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ABSTRACT. The fixed point spectra of Morava E-theory E, under the action
of finite subgroups of the Morava stabilizer group Gy, and their K(n)-local
Spanier—Whitehead duals can be used to approximate the K(n)-local sphere
in certain cases. For any finite subgroup F' of G2 at p = 2 we prove that the
K (2)-local Spanier-Whitehead dual of the spectrum E}F is S44ERF . These
results are analogous to the known results at height 2 and p = 3. The main
computational tool we use is the topological duality resolution spectral se-

hS}
quence for the spectrum E, 2 atp=2.
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The Spanier—-Whitehead dual DX of a spectrum X is defined as the function
spectrum
DX = F(X,S°.
In chromatic homotopy theory we are interested in the categories of spectra localized
with respect to Morava K-theories K(n) for a fixed prime p. For a K(n)-local
spectrum X, it is natural to consider the local Spanier—-Whitehead dual, which is
the function spectrum in the K(n)-local category

DX = F(X, LgunS°).

Some of the most important K(n)-local spectra are LK(n)SO itself and spectra
which approximate it. The K (n)-local sphere can be thought of as the homotopy
fixed points of Morava E-theory E, under the action of Morava stabilizer group
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5422 IRINA BOBKOVA

G, (see [DHO4]). At n = 1 and 2, for appropriate finite subgroups H C G,, the
K (n)-local sphere can be decomposed in terms of E* as in, for example, [Hen07],
[GHMRO5], [BG18], and [Beh06], hence E"* are important building blocks of the
K (n)-local category.

While it is, of course, true that

DE!S» — P(E!S", E1S") o E1on,

it turns out that determining DE is more complicated for finite and other closed
subgroups H C G, even already at chromatic height n = 1.

For example, at p = 2 and n = 1 the maximal finite subgroup of G; = Zs x Cy is
C5 and the homotopy fixed point spectrum EfCQ fits into a fiber sequence [Bou79|

Lg)S° = Ef©* — B,
The K (1)-local Spanier-Whitehead dual of E“2 is shown to be [HMO07]
DEP®* = F(E}®?, L1)S°) =~ 27 Ep©
thus allowing us to rewrite the fiber sequence above as
DE®* — Lyg1yS® — EF©>.
Now let n = 2 and p = 3. There exists a fiber sequence (see [Beh06])
(1) DQ(2) = Lg(2)8° = Q(2),

where Q(2) is built from E?2* and EIP# (G,y is the maximal finite subgroup of
G and Dy is another finite subgroup isomorphic to the dihedral group of order 8;
see [GHMRO5] for details on structure of these subgroups). Hence EX¢2 EIPs and
their Spanier—Whitehead duals can be thought of as building blocks for L K(2)50 at
p = 3. In [Beh06] it is proved that

DE}©* ~ x4 pyoa,

DEMs ~ 44 phDs,

It was conjectured ([Beh06]) that at n = p = 2 there is a decomposition analogous
to (1) of Ly (2)S° in terms of spectra built from EbC2 E1C and ENCt (see more
on these subgroups of Gy at p = 2 in Section 1) and their Spanier—Whitehead
duals. The first step in proving such a result is the identification of the Spanier—
Whitehead duals of the relevant spectra. The main result of this paper is the
following 2-primary statement which is analogous to the 3-primary case, perhaps
hinting at common underlying structures.

Theorem 1. Let p = 2 and let F be a finite subgroup of the Morava stabilizer
group Go. Then there is a K(2)-local equivalence

DE} ~ S ELF,

We prove this using the short resolution of a spectrum closely related to L (2)S 0
at p = 2 constructed in [BG18]. We use the associated spectral sequence to identify
certain non-zero classes in 7, DE}T | whose existence then forces DE}F ~ R4 ERE,
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SPANIER-WHITEHEAD DUALITY 5423

1. BACKGROUND

Morava FE-theory and the Morava stabilizer group. Fix a prime number
p. The Morava stabilizer group S,, is the group of automorphisms of the height n
Honda formal group law H,, over F,». It is computed to be

Sn = (W(Fn)(S)/(aS = Sa”,S"™ = p))*.
Here, W(F,n) = Z,[w], where w is a primitive (p™ — 1)st root of unity, and o is the

lift to W (F,n) of the Frobenius morphism o : Fyn or, Fpn.

