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Abstract— This paper studies online stochastic opti-
mization where the random parameters follow time-varying
distributions. In each time slot, after a control variable is
determined, a sample drawn from the current distribution
is revealed as feedback information. This form of stochastic
optimization has broad applications in online learning and
signal processing, where the underlying ground-truth is in-
herently time-varying, e.g., tracking a moving target. Dynamic
optimal points are adopted as the performance benchmark to
define the regret, as opposed to the static optimal point used
in stochastic optimization with fixed distributions. Stochastic
optimization with time-varying distributions is examined and
a projected stochastic gradient descent algorithm is presented.
An upper bound on its regret is established with respect to
the drift of the dynamic optima, which measures the variations
of the optimal solutions due to the varying distributions. In
particular, the algorithm possesses sublinear regret as long as
the drift of the optima is sublinear, i.e., the distributions do not
vary too drastically. Finally, numerical results are presented
to corroborate the efficacy of the proposed algorithm and the
derived analytical results.

Index Terms— Stochastic optimization, online optimization,
online learning, time-varying distributions, dynamic bench-

mark

I. INTRODUCTION

Owing to its broad application in machine learning and
signal processing, stochastic programming has been studied
extensively over the past decade. In stochastic programs, the
objective and/or constraint functions are the expectation of
some function of the control variables and random variables
(e.g., estimated parameters and data samples in machine
learning). The challenge is that the underlying distribution
of the random variables is often unknown. For instance, in
machine learning, the joint distributions of the input feature
and label are unknown to the learner and need to be learned.
Even when the distribution is known, the expectations in-
volved in the stochastic programs may be hard to evaluate
due to the curse of dimensionality. Alternatively, sequential
samples of the random variables are often available as
feedback information of the distribution, e.g., the sequen-
tial data samples in online learning and adptive filtering.
In the literature, various stochastic optimization algorithms
have been proposed for both unconstrained optimization [1]
and constrained optimization [2], [3] to update the control
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variables in an online manner by making use of the sequential
samples.

Most existing works on stochastic programming presume
that the underlying distribution of the random varibales is
fixed (i.e., does not vary with time) and independent samples
are drawn from this common distribution sequentially. In
contrast, in many applications, the distributions involved in
the stochastic programs may vary slowly across time. For
instance, in online learning, the unknown parameters to be
estimated may change over time (e.g., tracking a moving
target) which leads to time-varying joint distributions of
the feature and label. Therefore, we are motivated to study
stochastic optimization with time-varying distributions in this
paper.

We consider stochastic optimization with time-varying
distributions. Since the stochastic optimization problem
herein is inherently time-varying, dynamic optimal points
are adopted as the performance benchmark, as opposed to
the static optima used in stochastic programming with fixed
distribution [1]-[6]. In each time slot, after a control variable
is chosen, a sample drawn from the current distribution is
disclosed. We note that the control variables will not affect
the underlying time-varying distributions. Our goal is to
devise an algorithm that can track the dynamic optima by
leveraging the sequential samples in an online manner so
that it is amenable to online learning tasks. To this end,
a projected stochastic gradient descent (SGD) algorithm is
presented and an upper bound of its regret is developed with
respect to the drift of the dynamic optimal points, which mea-
sures the temporal variations of the underlying distributions.
According to this bound, the advocated algorithm possesses
sublinear regret as long as the drift of the optima is sublinear,
i.e., the distributions do not vary too drastically. Finally,
simulation results are presented to corroborate the efficacy
of the proposed algorithm and the established theoretical
results.

