Ring-LWE problems with samples of a restricted form, to lower-dimensional
Ring-LWE problems with the same error width, which is given in Theorem
5.2. The restricted form is as follows: samples (a, b) such that a lies in
a cyclotomic subring, or a fixed multiplicative coset of such a subring. In
the context of these theorems, it is natural to ask about creating samples
of this restricted form using a ring variant of the Blum-Kalai-Wasserman
algorithm.

One thus obtains a Ring-BKW algorithm, which uses the reduction phase
of BKW, including all known speedups, to reduce the Ring-LWE problem
to a subring. Then, the symmetry of the ring structure allows us to engineer
an entire suite of subring problems in polynomially more time, whose solu-
tions collectively solve the original Ring-LWE problem, again in polynomial
time. Thus, the ‘hypothesis testing’ phase of BKW is parallelized, and the
exponential ‘back-substitution’ phase is eliminated (Theorem 5.2). State-
of-the-art off-the-shelf code for the BKW reduction phase and hypothesis
testing phase may be used. Note that the reduction phase of BKW is the
dominant phase for runtime, and hypothesis testing is typically polynomial,
but the now-eliminated back-substitution phase runs in time which is also
exponential, but differs only by a smaller polynomial factor from the re-
duction phase; hence the overall runtime savings is a polynomial factor. In
Section 8, we describe the Ring-BKW algorithm.

The paper also addresses the use of symmetry to reduce the table sizes
in BKW, here termed advanced keying in Section 9. Compared to a BKW
reduction phase completely blind to the ring structure, this reduces the table
size and samples needed by a factor of the block size, as well as reducing
runtime, but requires that block sizes be taken to be a (possibly varying)
power of 2.

We also discuss a square-root speedup over exhaustive search (which may
be used, for example, in hypothesis testing); see Corollary 5.3.

See Section 10 for more discussion of practical runtime.
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The key theoretical properties which are potentially advantageous (to an
attacker) of Ring-LWE vs. plain LWE, are:

(1) Ring homomorphisms into smaller instances of the problem (the
main tool of [10] [11] [15] [16]).

(2) The ability to rotate samples, e.g. replacing (a, b) with (ζa, ζb) or
(a, ζb), which are different but related Ring-LWE samples (see no-
tation in Section 2); these represent symmetries of the lattice (pre-
viously used in lattice sieving [6] [28]; more generally, manipulation
of samples by multiplication was exploited in [4]).

(3) The existence of subrings as linear subspaces (which is important in
[7]).

(4) More generally, the multiplicative structure of certain linear sub-
spaces.

(5) In the case of 2-power cyclotomics, the orthogonality of the lattice
of the ring of integers and the orthogonal nature of the trace.

For us, all five of these attributes play an important role. It is a secondary
purpose of this paper to lay out these advantages in a clear manner, to
facilitate future analysis of the security of ring aspects of Ring-LWE. See
Section 4.

Finally, it is also a secondary purpose of this paper to provide a treatment
of the Ring-LWE problem which is inviting to the mathematical community.

Code demonstrating the correctness of the algorithm is available at:
https://math.katestange.net/code/ring-bkw/.

Acknowledgements. First, I would like to thank the anonymous referees
on an earlier draft of this paper, who pointed out an important simplifi-
cation. Second, I would like to thank my mother, Ursula Stange, and my
husband, Jonathan Wise, without whose childcare help in the face of snow-
storms, viruses, cancellations and fender-benders, this paper simply would
not have been completed. To mathematician moms (and dads) everywhere:
take heart.

2. Background and Setup for Ring-LWE

It is typical to set notation for Ring-LWE as in, for example, [7]; here
we briefly review this notation in our context, and define the Ring-LWE
problems.

2.1. Number field K and ring R. Let K be a number field over the
rationals, of degree n. Then K is equipped with a bilinear form given by a
modification of the trace pairing,

(1) ⟨α, β⟩ =
∑︂
σR

σ(αβ) +
1

2

∑︂
σC

Re(σ(α)σ(β)).

Here the sums are over real and complex embeddings, respectively (note
that including both elements of each pair of conjugate complex embeddings
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necessitates the factor of 1
2). This gives an isomorphism of KR := R ⊗Q K

with Rn, taking the pairing above to the standard inner product, and (1) is
chosen in such a way that the isomophism is exactly that arising from the
Minkowski or canonical embedding of algebraic number theory. We can also
denote the norm by ||x|| =

√︁
⟨x,x⟩.

The ring of integers R of K forms a lattice in KR.

2.2. Gaussian distribution. Having geometry (in particular a norm ||·||2)
on KR allows us to define Gaussian distributions. For a Gaussian parameter
r > 0, we write

ρr : KR → (0, 1], ρr(x) = exp(−π||x||2/r2).
Normalizing this to obtain a probability distribution function r−nρr, we
obtain the continuous Gaussian probability distribution of width r on KR,
denoted Dr.

Note that, when considered with respect to an orthonormal basis, such a
distribution is the sum of independent distributions in each coordinate, each
having width r. In this paper, we are concerned exclusively with this case.

With this normalization, the variance is r2/2π, and one standard devia-
tion is r/

√
2π. It is a sum of independent Gaussians in each coordinate for

which the range [−r, r] corresponds to
√︁
π/2 ∼ 1.25 . . . standard deviations.

In practice, the tails of the Gaussian may be cut off, so that the number
of possible values in each coordinate is finite.

One may discretize a Gaussian distribution to obtain a distribution Dr

on a lattice L ⊂ KR. That is, one takes

ρr(L) =
∑︂
λ∈L

ρr(λ)

and one samples element λ ∈ L with probability

ρr(λ)

ρr(L)
.

If L has an orthonormal basis, then again this distribution consists of inde-
pendent distributions on the coefficients of the basis.

2.3. Prime q and quotient ring Rq. Let qR be the ideal generated by
q in R. The fundamental setting of the Ring-LWE problem is the ring
Rq := R/qR.

Letting q = qe11 · · · qegg be the unique decomposition of q into distinct prime
ideals qi in R, the Chinese remainder theorem gives

Rq ∼=
g⨁︂
i=1

R/qeii .