The lift to S,, of the action of the Galois group Gal(F,»/F,) defines the (ex-
tended) Morava stabilizer group

Gy, =Sy, x Gal(Fpn /Fp).
Goerss—Hopkins—Miller theory (see [GHO04], [Rez98]) produces a functor
E : {Formal group laws} — {€.-ring spectra}
(k,T) — E(k,T),

where k is a perfect field of characteristic p and T" is a formal group law of finite
height over k. Morava E-theory F, at the prime p is the value of this functor on
(Fpn, H,,) where H, is, again, the Honda formal group law. Its coefficients are

(En)s = W(Fpr)[us, .. ][,

where |u;| = 0 and |u~!| = 2. By [DHO04], the homotopy fixed points of action of
G, on E,, recover the K (n)-local sphere L K(n)SO ~ E"Cn_ For any closed subgroup
H of G,, we can form the homotopy fixed point spectrum E" and there exists a
fixed point spectral sequence [DHO04]

Ey" = H.(G,, B.EM) = H*(H,m.E,) = m. B,

Finite and other closed subgroups of G, play an important role in computa-
tions because they are often much easier to work with but still carry significant
information. We will next introduce several subgroups of interest to us at n = 2.

We can write each element of G2 as a pair

(a+05,¢0°; aec (W(F,))*, be W(F,), ec{0,1},
where ¢ is the Frobenius morphism, and define the norm map by
Gy X5 W(F,2)* x Gal(Fpn /F,)
(a +bS,¢%) = (ag(a) — pbd(b), ¢°).

It is easy to check that the map N takes values in Z; x Gal(F,2/F,). The group
G is defined as the kernel of the reduced norm map

1 G} = Gy 25 ZX x Gal(Fje [F,) = ZX /F ~ 7, — 1,

where F' = Cy at p =2 and F' = C,_; at p # 2 is the maximal finite subgroup of
Zy. We also define S} := G5 N'S,.

Finite subgroups and short resolutions. The results of this paper concern the
case n = p = 2. In order to explain our motivation for this project, we will first
review some details about the n = 2, p = 3 case. We will write £ = Fs.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



5424 IRINA BOBKOVA

p = 3. It can be shown that Sy contains a cyclic subgroup C5 at p = 3; it is also
easy to see that it contains a subgroup Cs = Fg generated by a primitive 8th root
of unity w. Let C; be the subgroup generated by w?. The maximal finite subgroup
G4 of Go has order 24 and can be defined by the non-split group extension

1— C3 X Cy — Gog — Gal(Fg/Fg) — 1.

The semidihedral group SD1g = (Fg)* x Gal(Fg/F3) is the second finite subgroup
of interest; note that it contains the dihedral group Ds. See [GHMRO05, Section 1]
for more details on the structure and generators of these subgroups.

The fixed point spectra E"5P16 and E"24 are crucial for understanding the
K (2)-local category at p = 3 due to the existence of short resolutions of LK(Q)SO.
Namely, in [GHMRO5] the authors show that there exists a resolution of L K(Q)SO

(2) Lk28° — B2t — S3EhSP1ey phoe
N E8EhSD16 vV Z4OEhSD16 N E4OEhSD16 vV Z4SEhG24 N 248EhG24-

Behrens [Beh06] used this resolution and related calculations to show that there
exists a fiber sequence

DQ(2) = Li(2)5° = Q(2),
where Q(2) is built from E?$P16 and E"%2+, This explains the apparent self-duality
of the resolution (2) and the presence of suspensions in it. Namely, the presence
of 48 E"G24 in the resolution is related to the facts that DE"G2¢ ~ 344 EhG24 and
that the resolution has length 4.

P = 2. It can be shown that Sy at p = 2 contains two elements of order 4, i and
J, which generate a subgroup Qs < Sz, on which C3 = F} acts by permuting i, j
and ij. There is one isomorphism class of non-abelian, maximal, finite subgroups
of Sg, given by the binary tetrahedral group Gas = Qg X F (see [Hew95, Corollary
1.5]) and Gag = G24 x Gal(F4/F3) C Gy (for details on these subgroups see, for
example, [Hen, Section 2]). Note that the group Ga24 at p = 2 is not the same as
the maximal finite subgroup of Go at p = 3, even though the usual notation is the
same. We will also use subgroups Cy = {£1} and C = {£1} x F}.