A. Related Work

In the recent decade, stochastic optimization algorithms
have garnered much attention, partly due to their pervasive
applications in machine learning. For instance, Adam, a
gradient-based stochastic optimization algorithm, has be-
come default optimization tool for training deep neural
networks [7], and a dual averaging stochastic optimization
method has been proposed for online sparse learning in [8].
There is a vast literature on stochastic optimization methods,
which can be roughly divided into two categories. The
first catogery of methods is sample average approximation
(SAA), in which the expected objective or constraint func-
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tions are replaced by their sample averages. The convergence
of SAA to the optima can be guaranteed if a sufficient
number of samples are used [9], [10]. One limitation of SAA
is that one needs to wait until a large number of samples are
collected. This renders SAA not suitable for online settings,
in which control variables are updated in an online fashion
as new samples arrive sequentially. Another category of
stochastic optimization methods is stochastic approximation
(SA), which is amenable to online implementation [11],
[12]. SA, originally proposed in [13], replaces exact first-
order information, e.g., gradient, by its noisy versions, which
give rise to stochastic algorithms such as stochastic gradient
descent (SGD). Accelerated SA was developed in [14] by av-
eraging the iterates and using longer step sizes. Additionally,
modified SA based on mirror-descent was proposed in [1],
[15] and SGD for non-smooth stochastic optimization was
examined in [16], [17]. Incremental stochastic subgradient
methods were studied in [18] and [19]. Moreover, stochastic
composite optimization was examined in [20], [21] where
the objective function was composition of two expected-
value functions, and regularized stochastic optimization was
studied in [8], [22]. Further, constrained stochastic opti-
mization was investigated by using primal methods [3],
primal-dual methods [2], random constraint projection [5],
[6], virtual-queue based methods [4], and noisy network
utility maximization [23]. All the aforementioned works only
considered stochastic optimization with fixed distributions.
Time-varying distributions of stochastic programs were taken
into account by a recent work [24] for unconstrained opti-
mization problems. Nevertheless, the focus of [24] was to
select appropriate number of samples per time slot needed
to meet a given tracking accuracy, while the number of
samples per time slot in this paper is fixed to be one (the
extension to arbitrary fixed amount of samples per time slot
is straightforward). Besides, the performance criteria used in
[24] are mean tracking and high probability tracking, which
are very different from the regret in the current paper.

Another line of research related to this paper is online
convex optimization (OCO) [25], [26], which has ubiquitous
applications in online learning. For example, the well-known
Widrow-Hoff algorithm for online linear regression can be
regarded as a stochastic optimization problem minimizing
the mean square error [26]. The problem of general un-
constrained OCO was originally introduced by the seminal
work [27] and was later extended to various settings such as
constrained OCO [28]—-[30] and bandit feedback [31], [32].
Different from this paper, OCO generally considers deter-
ministic and arbitrary (even adversarial) function sequences,
which do not conform to any stochastic models.

The remaining part of this paper is organized as follows.
In Section II, we develop and analyze an algorithm for on-
line stochastic optimization with time-varying distributions.
Simulation results are presented in Section III. We conclude
this paper in Section IV.

II. ONLINE STOCHASTIC OPTIMIZATION WITH
TIME-VARYING DISTRIBUTIONS

In this section, we study online stochastic optimiza-
tion problem with time-varying distributions. A projected
stochastic gradient descent algorithm is presented. Unlike
traditional stochastic optimization with fixed distribution, dy-
namic optimal points are adopted as performance benchmark
to define regret. We develop an upper bound of the regret of
the presented algorithm in terms of the drift of the dynamic
optimal points, which measures the temporal variations of the
underlying distributions. In particular, sublinear regret can
be guaranteed as long as the drift of the dynamic optima is
sublinear, i.e., the distributions of the stochastic optimization
do not vary too drastically.

A. Problem Formulation

1) Online Stochastic Optimization with Fixed Distribu-
tion: Consider a cost f(z,0), in which z € X C R” is
a control variable and @ € © C R¥ is a random parameter.
X is the set of admissible control variables and © is the
set of possible realizations of the random parameter. f :
R" x R¥ +—+ R is a known cost function. In conventional
stochastic optimization, the goal is to minimize the expected
cost F(x) := Egp[f(x,0)], where P is an unknown yet
fixed probability distribution over ©. Feedback information
about the underlying distribution P is available in an online
manner [25]. Specifically, in each time ¢, after the current
control variable =, € X' is determined (by some algorithm),
a sample 6, ~ P will be revealed, which can be used to
determine future control variables {z,},;>¢41. It is desired
that F'(x;), i.e., the expected cost yielded by the algorithm,
is not much worse than the (static) optimal expected cost
infyex F(x), e.g., sublinear regret. This form of online
stochastic optimization problem has broad applications in
online learning, adaptive signal processing, and online re-
source allocation [25], [26]. For instance, in online learning,
the random parameter @ can be the input features and output
labels/numbers, while the sample 8; can be the data revealed
sequentially. The control variable « can be some unknown
parameters (e.g., the weight vector in linear regression and
logistic regression) to be estimated.