If q is unramified (which is typically the case), then ei = 1 for all i. If
K is Galois (also typically the case in the cryptographic setting), then the
Galois group acts transitively on the qi and they all have the same residue
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degree (the residue degree is the dimension of the quotient field R/qi as an
Fq-vector space).

2.4. Ring-LWE distributions. For any s ∈ Rq (the secret), and any dis-
tribution ψ over Rq (the error distribution), we write As,ψ for the associated
Ring-LWE distribution for secret s over Rq × Rq, given by sampling a uni-
formly over Rq, sampling e from ψ, and outputting (a, b := as+ e).

Such outputs (a, b) are called samples, and in a crytographic application,
these are observed publicly, while the secret is not meant to be exposed.

For the error distribution, we wish to define a ‘small’ distribution on Rq,
i.e. concentrated near the origin (in comparison to q, which is large). It is
typical to choose for the error distribution a discretized Gaussian distribu-
tion as described above (considered post factum modulo qR). This is the
context in which security reductions apply. In implementations, it is some-
times suggested to approximate this by a uniform distribution on a box
around the origin, etc.

2.5. Ring-LWE problems. The two fundamental Ring-LWE problems are
(a) search: to compute the secret, upon observing sufficiently many samples;
or (b) decision: to determine if the samples are hiding a secret at all, as
opposed to being random noise. We state them more formally as follows.

Definition 2.1. The search Ring-LWE problem, for error distribution ψ
and secret distribution φ, is as follows: Given an error distribution ψ over
Rq and a secret distribution φ over Rq, and some number of samples drawn
from the distribution As,ψ for some fixed s drawn from φ, compute s.

Definition 2.2. The decisional Ring-LWE problem, for error distribution
ψ and secret distribution φ, is as follows: Given an error distribution ψ
over Rq and a secret distribution φ over Rq, distinguish with non-negligible
advantage, between

(1) samples drawn from the distribution As,ψ for some fixed s drawn
from φ; and

(2) samples drawn uniformly from Rq ×Rq.

We remark that Ring-LWE is frequently defined in the context of the dual
R∨ (the inverse of the different ideal). However, in the case thatK is a 2N -th
cyclotomic field, R ∼= 2N−1R∨ and this isomorphism is realized as a scaling
in the canonical embedding, and thus preserves the error distribution up
to scaling, so we can interchange the dual version with the simpler ‘unital’
version considered here [24].

Search-to-decision reductions are known in a variety of contexts [24]. This
paper concerns both problems, but especially the search problem.

The Ring-LWE problem is formally similar to the discrete logarithm prob-
lem, which could be phrased in terms of samples (a, as) in a finite field: given
(a, as), find s. In the ring Rq, solving for s given (a, as) can be accomplished
using linear algebra (Gaussian elimination), or by multiplication by a−1 in
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the ring. By introducing a small error e, so we have (a, as+e), multiplication
by a−1 is no longer helpful, and Gaussian elimination becomes useless, as it
amplifies the errors to the point of washing out all useful information. From
another perspective, the security stems from the fact that addition of an er-
ror value is somehow unpredictably mixing with respect to the multiplicative
structure.

Another consequence of this setup is that given just one sample (a, b), one
has as many solutions s to b = as+ e as there are possible values for e. In
fact, the problem only has a unique solution once we have enough samples.
If the samples are not Ring-LWE samples at all, then with sufficiently many
samples, it becomes overwhelmingly likely that there are no values of s so
that bi − ais is in the support of the error distribution for all samples s. If
the samples are Ring-LWE, this is the point at which the true secret is the
only solution, with overwhelming probability.

3. Specializing to 2-power cyclotomic Ring-LWE

We will now specialize to the 2-power cyclotomic case, fixing values for
the variables

K,R, q,Rq, n

from the last section, and defining

m, ζ := ζm, χ, χ0, Eχ0

for the 2-power cyclotomic case. Whenever we say refer to 2-power cyclo-
tomic Ring-LWE, we refer to all the conventions in this section.

3.1. Ring R. We let K and R be the 2n-th cyclotomic field and ring of
integers, respectively, where n is a power of two. This is of dimension n
(note that φ(2n) = n), and can be presented as

R = Z[ζ2n] = Z[x]/(xn + 1).

We will use the notation m = 2n and ζm for a primitive m-th root of unity
in R and for its image in quotients of this ring.

3.2. The ζ-basis for R and its quotients. A basis for R is

1, ζm, ζ
2
m, . . . , ζ

n−1
m .

This will be called the ζ-basis. We have the relation ζnm+1 = 0 in R and in
all its quotients (this is the 2n-th cyclotomic polynomial evaluated at ζm),
but the minimal polynomial for ζm varies in these quotients, and may be a
proper divisor of this cyclotomic polynomial. Nevertheless, in all quotients
of R, we still obtain a ζ-basis, i.e. a power basis in terms of ζ := ζm.

3.3. Prime q. Let q be an odd prime, unramified in R.
6



3.4. Ring Rq and further quotients. We consider the quotient ring

Rq = R/qR ∼= (Z/qZ)[x]/(xn + 1),

which is an Fq-vector space of dimension n. We may use the same ζ-basis for
this ring (to be explicit, the images of the ζ basis for R under the reduction
modulo q).

We may also consider further quotients R/a for a | qR. We may also use
a ζ-basis for these rings, although it may be of lower dimension over Fq (so
fewer powers required). We have

R/a ∼= Fq[x]/(g(x))

where g(x) | xn + 1. In particular, identifying ζ ∈ R/qR with its image in

R/a, the latter has an Fq-basis 1, ζ, ζ2, . . . , ζdeg(g)−1.

3.5. Error distribution χ, coefficient distribution χ0 and coefficient
support Eχ0. We will denote the error distribution by χ. If this error
distribution is formed using independent identically distributed coefficients
on the ζ-basis, with coefficient distribution χ0 supported on a subset Eχ0 ⊆
Fq, then we say that χ is formed on the ζ-basis with coefficients distributed
according to χ0. This is true, for example, of a discrete Gaussian distribution
on two-power cyclotomics, or a distribution formed by choosing coefficients
uniformly from some subset of Fq. For the former observation, the relevant
fact is the following: the power basis associated to ζm is orthonormal (after
scaling) in the canonical embedding. To see this, use (1) and observe that

if ζam has order 2ℓ ≥ 2, then −ζm
a
does also, hence the real parts of the

complex embeddings of roots of unity form a collection symmetrical about
zero. For this paper, we will concern ourselves exclusively with this case.