The analog of (2) at p = 2 is the following resolution of E"S> [BG18]
(3) EhS; _y phGaa _y phCs _ 48 phCs _ 248 phGas

Both resolutions (2) and (3) have the property that all possible Toda brackets
formed from the maps in the resolutions are zero. Hence they refine to towers of
fibrations and give rise to tower spectral sequences. Namely, (3) refines to a tower
of fibrations

(4) Fs = N4 EhGaa [hS3

32 — 246Ehc6 — =X,

R S S — )

8’0 — EhG24 =~ EhG24
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SPANIER-WHITEHEAD DUALITY 5425

and we have a tower spectral sequence
1
E?s = mSs = 7Tt—slahsz-

We can map E"@2¢ (or any other spectrum) into the tower (4) and arrive at a
spectral sequence computing the homotopy of the function spectrum

(5) E}® = mF(E"0* §,) = m_ F(E"C2 EhS:),

2. AcTION OF G,, ON FUNCTION SPECTRA

In this section we work at an arbitrary height n and write G = G,, and F = F,
in order to simplify the notation. For an element ¢ € G and o € 7, F(E, E) let ¢,
and s, denote the actions on the target and source:

(6) ty(a)=(E"ES EL E)=goa,
(7) sg(@)=(X"ELS"E S E)=aog.

Assuming that G acts on E on the left, we can see that ¢, is a left action of G on
F(E,E), and s, is a right action of G on F(E, E), hence we now have a left action
of G x G on F(E,E).

There exist at least two ways to define a G x G action on E,[G] so that there
was a G°P x G equivariant isomorphism E,[G] = 7, F(E, E), with the action on
mF(E,F) as in (6) and (7). Non-equivariant and G-equivariant versions of this
isomorphism are also discussed in [DHO04], [Str00], [BD10], [GHMRO05], and [Hov04].

2.1. First isomorphism. In this paper we will use the isomorphism discussed
below in Section 2.2, but another equivariant isomorphism is used more often, and
we would like to write down some details about it first.

Let (a € E.,v € G) be an element of E,[G]. For g € G, consider the two actions
on E,[G]: the right action given by

(8) re(a,7) = (a,79),

and the left action given by (g.a denotes the action of g on a € E,)

(9) ly(a,7) = (9-a,97)-

Theorem 2. There exists a GP x G equivariant isomorphism of E.-algebras
¢ : EG] - m.F(E,E),

such that
P(rg(a, 7)) = s4(6(a,7)),
P(lg(a, 7)) = ty(d(a, 7).

Proof. The non-equivariant version of this statement is proved in [Hov04, Theorem
5.5], and the equivariant version is discussed in [GHMRO5]. Hovey defines the map

¢ as
¢: EJG] —» m.F(E,E)
(S" S Eq)— (E"ELY"ES EANE L E)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



5426 IRINA BOBKOVA
and proves that it is an isomorphism of E,-algebras. In order to prove the equi-
variant statement, let g € G. Then we have
54(0(a,7)) = 54(X"E L X"E S EAE S E)
=E"ELs"E LY E S EAE L E)
=(E"EXLy"ES EANES E) = éla,v9) = ¢(ry(a,y). O
For the other two actions we have:
ty(p(a,7)) =t,(X"E L S"E S EANE S E)
="ELY'ELEANEL ELE)
=(E"E L yn"E XS EAE S B) = ¢(g.a,97) = ¢(ly(a,7)).

2.2. Second isomorphism. In this section we would like to consider a different
action of G? x G on E,[G]. Namely, let the left action L, of G and the right
action R, of G be as follows:

Ly(a, ) = (a, 97),
Ry(a,7) = (97" .a,79).
Theorem 3. There exists a G°P X G equivariant isomorphism of E.-algebras
Y EJG] — m.F(E,E),
such that
P(Lg(a,7)) = tg(¥(a; 7)),
(Ry(a,7)) = s4(¢(a,7))-
Proof. We define the map ¢ as (following [Str00, p. 1029])
¥ : E,[G] - . F(E, E).
(S" S EAN—(E"ESEANELELE).

