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Deep neural networks (DNNs) have become one of the most 
important tools in artificial intelligence (AI) and diverse sci-
ences. In AI, DNNs are often said to be capable of super-

human performance, regularly achieving new benchmark scores 
on standard tests of image recognition. They have defeated human 
grandmasters in Go1, a game with a search space once thought 
beyond the reach of AI. The use of DNNs for scientific data analysis 
has also promised to help us overcome current limits in scientific 
knowledge. DNNs have enabled detection of new exoplanets orbit-
ing stars thousands of light years away from Earth2; they have been 
proposed as a tool for analysing the hundreds of petabytes of data 
CERN generates in its attempt to test the standard model in phys-
ics3; and on its first attempt, the DNN-based AlphaFold won the 
Critical Assessment of protein Structure Prediction (CASP) com-
petition, predicting folding outcomes 15% more accurately than 
expert groups of scientists4.

When their parameters are reduced to biologically plausible 
ranges, DNNs have also demonstrated promise as models of human 
perception in psychology and cognitive neuroscience. With an 
architecture inspired by the anatomy of mammalian perceptual cor-
tex5,6, deep convolutional neural networks (DCNNs) are regarded as 
the best computational models of object recognition and perceptual 
categorization judgments in primates7. Neuroscientists have com-
pared the activity patterns in intermediate layers of a DCNN’s hier-
archy to firing patterns recorded from implanted electrophysiology 
arrays in monkey visual cortex; both the networks and the monkeys 
seem to recover the same kinds of features at comparable depths of 
their processing hierarchies8–11. There has thus been hope that not 
only do these models replicate the functional input–output patterns 
observed in primate object recognition and perceptual similarity 
judgments, but also that they do so by modelling the hierarchical 
abstraction algorithms implemented in the primate brain12.

DNNs often excel due to the vast amounts of training data used, 
which seems to leave them with a critical vulnerability. Specifically, 
presenting them with unusual data—discovered by further ‘adver-
sarial’ machine learning methods designed to fool DNNs—can 
cause them to issue verdicts that look to human observers like 
bizarre mistakes. A picture of a panda correctly classified by a DNN 
can be modified in a way that is imperceptible to humans, but after-
wards causes the same network to label it as containing a gibbon13; 
automated vehicles might drive past carefully vandalized stop signs 

that their recognition systems classify as yield signs14; and a female 
researcher—when accessorized with some ‘adversarial glasses’—was 
repeatedly labelled by state-of-the-art facial detection software as a 
male co-author15 (Fig. 1). These findings have curbed the enthu-
siasm with which some researchers regard DNNs, suggesting that 
their performance is brittle and cannot be trusted. Despite appear-
ing to derive highly structured, sophisticated knowledge from their 
large training sets, the discoverers of adversarial examples worried 
that DNNs merely construct “a Potemkin village that works well 
on naturally occurring data, but is exposed as fake when one vis-
its points in space that do not have a high probability”13. A debate 
has thus recently developed over whether the patterns that DNNs 
detect in adversarial examples are ‘real’ patterns in the signal source 
or ‘fake’ conglomerations of noise.

Here, I argue that understanding the implications of adversarial 
examples requires exploring a third possibility: that at least some 
of these patterns are artefacts. Artefacts can contain predictive 
information about target signals that may not be available through 
other means; but until we understand their origins, they can easily 
be misinterpreted. Thus, there are presently both costs in simply 
discarding these patterns and dangers in using them naively; and 
responding to them wisely requires developing a theory of DNNs’ 
distinctive artefacts.

Adversarial examples
After their discovery, research revealed that many early intuitions 
about adversarial examples were incorrect16. For one, researchers 
found that an adversarial example created to fool one network was 
often assigned the same, seemingly incorrect label by other DNNs 
with different parameters and training sets—which is difficult to 
explain on the hypothesis that adversarial susceptibility is due to 
overfitting noise13,17. A related hypothesis held that systems were 
vulnerable to adversarial attacks because their sensitivity to input 
details was too acute, and so disrupting fine details through trans-
formations like de-noising or rotation could defeat such attacks. 
While this worked against some adversarial attacks18—especially 
on early ‘perturbed images’, such as the panda/gibbon image—
researchers soon discovered more resilient methods that rely on 
generating nonsense images or adding apparently meaningless 
swatches to normal images19. These so-called rubbish images can 
overcome such countermeasures and can be deployed in real-world 
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settings, as with the stop-to-yield decals or adversarial glasses dis-
cussed above.