3.6. Secret distribution. We will not make any particular assumption on
the secret distribution. It may be taken to be uniform on Rq. Note, however,
that the method of [4, Section 3, Targeting ei] could be used to manipulate
the samples so the secret can be taken from the error distribution, preserving
the Ring-LWE structure of the samples.

4. Key theoretical properties

In this section we highlight several key aspects of Ring-LWE absent in
LWE.

4.1. Ring homomorphisms. If a Ring-LWE problem is presented in Rq,
then for any a | qR, we have a ring homomorphism

ρ : Rq → R/a.

This transports samples distributed according to As,χ to samples distributed
according to Aρ(s),ρ(χ).

In general, the effect of ρ on χ is problematic, i.e. it spreads out the error
widely. As an illustration, we give a proposition governing the behaviour of
ρ on χ in the 2-power cyclotomic case, when q ≡ 1 (mod 4).
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Proposition 4.1. Suppose we are in the 2-power cyclotomic case, and
R/a ∼= Fqk , and q ≡ 1 (mod 4). If, in Rq, the error distribution χ is
formed on the ζ-basis in Rq with coefficients drawn from χ0 on Fq, then
χ′ := ρ(χ) is formed on the ζ-basis in Fqk with coefficients drawn from χ′

0

on Fq, where ρ(ζkm) ∈ Fq and

χ′
0 =

n/k−1∑︂
i=0

ρ(ζkm)
iχ0.

Proof. Define r = ord2(q−1), meaning that 2r | q−1 but 2r+1 ∤ q−1. Since
q ≡ 1 (mod 4), we have r ≥ 2. Furthermore, qi + 1 ≡ 2 (mod 4) for all i, so
that ord2(q

2 − 1) = ord2((q − 1)(q + 1)) = r + 1 and, by induction

ord2(q
2i − 1) = r + i

for all i ≥ 1. As k is defined as the embedding degree of the 2n-th roots of
unity, we obtain k = 2n

2r .

The element ρ(ζkm) satisfies ρ(ζkm)
2n/k = 1 in R/a. Hence it is itself a

primitive 2n/k-th root of unity, i.e. 2r-th root of unity. Hence ρ(ζkm) ∈ Fq
by the definition of r.

The main statement now follows from the fact that 1, ζm, . . . , ζ
k−1
m is an

Fq-basis of Fqk , that ρ(ζ
k
m) ∈ Fq and that for 0 ≤ j < k and 0 ≤ i < n/k,

we have
ρ(ζik+jm ) = ρ(ζkm)

iρ(ζjm) = ρ(ζkm)
iζjm.

□

For example, in the case that k = n/2, we obtain

χ′
0 = χ0 + ρ(ζkm)χ0.

This means the coefficients of χ′ are chosen from a sum of two Gaussian
distributions with different coefficients. This is less controlled than twice
a single Gaussian. For, twice a Gaussian is simply a wider Gaussian, and
the size of its support grows by approximately

√
2. However, in an uneven

linear combination the size of the support Eχ′ is approximately the square
of the size of Eχ. (To be explicit, since χ0 is discrete, cχ0 is “spaced out”
into isolated spikes, and each spike of support is transformed into a small
gaussian by the addition of χ0 to form cχ0 + χ0.) This is a symptom of the
protective property of these ring homomorphisms: they transform the error
to something less amenable to attack. In fact, very quickly the image of a
Gaussian error approaches uniform in the image ring as the dimension of
the image ring decreases. And Ring-LWE samples with uniform error are
informationless.

4.2. Rotating samples. The ring structure allows us to generate new (but
not independent) samples from old.

Proposition 4.2. Suppose χ is invariant under multiplication by ζ. Then
if (a, b) is distributed according to As,χ, then
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(1) (ζa, ζb) is also distributed according to As,χ,
(2) (a, ζb) is distributed according to Aζs,χ.

In particular, in the 2-power cyclotomic case, a discrete Gaussian is in-
variant under multiplication by ζm and all its powers.

We call these rotated samples. One could also rotate by other small values,
e.g. 1 + ζm in the 2-power cyclotomic case, at a small cost in changing
the error distribution. (This may allow for adapting the notion of sample
amplification to the Ring-LWE case; see [21].)

4.3. Subrings and trace maps. If considering Ring-LWE in Rq, where R
is the ring of integers of a number field K, then any subfield L ⊆ K gives
rise to a subring S ⊆ R (i.e., the ring of integers of L) and, modulo q, to
a subring Sq ⊆ Rq. Then Sq is an Fq-vector subspace of Rq, and Rq has a
module structure over Sq. The dimensions of K over L, R over S and Rq
over Sq agree.

There is a linear map T := Tr
Rq

Sq
: Rq → Sq satisfying the following

relationship to the usual trace map from R to S:

TrRS (x) mod qS = Tr
Rq

Sq
(x mod qR).

To see this, remark that qS is elementwise fixed by the Galois group of K/L
and qR is the extension of qS to R, so the Galois group takes qR to itself.
Therefore the Galois group acts on Rq fixing Sq. Therefore we may define

Tr
Rq

Sq
(x) to be the sum of σ(x) for σ in the Galois group of K/L, and the

relationship above holds.
The ring R is always an S-module, but the reader is cautioned that in a

general number field, R may not be a free module over S.

4.4. Multiplicative cosets of subrings. The set a0Sq, for any invertible
a0 ∈ Rq, is an Fq-vector subspace of Rq of dimension equal to the dimension
of Sq. Distinct such subspaces intersect only at subspaces consisting of non-
invertible elements of Rq, and R

∗
q (the invertible elements of Rq) lie in the

union of all such subspaces.
Let us write Aa0Sq ,s,χ for the distribution on a0Sq × Rq given by choos-

ing a uniformly in a0Sq, choosing e according to error distribution χ and
outputting (a, b := as+ e).

Proposition 4.3. If (a, b) is distributed according to Aa0Sq ,s,χ where χ is
invariant under multiplication by ζ, then

(1) (ζa, ζb) is distributed according to Aζa0Sq ,s,χ, and
(2) (a, ζb) is distributed according to Aa0Sq ,ζs,χ.

