

1 A putative telomerase activator has tissue-specific effects on telomere length in a developing songbird

2

3 Sarah E. Wolf^{1,2*}, Keegan R. Stansberry¹, Kristen R. Content¹, and Kimberly A. Rosvall^{1,2}

4 ¹Department of Biology, Indiana University, Bloomington, IN, 47405, USA

5 ²Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA

6

7 Correspondence author: Sarah E. Wolf

8 Email: wolfsae@indiana.edu

9 ORCID: SEW, 0000-0002-2620-8999; KAR, 0000-0003-3766-9624

10

11 Author emails: KRS (kstans6@lsu.edu), KRC (kcontent@iu.edu), KAR (krosvall@indiana.edu)

12

13 **ABSTRACT**

14 There is good evidence that telomeres predict variation in health and longevity, yet it is unclear whether
15 these patterns are causally derived from telomeres *per se*, in part because relatively little research
16 directly manipulates telomere length during early life, when telomere shortening is most dynamic. Here,
17 we test how the telomerase activator TA-65 (i.e., cycloastragenol) affects telomere length in five tissues
18 during the peak of growth in the wild tree swallow (*Tachycineta bicolor*). Following 8 days of oral TA-65
19 administration, chicks experienced telomere lengthening in the blood and accelerated feather growth,
20 but no changes to mass over time. TA-65 did not affect telomere length in the brain or spleen and led to
21 shorter telomeres in the liver and adrenals. This whole-organism experimental manipulation of telomere
22 dynamics therefore reveals limitations to telomere protection and biological senescence. In doing so,
23 this work advances our understanding of early-life telomere dynamics and their potential role in
24 generating future variation in health and lifespan.

25 **1. Introduction**

26 Environmental perturbations during early development can set the trajectory for later
27 deterioration of somatic function over time (i.e. senescence), and therefore may shape lifespan at a very
28 early age (Bazopoulou et al. 2019, Boonekamp et al. 2014, Taylor 2010). In the last decade, telomere
29 dynamics have emerged as one key mechanism that may link these early life conditions with future
30 fitness outcomes (Price et al. 2013). Telomeres are conserved nucleotide sequences that cap the ends of
31 chromosomes and protect genomic integrity (Blackburn 2001, de Lange 2004). In recent years,
32 evolutionary, behavioral, and biomedical research has revealed telomeres as powerful predictors of
33 survival and longevity across vertebrates, especially among birds (Wilbourn et al. 2018, Whittemore et
34 al. 2019, Hares et al. 2018). Telomeres typically shorten with age during cellular replication (Levy et al.
35 1992, Denham et al. 2019), and this process can be accelerated during periods of growth (Reichert et al.
36 2015, Vedder et al. 2018) or stress exposure (Chatelain et al. 2020, von Zglinicki 2002, but see
37 Boonekamp et al., 2017). Short telomeres are consequently believed to prompt senescence and loss of
38 tissue function (Armanios and Blackburn 2012) but can be repaired by telomerase, the enzyme that re-
39 builds telomeric repeats (Blackburn et al. 1989). Although high telomerase expression is limited to
40 minimize inappropriate cell immortality (Granger et al. 2002, e.g., cancer risk, Greider 1998), telomerase
41 may also be a vital buffer against ageing and other deleterious fitness consequences early in life when
42 telomere loss is greatest (Salomons et al. 2009, Pauliny et al. 2012, Zeichner et al. 1999). These ideas
43 have led to the hypothesis that telomeres and their regulatory mechanisms truly drive, rather than
44 track, fitness outcomes. While avian research has been key to uncovering correlations between
45 telomeres and fitness traits, this *causal* hypothesis has not been well tested because most work alters
46 telomere length indirectly using generalized manipulations of growth or stress (Chatelain et al. 2020,
47 Reichert et al. 2015), rather than more direct manipulations of telomere length itself.

48 Cycloastragenol is a small molecule purified from the root of *Astragalus membranaceus*
49 (Family: Fabaceae) that has emerged as a robust stimulant of telomerase activity, and it is the active
50 ingredient in nutritional supplements like TA-65 (de Jesus et al. 2011, Reichert et al. 2014). This extract
51 has been used in traditional Chinese medicine for millennia and in the last 10 years, has been tested in a
52 number of human cell lines and rodent models (reveiwed in Yu et al. 2018). Telomerase activation in
53 aged mice increases telomerase (*TERT* subunit) transcription in the liver (de Jesus et al. 2012) and
54 repairs telomere length in mice and birds (Reichert et al. 2014), often predominantly in the shortest
55 telomeres (de Jesus et al. 2011). These studies also show that experimental telomerase activation and
56 subsequent telomere elongation occur alongside improvements in tissue function (e.g., feather
57 regeneration: Reichert et al. 2014), as well as slowed ageing and longer lifespan (de Jesus et al. 2011, de
58 Jesus et al. 2012). These findings suggest that telomerase plays a vital role in postponing senescent
59 phenotypes in older individuals. However, comparatively less is known about how telomerase activation
60 affects telomere dynamics early in development, despite observations that early life conditions set the
61 trajectory for future telomere length (Boonekamp et al. 2014, Nettle et al. 2013).

62 Telomerase is one of several important telomere regulatory mechanisms that may causally link
63 telomere length to later effects on organismal function, senescence, and survival. Regulation and
64 expression of telomerase varies across the body in many mammalian systems and cultured cell lines,
65 typically with higher levels in more replicative tissues (Forsyth et al. 2002, Liu et al. 2010), yet whether
66 these patterns generalize to avian species is less clear. A small number of studies in birds show that
67 telomerase activity is high early in development but decreases into adulthood, particularly so in
68 differentiated somatic tissues (Haussmann et al. 2007, Haussmann et al. 2004, Taylor and Delany 2000,
69 Venkatesan and Price 1998). However, these studies also show inter-specific variation in the ontogeny
70 of telomerase activity across different tissues, e.g. high hatchling telomerase activity in bone marrow
71 decreases with age in the zebra finch (*Taeniopygia guttata*), but not the common tern (*Sterna hirundo*)
72 (Haussmann et al. 2007). Regardless of these complexities, current evidence suggests that avian

73 telomerase is not solely limited to highly proliferative tissues or periods of intense somatic growth in the
74 same way as mammalian systems (Forsyth et al. 2002, Haussmann et al. 2007). Critically, tissue-specific
75 telomerase activity may serve as a gateway to variation in tissue health from a very young age that
76 ultimately influences organismal responses to early life challenges like predation, sickness, and cognitive
77 tasks. In addition, early growth may be linked with telomere dynamics in potentially opposing ways. For
78 instance, rapid cellular replication hastens telomere loss during development (Levy et al. 1992, Denham
79 et al. 2019), but high levels of telomerase early in life (Haussmann et al. 2007) may promote growth
80 (Smith et al. 2003, de Jesus et al. 2011, de Jesus et al. 2012). Previous work shows that telomerase plays
81 a role in energetics (e.g., glucose uptake, IGF-1 pathway) and increases hair and feather growth (de
82 Jesus et al. 2011, de Jesus et al. 2012, Reichert et al. 2014), potentially modulating important
83 developmental milestones. Experiments that target early life telomerase activity are therefore needed
84 to begin disentangling how telomerase regulation, telomere length itself, and early life conditions
85 mediate variation in health and longevity.

86 To improve our understanding on the causal role that telomeres play in shaping later fitness
87 outcomes, we need experimental manipulations that can alter telomere length without relying on
88 modification to somatic growth or early life stress. To this end, we experimentally tested how the
89 putative telomerase activator TA-65 affects growth and telomere dynamics in developing songbird
90 chicks. TA-65 has been used successfully in many studies of adult animals or tissues (summarized
91 above); however, to our knowledge, this supplement has not been used to manipulate telomeres in
92 developing young, despite the vital role this life stage plays in setting future health outcomes. Our
93 experiment used free-living tree swallows (*Tachycineta bicolor*) during the peak of early post-natal
94 growth, a time during which chicks can grow by 4-fold in a matter of days. This period of rapid cellular
95 proliferation typically occurs alongside higher rates of telomere loss as well as greater telomerase
96 expression (Forsyth et al. 2002, Salomons et al. 2009), but it is unclear how telomerase activation
97 beyond these constitutive levels affects telomere length in juveniles and how this varies among tissues.
98 To explore these questions and facilitate future research assessing how telomere dynamics shape larger
99 fitness outcomes like health and longevity, we measured telomere length in a suite of metabolic,
100 immune, endocrine, and neural tissues after chicks received 8 days of oral administration of the putative
101 telomerase activator TA-65. We expected longer telomeres in chicks given TA-65 and furthermore, that
102 tissues would vary in the strength of this effect.