2) Online Stochastic Optimization with Time-Varying Dis-
tributions: One limitation of the aforementioned online
stochastic optimization is that the underlying distribution P
of the random parameter is fixed (although unknown). In
contrast, in many applications, the distribution P may vary
with time slowly. For example, in adaptive signal processing,
the unknown weight vector that one aims to track (e.g.,
the channel impulse response in wireless communications)
usually varies slowly across time. This renders the joint
probability distribution of the input regressor and output
response time-varying. Thus, we are motivated to consider
the following online stochastic optimization problem with
time-varying distributions:

migien)l(ize Fi(x) := Eoup,[f(x,0)], (D
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where P; is the unknown distribution of the random param-
eter @ at time t. The optimal solution of problem (1) for
each time ¢ is denoted as x;, which is determinstic and time-
varying. Denote the control variable selected by an algorithm
at time t as xy. In each time ¢, after x; is chosen by the
algorithm, a sample 6, ~ P, will be revealed as feedback.
All the samples 01, 65, ... are assumed to be independent.

Example. The classical adaptive filtering can be posed as
an online stochastic optimization problem with time-varying
distributions [33]. Consider a standard linear regression sig-
nal model as follows:

dy = ﬁ’tTUt + ey, )

where u; € R",d; € Rw; € R e; € R are the
input regressor, output response, true weight vector, mea-
surement noise at time ¢, respectively. We assume that u; ~
N(0,%) and e; ~ N(0,02) are independent, where ¥ =
diag(c?,...,02). The true weight vector w; is deterministic,
unknown and time-varying. At each time ¢, we receive an
observation pair (d;, u;) (i.e., 8 in the generic optimization
formulation), which, according to the signal model in (2), is
drawn from the following time-varying distribution:
~ T~ 2 ~T
_ w, 2w +0° w, X

Pt./\/(O,{ S, 5 ]) 3)
The goal of adaptive filtering is to track the time-varying
weight vector w;. To this end, we minimize (with respect to
w) the following expected fitting error:

2
Ft(’U)) =K |:(dt — 'wTut) } = (d,ulg:NPt

{(d - wTu)Q] ,
“)

which is clearly in the form of the generic optimization
problem (1) if one defines f(w,d,u) = (d — wTu)Q.

B. Algorithm and Performance Metric

We first make the following standard assumption.

Assumption 1: X is closed, convex, and bounded by a
constant R > 0, i.e., ||| < R for any « € X.
Under Assumption 1, the projection onto X exists and
is unique. Thus, the projection operator IIx(y) =
arg minge x ||« — y||2 is well defined for any y € R™. In the
following, we present a projected stochastic gradient descent
algorithm to solve problem (1) in an online fashion. In each
time ¢, after the current control variable x; is chosen and
submitted, the algorithm receives a sample 6; ~ P,. Then,
a projected stochastic gradient descent step is conducted to
obtain the new control variable x;;; as follows:

LTi41 = HX(-’Bt - vaf(mt, Ot)), )

where 17 > 0 is the step size. The algorithm is summarized in
Algorithm 1, in which T is the total horizon of the algorithm.
Due to the projection onto & in the update, the control
variable x; is always in the admissible set X for all t.
We note that {x;} is a random sequence since the sample
sequence {6} is random.

Algorithm 1 Projected stochastic gradient descent

1: Initialize &, € X arbitrarily.