The multiplicative coset structure gives rise to another type of sample
reduction, beyond ring homomorphism. We have

Proposition 4.4. Suppose s ∈ Rq is fixed. Define T := Tr
Rq

Sq
, the trace

map described above. Consider a collection of samples distributed according
9



to Aa0Sq ,s,χ, where a0 ∈ R∗
q is fixed and T (a0) is invertible. Then T maps

such samples to samples distributed according to As′,T (χ) in Sq, where

s′ =
T (a0s)

T (a0)
.

Proof. For a = a0a
′ ∈ a0Sq, since T is Sq-linear, we have

T (as) = a′T (a0s).

This implies that

(T (a), T (as+ e)) =

(︃
a′T (a0), a

′T (a0)

(︃
T (a0s)

T (a0)

)︃
+ T (e)

)︃
This proves the proposition. □

4.5. Trace maps for two-power cyclotomics. The final piece to the
puzzle is the behaviour of the trace map T in the previous section. In the
case of the 2-power cyclotomics, the trace map is particularly well-behaved
in terms of its effect on the error distribution. In fact, it takes very many of
the basis elements ζm to zero. This is a feature of the orthogonality of the
basis 1, ζm, . . . , ζ

n−1
m , and it may be proved with reference to basic algebraic

number theory, as follows.
Using the notation of Section 4.3 in the case of the 2-power m-th cyclo-

tomics K, let L be the k-th cyclotomic subfield. One may take ζk = ζ
m/k
m

and Sq has a basis 1, ζk, . . . , ζ
k/2−1
k over Fq. We collect terms to write

Rq = Z + ζmZ + · · ·+ ζm/2−1
m Z

= (Z + ζkZ + · · ·+ ζ
k/2−1
k Z) + ζm(Z + ζkZ + · · ·+ ζ

k/2−1
k Z)

+ · · ·+ ζm/k−1
m (Z + ζkZ + · · ·+ ζ

k/2−1
k Z)

= Sq + ζmSq + · · ·+ ζm/k−1
m Sq.

In other words, Rq has a ζ-basis over Sq.
The elements of the Galois group of K/L are given by ζm ↦→ ζam for

a ∈ (Z/mZ)∗ satisfying a ≡ 1 (mod k), and so

Tr
Rq

Sq
(ζim) =

∑︂
0≤a<m

a≡1 (mod k)

ζiam

= ζim

m/k−1∑︂
a=0

ζiakm

=

{︃
0 i ̸≡ 0 (mod m

k )
m
k ζ

i
m i ≡ 0 (mod m

k )
.

In particular, for the trace to the index two subfield, we have:

1

2
T
Rq

Sq
(ζim) =

{︃
0 i ≡ 1 (mod 2)
ζim i ≡ 0 (mod 2)

.

10



This special case can be seen directly by observing that if i is even, then
ζim ∈ S, while if i is odd, then ζim is the square root of something in S, i.e.
it satisfies the minimal polynomial x2 − ζ2im , and hence has trace zero. An
alternate proof of the general case then follows by application of the special
case log2(m/k) times.

In summary then, the trace map preserves the error distribution up to
small factors. The following proposition, which is now immediate, makes
this explicit.

Proposition 4.5. Suppose we are in the two-power cyclotomic case as in
Section 3, where in particular R is the ring of integers of the m-th cyclo-
tomics, with m a power of two. Let S be the subring of integers of the k-th

cyclotomics (hence k is also a power of two). Write T := Tr
Rq

Sq
for the

trace map described in Section 4.3. Suppose that χ is an error distribution
formed on the ζ-basis of Rq with coefficients chosen according to χ0. Then
k
mT takes values in Sq and k

mT (χ) is the error distribution formed on the
ζ-basis of Sq with coefficients from χ0.

The efficacy of the trace map with respect to the error distribution is due
to its being an orthogonal projection to the space spanned by a subset of an
orthonormal basis.

5. Reducing to a smaller ring

We demonstrate that if one can find sufficiently many samples whose a
values are restricted to a fixed multiplicative coset of a subring, then we can
reduce the Ring-LWE problem to multiple independent Ring-LWE instances
in the subring, without error inflation.

For this section, we are in the two-power cyclotomic case. Let R be the
ring of m-th cyclotomic integers, where m is a power of two (which have
dimension n, where m = 2n), and S be the ring of k-th cyclotomic integers,
where k | m. Then we have an extension of rings, S ⊆ R of degree m/k.
Suppose that the rational prime q is unramified in R.

Proposition 5.1. Consider a Ring-LWE instance in Rq with secret s and
error distribution χ. Let a0 ∈ Rq be a fixed invertible element. Let T :=

Tr
Rq

Sq
, and suppose that T (a0) is invertible.

Let i be an integer. Then in time polynomial in n and log q, one can reduce
a Ring-LWE sample from distribution Aa0Sq ,s,χ to a Ring-LWE sample in
Sq drawn according to secret

T (a0ζ
is)

T (a0)

and error distribution k
mT (ζ

iχ) ⊆ Sq.

In particular, by Proposition 4.5, coefficient distributions of a ζ-invariant
χ and its resulting distribution k

mT (ζ
iχ) are of the same size; it is in this

sense that the errors do not inflate.
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Proof. Consider the sample (a, b) where b = as+ e. Multiplying the second
coordinate of the sample by ζi and taking the trace k

mT , we obtain as in
Proposition 4.4, a sample(︃

k

m
T (a),

k

m
T (ζib)

)︃
(︃
k

m
T (a),

k

m
T (aζis+ ζie)

)︃
=

(︃
a′
k

m
T (a0), a

′ k

m
T (a0) ·

(︃
T (a0ζ

is)

T (a0)

)︃
+
k

m
T (ζie)

)︃
,

where a′ := aa−1
0 ∈ Sq.

Multiplication in the ring, and taking the trace, are polynomial in the
ring size. □

The following is the main theorem of the paper.

Theorem 5.2. Suppose R is the ring of m-th cyclotomic integers, for m =
2n a power of two, and S is the ring of k-th cyclotomic integers, where k | m,
so the extension S ⊆ R is of degree m/k. Suppose that the rational prime q
is unramified in R.