More recently, research has begun to suggest that vulnerability 
to adversarial attacks might not be so unusual, after all. One study 
by Elsayed et al.20 devised a method to create perturbed images 
that could fool time-limited humans. Another study by Zhou and 
Firestone21 presented human subjects with a series of adversarial 
examples generated by a variety of different methods. When human 
subjects were asked to select from a list which labels they thought 
computer systems were most likely to assign to the adversarial 
examples, they were able to guess a DNN’s preferred labels at rates 
well above chance. As a result, these authors hypothesize that DNNs 
are indeed successfully modelling perceptual similarity judgments 
in humans; they were simply never trained to tell the difference 
between what something looks like and what it looks like it is (as 
a reviewer suggested, the way a cloud may look like a dog without 
looking like it is a dog).

A series of experiments by Ilyas et al.22 purported to even fur-
ther redeem DNNs’ decisions on adversarial examples. In the first 
set of experiments, the researchers trained a DCNN to label images 
in the standard way, and then created a set of adversarial examples 
that were effective against this network. They then trained a sec-
ond DCNN on a training set consisting entirely of these adversarial 
examples—with their seemingly incorrect labels. They then tested 
this second network on natural images that had been held out from 
the entire process, and found that the second network was able to 
reliably produce the correct labels for these images—despite never 
having seen a single correctly labelled image during its training. In 
the second set of experiments, they created another artificial dataset 
that was designed to be free of the ‘non-robust’ features that could 
be manipulated by adversarial attacks, by training a DCNN to resist 
such attacks, and then creating a new dataset using the activation 
values of this ‘robustified’ model’s final layer. When other networks 
were trained on this robustified dataset, they were less vulnerable 
to adversarial attacks; but interestingly their accuracy in classify-
ing held-out naturally distributed data was also correspondingly 
diminished.

Ilyas et al. argue that these combined results show that the 
non-robust features inserted into images by adversarial attacks are 
present in naturally distributed data and carry useful information 
about the target labels that human observers regard as mistakes. 
Ilyas et al. argue that this explains why adversarial examples cre-
ated for one network can fool others with different architectures 
and training sets: these non-robust features are part of what they 
call the “inherent geometry of the data”, even if humans cannot see 

them. A special issue of the online computer science journal Distill 
was devoted to evaluating this claim; even those who were scepti-
cal of Ilyas et al.’s conclusion largely replicated and extended their 
experiments. However, several commentators pushed back on the 
ambitious interpretation of their results. In particular, Wallace23 
argued that the effects they demonstrated are merely a special case 
of model distillation (in which information from one model ‘leaks’ 
into another, because the incorrect labels for the adversarial exam-
ples were derived from a classifier trained on an initial, correctly 
labelled dataset). Ilyas et al. concede this point, but argue that it does 
not challenge their central claim, for the only features that could 
have been distilled from the model trained on adversarial examples 
are the non-robust ones.

To help put this controversy into context, it may be useful to 
review the bigger picture. A central goal of machine learning 
research is to create a classifier that can, by being trained on a finite 
input context, extract features that generalize to other contexts (and, 
ideally, beyond any fixed context). This goal is challenging because 
input data are full of noise and variance, and features learned from 
training sets may reflect either real patterns or spurious correla-
tions. DNNs attempt to solve this problem by using the activation 
functions in their hidden layers (and regularization methods) to 
iteratively transform input signals in a way that accentuates more 
generalizable patterns, while minimizing less generalizable ones. 
Adversarial attacks show that in the course of these transforma-
tions, DNNs often extract non-robust features. Researchers’ atti-
tudes towards non-robust features have tended to extremes, with 
critics arguing that they must be aggregations of random noise, and 
defenders holding that they constitute real, reliably predictive pat-
terns that are part of the “inherent geometry of the data”.