103

104 **2. Materials and methods**

105 *2.1. Study subjects and experimental design*

106 We conducted this experiment during spring and summer of 2019 in a nest box population of
107 free-living tree swallows located near Bloomington, Indiana, USA (39.1653°N, 86.5264°W). In total, this
108 experiment used 131 chicks distributed among 25 nests ($n=5.2\pm0.2$ chicks per nest). We used a within-
109 nest experimental design, with half of the chicks in each nest receiving oral dosing of TA-65 (T.A.
110 Sciences, New York City, NY) and half receiving sterilized water (control). We were not aware of a
111 published dose for developing songbirds (elaborated in Section 2.2.), so we tested both low and high
112 doses of TA-65, maintaining a 2-factor within-nest design. 11 nests received low vs. control ($n=26$ water,
113 30 TA-65 chicks), and 14 nests received high vs. control ($n=37$ water, 38 TA-65 chicks). Among nests, we
114 balanced TA-65 dose (low vs. high) by date and brood size.

115 The experiment began when chicks were 4 days post-hatching (dph; hatch day=day 1). We
116 uniquely trimmed each chick's toenails for individual identification, weighed them (nearest 0.1g), and
117 collected 15-30µL blood from the metatarsal vein. We then assigned treatment (water or TA-65), which
118 was counterbalanced by mass within and between nests. For 8 consecutive days (4 to 11dph), we
119 weighed each chick and orally administered either water, a low dose (0.1mg/g) of TA-65, or a high dose
120 (0.2mg/g) of TA-65. We visited chicks a final time on 12dph, when we (a) measured mass and wing

121 length, (b) banded all chicks with one numbered USGS band, and (c) collected $\leq 50\mu\text{L}$ blood from the alar
122 vein, to quantify telomere attrition in blood over the study period. We selected 12dph because chicks
123 are approaching asymptotic adult-like mass and are experiencing accelerated feather growth, both of
124 which are linked to future survival (Magrath 1991, Martin et al. 2018, Martin et al. 2011, McCarty
125 2001a) and fecundity (Haywood and Perrins 1992). While in the nest, chicks continue growing feathers
126 until and after fledging ($\sim 21\text{dph}$), at which time wings are approaching adult lengths (McCarty 2001b).
127 In addition, 12-day old chicks do not prematurely fledge in response to research activities at their nest.
128 To measure experimental effects on telomere length in non-blood tissues, we euthanized one TA-65 and
129 one control chick from all high vs. control nests on 12dph (n=28 chicks total, counterbalanced by mass,
130 in n=14 nests). To minimize impact to the breeding population, chicks from low vs. control nests were
131 not euthanized, although we recognize this design limits our ability to test dose-dependent effects on
132 non-blood tissues. Chicks were euthanized with an overdose of isoflurane, followed by decapitation and
133 collection of blood, brain, spleen, liver, and adrenals. Samples were snap frozen on dry ice in the field,
134 within $11.6 \pm 0.2\text{min}$ of euthanasia, and stored at -80°C .

135 *2.2. TA-65 dosing regime*

136 Previous studies have administered TA-65 in a wide range of doses, from an estimated 0.02–0.1
137 mg/g body mass daily, and only some of these studies effectively manipulated telomere length (Reichert
138 et al. 2014, de Jesus et al. 2011, Rollings et al. 2017). These studies use vertebrate classes that vary
139 dramatically in metabolism and bone density (i.e. mice, birds, lizards), and none of the published work
140 uses developing animals. Therefore, it was difficult to predict an appropriate dose of TA-65 for our
141 study. We chose two doses: low (0.1 mg TA-65/g body mass) and high (0.2mg TA-65/g body mass).

142 For 8 consecutive days (4 to 11dph), we administered one of three treatments to each chick:
143 water, a low dose of TA-65, or a high dose of TA-65. Because we timed our experiment to occur during
144 the peak of nestling growth, we adjusted all dosing based on mass data compiled from locally breeding
145 tree swallows and previous publications (McCarty and Winkler 1999, Quinney et al. 1986, McCarty
146 2001a). We then estimated the volume of TA-65 that would result in a low and high dose, based on the
147 estimated average daily mass of developing tree swallows. The volume required to maintain these daily
148 doses ranged from 115 to $392\mu\text{L}$, and we adjusted these volumes every other day (d4-5: 115 μL , d6-7:
149 177 μL , d8-9: 328 μL , d10-11: 392 μL) for all three experimental groups, including water controls. Each
150 morning, we mixed fresh TA-65 powder (obtained from commercially available capsules) with sterile
151 water, to prepare both low and high concentration suspensions, which we administered at volumes
152 resulting in our intended doses. This method allowed us to scale up the amount of TA-65 given as chicks
153 grew larger, and it ensured that all treatments were given the same volume of liquid across ages. Upon
154 completion of the study, we used population-level daily average mass from all individual chicks in this
155 study to confirm post-hoc that the actual average doses of TA-65 received by chicks were low: $0.095 \pm$
156 0.005 mg/g and high: $0.19 \pm 0.01 \text{ mg/g}$.

157
158 *2.3. Quantification of telomere length*

159 We quantified telomere length via quantitative PCR using methods modified from previous work
160 (Criscuolo et al. 2009, Cawthon 2009). To begin, we extracted DNA from blood, brain, spleen, liver, and
161 adrenals. We used the automated Maxwell® RSC Instrument (Promega, Madison, WI) with Whole Blood
162 DNA Kit (Promega #AS1520) to extract DNA from $15\mu\text{L}$ whole blood, which was eluted into $60\mu\text{L}$ buffer.
163 Non-blood tissues were manually homogenized on a sterile chilled block and an aliquot of the
164 homogenate was used for DNA extraction. We used the Tissue DNA Kit (Promega #AS1610) to extract
165 DNA from spleen, liver, brain, and one adrenal, with $80\mu\text{L}$ TE buffer, eluted into $100\mu\text{L}$ buffer. We
166 quantified DNA concentration using the Epoch microplate spectrophotometer (BioTek, Winooski, VT).

167 Telomere length was measured as the ratio (T/S) of telomere repeat copy number (T) to a single
168 gene copy number (S), relative to a pooled reference sample present on all plates. We amplified our
169 single copy gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) using primers GAPDH-F (5'-AAC-
170 CAG-CAA-AGT-ACG-ATG-ACA-T-3') and GAPDH-R (5'-CCA-TCA-GCA-GCA-GCC-TTC-A-3'), originally
171 developed in zebra finches (Criscuolo et al. 2009). We amplified telomeres using primers telg (5'-ACA-
172 CTA-AGG-TTT-GGG-TTT-GGG-TTT-GGG-TTA-GTG-T-3') and telc (5'- TGT-TAG-GTA-TCC-CTA-TCC-
173 CTA-TCC-CTA-TCC-CTA-TCC-CTA-ACA-3'), originally developed in humans but used across vertebrate taxa
174 (Cawthon 2009). We conducted qPCR on 384-well plates (ABI Quantstudio 5, Foster City, CA). For each
175 sample, we ran GAPDH and telomere reactions in triplicate on the same plate. Prior to plating, we
176 diluted DNA samples to 3.33ng/µL using ultra-pure water. Each reaction had a total volume of 10µL
177 containing 5µL PerfeCTA SYBR Green SuperMix Low ROX (Quanta Biosciences, Gaithersburg, MD, USA),
178 200nM each GAPDH-F/GAPDH-R or 200nM each telc/telg, and 3µL DNA extract (10ng total). qPCR
179 reaction conditions were: 10 min at 95°C, followed by 30 cycles of 10 s at 95°C, 1 min at 62°C, and 30 s
180 at 72°C, followed by 1 min at 95°C, 30 s at 55°C, and 30 s at 95°C. All samples fell within the bounds of
181 the standard curve and reaction efficiencies were 98.72 ± 2.77 (GAPDH) and 107.55 ± 8.22 (telomere).