Consider a Ring-LWE instance in Rq with secret s and error distribution
χ which is invariant under multiplication by ζ = ζm, a primitive m-th root

of unity. Let a0 ∈ Rq be a fixed invertible element. Let T := Tr
Rq

Sq
as defined

in Section 4.3, and suppose that T (a0) is invertible.
Suppose one obtains N samples (a, b) distributed according to Aa0Sq ,s,χ

(notation from Section 4.4).
Then in time linear in the number of samples N , and polynomial in n and

log q, one can reduce the computation of the secret s ∈ Rq to the solution

of m/k Search Ring-LWE problems in Sq with error distribution k
mT (χ),

having N samples each. These m/k problems are independent in the sense
that setting up any one of them does not require having solved any other one.

Furthermore, if χ is formed on the ζ-basis from coefficient distribution χ0

on Fq (see Section 3.5 for definition), then so is k
mT (χ).

Proof. Set i = j in Proposition 5.1 for each j in the range j = 0, . . . ,m/k−1,
to obtain N samples having secret

cj :=
T (a0ζ

js)

T (a0)
.

Using an oracle that solves Search Ring-LWE in Sq, obtain cj .
Collecting all the values cj , we have a linear system of m/k equations over

Sq, whose indeterminates are the coefficients of s (expressed in terms of a
basis for Rq over Sq), of the form

T (a0ζ
js) = cjT (a0), j = 0, . . . ,m/k − 1.

12



The linear equations are independent provided that {a0ζj} is a set of Sq-
independent vectors in Rq. We saw above that {ζj}j=0,...,m/k−1 is a basis
for Rq over Sq. Thus independence is guaranteed by the fact that a0 is
invertible. Note that we can consider this system to consist of n independent
linear equations over Fq. The system can be solved by Gaussian elimination
to recover s.

All the field operations concerned are polynomial in the size of the ring.
We must apply the trace to N samples m/k times, and we must carry out
Gaussian elimination of dimension n = m/2 over Fq, which is polynomial in
m and log q. □

As a small corollary, note that in any small Ring-LWE situation where
exhaustive search may apply, it is equally possible to use the above for a
square-root speedup, provided many samples are available. As an example,
if we have a coefficient distribution with support not including all of Fq,
then the following statement demonstrates the approach.

Corollary 5.3. Consider a Ring-LWE instance in Rq with secret s and
error distribution χ formed on a ζ-basis with coefficient distribution having
support strictly smaller than Fq.

There is an algorithm to solve this problem, with success probability 1/2,

in time and number of samples qn/2 times factors polynomial in n log q, using
space polynomial in n log q.

Proof. Note that the hypotheses guarantee χ is invariant under multiplica-
tion by ζ. Let Sq be the ring of index two in Rq (i.e. n-th roots of unity).

Collect samples, discarding all but those with a ∈ Sq. In time O(Nqn/2) we
can accumulate N samples with a ∈ Sq. Apply Theorem 5.2 to reduce to
two Ring-LWE problems in Sq with N samples each. The error distribution

χ on Rq gives an error distribution 1
2T

Rq

Sq
(χ) on Sq. If χ is formed on a

ζ-basis with coefficients supported in Eχ ⊊ Fq, then 1
2T

Rq

Sq
(χ) is formed on

a ζ-basis with coefficients supported in Eχ ⊊ Fq. Therefore, if the number
of samples is sufficient, the reduced Ring-LWE problems are solvable using
exhaustive search through possible s values.

In our case, we need N large enough so that a Ring-LWE problem in Sq
with N samples has a unique solutions with probability 1/

√
2. Although N

depends upon |Eχ|, for the worst case |Eχ| = q− 1, N is still polynomial in
n log q. Solve the reduced problems by exhaustive search, which takes time
O(qn/2) and each succeeds with probability 1/

√
2. □

6. Background on the Blum-Kalai-Wasserman algorithm

First, we will give a very brief overview of the Blum-Kalai-Wasserman
(BKW) algorithm in the context of LWE [5]. It is a combinatorial algorithm
in which samples are collected and stored so as to facilitate the creation of
new samples, as iterated sums and differences of established ones. The goal
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is to create new samples for which a is restricted to a linear subspace. This
is the reduction phase of the full BKW algorithm.

In BKW, after reduction, there is a hypothesis testing phase, in which one
solves a lower-dimensional Ring-LWE problem (that given by restricting a
to the subspace) by exhaustive search over possible secrets. And then there
is a back-substitution phase, where the small piece of the secret recovered in
hypothesis testing is used to rework the problem to prepare the next small
piece for hypothesis testing.

One can think of BKW as a sort of controlled Gaussian elimination on a
matrix whose rows are samples, in which one wants to obtain as much simpli-
fication as possible using just one sum or difference of rows. By keeping the
coefficients of the linear combinations small, we prevent the error ‘blow-up’
that occurs with regular Gaussian elimination. The cost is in needing many
more matrix rows (samples) in order to be able to choose good linear combi-
nations. The back-substitution phase is analogous to the eponymous phase
of Gaussian elimination, with the recovered portion of the secret taking the
role of the free variable. From another point of view, BKW reduction is a
sort of iterated birthday attack, in which one searches for and exploits col-
lisions which eliminate entries of the vectors, reducing to a subspace, where
one searches again for collisions, and so on.

Now let us be more precise. During the reduction phase, only the a-value
of a sample matters, considered as a vector in a vector space V , and the goal
is to create samples with a ∈ W , a linear subspace of V . Suppose, for the
sake of explanation, thatW is defined by the first r coefficients of its vectors
being 0. One generates an ordered list of the first r entries of all the vectors
a which are observed. Whenever a new vector a is observed, it is compared
to the ordered list. If it is not already present, it is added. Otherwise, we
have discovered two samples (a, b) and (a′, b′) for which (a − a′, b − b′) is
a new sample for which a − a′ lies in W . The penalty is that the error
distribution of these new samples is widened. We begin a new table of such
vectors as they are generated. In this way, we produce a large number of
samples in a smaller subspace at the cost of inflating the error widths.