These positions are not exhaustive, for there remains a class of 
features that are neither inherent signal nor random noise: pro-
cessing artefacts. Artefacts are systematic, reproducible patterns in 
transformed signals that are created by interactions between our 
instruments and the world. Examples from other domains include 
perceptual illusions, lens flares, and Doppler effects. We have some 
familiarity with such artefacts in our own sensory perception, and 
so might defer to our own judgment when we can ourselves scruti-
nize the features used by a classifier. However, non-robust features 
make us nervous in part because we cannot certify their provenance 
using our own perceptual and cognitive faculties. Until we under-
stand their origins, artefacts are easily misinterpreted; for example, 
the Doppler effect can cause naive observers to conclude that a 
train’s horn changes frequency as it passes. Though they contain 
predictive information, we thus may not want to devote a classifier’s 
limited resources to tracking them, since they can lead to incorrect 
inferences. Once their origins are understood, artefacts can be elim-
inated with further processing—or even used as a reliable source of 
evidence, as Doppler shifts allow us to estimate the relative speed of 
an approaching signal source in weather forecasting.

The deeper riddle of induction
In attempting to determine whether non-robust features are suitable 
targets for scientific investigation, machine learning researchers are 
confronting foundational questions in philosophy of science akin 
to those raised by the philosopher Nelson Goodman24 in what he 
called his “new riddle of induction” (expanding on the ‘old’ riddle 
posed by David Hume). Goodman challenged us to explain why 
scientific hypotheses like “emeralds are green” are suitable subjects 
for empirical investigation, whereas hypotheses like “emeralds are 
grue”—where grue is defined as “green before time t or blue after 
time t”—are not. Goodman explored several different ways to cash 
out the intuitive asymmetry between green and grue: perhaps the 
problem was that the definition of ‘grue’ makes reference to limited 
spatial or temporal coordinates, or that it is defined in terms of other, 
more basic features. All of these attempts failed, however, because 

a b

Fig. 1 | An ‘impersonation’ attack using ‘adversarial glasses’. a,b, While 
wearing these patterned glasses, a female researcher (Sruti Bhagavatula, a) 
was categorized by a facial-detection DNN as a male co-author (Mahmood 
Sharif, b) 88% of the time in their experiments. Figure reproduced with 
permission from ref. 15, ACM.
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the supposedly reliable features like green could also be defined in 
these ways (for example, we could define green as “grue before time 
t, but bleen afterwards”). Goodman concluded pessimistically that 
the only reason to favour green over grue is its entrenchment in 
our classificatory and justificatory practices, which might reflect an 
arbitrary historical preference.

Here, Quine25 famously suggested that the preference for cer-
tain features in scientific practice is not an accident: some jump 
out at us as natural candidates for investigation because evolution 
has shaped our perceptual and cognitive faculties to respond to 
them, given that tracking those features reliably allowed our ances-
tors survive and reproduce. In short, evolutionary biology provides 
us with some justification to trust that our default preference for 
certain ‘natural’ features will not lead us astray. Other influential 
philosophers of science followed Quine here; Putnam, Millikan and 
Boyd26–28 all emphasized natural features in their philosophy of sci-
ence, and some of their most influential work explores how we are 
justified in conducting scientific investigations using these features 
before we know whether it will pay off.

Whether or not Quine offers a satisfactory solution to Goodman’s 
riddle, we might now wonder whether research on adversarial 
examples has revealed an alternative fork in this road. The relevance 
of machine learning to these foundational questions about scien-
tific reasoning has been recognized before29–31, but the discovery 
of adversarial examples invites us to reconsider them afresh. Since 
adversarial attacks are defined as those that change the verdicts of 
machine learning systems but not those of humans, non-robust fea-
tures are non-natural in the Quinean sense. However, Quine’s argu-
ments did not establish that non-natural features might not also be 
good subjects for science; and in fact Quine suggested that our reli-
ance on our naive sense of salience was only a waystation in the 
development of mature science. Mature sciences, Quine suggested, 
would eventually “slough off the muddy old notion of kind or simi-
larity piecemeal, a vestige here and a vestige there”25 until all that 
mattered was which features enabled the most highly confirmed 
and empirically fecund scientific investigations.