182 Mean Ct values (per triplicate) were used to calculate the relative T/S ratios for each sample
183 using the following formula: $2^{\Delta\Delta Ct}$, where $\Delta\Delta Ct = (Ct_{\text{telomere}} - Ct_{\text{GAPDH}})_{\text{reference}} - (Ct_{\text{telomere}} - Ct_{\text{GAPDH}})_{\text{focal}}$.
184 Telomere length for all samples was calculated relative to a pooled reference sample obtained from tree
185 swallow whole blood that was present on all plates. We used this reference sample to calculate the
186 inter-plate coefficient of variation: 3.09% and 3.13% for GAPDH and telomere Ct's, respectively. The
187 average telomere length of this pool fell within the Ct range of samples in the study. We also re-ran a
188 subset of samples (n = 28) and found that $2^{\Delta\Delta Ct}$ values were highly repeatable across plates (Intraclass
189 Correlation Coefficient: 0.86; 95% confidence interval: 0.73 - 0.93). For analysis of the change in whole
190 blood telomere length over time, both samples from a single individual (4 and 12 dph), as well as all
191 siblings from the same nest, were included on the same plate, and plates (n=5) were balanced by
192 treatment, hatch date, and brood size. All remaining tissues (i.e., liver, spleen, brain, and adrenals) were
193 run on separate plates. Of the 131 chicks initially in the study, 7 were excluded from qPCR analyses: n=6
194 did not survive to 12dph (n=1 water, n=2 low, n=3 high), and n=1 showed poor replicates in qPCR,
195 leaving n=124 chicks with repeated measures of blood telomere length and n=28 chicks with telomere
196 data from additional tissues.

197

198 2.4. Statistical analyses

199 All statistical analyses were performed in R (version 3.5.3, (R Core Team 2019)). We performed
200 linear mixed effects models (LMMs) using the nlme package (Pinheiro et al. 2020), and reported
201 effective degrees of freedom using the Satterthwaite method. All models initially included treatment as
202 a 3-factor effect, but we found no differences between high and low dose chicks in any metrics and
203 therefore combined them for all analyses (Supplementary material Appendix 1, Fig. A1, Tables A1-3).

204 The effect of TA-65 administration on chick growth over time (mass measured daily) was
205 analyzed in a repeated-measures linear mixed model with treatment, age, and their interaction as fixed
206 effects. We also included hatch date and brood size as covariates and accounted for non-linear growth
207 by adding an age² term (as in Andreasson et al. 2018). To account for increasing variation in mass with
208 age, we used the 'varFixed' function (as in Cox et al. 2019). Chick ID nested in nestbox ID was included as
209 a random effect to account for non-independence of data, and we used an autoregressive covariance
210 structure to control for correlations between successive measurements in each chick (Nettle et al.
211 2013). To quantify effects of treatment on wing length at 12-days old, we used an LMM with fixed
212 effects of treatment, initial chick mass, hatch date, brood size, and sampling time, and random effect of
213 nestbox ID.

214 We next quantified the effect of TA-65 administration on telomere dynamics. Using a repeated
215 measures design, we first tested for treatment effects on the change in blood telomere length from 4 to
216 12dph using the metric D , which is a widely used correction in telomere biology accounting for
217 regression to the mean (Verhulst et al. 2013). We assessed whether D significantly differed between
218 chicks treated with water and TA-65 using LMM, accounting for brood size, hatch date, and qPCR plate
219 as additional fixed effects, and nestbox ID as a random effect. To add confidence to our findings of
220 telomere elongation, we validated that within-individual changes in blood telomere length were robust
221 to measurement error (similar to van Lieshout et al. 2019; full details in electronic supplementary
222 material). In similar models, we also tested for preexisting differences in telomere length between
223 treatments, as well as final effects of treatment on blood telomere length at 12dph. Second, we
224 compared the effects of TA-65 among non-blood tissues, where we fit a model with relative telomere
225 length at 12dph as the dependent variable and treatment, tissue, the treatment \times tissue interaction,
226 hatch date, and brood size as fixed effects. Chick ID nested in nestbox ID was included as a random
227 effect. Tukey post-hoc tests were run on significant interactions using lsmeans (Lenth and Lenth 2018).
228 Blood was not included in our analysis of tissue differences at 12dph because discrepancies in sample
229 size (i.e., $n=124$ blood vs $n=28$ non-blood) can generate unequal variances and bias results.

230 3. Results

231 TA-65 administration had no effect on mass, either as a main effect ($F_{1,105}=0.083$, $p=0.77$) or in
232 interaction with age ($F_{1,1009}=0.28$, $p=0.59$) or age 2 ($F_{1,1009}=0.11$, $p=0.74$). As expected, chick mass was
233 significantly related to age ($F_{1,1009}=8016.08$, $p<0.0001$) and age 2 ($F_{1,1009}=567.01$, $p<0.0001$), as well as
234 brood size and hatch date (see Table 1 for complete model details, Supplementary material Appendix 1,
235 Fig. A2). In addition, TA-65 treatment had a significant effect on wing length ($F_{1,98}=4.79$, $p=0.031$), where
236 TA-65-dosed chicks exhibited longer wings relative to controls (water: 48.6 ± 0.9 mm; TA-65: 50.3 ± 0.7
237 mm). As expected, larger broods, initially smaller chicks, chicks from later-laid nests, and nests
238 measured earlier in the morning were associated with shorter wing lengths (see Table 1 for complete
239 model details).

240 Prior to treatment, chicks administered water or TA-65 did not differ in initial telomere length
241 ($\beta=0.053$, $F_{1,95}=1.37$, $p=0.24$). TA-65 significantly affected the change in relative telomere length (D)
242 measured in blood ($\beta=-0.11$, $F_{1,94}=7.59$, $p=0.007$, Fig. 1): after accounting for nestbox ID, TA-65-dosed
243 chicks exhibited significant telomere elongation from 4 to 12-days old relative to controls, which is
244 robust to technical error (full details in electronic supplementary material). D was not related to brood
245 size ($F_{1,22}=1.45$, $p=0.24$), hatch date ($F_{1,22}=0.65$, $p=0.43$), or qPCR plate ID ($F_{1,94}=0.57$, $p=0.68$).
246 Consequently, TA-65-dosed chicks ended with significantly longer blood telomere length relative to
247 controls ($\beta=0.085$, $F_{1,94}=4.18$, $p=0.044$), with no significant effects of brood size ($F_{1,22}=1.36$, $p=0.26$) or
248 hatch date ($F_{1,22}=1.50$, $p=0.23$), and a marginal plate effect ($F_{4,94}=2.05$, $p=0.093$).

249 In the subset of individuals for which we sampled non-blood tissues, telomere length responded
250 differently to TA-65 among tissues (Fig. 2, tissue: $F_{3,78}=7.96$, $p=0.0001$; treatment: $F_{1,13}=5.38$, $p=0.037$;
251 treatment \times tissue interaction: $F_{3,78}=3.72$, $p=0.015$). Post-hoc Tukey tests show that telomere length at
252 the end of the study was significantly lower in TA-65 chicks in the liver ($t=2.25$, $p=0.043$) and adrenals
253 ($t=3.27$, $p=0.0061$), but there were no treatment effects on telomere length in the brain ($t=-0.91$,
254 $p=0.38$) or spleen ($t=0.035$, $p=0.97$). Brood size ($F_{1,11}=0.0019$, $p=0.97$) and hatch date ($F_{1,11}=0.18$, $p=0.68$)
255 were not related to final telomere length in non-blood tissues. In control chicks, telomere lengths were
256 only correlated between two tissues, blood and liver (Spearman's $p=0.70$, $p=0.037$); TA-65 chicks
257 showed no significant correlations in telomere length across tissues (Fig. A3.).

258

259

260

261 **4. Discussion**

262 Telomeres have emerged as powerful predictors of health and longevity in avian evolutionary
263 and behavioral research, yet most prior manipulations of early telomere dynamics rely on modifications
264 to somatic growth or early life stress, rather than modification of telomere dynamics *per se*. To our
265 knowledge, our experiment is the first to assess the effects of TA-65 on telomere length across multiple
266 tissues during early postnatal development. We found that 8 days of oral administration of the
267 telomerase activator TA-65 led to significant telomere elongation in the blood. This effect occurred
268 without significant effects on mass gain, though experimental chicks showed significant acceleration of
269 feather growth. TA-65 may therefore provide an exciting opportunity to manipulate telomere dynamics
270 directly with minimal manipulation of growth; critically, this is a key step in disentangling the direct
271 effects of telomeres themselves vs. other correlated traits on the ageing process. On the other hand, we
272 also observed shorter telomeres in the liver and adrenals of TA-65-treated chicks, suggesting that TA-65
273 may not globally rescue telomere length. This systems-level view of telomere dynamics offers important
274 insights into potential constraints and consequences of telomere regulation during an age when
275 telomerase is highly active and telomere attrition is thought to play a deterministic role in later health
276 and longevity.