2. fort=1,2,....,T do

3:  Submit the action x;.

4 Receive the sample 0, ~ P;.

5 Update the control variable according to (5) to obtain
Ltyq.

6: end for

The (dynamic) benchmark is the time-varying optimal
point x; of problem (1) and it is desired that the control
variable x; yielded by Algorithm 1 is not much worse than
a7 in terms of minimizing F}(+). To measure the discrepancy
between F}(x:) and Fy(x}), we define the (expected) regret
at time 7" as

Reg(T) :=E

T T
> Fi(a)| - > Fi(=)), (6)
t=1 t=1

which is a prevalent performance metric used in the litera-
ture. Unlike conventional stochastic optimization with fixed
distribution [1]-[6], the regret adopted in this paper is with
respect to the dynamic benchmark sequence {x}} instead
of a static optimum. Clearly, dynamic benchmark is more
meaningful (yet more challenging to handle) than static
benchmark when the underlying system is intrinsically time-
varying. Further, an ideal sequence of control variables x;
should possess sublinear regret, i.e., Reg(T') < o(T'). In such
a case, as T goes to infinity, RegT(T) < 0o(1) — 0 so that the
performance of x; is no worse than that of the dynamic
benchmark z} in terms of asymptotic time-average costs.

Example cont’d. We revisit the aforementioned adaptive
filtering example. Suppose we know that the true weight
vector w; is in the ball X = {z||z|2 < R} for all
t. Thus, the stochastic optimization problem at time ¢ is
min,ex Fy(w), where Fi(+) is defined in (4). Denote the
estimated weight vector at time t as wy. Applying the
stochastic projected gradient update in (5) to the adaptive
filtering problem, we obtain the following update:

w1 =y (we + 29 (de — w]wg) wy) (N

which is indeed the well known LMS filter [33]. Addition-
ally, making use of the signal model (2), we can rewrite the
expected fitting error as Fy(w) = (w—w;) " E(w—w;)+02.
Thus, the optimal point at time ¢ is w; = w; with optimal
value F}(w}) = 02, and the regret of the LMS filter becomes

T

Reg(T) =E | Y (w, — ;) S(w; — @) |, (8)

t=1

which measures the discrepancy between the estimates {w; }
and the ground truths {w;}. Generally, conventional con-
vergence analysis of LMS or other adaptive filters (e.g.,
RLS) presumes that the true weight vector w; is time-
invariant [33]. Though making the analysis tractable, this
time-invariance presumption does not hold in most applica-
tions of adaptive filters and indeed contradicts the original
intention of adaptive filtering, i.e., tracking the time-varying
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unknown weight vector w; in real time. Alternatively, in this
paper, we admit the temporal variations of w; and quantify
the impact of the temporal variations on the algorithm per-
formance through regret analysis, which will be elaborated
later.

C. Performance Analysis

Before proceeding to the analysis, we further make the
following two standard assumptions.

Assumption 2: For any given 8 € ©, f(«,0) is convex in
x.

Assumption 3: There exists a constant H > 0 such that,
forany x € X and t = 1,2, ..., we have

Eo~p, [|[Vaf(z,0)3] < H. ©)
Assumption 2 is a standard assumption on convexity satisfied
by many loss functions used in machine learning and signal
processing. For instance, the quadratic loss function in the
example of adaptive filtering f(w,d,u) = (d — wTu)2 is
convex in w for any given d and w. Under Assumption 2, we
know that F;(x) is also convex for any ¢. Assumption 3 re-
quires the cost function f to have bounded expected squared
gradients under each distribution P;. This assumption is also
standard in the literature and is satisfied by many commonly
used loss functions. For example, in the adaptive filtering
example, a choice of H that satisfies Assumption 3 can be
given as

n n 2 n
H=16R* [2) o} + (Za?) +40%> o2 (10)
=1 =1 i=1

The derivation of this H is given in the Appendix. Further,
we define a notion of the drift of the dynamic optimal points
as follows.