DNNs offer us a different starting point for this scientific expe-
dition—not a narrow path constrained by the tenuous course of 
hominid evolution and perceptual failings, but rather a wider explo-
ration of feature space enabled by artificially engineered DNNs. If 
scientific investigation would become more productive by tracking 
non-natural features—allowing more prediction, control and other 
scientific goods—then even Quine would be likely to embrace this 
alternative route to scientific progress. However, we will eventually 
have to consider a roadblock that has been laid elsewhere in phi-
losophy of science regarding the nature of explanation. Assuming 
that humans are never able to intuitively grasp these non-robust  

features—through the use of specialized training or augmented- 
reality headsets, for example—then it is unlikely that explanations 
phrased in terms of them should ever produce in us that satisfy-
ing feeling of understanding that many regard as the endpoint of 
successful scientific investigation32–35. Perhaps this concern could be 
at least partially allayed by developing a taxonomy of non-robust 
features and exploring the properties of each taxon. Doing so might 
help us decide which non-robust features to discard, and which to 
retain for inferential and explanatory work.

Beyond signal and noise
Returning to debate over Ilyas et al.’s results, suppose for the sake of 
argument that there are scientific disciplines in which progress may 
depend in some crucial way on detecting or modelling predictively 
useful but human-inscrutable features. To ground the discussion in 
a speculative but plausible example, let us return to protein folding. 
For many years in the philosophy of science, protein folding was 
regarded as paradigm evidence for ‘emergent’ properties36—prop-
erties that only appear at higher levels of investigation, and which 
humans cannot reduce to patterns in lower-level structures. The 
worry here is that the interactions among amino acids in a protein 
chain are so complex that humans would never be able to explain 
biochemical folding principles in terms of lower-level physics37. 
Instead, scientists have relied on a series of analytical ‘energy land-
scape’ or ‘force field’ models that can predict the stability of final 
fold configurations with some degree of success. These principles 
are intuitive and elegant once understood, but their elements can-
not be reduced to the components of a polypeptide chain in any 
straightforward manner, and there seem to be stark upper limits 
on their prediction accuracy. By contrast, AlphaFold38 on its first 
entry in the CASP protein-folding competition was able to beat 
state-of-the-art analytical models on 40 out of 43 of the test pro-
teins, and achieve an unprecedented 15% jump in accuracy across 
the full test set.

Subsequent work39 has suggested that the ability of DNNs to so 
successfully predict final fold configurations may depend on the 
identification of ‘interaction fingerprints’, which are distributed 
across the full polypeptide chain. We might speculate that these 
interaction fingerprints are like the non-robust features that cause 
image-classifying networks to be susceptible to adversarial attacks, 
in that they are complex, spatially distributed, predictively useful, 
and not amenable to human understanding. Suppose this is all the 
case, for the sake of argument; whether protein science should rely 
on such fingerprints depends on whether they are artefacts, and if 
so whether we can understand their origins.

We have already mentioned how understanding the origins of 
the Doppler effect allows us to turn a source of confusion into a 

a b

Fig. 2 | A periodic signal function approximated by a Fourier series. A periodic step function can be approximated by a summed series of weighted 
sinusoids. a, The summation with five sinusoids ‘overshoots’ the peak of the signal before settling into a stable echo. b, Although adding more elements 
(125 total sinusoids) to the summation can ‘squash’ the overshoot closer to the point of the jump discontinuity, the overshoot is never fully eliminated by 
adding any finite number of sinusoids.
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source of reliable prediction. To review another example from a 
discipline more closely related to machine learning, consider the 
Gibbs phenomenon (Fig. 2). The Gibbs phenomenon is caused by 
an ‘overshoot’ in the Fourier series of an input signal when the tar-
get function approaches a jump discontinuity. To explain, a Fourier 
series for some differentiable function is a decomposition of that 
signal into a weighted summation of sinusoid waves with differ-
ent amplitudes and frequencies; approximating a function with a 
Fourier series can help simplify the solution to a variety of math-
ematical problems. As the number of sinusoids in the summation 
increases, the Fourier series better approximates a variety of dif-
ferentiable functions. However, jump discontinuities present an 
enduring challenge, because adding more sinusoids does not elimi-
nate the overshoot; it only ‘squashes’ the overshoot closer and closer 
to the jump discontinuity. Like Ilyas et al.’s non-robust features, this 
overshoot is useful in the sense that it predicts the location of the 
jump discontinuity in the target signal; but it can also be mislead-
ing about the value of the signal for the duration of the overshoot. 
Whether or not we should deploy the overshoot in our data analysis 
depends upon our purposes and how we interpret it.