Since ¢(a,vy) = ¢(v.a,7), ¥ is an isomorphism of E,-algebras. We will check the
equivariant part of the statement, just as in Theorem 2:

ty((a,7)) =t,(E"E S EANE S E L E)
=C"ESEANELELELE
=(X"ES EANEL B E)=14(a,9v) = ¥(Ly(a,7))
and
sq(¥(a,7)) = s4(X"E % EANE S E L E)
=C"ELY"ESEANES ELE)
—(E LN EAE Y E Y B) = (g a,vg) = O(Ry(a,7)).

The hardest part of this is the third equality which can be visualized as follows (we
are using that v and yg act by ring maps):

v.(alg-x)) = (v.a)(7.(9.2)) = ((vgg~)-a)((vg9)-x) = v9((g~".a)2). O
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SPANIER-WHITEHEAD DUALITY 5427

Now assume we would like to understand 7, F(E"S EM) for H/ K C G. The
isomorphism ¢ is often better suited to this task if we first take the fixed points
with respect to K, and then the fixed points with respect to the diagonal action of
H on 7, F(E"X E). This is the approach used in [GHMRO5] and [BD10]. But if we
wanted to take the fixed points in the other order, it might be more advantageous
to use the isomorphism 1. This is the approach we will take in this paper, inspired
by [Str00], where % was used to compute DE.

3. SPANIER—WHITEHEAD DUAL OF E"G24. FIRST STEPS

For the rest of the paper we work in the K (2)-local category at p = 2 and write
E = E,. We begin with a recollection of computations from [Str00, Prop. 16],
where it was proved that there is an equivalence of E-modules (for n = 2 and any
prime)
F(E,E"®?) ~27E,
inducing a Gs-equivariant isomorphism on homotopy groups. This can be shown by
computing H*(Gy, E*E) and using the Devinatz—Hopkins spectral sequence [DH04|

(10) Ey' = H3 (G, mF (X, 2)) = m_F(X, Z"%),

We will emulate Strickland’s analysis for the group G3 C Gy instead of Gy. One
of the key facts we need is that G, contains an open Poincaré duality subgroup of
dimension 4. A profinite p-group G is called a Poincaré duality group of dimension

k if G has cohomological dimension k and
Z n==k
HG,Z,[G]) =< » ’
26,2, G]) {0’ o

where the action used to define group cohomology is the natural left action of G on

the topological ring Z,[G]. A group H is called a virtual Poincaré duality group

if it possesses a finite-index subgroup G which is a Poincaré duality group. The

groups Gy and G} are not Poincaré duality groups, but they are virtual Poincaré

duality groups.

Lemma 4. We have

ZQ n=23

H'(G3, Zo[G3]) = .~ ’

¢ (Gy, Zo[Gs]) 0. n#3

Proof. The group G contains an open Poincaré duality subgroup K of dimension
4 and G} contains an open Poincaré duality subgroup K' = K N G} of dimension
3. For details on generators of K and K' and their properties, see [Beal5, Section
2]. Open subgroups of a profinite group are precisely those closed subgroups which
have finite index. In fact, K fits into a short exact sequence

1 =K' =S = Goy — 1.
Then we have an isomorphism supplied by Shapiro’s lemma
HZ(Gy, Z2[G])) = HZ (K, Zo[K']). U
Lemma 5. (1) There ezists a Go-equivariant isomorphism

. F(E, E"®) =~ 1, N3 E[G,/Gl,

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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where the action of Go on the left hand side is on the source in an element
of m. F(E, EhGé) and the action of g € Gy on the right hand side is given by
g-(a,7G3) = (97 ta, (v9)G3) for a € E. and a coset vG}. These are right
actions of Ga.

(2) The isomorphism of (1) is also equivariant with respect to the left action
of the group Go/G3 =2 Zy, which is the residual action on the target in the
function spectrum, and the natural action on Go/G} on the right hand side.

Proof. We will use the spectral sequence (10) and we need to compute
Ey* = H*(G3,n.F(E,E)).

Our starting point is the isomorphism of Theorem 3: m,F(FE, F) 2 E,[Gz], under
which the action on the target in 7, F(FE, E) corresponds to the action which we
called L, in Section 2.2, namely g.(a,7) = (a, g7).