Definition 1: We define the drift of the dynamic bench-
mark sequence {x;} by A(T) := 23:2 llef_1 — xF]|2.
The drift A(T) measures the temporal variations of the
distribution P;, which lead to the temporal variations of
the optimal point x; of problem (1). The more drastically
the distribution P; evolves across time, the larger the drift
A(T) is. In addition, we note the following property of the
projection operator [34], which is useful later.

Lemma 1: Suppose S C R" is closed and convex. Then,
for any x € S and y € R™, we have

e —Ts(y)l2 < lz — yl2. (11)
Now, we are ready to show the main theorem regarding
the performance of Algorithm 1.

Theorem 1: Set the step size as ) = # in Algorithm
1. Then, under Assumptions 1, 2, 3, the regret (defined in
(6)) can be upper bounded as follows:

Proof: According to Lemma 1, we have

&} — @eqa 13 (14)
= ||} — x (@ — nVaf(z:,0,))ll5 (15)
< |l@; — (@ — Vo f (@i, 0:))I3 (16)
= |z — ;|3 — 2n(@: — @) Vo f(ze, 0;)

+ 77| Vaf (@, 0)]3. (17)

Rearranging terms, we obtain

(z¢ — @}) Vo f(x,0;)

1 " " n
< o (e — 213 — |zt — 2 ]13) + §||wa(f'3t»9t)”§~
(18)
Since f is convex in x for any given 6, we have
f(w:a 075) 2 f(wh et) + me(wt; Ot)T(x: - wt)' (19)

Combining (18) and (19), we get

f(xe,0:) — f(xf,6:)
< 57 (ot = 13 = loss — @i 1) + 21 Va1, 00)13
(20)
Further, we note that
T
D (e = 2713 = llzer — 213) @n

T
(a)
<z —ail3 + ) (lze — 2[5 - llze — 2{41[13) 22)

t=2
T
= ||l@y — x}]3 + Z 2w (@]_, — x})
t=2
T
+ ) (lzpll3 = llwr_y113) (23)
t=2
® *|12 * (12 o * *
< ey — 27|z + |27 (3 + 22 llzsll2l|2f_ 1 — xf]|2
t=2
(24)
(c
< 5R® + 2RA(T), (25)

where (a) is by rearranging terms and the fact ||xp4q —
xh||3 > 0; (b) is due to telescoping sum, [|z1]]3 > 0,
and Cauchy inequality; (c) is because of =}, x; € X (X
is bounded by R) and the definition of the drift A(T).
Summing (20) for ¢ from 1 to 7', making use of (25), and
taking expectation, we obtain

T
> Elf(z:,0:)

1
2—(5R2 + 2RA(T

— f(x,6,)]

1\3\3

T
Z [V f (2, 0,)]13] -

5R? T H
Reg(T) < — | —=¢ R+ — TA(T 12
es(T) = = A(T)+< +2) T a2 (26)
=0 ( TA(T)) . (13)  We note that x; and 6, are independent according to Algo-
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rithm 1. Hence,

]E[f(wt, 91:)] = K, []Ee, [f(ift, 9t)|ﬂ3t]] (27)
= Bz, [Eo~p, [f(t, 0)|2:]] (28)
= E[F(z,)]. (29)

Moreover, according to Assumption 3, we have

E[|IVof(x:,0:)3] = Ea, [Ee, [IIme(:Bc,9t)||%|$n]](30)

)] ]
31

Ee, [H] = H. (32)

= Efﬂf. [EGN'Pc [”vﬂ-'vf(wt:

Substituting (29) and (32) into (26) and making use of

E[f(x}, 8:)] = Fi(x}), we obtain
1 HT
S (E{F 0] - Fie) < 5 (5R* +2RA(T)) + 5=
t=1
(33)
Substituting the step size 7 = @, we get
T
Reg(T) = ) (E[F:(x0)] — Fy(x})) (34)
t=1
5R? T H
<= =
<S\Vam*t (R+ 5 ) VTA(T) (35
-0 ( TA(T)) : (36)
in which the last step is due to A(T') > ||z7 —x3|2 = Q(1),
i.e., A(T) is at least of constant order. [ |