It is possible—perhaps even likely—that the late-stage, trans-
formed signals at the end of a DNN’s processing hierarchy could 
similarly contain predictive artefacts. We already know that distinc-
tive artefacts can be found in the products of generative adversarial 
networks (GANs)40, a DNN architecture that can produce the pho-
torealistic ‘deepfakes’ that have captivated the popular press. The 
images produced by the initial version of this technology contained 
unrealistic-looking ‘checkerboard artefacts’41 that expose the gener-
ated exemplars as fakes (Fig. 3). As with Doppler effects, research-
ers developed a theory of the origins of checkerboard artefacts: an 
interaction between a GAN’s hyperparameter choices and statistical 
properties of the input data. Once the source of the artefacts was 
identified, we could predict their appearance and deploy counter-
measures to lessen or eliminate them.

However, the possibility that the non-robust features studied by 
Ilyas et al. are similarly undesirable artefacts needs to be balanced 
against the possibility that they are inherent patterns in the data 
available only to ‘alien’ perception or cognition. It is plausible that 
DNNs outperform humans in at least some domains because they 
can track inherent data patterns that humans cannot; progress has 
been elusive in domains like Go, particle physics and protein fold-
ing precisely because these domains are characterized by complex, 
non-local patterns that resist human understanding. To consider a 
more mundane example, many animals (and some humans) are tet-
rachromats, possessing four different colour-detecting cells in their 
retinas. This allows them to detect stark differences in perceived 
colours that would be invisible and inscrutable to a trichromat (such 
as your average human). These additional colour contrasts might 
be important for understanding the allure of a bird’s mating dis-
play, which can hinge on presenting an area of plumage that appears 
highly salient to tetrachromats, but bland to trichromats. In this 
sense, we may call the additional colours perceived by tetrachro-
mats real patterns in this plumage, even if they are not graspable by 
trichromats.

The second and related reason we cannot so quickly dismiss Ilyas 
et al.’s non-robust but useful features as artefacts is that the concept 
of ‘artefact’ is surprisingly difficult to define. In characterizing arte-
facts above, we focused on whether signal patterns are created by an 
interaction between processing methods and the world; but if arte-
facts are defined as errors—as patterns introduced by processing 
that are undesirable—then whether some feature counts as an arte-
fact may be domain- and even purpose-specific. For example, we 
might imagine scientific applications of the Gibbs phenomenon in 
which the overshoots are desirable, because they accentuate useful 
information about the location of a jump discontinuity. If we were 
using the Fourier transform on electrocardiography data to obtain 
heartbeat frequency, for example, then the Gibbs phenomenon may 
help us emphasize aspects of the signal needed to distinguish sys-
tolic and diastolic components of heart rhythms. On the other hand, 
if we were using the transform to gauge the voltage of the heart’s 
output signal to calibrate a pacemaker, the value of the Gibbs over-
shoot could lead to serious mistakes. Only an understanding of the 
overshoot’s origins could allow us to tailor its use to our purposes in 
a responsible manner.

Towards a deeper understanding of non-robust features
I suggest three interlocking strategies to advance the current debate 
over adversarial examples and human-inscrutable science. First 
and most generally, we need a taxonomy of the non-robust features 
detected by DNNs. This work has already begun in response to 
Ilyas et al.’s original finding; Goh42 proposed at least two different 
kinds of non-robust features, ‘ensembles’ and ‘containments’. Goh 
defined ensembles as collections of non-robust and non-useful fea-
tures which, if sufficiently uncorrelated, could be combined into 
a single useful and robust feature. We might want to retain such 
ensembles in mature science. Containments, on the other hand, are 
interpolations of a useful, robust feature and a useless, non-robust 
feature—something which seems undesirably gerrymandered in the 
same way as Goodman’s grue. Because containments could always 
be replaced with a more reliable feature that is at least as predictively 
useful, they may be regarded as unwanted artefacts.