277 Eight days of TA-65 treatment led to significant telomere elongation in the blood; however,
278 other tissues exhibited either no response to TA-65 (i.e., brain, spleen) or exhibited shorter telomere
279 length relative to controls (i.e., liver, adrenals). At this time, little is known about the ontogeny and
280 tissue-specificity of telomerase activity among birds, especially as it compares to patterns shown in non-
281 avian systems (reviewed in Swanberg et al. 2010; Taylor and Delany 2000). Prior mammalian work
282 shows that experimental upregulation of telomerase activity delays ageing and rescues cognitive and
283 reproductive function in adult mice, among other apparent benefits (Tomás-Loba et al. 2008, de Jesus et
284 al. 2011, de Jesus et al. 2012, Jaskelioff et al. 2011). Interestingly, the subunits of telomerase
285 themselves, i.e., the reverse transcriptase (TERT) and RNA template (TERC), also mediate ageing
286 pathways independent of telomerase activity (Geserick and Blasco 2006, Cong and Shay 2008).
287 Constitutive variation in these subunits across tissues may therefore influence the potential for further
288 increase in telomerase activity, as well as the extent of physiological benefits received due to ceiling or
289 hormetic effects. Tissues exhibiting high or increased levels of telomerase (e.g., higher levels in brain vs.
290 liver of postnatal tree swallows (Haussmann et al. 2007)) may be more likely to develop cancers
291 (Granger et al. 2002, Greider 1998), although the extent of hormetic effects may vary by age or
292 progression of cellular senescence. Repair of telomeres by TA-65 in mice occurs predominantly in short
293 telomeres (de Jesus et al. 2011), which may experience fundamentally different regulation than longer
294 counterparts (Nordfjäll et al. 2009). Notably, we show that the tissue with the shortest telomere length
295 in control chicks (i.e., blood) experienced TA-65-induced *elongation* whereas the tissue with the longest
296 telomere length in control chicks (i.e., liver) ended the experiment with significantly *shorter* telomeres
297 after TA-65 treatment. Given that telomeres often reflect tissue functionality (Armanios and Blackburn
298 2012), telomere loss in the liver and adrenals could impact survival-oriented processes that negate the
299 otherwise positive effects of telomerase activation in other tissues. A full understanding of these
300 complexities would benefit from further dose-dependent analyses in non-blood tissues, as well as
301 longitudinal analyses to assess how telomerase activation influences suites of fitness-related traits,
302 beyond the two morphological traits assessed here.

303 Effective manipulation of telomere dynamics themselves will play a critical role in furthering our
304 understanding of the causal links between telomeres and fitness, and the tissue-specific effects we
305 identified contribute to this long-term goal. Several non-mutually exclusive hypotheses could further
306 explain this tissue variability. Oral administration may limit which tissues are exposed to the drug (i.e.,
307 compared to viral vectors: de Jesus et al. 2012), although previous work shows marginal effects of TA-65
308 on telomerase across many tissues in adults, including the brain (de Jesus et al. 2011). Alternative

309 splicing of telomerase (*TERT* subunit) transcripts can also vary among tissues and can produce inactive
310 forms of telomerase (Ulaner et al. 2000, Liu et al. 2017, Jie et al. 2019), suggesting some tissues may be
311 more amenable to pharmacological manipulation of telomerase activity. Lastly, extensive liver
312 metabolism of TA-65 could accrue cytotoxic effects (Zhu et al. 2010) leading to shorter liver telomere
313 lengths seen in TA-65 chicks compared to their sibling controls. Regardless of the exact mechanism,
314 these tissue-specific effects speak to potential trade-offs in which gains in telomere length in some
315 tissues may be offset by losses elsewhere in the body, adding credence to the view that some
316 organismal systems may be more prone to biological ageing than others (Tuttle et al. 2020).
317 Furthermore, these results highlight the need to quantify telomere dynamics across tissues rather than
318 solely in blood as we continue to explore the central driving role of telomeres in health and longevity.

319 TA-65-treated chicks exhibited significantly longer feathers by 12-days old, consistent with
320 previous work showing that telomerase activation enhances feather and hair growth (de Jesus et al.
321 2011, de Jesus et al. 2012, Reichert et al. 2014). Telomerase (i.e., *TERT* subunit) performs a telomere-
322 independent role in cellular replication across taxa (Marión and Blasco 2010, Chiodi and Mondello 2012,
323 Gomez et al. 2012): overexpression in mice promotes proliferation of epidermal stem cells (Flores et al.
324 2005, Sarin et al. 2005, Tomás-Loba et al. 2008) and in amphibians and lizards, telomerase is implicated
325 in wound healing and limb regeneration (Seifert et al. 2012, Alibardi 2015b, Alibardi 2015a). Little
326 comparable work exists for passerine species; however, telomerase is localized in embryonic chicken
327 skin (Alibardi 2020) and is associated with cell signaling in feather development (Park et al. 2009),
328 suggesting a similar role in birds. These advancements in feather growth could accelerate time to
329 fledging and decrease predation risk while in the nest (Martin et al. 2018, Martin et al. 2011). On the
330 other hand, tree swallow wings grow 4-6mm per day at this age (McCarty 2001b), and so the 1.7mm
331 difference we observed could accrue in roughly 8 hours, meaning it may have limited biological
332 relevance. How these changes in feather growth interact with other, potentially deleterious effects of
333 activated telomerase is as of yet unclear. However, these relatively mild advances in feather growth,
334 coupled with the null effects of TA65 on body mass, suggest that this drug has some promise for
335 isolating the causal links between telomere dynamics and fitness.

336 In summary, we found that 8 consecutive days of TA-65 administration in developing chicks led
337 to telomere elongation in the blood but surprisingly, also led to shorter telomeres in the liver and
338 adrenals. This effect was independent of manipulations to body mass and controlled for age, opening
339 new doors into our ability to understand telomeres and their repair mechanisms as potentially causative
340 agents in health and longevity and important players in evolutionary ecology of birds. It is especially
341 important to understand these dynamics in developing juveniles, where telomere dynamics have the
342 potential to set individuals on trajectories of senescence over their lifetime.

343

344 **DECLARATIONS**

345 **Acknowledgements:** We thank the Indiana Department of Natural Resources and Indiana Department
346 of Transportation for access to field sites. We are also grateful to the entire 2019 TRES field crew, David
347 Sinkiewicz at the Center for the Integrative Study of Animal Behavior (CISAB) lab, and to our reviewers
348 for feedback on the manuscript.

349 **Conflicts of Interest:** The authors declare they have no conflicts of interest.

350 **Author Contributions:** SEW and KAR conceived the study. SEW, KRC, and KRS conducted the field
351 experiment and collected samples. SEW completed all DNA extractions and telomere assays and
352 analyzed the data. SEW and KAR drafted the manuscript. All authors approved the final version of the
353 manuscript and agree to be held accountable for the content.

354 **Funding:** Financial support was given by the National Institutes of Health (T32HD049336 to SEW). The
355 first and last authors were supported by the National Science Foundation (IOS-1656109).

356 **Data Availability Statement:** Data available from the Dryad Digital Repository:
357 <<https://doi.org/10.5061/dryad.t4b8gthzn>> (Wolf et al. 2020).

358 **Permits:** This study was approved by the Institutional Animal Care and Use Committee at Indiana
359 University (18-004), and all relevant federal, state, and local agencies.

360 **REFERENCES**

361 Alibardi, L. 2015a. Immunodetection of telomerase-like immunoreactivity in normal and regenerating tail
362 of amphibians suggests it is related to their regenerative capacity. - *J. Exp. Zool. A Ecol. Genet.*
363 *Physiol.* 323: 757-766.

364 Alibardi, L. 2015b. Immunolocalization of the telomerase-1 component in cells of the regenerating tail,
365 testis, and intestine of lizards. - *J. Morphol.* 276: 748-758.

366 Alibardi, L. 2020. Immunostaining of telomerase in embryonic and juvenile feather follicle of the chick
367 labels proliferating cells for feather formation. - *Zool.*: 125846.
368 <<https://doi.org/10.1016/j.zool.2020.125846>>

369 Andreasson, F., Nord, A. and Nilsson, J.-Å. 2018. Experimentally increased nest temperature affects body
370 temperature, growth and apparent survival in blue tit nestlings. - *J. Avian Biol* 49: 1-14.