According to Theorem 1, if the drift A(T) is sublinear,
so is the regret of Algorithm 1. In other words, Algorithm 1
possesses sublinear regret as long as the distribution P; does
not vary too drastically. Conversely, if the drift is allowed
to be of linear order, ie., A(T) = ©(T), then no online
algorithm can guarantee sublinear regret. To see this, we
consider a cost function f(z,0) = (x — )2 and action set

= [0, 1]. Thus, the expected cost at time ¢ is

F(z) = Eoup, [(z — 0)%] = (z — Ep,[6))* + Varp, 0],
(37)

where P; is some distribution over the interval [0,1]. It is
easy to check that Assumptions 1, 2, 3 are all satisfied. The
optimal point at time ¢ is clearly =; = Ep, [f]. Consider an
arbitrary online algorithm and denote its iterate at time ¢ as
x;. Then, its regret is

Reg(T) = [Z(J:t Ep,[6]) ] (38)
Recall that, in the online setting, only after x; is determined,
a sample from P, is revealed. Thus, an adversary can
choose P; based on the algorithm iterate x;. Since P; is
a distribution over [0, 1], Ep,[f] can achieve arbitrary value

in [0, 1]. We can choose P; such that

|Ep, [6] — | > . [Ep,[6] - Ep, ,[6]] > (39)

|

Then, from (38), we know Reg(T) > 16 i.e., the regret is
not sublinear. Additionally, the drift satisfies (T —1)/4 <
A(T) <T —1 and is of linear order.

A(TM)

In Theorem 1, the step size is chosen as 17 = s

which depends on the drift A(T"). We note that A(T") may
not be known precisely in advance. Nevertheless, as long

ﬂTll , the order bound O ( TA(T)) of

the regret in Theorem 1 will hold. So, when selecting the
step size, one only needs an estimate of the order of A(T)
with a possible constant factor error. Further, even if such
an estimate of the order of A(T) is not available, we can
still choose step size i to ensure sublinear regret whenever
A(T) is sublinear. We presume that a sublinear upper bound
of A(T') is known. That is, we know a sublinear positive
sequence A(T), such that A(T) < A(T) for T large enough
(there can be a positive constant scaling factor on either side
of the inequality, which does not affect order statements).
Since A(T) is sublinear, such a sublinear upper bound
E(T) must exist and can be known in advance in many
scenarios. If little knowledge about A(T') is known besides
sublinearity, we can choose a very conservative sublinear
upper bound A(T), e.g., T¢, where ¢ < 1 is very close
to 1. With such a sublinear upper bound A(T) known, we
An)
T

asnp= 6

can choose the step size to be 7 = . Then, after
minor adaption of the proof of Theorem 1, the regret bound

1/T5(T))
the regret. We summarize the above points in the following

corollary.

Corollary 1: Suppose we know a sublinear positive se-
quence A(T) such that A(T) < A(T) for T large enough.

Set the step size as 5 = MTD in Algorithm 1. Then, under
Assumptions 1, 2, 3, there is a sublinear regret bound as
follows:

becomes O . Since A(T) is sublinear, so is

Reg(T) < O [ 1/TA(T) (40)

Example cont’d. We revisit the example of adaptive
filtering again. In thls case, the drift of the dynamic bench-
mark is A(T) = Zt _o |[wi—1 — w¢||2, which measures the
temporal variations of the true weight vector w,;. According
to Theorem 1, the regret of the LMS given in (8) is upper
bounded by O \/TA(T . In particular, if the drift A(T)
of the true weight vector 1s sublinear, so is the regret of the
LMS. Conversely, if the drift A(T') is linear or superlinear,
the true weight vector w; evolves in constant rate at least
and virtually no adaptive filter can track it well due to lack
of information.

ITI. SIMULATION RESULTS

In this section, numerical experiments are conducted to
validate the efficacy of the proposed algorithm and the
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theoretical results in Theorems 1.