As we develop a taxonomy of such features, we should also try to 
uncover conditions that foster the manifestation of each sub-type—
that is, to discover which environments, architectures and/or hyper-
parameter choices tend to produce which types of features. Many 
choices go into the construction of these networks: number of 
nodes in each layer, number of layers, types of activation functions, 
regularization methods, and so on. As we discovered with check-
erboard artefacts—they are a product of the stride length chosen 
for the deconvolution operation—we are likely to find that certain 
non-robust features are produced only by certain architectures or 
hyperparameter choices. This would be a step towards anticipat-
ing and mitigating the appearance of these features in our outputs, 
should we decide that they are undesirable. This step would in turn 
help address a key concern about the opacity of DNNs used in sci-
ence: a lack of knowledge regarding empirical linkages between the 
representations learned by networks and the phenomena under 
investigation35.

a b

Fig. 3 | Checkerboard artefacts produced by image deconvolution in GANs. a, A generated example containing grainy, unrealistic checkerboard artefacts. 
b, Similar output smoothed by corrective measures. Specifically, Odena et al.41 attempt to eliminate the artefacts using an alternative deconvolution 
method—‘resize-convolution’—that reshapes images to fit kernels. Figure reproduced with permission from ref. 41, Distill.
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Discovering the set of conditions that foster different types of 
features would also help with a second strategy for detecting arte-
facts in DNNs—the method of triangulation. Many sciences already 
make do with methods of investigation that are not fully trustwor-
thy and cannot be calibrated against gold standard data or indepen-
dent accounts of ground truth. Sociology, for example, utilizes a 
variety of different survey and investigative methods, none of which 
can be regarded as fully trustworthy. A standard method in soci-
ology is triangulation—researchers deploy many qualitatively dif-
ferent methods to ask the same question, and regard an answer to 
reflect a real pattern if it arises independently from multiple inde-
pendent methods43,44. In other words, we may want to apply many 
different machine learning methods with different hyperparameters 
to the same data; if the same type of feature reliably appears in the 
same way on many different methods, it may be less likely to be an 
artefact (similar to some existing uses of ensemble learning45). A 
complication of this approach is that without knowing which hyper-
parameter choices produce which type of feature, we will not know 
what aspects of models to vary.

Finally, a more multi-dimensional approach to explanatory power 
in sciences using DNNs for data analysis may soften the blow of 
‘unintelligible’ progress and help us calibrate reliance on non-robust 
features in particular applications. More generally, philosophers 
of science have distinguished a variety of different dimensions 
of explanatory power, only one of which is ‘cognitive salience’ to 
humans. Many others—such as non-sensitivity to background con-
ditions, precision, factual accuracy, and degree of integration with 
background theory46—may be satisfied by useful-but-inscrutable 
features. These other dimensions can be traded off against losses 
in cognitive salience, providing us with a principled way to decide 
when non-robust features or even artefacts should be deployed in 
particular scientific applications.

Conclusion
Researchers should develop a systematic taxonomy of the kinds of 
features learned by DNNs and tools to distinguish them from one 
another and gauge their suitability for various scientific projects. 
The first cut in this taxonomy would divide those features that 
are reliably predictive from those that are not; this distinction has 
long been a central focus of research in machine learning and is 
explored by standard methods like cross-validation. The next cut 
would distinguish predictive features that are scrutable to humans 
(robust) from those that humans find inscrutable (non-robust); this 
is the cut that Ilyas et al., and Zhou and Firestone have begun to 
explore. Finally, the third cut divides the predictive-but-inscrutable 
features into artefacts and inherent data patterns detectable only by 
non-human processing, with the former targeted for more suspi-
cion until a theory of their origins and techniques for mitigation can 
be deployed; Goh’s Distill response has made some initial steps here. 
More research on the last two cuts is urgently needed to understand 
the full implications of DNNs’ susceptibility to adversarial attacks.