Instead of performing this reduction all at once, one chooses an appropri-
ate block size β for BKW (which is fixed throughout in the näıve implemen-
tation), which is to say, the codimension of W as a subspace of V . Once we
have produced enough samples in W , we can use these to perform another
BKW reduction to a subspace W ′ ⊆ W of codimension β in W . The cost
of a reduction step is exponential in β, so we keep β as small as possible.
We perform block reductions until the samples are all taken from a small
enough subspace to run an exhaustive search or other strategy to finish off
the problem. The limiting factor on shrinking β is an upper limit on the
number of blocks used overall. Each reduction into codimension β has a
cost in error-inflation. We have a limit on the total error inflation (because
hypothesis testing will fail if the error is so inflated as to appear uniform),
which limits the total number of blocks.
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The BKW algorithm has been improved in recent years, including using
coding theory to reduce the number of values that need to be stored and
compared, sieving at each step, allowing the block size to vary, using the
Fourier transform to speed up hypothesis testing; see [2] [14] [18] [19] [20]
[22].

7. Reduction using BKW

In this section, we address the problem of finding sufficiently many sam-
ples (a, b) having a from an appropriate subring Sq ⊆ Rq, so that Theorem
5.2 will apply. For this, we use the reduction phase of the BKW algorithm.
We emphasize that it is possible, once the samples have been given in an
appropriate basis, to use an off-the-shelf BKW reduction algorithm, includ-
ing coded BKW with sieving etc., for the reduction phase. The window size
may be chosen at will, for example, and need not depend upon the ring
structure. Then, Theorem 5.2, which is polynomial time, replaces all the
other phases of BKW.

The only adaptor necessary to connect BKW to Theorem 5.2 is an atten-
tion to the basis used. In order to perform the reduction, we begin with the
ζ-basis of Rq over Fq, namely

1, ζ, ζ2, . . . , ζn−1,

and then reorder it to produce a prioritized basis. The most important
property we desire for our purposes is that if one of ζi and ζj has lower
multiplicative order than the other, then it comes later than the other. One
computationally convenient way to accomplish this is to take the bit-reversal
permutation on n elements (i.e. a maps to b if the binary representation
of a in log2(n) bits, read backwards, is b), then reserve the order. For
concreteness, the prioritized basis (in part) is as follows:

ζn−1
m , ζ

n
2
−1

m , ζ
3n
4
−1

m , ζ
n
4
−1

m , . . . , ζ
3n
4
m , ζ

n
4
m, ζ

n
2
m, 1.

Using any type of BKW reduction, one now reduces, with respect to this
basis. To be precise, one seeks to eliminate the earlier coefficients of the
elements a, as expressed in this basis. At the end, at most the last 2k

coefficients are non-zero, for some small k. For example, one may reduce
until only the last 1, 2, 4 or 8 coefficients are possibly non-zero.

The varying block sizes during the reduction algorithm itself need not
respect any restrictions, and improvements such as coded-BKWwith sieving,
may be used. For example, coded-BKW, under the assumption the secret
s is small, associates to each a a codeword c from a linear code. Then the
sample (a, as+ e) is replaced with (c, as+ e), which is a valid sample with a
larger error, before it is fed to the BKW tables. The tables then have fewer
rows because their rows are chosen from codewords. In sieving, imagine that
one has stored the original a along with each new sample (c, as + e). The
difference between a and cmeasures the error inflation introduced by coding.
A collision between (c, a1s+e) and (c, a2s+e) being passed to another table
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has an a = a1 − a2 that is not actually 0 in the first few entries, only small.
Among the vectors being fed from one table to the next, one can pause to
sieve them, creating vectors whose a’s are somewhat smaller. This reduces
the error inflation introduced by the coding process.

The important thing is that, whatever technique is used, after reduction,
one has obtained samples with a ∈ Sq = S/qS for some S of dimension 2k.
One then applies Theorem 5.2.

8. The Ring-BKW algorithm

In this section we summarize the Ring-BKW algorithm for completeness.
In short, one uses an off-the-shelf BKW reduction algorithm on samples with
respect to a particular choice of basis, then applies Theorem 5.2. The impor-
tant point is that the back-substitution phase of BKW is no longer needed,
and the hypothesis-testing phase can be parallelized. The hypothesis-testing
phase can also be off-the-shelf, including recent improvements using the
Fourier transform etc. [14]. However, we will elaborate somewhat.

Ring-BKW algorithm. Choose a subring S ⊆ R of dimension B over
Z (corresponding to a lower-degree 2-power cyclotomic field), to which we
wish to reduce. Define Rq and Sq as before. The Ring-BKW Algorithm is
given as Algorithm 1.

Algorithm 1 Ring-BKW Algorithm

(1) Run BKW Reduction (as in Section 7 above with prioritized basis)
on the values a until all samples (a, b) have a ∈ Sq.

(2) Use Theorem 5.2 to create samples from n/B different Ring-LWE
problems in Sq.

(3) Solve these Ring-LWE problems using any method of choice.
(4) Use Theorem 5.2 to recover the secret s in polynomial time from

these solutions.

The ring structure is not relevant in step (1); one uses BKW reduction as
for any LWE problem (in particular, the window size can be chosen without
regard to the ring structure). In fact, any reduction algorithm to obtain
values a ∈ Sq will do as well.

The following theorem relates any reduction algorithm to the solution
of Search Ring-LWE. For the following, we consider Gaussian error with a
well-defined width; an expansion factor refers to a multiplicative factor on
the width.

Theorem 8.1. Suppose that B is an algorithm which, given a Ring-LWE
problem of dimension n over Fq, produces N Ring-LWE samples of dimen-
sion B with error expansion factor of f , in time tB(n,B, f,N), and using
rB(n,B, f,N) original samples.
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Suppose that R is an algorithm which solves Ring-LWE in dimension B
over Fq in time tR(B), given error width less than or equal to w and at least
N samples.

Then, there is an algorithm A which solves Ring-LWE in Rq having width
σ in time

tB(n,B,w/σ,N) +
n

B
tR(B) +N · (time polynomial in n log q),

using rB(n,B,w/σ,N) samples.