371 Armanios, M. and Blackburn, E. H. 2012. The telomere syndromes. - *Nat. Rev. Genet.* 13: 693-704.

372 Bazopoulou, D., Knoefler, D., Zheng, Y., Ulrich, K., Oleson, B. J., Xie, L., Kim, M., Kaufmann, A., Lee, Y.-T.
373 and Dou, Y. 2019. Developmental ROS individualizes organismal stress resistance and lifespan. -
374 *Nature* 576: 301-305.

375 Blackburn, E. H. 2001. Switching and signaling at the telomere. - *Cell* 106: 661-673.

376 Blackburn, E. H., Greider, C. W., Henderson, E., Lee, M. S., Shampay, J. and Shippen-Lentz, D. 1989.
377 Recognition and elongation of telomeres by telomerase. - *Genome* 31: 553-560.

378 Boonekamp, J. J., Bauch, C., Mulder, E. and Verhulst, S. 2017. Does oxidative stress shorten telomeres? -
379 *Biol. Lett.* 13: 20170164.

380 Boonekamp, J. J., Mulder, G. A., Salomons, H. M., Dijkstra, C. and Verhulst, S. 2014. Nestling telomere
381 shortening, but not telomere length, reflects developmental stress and predicts survival in wild
382 birds. - *Proc. Royal Soc. B* 281: 20133287.

383 Cawthon, R. M. 2009. Telomere length measurement by a novel monochrome multiplex quantitative PCR
384 method. - *Nucleic Acids Res.* 37: e21.

385 Chatelain, M., Drobniak, S. M. and Szulkin, M. 2020. The association between stressors and telomeres in
386 non-human vertebrates: a meta-analysis. - *Ecol. Lett.* 23: 381-398.

387 Chiodi, I. and Mondello, C. 2012. Telomere-independent functions of telomerase in nuclei, cytoplasm, and
388 mitochondria. - *Front. Oncol.* 2: 133.

389 Cong, Y. and Shay, J. W. 2008. Actions of human telomerase beyond telomeres. - *Cell Res.* 18: 725.

390 Cox, A. R., Robertson, R. J., Lendvai, Á. Z., Everitt, K. and Bonier, F. 2019. Rainy springs linked to poor
391 nestling growth in a declining avian aerial insectivore (*Tachycineta bicolor*). - *Proc. Royal Soc. B*
392 286: 20190018.

393 Criscuolo, F., Bize, P., Nasir, L., Metcalfe, N. B., Foote, C. G., Griffiths, K., Gault, E. A. and Monaghan, P.
394 2009. Real-time quantitative PCR assay for measurement of avian telomeres. - *J. Avian Biol.* 40:
395 342-347.

396 De Jesus, B. B., Schneeberger, K., Vera, E., Tejera, A., Harley, C. B. and Blasco, M. A. 2011. The telomerase
397 activator TA-65 elongates short telomeres and increases health span of adult/old mice without
398 increasing cancer incidence. - *Aging Cell* 10: 604-621.

399 De Jesus, B. B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F. and Blasco, M. A. 2012.
400 Telomerase gene therapy in adult and old mice delays aging and increases longevity without
401 increasing cancer. - *EMBO Mol. Med.* 4: 691-704.

402 De Lange, T. 2004. T-loops and the origin of telomeres. - *Nat. Rev. Mol. Cell Biol.* 5: 323-329.

403 Denham, J., Stevenson, K. and Denham, M. M. 2019. Age-associated telomere shortening in Thoroughbred
404 horses. - *Exp. Gerontol.* 127: 110718.

405 Flores, I., Cayuela, M. L. and Blasco, M. A. 2005. Effects of telomerase and telomere length on epidermal
406 stem cell behavior. - *Science* 309: 1253-1256.

407 Forsyth, N. R., Wright, W. E. and Shay, J. W. 2002. Telomerase and differentiation in multicellular
408 organisms: turn it off, turn it on, and turn it off again. - *Differentiation* 69: 188-197.

409 Geserick, C. and Blasco, M. A. 2006. Novel roles for telomerase in aging. - *Mech. Ageing Dev.* 127: 579-
410 583.

411 Gomez, D. E., Armando, R. G., Farina, H. G., Menna, P. L., Cerrudo, C. S., Ghiringhelli, P. D. and Alonso, D.
412 F. 2012. Telomere structure and telomerase in health and disease. - *Int. J. Oncol.* 41: 1561-1569.

413 Granger, M. P., Wright, W. E. and Shay, J. W. 2002. Telomerase in cancer and aging. - *Crit. Rev. Oncol.
414 Hematol.* 41: 29-40.

415 Greider, C. W. 1998. Telomerase activity, cell proliferation, and cancer. - *PNAS* 95: 90-92.

416 Hares, M. C., Vitikainen, E. I., Marshall, H. H., Thompson, F. J., Blount, J. D. and Cant, M. A. 2018. Telomere
417 dynamics in wild banded mongooses: Evaluating longitudinal and quasi-longitudinal markers of
418 senescence. - *Exp. Gerontol.* 107: 67-73.

419 Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C. and Vleck, C. M. 2004. Telomerase
420 expression is differentially regulated in birds of differing life span. - *Ann. N. Y. Acad. Sci.* 1019: 186-
421 190.

422 Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C. and Vleck, C. M. 2007. Telomerase activity
423 is maintained throughout the lifespan of long-lived birds. - *Exp. Gerontol.* 42: 610-8.

424 Haywood, S. and Perrins, C. M. 1992. Is clutch size in birds affected by environmental conditions during
425 growth? - *Proc. Royal Soc. B* 249: 195-197.

426 Jaskelioff, M., Muller, F. L., Paik, J.-H., Thomas, E., Jiang, S., Adams, A. C., Sahin, E., Kost-Alimova, M.,
427 Protopopov, A. and Cadinanos, J. 2011. Telomerase reactivation reverses tissue degeneration in
428 aged telomerase-deficient mice. - *Nature* 469: 102-106.

429 Jie, M.-M., Chang, X., Zeng, S., Liu, C., Liao, G.-B., Wu, Y.-R., Liu, C.-H., Hu, C.-J., Yang, S.-M. and Li, X.-Z.
430 2019. Diverse regulatory manners of human telomerase reverse transcriptase. - *Cell Commun.
431 Signal.* 17: 63.

432 Lenth, R. and Lenth, M. R. 2018. Package 'lsmeans'. - *Am. Stat.* 34: 216-221.

433 Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W. and Harley, C. B. 1992. Telomere end-replication
434 problem and cell aging. - *J. Mol. Biol.* 225: 951-960.

435 Liu, J.-P., Chen, S.-M., Cong, Y.-S., Nicholls, C., Zhou, S.-F., Tao, Z.-Z. and Li, H. 2010. Regulation of
436 telomerase activity by apparently opposing elements. - *Ageing Res. Rev.* 9: 245-256.

437 Liu, X., Wang, Y., Chang, G., Wang, F., Wang, F. and Geng, X. 2017. Alternative splicing of hTERT Pre-mRNA:
438 a potential strategy for the regulation of telomerase activity. - *Int. J. Mol. Sci.* 18: 567.

439 Magrath, R. D. 1991. Nestling weight and juvenile survival in the blackbird, *Turdus merula*. - *J. Anim. Ecol.*:
440 335-351.

441 Marión, R. M. and Blasco, M. A. 2010. Telomeres and telomerase in adult stem cells and pluripotent
442 embryonic stem cells. *Cell Stem Cell*. Springer, pp. 118-131.

443 Martin, T. E., Lloyd, P., Bosque, C., Barton, D. C., Biancucci, A. L., Cheng, Y. R. and Ton, R. 2011. Growth
444 rate variation among passerine species in tropical and temperate sites: an antagonistic interaction
445 between parental food provisioning and nest predation risk. - *Evolution: International Journal of
446 Organic Evolution* 65: 1607-1622.

447 Martin, T. E., Tobalske, B., Riordan, M. M., Case, S. B. and Dial, K. P. 2018. Age and performance at fledging
448 are a cause and consequence of juvenile mortality between life stages. - *Sci. Adv.* 4: eaar1988.

449 McCarty, J. P. 2001a. Variation in growth of nestling tree swallows across multiple temporal and spatial
450 scales. - *Auk* 118: 176-190.