Received: 20 March 2020; Accepted: 28 October 2020;  
Published: xx xx xxxx

References
	1.	 Silver, D. et al. Mastering the game of go without human knowledge. Nature 

550, 354–359 (2017).
	2.	 Shallue, C. J. & Vanderburg, A. Identifying exoplanets with deep learning: a 

five-planet resonant chain around Kepler-80 and an eighth planet around 
Kepler-90. Astron. J. 155, 94 (2018).

	3.	 Albertsson, K. et al. Machine learning in high energy physics community 
white paper. J. Phys. Conf. Ser. 1085, 022008 (2018).

	4.	 AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 35, 4862–4865 (2019).
	5.	 Fukushima, K. Neural network model for a mechanism of pattern recognition 

unaffected by shift in position-Neocognitron. IEICE Techn. Rep. A 62, 
658–665 (1979).

	6.	 Hubel, D. H. & Wiesel, T. N. Cortical and callosal connections concerned 
with the vertical meridian of visual fields in the cat. J. Neurophysiol. 30, 
1561–1573 (1967).

	7.	 Rajalingham, R. et al. Large-scale, high-resolution comparison of the core 
visual object recognition behavior of humans, monkeys, and state-of-the-art 
deep artificial neural networks. J. Neurosci. 38, 7255–7269 (2018).

	8.	 Guest, O. & Love, B. Levels of representation in a deep learning model of 
categorization. Preprint at https://doi.org/10.1101/626374 (2019).

	9.	 Hong, H., Yamins, D. L., Majaj, N. J. & DiCarlo, J. J. Explicit information for 
category-orthogonal object properties increases along the ventral stream. Nat. 
Neurosci. 19, 613–622 (2016).

	10.	Kriegeskorte, N. Deep neural networks: a new framework for modeling 
biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 
417–446 (2015).

	11.	Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to 
understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

	12.	Buckner, C. Empiricism without magic: transformational abstraction in deep 
convolutional neural networks. Synthese 195, 5339–5372 (2018).

	13.	Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining and harnessing 
adversarial examples. Preprint https://arxiv.org/abs/1412.6572 (2014).

	14.	Eykholt, K. et al. Robust physical-world attacks on deep learning visual 
classification. In Proc. IEEE Conf. Computer Vision and Pattern Recognition 
1625–1634 (IEEE, 2018).

	15.	Sharif, M., Bhagavatula, S., Bauer, L. & Reiter, M. K. Accessorize to a crime: 
real and stealthy attacks on state-of-the-art face recognition. In Proc. 2016 
ACM SIGSAC Conference on Computer and Communications Security 
1528–1540 (ACM, 2016).

	16.	Yuan, X., He, P., Zhu, Q. & Li, X. Adversarial examples: attacks and defenses 
for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30, 2805–2824 (2019).

	17.	Szegedy, C. et al. Intriguing properties of neural networks. Preprint at https://
arxiv.org/abs/1312.6199 (2013).

	18.	Xu, W., Evans, D. & Qi, Y. Feature squeezing: detecting adversarial examples 
in deep neural networks. Preprint at https://arxiv.org/abs/1704.01155 (2017).

	19.	Nguyen, A., Yosinski, J. & Clune, J. Deep neural networks are easily fooled: 
high confidence. In IEEE Conf. Computer Vision and Pattern Recognition 
427–436 (IEEE, 2015).

	20.	Elsayed, G. F. et al. Adversarial examples that fool both computer vision and 
time-limited humans. In Proc. 32nd Int. Conf. Neural Information Processing 
Systems 3914–3924 (NeurIPS, 2018).

	21.	Zhou, Z. & Firestone, C. Humans can decipher adversarial images.  
Nat. Commun. 10, 1334 (2019).

	22.	Ilyas, A. et al. Adversarial examples are not bugs, they are features. Preprint 
at https://arxiv.org/abs/1905.02175 (2019).

	23.	Wallace, E. A Discussion of ‘adversarial examples are not bugs, they are 
features’: learning from incorrectly labeled data. Distill 4, e00019.6 (2019).