Proof. We will use Algorithm 1. We will set f = w/σ. The time to run the
reduction phase is tB(n,B,w/σ,N). The time to create the smaller Ring-
LWE problems is linear in N and polynomial in n log q from Theorem 5.2.
Solving the n

B smaller Ring-LWE problems (guaranteed to succeed by the
choice of f) takes time tR(B) each. Then reconstructing the secret (as in
Theorem 5.2) again takes polynomial time. □

9. Advanced Keying

In the previous section, one uses BKW on LWE to perform reduction, say
with block size B. Given a Ring-LWE sample, there are in fact n rotated
samples one could feed into the reduction:

(a, b), (ζa, ζb), . . . , (ζn−1a, ζn−1b).

Näıvely, one may include them all, or include the first one. Probably the best
course of action is to include them all, to increase the number of collisions
located amongst the available samples (since the number of samples needed
is the downside to BKW in general). By including all rotations, one catches
all collisions of the form a1 ± ζia2 for some i. These are all perfectly useful
collisions for the algorithm, if the error term is ζ-invariant. In this section we
propose a space-saving approach based on symmetries, which is equivalent,
in terms of collisions obtained per sample, to storing all rotations of the
samples. (If one chooses to compare to running BKW without rotating
samples at all, i.e. ring-blind, it will both reduce storage and require fewer
samples.)

In the discussion that follows, the reduction algorithm described in Sec-
tion 6 will be called traditional BKW reduction to distinguish it from the
advanced keying BKW reduction proposed in this section. There are a vari-
ety of modern speedups and alternatives (such as coded-BKW and sieving)
which could also be combined with advanced keying, but for purposes of
clarity we will ignore these until later in this section. In particular, in tra-
ditional BKW reduction, when a collision is recorded, nothing is added to
the current table, but the difference is passed to the next table. (Later, it
will prove helpful to call this one-difference and compare it to all-differences
where new samples are stored as well as passed on, to increase the number
of collisions.)
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Our proposal in this section is an analogue of the space-saving technique
used in traditional BKW, wherein for each sample (a, b) we may derive
two samples (a, b) and (−a,−b): we choose one canonically (where the first

non-zero coefficient of a is in
{︂
1, . . . , q−1

2

}︂
, say), and save only this one.

By doing so, we will catch all collisions between samples where their sum
or their difference vanishes, and save half the table rows in the process.
More precisely, the number of rows of the table for each block never exceeds
(qB − 1)/2, since the possible non-zero vectors come in pairs of which we
store at most one. Furthermore, this is also a time efficiency issue. If instead
one simply included (a, b) and (−a,−b) among the incoming samples, then
without this trick, the collisions a1 + a2 and −a1 − a2 are both sent on
to the next table, both are multiplied by −1 thereafter, and we actually
end up with repeat samples that must be weeded out at a later stage. For
reference, traditional BKW reduction, with this space-saving technique, is
given explicitly in Algorithm 3.

The fundamental observation is that the prioritized basis proposed in the
last section is particularly well-suited to this type of strategy, because of the
resulting ‘negacyclic permutation’ effect of multiplication by ζ. It results in
a savings of 1/2B instead of 1/2 and is completely analogous to the trick
above in both space and efficiency savings. It requires that the block size B
be a power of 2.

Write a ∈ Fnq for the vector of coefficients of a in the prioritized basis.

The action of ζh (taking a to ζha) on such a vector permutes the entries,
and swaps the sign on some of them (since ζn = −1). Suppose h is exactly
divisible by 2ℓ (i.e. ord2(h) = ℓ). With regards to the permutation only
(ignoring the signs), the permutation has the property that it stabilizes
each consecutive block of length n/2ℓ throughout (that is, it permutes each
block individually). For fixed ℓ, there are exactly n/2ℓ such integers h (note
that h is taken modulo 2n, for h = 2n results in the identity permutation).
The following consequence is key:

Property 1. Let B | n denote block size. Then applying ζn/B preserves
the property that a has first block (or series of any number of first blocks)
consisting of zero entries.

This property will allow us to rotate samples by any of the B quantities
1, ζn/B, ζ2n/B, . . . , ζ(B−1)n/B during BKW reduction with block size B.

Next, one must specify a canonical choice of representative from the set
of possible rotations {a, ζn/Ba, . . . , ζ(B−1)n/Ba}, depending only on the first
non-zero block of entries, up to an overall sign. A possible canonical choice
is the ordering which has smallest first entry (in absolute value), together
with some tie-breaking conventions, e.g. smallest second entry, etc., and if
all entries are equal in absolute value, then some appropriate convention on
sign changes between a and |a|, etc. However, any ordering of the possible
length-B vectors modulo overall sign, will do. It is not possible to break
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a tie if the first B entries of the two rotations actually agree up to overall
sign under one of the rotations. However, in this case we have found a
“self-match,” meaning that two of the rotations have a difference which has
all zero in the block under consideration, and so at most one of the two
rotations need be stored, and the difference is sent to the following block,
as with any collision, as in a traditional BKW algorithm.

The advanced keying BKW reduction is given in Algorithm 3, and for
comparison purposes, the traditional BKW reduction using all rotations of
each sample is given in Algorithm 2.

Algorithm 2 Traditional BKW Reduction Phase

1: Create empty Tables 1 through n/B.
2: for each initially available sample (a, b) do
3: for j = 0 to n− 1 do
4: Rotate the sample by ζj , to obtain (a1, b1).
5: Send the sample (a1, b1) to Table 1.
6: end for
7: end for
8: for each sample (a, b) sent to Table i, i < n/B do
9: if a has all 0 entries in block i then

10: send sample (a, b) on to Table i+ 1
11: end if
12: Multiply by −1 if necessary to ensure the first non-zero coefficient of

a1 is in the range 1 to (q + 1)/2.
13: if a collision is found (i.e. a sample (a0, b0) already exists in the table

having the same first i blocks of size B) then
14: Subtract (a1, b1) from (a0, b0) to obtain a new sample whose first i

blocks of size B are zero
15: Send the result to Table i+ 1.
16: else
17: Store the associated sample in Table i.
18: end if
19: end for

Correctness of Algorithm 3 is a consequence of Property 1. Furthermore,
Algorithms 2 and 3 catch the same collisions in the following heuristic sense.
For each collision ζia1−ζja2, there will be another collision at ζi+ka1−ζj+ka2
for any k ≡ 0 (mod n/B). In Algorithm 2, all B of these collisions are passed
on to the next table after storing B new rows in the current table. But any
one of the samples sent on can generate the others via rotation, so only
one of them is actually needed at the next table. In Algorithm 3, only one
of them is stored and only one is sent onward (but only one is needed).
However, there is some difference in the final output because we are only
keeping one sample per row, and the order of input samples to a given table
may differ, resulting in a different table entry. If one uses the all-differences
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Algorithm 3 Advanced Keying BKW Reduction Phase