451 McCarty, J. P. 2001b. Variation in growth of nestling tree swallows across multiple temporal and spatial
452 scales. - *The Auk* 118: 176-190.

453 McCarty, J. P. and Winkler, D. W. 1999. Relative importance off environmental variables in determining
454 the growth off nestling Tree Swallows *Tachycineta bicolor*. - *Ibis* 141: 286-296.

455 Nettle, D., Monaghan, P., Boner, W., Gillespie, R. and Bateson, M. 2013. Bottom of the heap: having
456 heavier competitors accelerates early-life telomere loss in the European starling, *Sturnus vulgaris*.
457 - PLoS One 8: e83617.

458 Nordfjäll, K., Svenson, U., Norrback, K.-F., Adolfsson, R., Lenner, P. and Roos, G. 2009. The individual blood
459 cell telomere attrition rate is telomere length dependent. - PLoS Genet. 5: e1000375.

460 Park, J.-I., Venteicher, A. S., Hong, J. Y., Choi, J., Jun, S., Shkreli, M., Chang, W., Meng, Z., Cheung, P. and Ji,
461 H. 2009. Telomerase modulates Wnt signalling by association with target gene chromatin. -
462 Nature 460: 66-72.

463 Pauliny, A., Larsson, K. and Blomqvist, D. 2012. Telomere dynamics in a long-lived bird, the barnacle goose.
464 - BMC Evol. Biol. 12: 257.

465 Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. and Team, R. C. 2020. nlme: Linear and nonlinear mixed effects
466 models. - R package version 3.1: 144.

467 Price, L. H., Kao, H. T., Burgers, D. E., Carpenter, L. L. and Tyrka, A. R. 2013. Telomeres and early-life stress:
468 an overview. - Biol. Psychiatry 73: 15-23.

469 Quinney, T. E., Hussell, D. J. and Ankney, C. D. 1986. Sources of variation in growth of Tree Swallows. - Auk
470 103: 389-400.

471 R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical
472 Computing, Vienna, Austria.

473 Reichert, S., Bize, P., Arrivé, M., Zahn, S., Massemin, S. and Criscuolo, F. 2014. Experimental increase in
474 telomere length leads to faster feather regeneration. - Exp. Gerontol. 52: 36-38.

475 Reichert, S., Criscuolo, F., Zahn, S., Arrive, M., Bize, P. and Massemin, S. 2015. Immediate and delayed
476 effects of growth conditions on ageing parameters in nestling zebra finches. - J. Exp. Biol. 218:
477 491-9.

478 Rollings, N., Friesen, C. R., Sudyka, J., Whittington, C., Giraudeau, M., Wilson, M. and Olsson, M. 2017.
479 Telomere dynamics in a lizard with morph-specific reproductive investment and self-
480 maintenance. - Ecol. Evol. 7: 5163-5169.

481 Salomons, H. M., Mulder, G. A., Van De Zande, L., Haussmann, M. F., Linskens, M. H. K. and Verhulst, S.
482 2009. Telomere shortening and survival in free-living corvids. - Proc. Royal Soc. B 276: 3157-3165.

483 Sarin, K. Y., Cheung, P., Gilison, D., Lee, E., Tennen, R. I., Wang, E., Artandi, M. K., Oro, A. E. and Artandi,
484 S. E. 2005. Conditional telomerase induction causes proliferation of hair follicle stem cells. -
485 Nature 436: 1048.

486 Seifert, A. W., Monaghan, J. R., Smith, M. D., Pasch, B., Stier, A. C., Michonneau, F. and Maden, M. 2012.
487 The influence of fundamental traits on mechanisms controlling appendage regeneration. - Biol.
488 Rev. 87: 330-345.

489 Smith, L. L., Coller, H. A. and Roberts, J. M. 2003. Telomerase modulates expression of growth-controlling
490 genes and enhances cell proliferation. - Nat. Cell Biol. 5: 474-479.

491 Swanberg, S. E., O'hare, T. H., Robb, E. A., Robinson, C. M., Chang, H. and Delany, M. E. 2010. Telomere
492 biology of the chicken: a model for aging research. - Exp. Gerontol. 45: 647-654.

493 Taylor, H. A. and Delany, M. E. 2000. Ontogeny of telomerase in chicken: Impact of downregulation on
494 pre-and postnatal telomere length in vivo. - Dev. Growth. Differ. 42: 613-621.

495 Taylor, S. E. 2010. Mechanisms linking early life stress to adult health outcomes. - PNAS 107: 8507-8512.

496 Tomás-Loba, A., Flores, I., Fernández-Marcos, P. J., Cayuela, M. L., Maraver, A., Tejera, A., Borrás, C.,
497 Matheu, A., Klatt, P. and Flores, J. M. 2008. Telomerase reverse transcriptase delays aging in
498 cancer-resistant mice. - Cell 135: 609-622.

499 Tuttle, C. S., Waaijer, M. E., Slee-Valentijn, M. S., Stijnen, T., Westendorp, R. and Maier, A. B. 2020. Cellular
500 senescence and chronological age in various human tissues: A systematic review and meta-
501 analysis. - Aging cell 19: e13083.

502 Ulaner, G. A., Hu, J. F., Vu, T. H., Oruganti, H., Giudice, L. C. and Hoffman, A. R. 2000. Regulation of
503 telomerase by alternate splicing of human telomerase reverse transcriptase (hTERT) in normal
504 and neoplastic ovary, endometrium and myometrium. - *Int. J. Cancer* 85: 330-335.

505 Van Lieshout, S. H., Bretman, A., Newman, C., Buesching, C. D., Macdonald, D. W. and Dugdale, H. L. 2019.
506 Individual variation in early-life telomere length and survival in a wild mammal. - *Mol. Ecol.* 28:
507 4152-4165.

508 Vedder, O., Verhulst, S., Zuidersma, E. and Bouwhuis, S. 2018. Embryonic growth rate affects telomere
509 attrition: an experiment in a wild bird. - *J. Exp. Biol.* 221: jeb181586.

510 Venkatesan, R. N. and Price, C. 1998. Telomerase expression in chickens: constitutive activity in somatic
511 tissues and down-regulation in culture. - *PNAS* 95: 14763-14768.

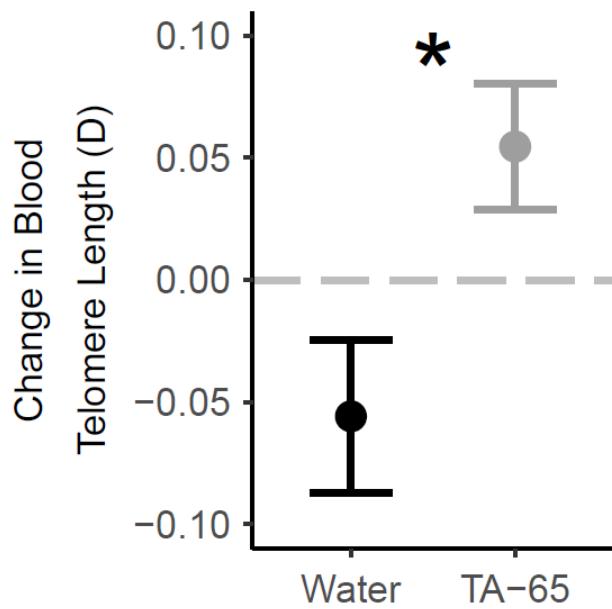
512 Verhulst, S., Aviv, A., Benetos, A., Berenson, G. S. and Kark, J. D. 2013. Do leukocyte telomere length
513 dynamics depend on baseline telomere length? An analysis that corrects for 'regression to the
514 mean'. - *Eur. J. Epidemiol.* 28: 859-866.