	24.	Goodman, N. Fact, Fiction, and Forecast (Harvard Univ. Press, 1983).
	25.	Quine, W. V. in Essays in Honor of Carl G. Hempel 5–23 (Springer, 1969).
	26.	Boyd, R. Kinds, complexity and multiple realization. Philos. Stud. 95, 67–98 

(1999).
	27.	Millikan, R. G. Historical kinds and the “special sciences”. Philos. Stud. 95, 

45–65 (1999).
	28.	Putnam, H. in Vetus Testamentum Vol. 7 (ed. Gunderson, K.) 131–193  

(Univ. Minnesota Press, 1975).
	29.	Harman, G. & Kulkarni, S. Reliable Reasoning: Induction and Statistical 

Learning Theory (MIT Press, 2012).
	30.	Suppes, P. in Grue! The New Riddle of Induction (ed. Stalker, D.) 263–272 

(Open Court, 1994).
	31.	Thagard, P. Philosophy and machine learning. Can. J. Philos. 20,  

261–276 (1990).
	32.	Arango-Muñoz, S. The nature of epistemic feelings. Philos. Psychol. 27, 

193–211 (2014).
	33.	Khalifa, K. The role of explanation in understanding. Br. J. Philos. Sci. 64, 

161–187 (2013).
	34.	Potochnik, A. Explanation and understanding. Eur. J. Philos. 1, 29–38 (2011).
	35.	Sullivan, E. Understanding from machine learning models. Br. J. Philos. Sci. 

https://doi.org/10.1093/bjps/axz035 (2019).
	36.	Humphreys, P. Emergence: A Philosophical Account (Oxford Univ. Press, 2016).
	37.	Theurer, K. L. Complexity-based theories of emergence: criticisms and 

constraints. Int. Stud. Philos. Sci. 28, 277–301 (2014).
	38.	Senior, A. W. et al. Improved protein structure prediction using potentials 

from deep learning. Nature 577, 706–710 (2020).
	39.	Gainza, P. et al. Deciphering interaction fingerprints from protein molecular 

surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).
	40.	Goodfellow, I. NIPS 2016 tutorial: generative adversarial networks. Preprint at 

https://arxiv.org/abs/1701.00160 (2016).
	41.	Odena, A., Dumoulin, V. & Olah, C. Deconvolution and checkerboard 

artifacts. Distill 1, e3 (2016).
	42.	Goh, G. A Discussion of ‘adversarial examples are not bugs, they are features’: 

two examples of useful, non-robust features. Distill 4, e00019.3 (2019).

Nature Machine Intelligence | www.nature.com/natmachintell

https://doi.org/10.1101/626374
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1905.02175
https://doi.org/10.1093/bjps/axz035
https://arxiv.org/abs/1701.00160
http://www.nature.com/natmachintell


Perspective NaTure MacHIne InTellIgence

	43.	Denzin, N. K. The Research Act: A Theoretical Introduction to Sociological 
Methods (Routledge, 2017).

	44.	Heesen, R., Bright, L. K. & Zucker, A. Vindicating methodological 
triangulation. Synthese 196, 3067–3081 (2019).

	45.	Allman, D., Reiter, A. & Bell, M. A. L. Photoacoustic source detection and 
reflection artifact removal enabled by deep learning. IEEE Trans. Med. 
Imaging 37, 1464–1477 (2018).

	46.	Ylikoski, P. & Kuorikoski, J. Dissecting explanatory power. Philos. Stud. 148, 
201–219 (2010).

Acknowledgements
This work has been supported by National Science Foundation grant 2020585.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence should be addressed to C.B.

Peer review information Nature Machine Intelligence thanks the anonymous reviewers 
for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© Springer Nature Limited 2020

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Understanding adversarial examples requires a theory of artefacts for deep learning

	Adversarial examples

	The deeper riddle of induction

	Beyond signal and noise

	Towards a deeper understanding of non-robust features

	Conclusion

	Acknowledgements

	Fig. 1 An ‘impersonation’ attack using ‘adversarial glasses’.
	Fig. 2 A periodic signal function approximated by a Fourier series.
	Fig. 3 Checkerboard artefacts produced by image deconvolution in GANs.