We apply Algorithm 1 to the adaptive filtering example,
which is a stochastic optimization problem with time-varying
distributions. The dimension of the true weight vector w; is
set to be n = 5 and the radius of the admissible set X is
R = 10. The variance of each entry of the input w; is 1
and the variance of the noise e; is 0.5. The sequence of
w; is generated according to w1 = Iy (W + o), where
each entry of a; is an independent Gaussian random variable
with zero mean and standard deviation ¢t—?. Here f > 0
characterizes the temporal variation speed of the distribution
Py (c.f. (3)) and is related to the drift A(7T") of the dynamic
optima. The larger (3 is, the slower P; varies and the smaller
A(T) is. In fact, we have ||[W1 — well2 = O (¢t77) and
A(T)=6 (EtTZI t_ﬂ). In the adaptive filtering example,
we consider a slow variation scenario of 3 = 1 and a fast
variation scenario of 5 = 0.5. The orders of A(T') in these
two scenarios are O (log T) and 6(+/T), respectively, which
are both sublinear. The total time horizon is chosen to be
T = 1000. According to Theorem 1, the order of the step size
1 should be @ («/A(T)/T), which is 0.083 for 8 = 1 and
0.1778 for 3 = 0.5. Thus, a reasonable choice of the step size
is 7 = 0.1, which we use for both values of (. The relative
time-average regrets % of Algorithm 1 (the regret in
the adaptive filtering example is given by (8)) are shown in
Fig. 1 for 3 =1 (i.e., 1/t variation) and 8 = 0.5 (i.e., 1/t
variation). The results are averaged over 1000 independent
trials. The theoretical time-average regret (order) bounds (c.f.
Theorem 1), i.e., O (\/logt/t) for 3 =1and O (t*1/4)
for 8 = 0.5, are also plotted. We observe that, in accordance
with Theorem 1, the time-average regret converges to zero,
i.e., the regret is sublinear, for both values of 3. Further,
for both values of 3, the simulated relative time-average
regret is smaller than the corresponding theoretical bound,
confirming Theorem 1. In addition, the relative time-average
regret for 8 = 1 is smaller than that for 5 = 0.5 by an order
of magnitude, which highlights the impact of the temporal
variations of the distribution P;. This impact is reflected in
the theoretical regret bound O (s/TA(T)) in Theorem 1,
while it is mostly ignored in the classical analysis of LMS
or other adaptive filters [33].

IV. CONCLUSION

In this paper, we have studied online stochastic opti-
mization problem with time-varying distributions. Due to
the temporal variations of the underlying problem, dynamic
optimal points have been adopted as performance benchmark
to define the regret. A stochastic projected gradient descent
algorithm has been presented and an upper bound of its regret
has been established in terms of the drift of the dynamic
benchmark. Sublinear regret of the algorithm can be ensured
as long as the drift of the dynamic optima is sublinear,
i.e., the underlying distributions do not vary too drastically
across time. Finally, numerical results have been presented
to corroborate the efficacy of the proposed algorithm.

APPENDIX: DERIVATION OF H FOR ADAPTIVE FILTERING

In the example of adaptive filtering, we have

2
[V f(w,dw)|3=4(d—w'u) |ul. @D
Thus, for any w e X, t =1,2, ...,
E(du)~p, [V f(w, d,u)|3] 42)
= 4E [(d — w"us)?|we||3] (43)
~ T 2 2
— 4 | (00— w) e+ e0) Juell (44)

W) {(({ut —w)" ut)Q ||ut§} +4E [€}] E [||ue||3]

(45)
() - n
<4 [, — wllwil)s] + 4023 oF (46)
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< 16R?E[|ur]|§] + 40° Y o (7

i=1
2

n n n
S16R% (2> ol + (D> o7 | | +40°> o7, (48)
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where (a) is due to the independence between w; and ey;
(b) is an application of Cauchy inequality; (c) results from
the facts that w;,w € X and X is bounded by R; (d) can
be derived by using the fourth-order moment of Gaussian
random variable E [uj ;] = 307
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