1: Create empty Tables 1 through n/B.
2: for each initially available sample (a, b) do
3: for j = 0 to n/B − 1 do
4: Rotate the sample by ζj , to obtain (a1, b1).
5: Send the sample (a1, b1) to Table 1.
6: end for
7: end for
8: for each sample (a, b) sent to Table i, i < n/B do
9: if a has all 0 entries in block i then

10: send sample (a, b) on to Table i+ 1
11: end if
12: From a, ζn/Ba, . . . , ζ(B−1)n/Ba, choose a canonical representative.
13: for every sample (a1, b1) corresponding to a canonical representative

do
14: Multiply by −1 if necessary to ensure the first non-zero coefficient

of a2 is in the range 1 to (q + 1)/2.
15: if a collision is found (i.e. a sample (a0, b0) already exists in the

table having the same first i blocks of size B) then
16: Subtract (a1, b1) from (a0, b0) to obtain a new sample whose first

i blocks of size B are zero
17: Send the result to Table i+ 1.
18: else
19: Store the associated sample in Table i.
20: end if
21: end for
22: end for

variation, this difference disappears and the output of the two algorithms
will be the same.

The following is immediate from Algorithm 3.

Proposition 9.1. Each table in Algorithm 3 has at most q
B−1
2B rows in total.

Finally, we will remark again that BKW reduction improvements for
LWE, such as coded-BKW and sieving, may also be adapted to use the
advanced keying demonstrated here, provided block sizes can be maintained
to be powers of 2 (varying them is ok). As some modern algorithms vary
block size, this may be an impediment. The näıve way to do this would be
to code samples first, then choose a canonical rotation of each codeword.
Perhaps better, one could also code each rotation and choose the one with
smallest error, which may introduce a significant improvement to the error
inflation, depending on the choice of code. (Note that, for those familiar
with coded-BKW, the notion of advanced keying is not so different than
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coding, as it provides a sort of ’codeword’ for each sample, without an error
inflation.)

Algorithms 2 and 3, as well as a completely ring-blind version of BKW
reduction were coded in Python in Sage Mathematics Software for compar-
ison purposes. Some example results are given in Table 9. In short, the
advanced keying did reduce table sizes and samples needed as described,
and had a faster overall runtime. A few remarks are in order:

(1) The experiments were chosen to represent a range of small parameter
sets, where timings were in the range of seconds or minutes on a
Lenovo X1 laptop.

(2) After parameters were chosen, the number of samples was chosen to
be a round number where the final table began to have a few samples
on average; the timing therefore roughly represents the time until the
final table begins to populate.

(3) To compare meaningfully, the ring-blind algorithm uses n times as
many initial samples, which is equal to the total number of rotations
of incoming samples for the other algorithms. The fact that the
final table is populated but not full in all cases is evidence that the
number of samples needed by Algorithms 3 and 2 is 1/n of those
needed näıvely.

(4) For some smaller parameter sets, we also tested a version of the
algorithm (labelled AD = ‘All Differences’) in which every sample
encountered is stored (so each row of the table can contain multiple
samples) and every difference is passed on (i.e. the new sample is
compared to everything already in its row). The purpose of this
is to demonstrate that the advanced keying will still find the same
number of samples. However, the AD version is significantly slower
in all cases, so it was only implemented for some of the smaller
parameter sets in the table.

(5) Algorithms 2 and 3 are pseudocode; the implementation necessarily
addressed details not covered in the pseudocode presentation. For
example, some moderate attention was given to efficiency in the
rotation of samples. For example, when only certain coefficients of
the rotation were needed, only those were computed.

Some experimental observations:

(1) The table sizes observed in Algorithm 3 are very close to 1/B of the
number observed in Algorithm 2, as expected.

(2) The faster runtime of Algorithm 3 is a result of the fact that fewer
samples are handled (1/B as many are fed to the first table compared
to Algorithm 2), although they must be handled in more detail, so
the speedup is less than a 1/B factor.

(3) Algorithms 2 and 3 use the exact same starting data, and it is reas-
suring that the reduced sample counts are similar, and the same in
the AD version.
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(4) Algorithm 2 tends to find more samples than Algorithm 3. The
difference is in which matches are found when more than two samples
collide in a row in the table, and therefore is more pronounced as
the number of rows grows.

10. In practice

It is evident that the runtime of Ring-BKW is expected to be better than
that of standard BKW (in any of its current forms), since the reduction and
hypothesis testing phases may be taken to be the same, but the backsub-
stitution phase is no longer required. Furthermore, the smaller Ring-LWE
problems of hypothesis testing can be solved in parallel.

Albrecht et al. computed the runtime for BKW [2]. This work has been
rendered out of date by many of the modern speedups mentioned in the
introduction, but it is likely safe to say a few things that still hold true
about modern BKW runtimes. First, the reduction phase is the dominant
cost. Second, however, the backsubstitution phase differs from the reduction
phase by a polynomial factor, so eliminating it can be expected to give a
polynomial factor speeedup.

Advanced keying also offers a visible benefit when compared to a ring-
blind implementation of BKW. For, compared to a ring-blind implementa-
tion, table sizes are reduced to 1/B of their former size and the number
of samples used is reduced to approximately 1/n as many. Each sample
must be treated rather more carefully however: it is rotated and a canonical
choice made. However, experiments still indicate increasing runtime gains
with dimension, even against traditional BKW with every sample rotated
before beginning. Nevertheless, advanced keying requires block sizes to be
a power of 2, and therefore may or may not be useful or extendable in view
of the changing block sizes sometimes employed in BKW reduction.

The Ring-LWE Challenges [13] are in the form of Tweaked Ring-LWE,
which refers to dual Ring-LWE transfered to the unital version (see [13,
§2.3]), so that the parameter assumptions in this paper apply to the two-
power cyclotomic challenges included therein. It would be very interesting
to test these algorithms on those parameters, but it is beyond the scope of
this paper.
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