515 Von Zglinicki, T. 2002. Oxidative stress shortens telomeres. - *Trends Biochem. Sci.* 27: 339-344.

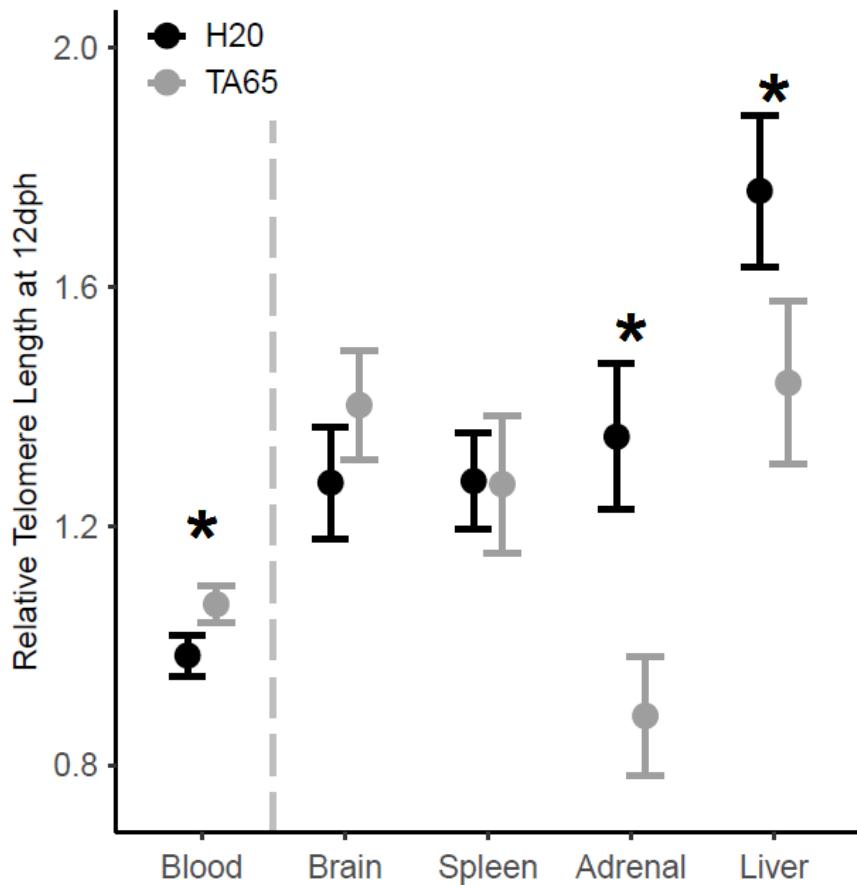
516 Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C. and Blasco, M. A. 2019. Telomere shortening
517 rate predicts species life span. - *PNAS* 116: 15122-15127.

518 Wilbourn, R. V., Moatt, J. P., Froy, H., Walling, C. A., Nussey, D. H. and Boonekamp, J. J. 2018. The
519 relationship between telomere length and mortality risk in non-model vertebrate systems: a
520 meta-analysis. - *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 373: 20160447.

521 Wolf, S., Stansberry, K., Content, K. and Rosvall, K. 2020. Data from: A putative telomerase activator has
522 tissue-specific effects on telomere length in a developing songbird - Dryad Digital Repository,
523 <<https://doi.org/10.5061/dryad.t4b8gthzn>>.


524 Yu, Y., Zhou, L., Yang, Y. and Liu, Y. 2018. Cycloastragenol: An exciting novel candidate for age-associated
525 diseases. - *Exp. Ther. Med.* 16: 2175-2182.

526 Zeichner, S. L., Palumbo, P., Feng, Y., Xiao, X., Gee, D., Sleasman, J., Goodenow, M., Biggar, R. and Dimitrov,
527 D. 1999. Rapid telomere shortening in children. - *Blood* 93: 2824-2830.


528 Zhu, J., Lee, S., Ho, M. K., Hu, Y., Pang, H., Ip, F. C., Chin, A. C., Harley, C. B., Ip, N. Y. and Wong, Y. H. 2010.
529 In vitro intestinal absorption and first-pass intestinal and hepatic metabolism of cycloastragenol,
530 a potent small molecule telomerase activator. - *Drug Metab. Pharmacokinet.* 1009210035-
531 1009210035.

532

533

536 **Fig. 1.** The change in blood telomere length, corrected for regression to the mean (D), from 4 to 12 days
537 post-hatch in chicks that were orally administered water (black, $n=61$) or TA-65 (gray). The dashed
538 line represents no change in telomere length, and positive/negative values denote telomere elongation
539 and shortening, respectively. Data are plotted as mean \pm SE.

541 **Fig. 2.** Relative telomere length of 4 tissues collected from 12-day old chicks orally administered either
542 water (n=28, black) or TA-65 (n=28, gray) for 8 consecutive days. Note that blood telomere length (n=61
543 water, n=63 TA-65) was statistically analyzed separately from non-blood tissues, but we replot these
544 data here for reference. Data are plotted as mean \pm SE.

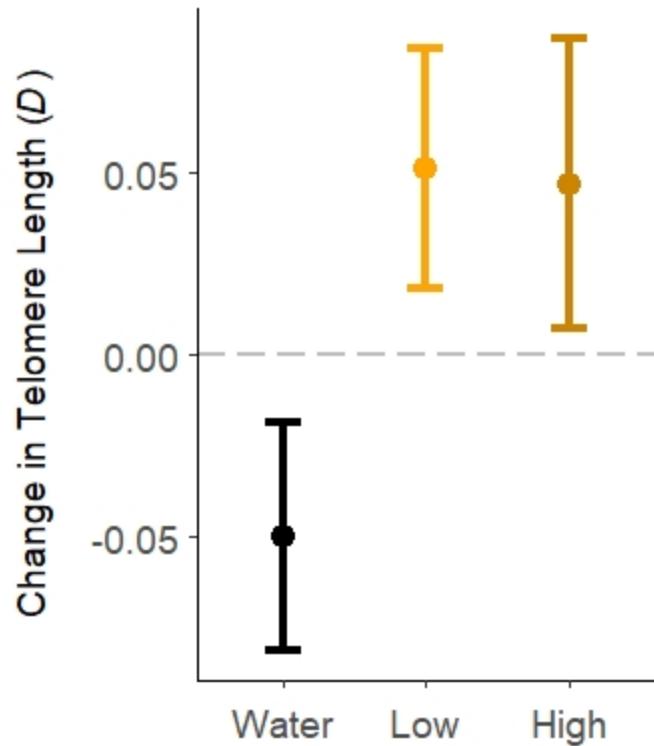
545

546

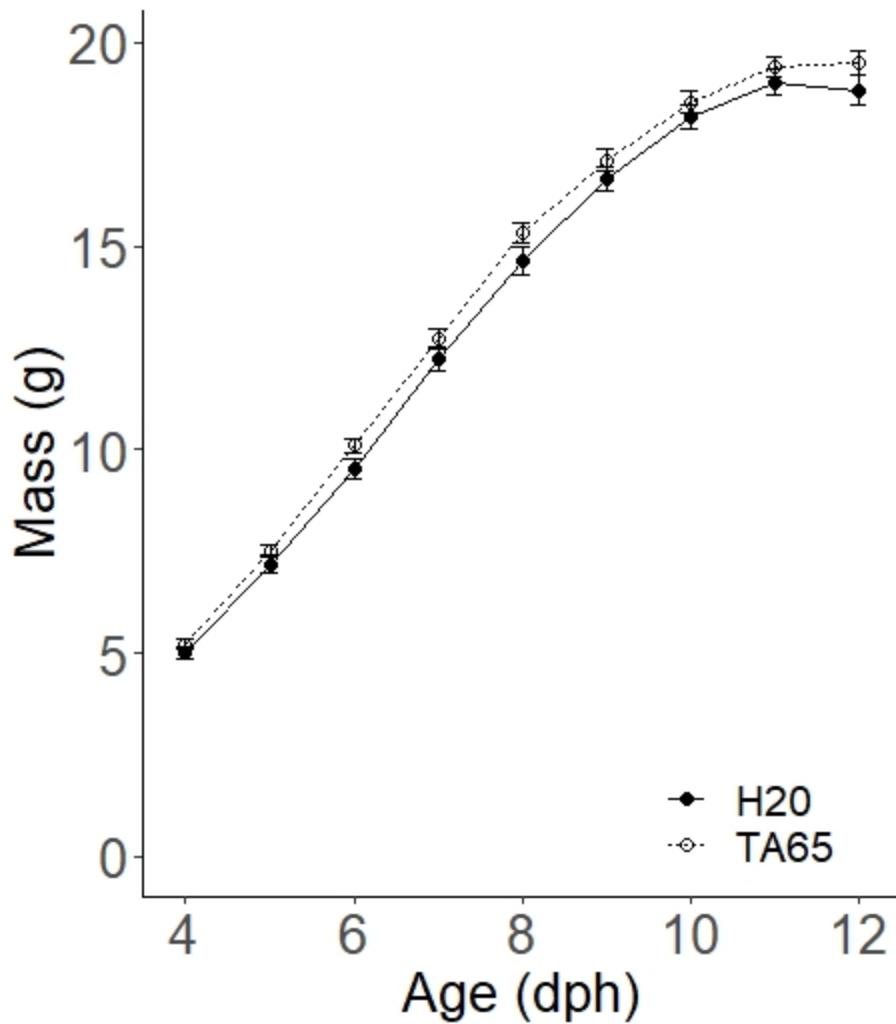
547 **Table 1.** Summary of mixed models testing for the effects of oral TA-65 on growth variables: chick mass
 548 measured over the 8 days of treatment (n=131 chicks) and wing length measured at the end of the study
 549 (n=125 chicks), across 25 nests. Effective degrees of freedom (DF) are corrected using the Satterthwaite
 550 method, and significant effects ($p<0.05$) are reported in bold.

Fixed Effects	Estimate \pm SE	Effective DF	F-value	P-value
Response variable: chick mass measured daily from 4-12 days old				
Random effect: chick ID nested within nestbox ID				
Intercept	-7064.54 \pm 1592.10	1, 1009	1239.72	<0.0001
Age	4.06 \pm 0.14	1, 1009	8016.08	<0.0001
Age ²	-0.14 \pm 0.01	1, 1009	567.01	<0.0001
Treatment	0.15 \pm 0.71	1, 105	0.08	0.77
Brood Size	0.80 \pm 0.28	1, 22	6.36	0.02
Hatch Date	0.00 \pm 0.00	1, 22	19.61	0.0002
Treatment*Age	0.08 \pm 0.19	1, 1009	0.28	0.59
Treatment*Age ²	-0.004 \pm 0.01	1, 1009	0.11	0.74
Response variable: wing length at 12-days old				
Random effect: nestbox ID				
Intercept	7012.18 \pm 3428.77	1, 98	7871.41	<0.0001
Treatment	0.20 \pm 0.49	1, 98	4.79	0.03
Initial Mass	3.86 \pm 0.28	1, 98	187.91	<0.0001
Brood Size	-1.02 \pm 0.58	1, 21	4.88	0.04
Hatch Date	0.00 \pm 0.00	1, 21	9.70	0.005
Sampling Time	31.91 \pm 14.77	1, 21	4.67	0.04

551


552

553 **ELECTRONIC SUPPLEMENTARY MATERIAL**


554 **A putative telomerase activator has tissue-specific effects on telomere length in a developing songbird**
555

556 **Telomere Lengthening Validation:** 40% of chicks in our study (n = 50/124) exhibited an increase in
557 telomere length in blood, from 4 to 12-days old. Sporadic telomere elongation is reported in many
558 studies but has traditionally been attributed to measurement error (Bateson and Nettle 2017,
559 Steenstrup et al. 2013), so we performed additional analyses to demonstrate that our results are robust
560 to technical variation. To test if the magnitude of change in blood telomere length from 4 to 12-days old
561 was greater than measurement error in technical replicates, we a) estimated variation among repeated
562 samples of individuals over time and compared it to b) variation in relative telomere length among
563 triplicates on a plate. Modified from van Lieshout et al. (2019), we used MCMGlm (Hadfield 2010) with
564 an inverse Wishart prior ($v=1$, $\nu=0.002$; iterations=600,000, thin=300, burn-in=15,000). Using repeated
565 estimates of telomere length at 4 and 12dph, our first model (a) predicted telomere length with
566 individual ID and qPCR plate ID as random effects (n=248 samples; 124 individuals). We then randomly
567 selected one set of triplicates per individual (4 or 12dph) and constructed a second model (b) with
568 telomere length for each of the technical replicates as the response variable and individual ID as a
569 random effect ($n=124$ individuals); this model essentially assesses intra-replicate variation. We then
570 compared the variance explained by individual ID between these two models and assessed whether the
571 95% confidence intervals overlapped. When accounting for plate effects using MCMCglmm, the random
572 effect estimate for individual ID with technical replicates was 0.069 (95% CI = 0.051, 0.088), whereas for
573 within-individual samples the random effect estimate was 0.033 (95% CI = 0.016, 0.049). The 95% CI's
574 from the technical replicates and within-individual samples did not overlap, suggesting that telomere
575 elongation in blood following TA-65 administration cannot be explained by measurement error alone.
576

577

578 **Fig. A1.** Change in blood telomere length (D) from d4 to d12, analyzed as a 3-factor treatment
579 comparing chicks that were orally administered water (n=61), low TA-65 (n=28), or high TA-65 (n=25) for
580 8 consecutive days. Dashed line represents no change in telomere length, and positive/negative values
581 denote telomere elongation and shortening, respectively. Error bars are \pm SE.

582 **Fig. A2.** Growth curve from 4 to 12dph in tree swallow nestlings given either water or TA-65 (n=131
583 chicks). Maximum growth occurs at 6.1 ± 0.1 days. Error bars are SE.

584 **Table A1.** Output for repeated measures model predicting chick mass, analyzed as a 3-factor treatment:
 585 water, low TA-65, and high TA-65-treated chicks over the 8 days of the experiment (n=131 chicks). The
 586 model includes a random effect of chick ID nested within nest ID and controlled for increasing variance
 587 in mass with age ('FixedVar' function), as well as correlations between successive mass measurements
 588 (autocorrelation covariance structure). Effective degrees of freedom are corrected using the
 589 Satterthwaite method, and significant effects ($p<0.05$) are reported in bold.

Fixed Effects	Estimate \pm SE	Effective DF	F-value	P-value
Intercept	-6879.53	1, 1007	1221.25	<0.0001
Age	4.06	1, 1007	8131.26	<0.0001
Age ²	-0.14	1, 1007	569.38	<0.0001
Treatment	(high): -0.45 \pm 0.84 (low): 0.89 \pm 0.93	2, 104	0.97	0.38
Brood Size	0.80	1, 22	5.81	0.03
Hatch Date	0.00	1, 22	17.97	0.0003
Treatment*Age	(high): 0.18 \pm 0.22 (low): -0.04 \pm 0.24	1, 980	2.77	0.06
Treatment*Age ²	(high): -0.1 \pm 0.01 (low): 0.01 \pm 0.02	1, 980	0.95	0.39

590

591 **Table A2.** Output for experimental effects of TA-65 on wing length at the end of the study in 12dph
 592 chicks, split into 3 treatments: water, low TA-65, and high TA-65-treated chicks (n=125 chicks). The
 593 model includes a random effect of nest ID. Effective degrees of freedom are corrected using the
 594 Satterthwaite method, and significant effects ($p<0.05$) are reported in bold.

Fixed Effects	Estimate \pm SE	Effective DF	F-value	P-value
Intercept	7029.40 \pm 3497.80	1, 97	7831.05	<0.0001
Treatment	(high): 0.21 \pm 0.64 (low): 0.19 \pm 0.71	2, 97	2.38	0.10
Initial Mass	3.86 \pm 0.29	1, 97	186.30	<0.0001
Brood Size	-1.02 \pm 0.59	1, 21	4.86	0.04
Hatch Date	0.00 \pm 0.00	1, 21	9.81	0.005
Sampling Time	31.83 \pm 15.05	1, 21	4.48	0.05

595

596

597 **Table A3.** Output for experimental effects of TA-65 on the change in telomere length (D) from 4 to
 598 12dph, split into 3 treatments: water, low TA-65, and high TA-65-treated chicks (n=124 chicks). The
 599 model included a random effect of nest ID. Effective degrees of freedom are corrected using the
 600 Satterthwaite method, and significant effects ($p<0.05$) are reported in bold.

Fixed Effects	Estimate \pm SE	Effective DF	F-value	P-value
Intercept	-97.87 \pm 134.47	1, 93	0.0009	0.98
Treatment	(high): 0.10 \pm 0.05 (low): 0.12 \pm 0.05	2, 93	3.81	0.03
Plate	(P2): 0.07 \pm 0.07 (P3): 0.06 \pm 0.06 (P4): 0.04 \pm 0.06 (P5): 0.09 \pm 0.07	4, 93	0.58	0.68
Brood Size	-0.03 \pm 0.02	1, 22	1.65	0.21
Hatch Date	0.00 \pm 0.00	1, 22	0.41	0.53
Tukey Post-Hoc				
Contrasts	Estimate	DF	t-ratio	P-value
Water-Low	0.12 \pm 0.05	93	-2.279	0.06
Water-High	0.10 \pm 0.05	93	-2.056	0.10
Low-High	-0.02 \pm 0.06	93	-0.331	0.94

601

602

603