There is an isomorphism of Gi-modules

(11) E.[G2] = E.[G3]®5. E[G2/G3]
where E,[G2/G3] has trivial action. This gives an isomorphism
H; (Gy, E[G2]) 2 H:(Gy, Ev[[Ga])®p. Bi[G2/Gy]

and we are reduced to computing H(G3, E.[G1]). But since G} acts trivially on
E. (by definition of L,), we have an isomorphism of G}-modules

E.[G}] = Z5[G;] &z, Ex
and HZ (G}, E.[G}]) = H! (G}, Z2[G3]) @z, B

Hence we have
Ei[G2/G3], n =3,

H?(G3, B'E) = {0 L

Substituting these results into the spectral sequence (10) we see that it cannot
have any differentials or extensions due to sparseness. Hence it collapses and we
have an isomorphism of homotopy groups

. F(E, E"®) =~ 1, Y3 F[G,/Gl).

Theorem 3 implies that this isomorphism is equivariant with respect to the right
action of Gg: on the source in the function spectrum and induced from R, on
1.2 3 E[Gy/Gi].

To prove the second statement, we keep track of the action of Go/G} at each
step, starting with (11), where the action is the natural action of the group on the
group ring E.[G2/G3]. This action extends to the action on group cohomology,
and on the Ey = F, page of the spectral sequence. (Il

In this paper we want to identify the function spectrum F(E"%1s E"62) and we
will do that by first understanding F(FE"%24, EhG%). The next lemma allows us to
think about the latter function spectrum as a homotopy fixed point spectrum.

Lemma 6. Let H be any finite subgroup of Go. Then we have an equivalence

F(EhH,EhG%) ~ F(E,EhGé)hH.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Proof. Since the K (2)-localization of the Tate spectrum E*# vanishes, the homo-
topy fixed point spectrum E" and the homotopy orbit spectrum Ej g are equiv-
alent. The lemma then follows from the equivalences

F(EM EM62) ~ F(Eyy, E"®) ~ F(E, EMG2)hH O

The homotopy of F(E, E’“G’%)hG24 can now be computed using the fixed point
spectral sequence
ES' = H¥(Gay, mF(E, E"2)) = m,_ F(E, E"62)"C2
We will later show that we actually only need to know very little information about

some permanent cycles in order to compute this spectral sequence completely.

Fixed point spectral sequence for 7,E"%>+, Here we will recall some basic
facts about the homotopy fixed point spectral sequence

(12) ESt = H(Goy, mE) = m_ E"C2,
For more details see [Rez, Theorem 18.2], [Bau08], or [BG18, Section 2.3].

There is an isomorphism

H(Gay, By) = W (Fa)[f][eq, co, AT/ (c] — ¢ = (12)°A,A) = ¢})
and
H*(Goy, E.) = H*(Gaoy, E.)[n, v, s €, 5, K] /R,
where R is the ideal generated by the following relations:
2n =2p =2 =2k =4v =8k = (;

772K=77V:21/2:Z/4:O;

3

ne =v V€:€2:0, 1/2%9:4/%, m:ﬁ;Q:O;

pv =cqv =cgV =0, pe = cqe = cge = 0, uk = cyk = cgk = 0;

p? =ntes, pes =nce, pcg = 7704217 ek =n'A, ek = nPuA.

FIGURE 1. The Es page of the spectral sequence (12). The hori-
zontal axis is t — s and the vertical axis is s.
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We include for reference the chart for the Eo page of the spectral sequence (12) in
Figure 1. This is Figure 3 from [BG18]. The notation in Figure 1 is as follows:
O = WEF)[i], © = Fa[j], ® = W(F4)[5]/(8,2j) generated by a class of the
form A7, a bullet denotes a class of order 2 and a circled bullet is a class of
order 4. The solid lines of slope 1 indicate multiplication by 7 and lines of slope
1/3 indicate multiplication by v. A dashed line indicates that zn = jy, where x
and y are generators in the appropriate bidegrees. The F5 page is 24-periodic with
periodicity generator A € H°(Ga4, Ea4). This algebraic periodicity does not extend
to topological periodicity since the spectral sequence (12) has differentials on the
powers of A given by

d5(A) = RV,
d7(AY) = A3Rn3.
The differentials are linear with respect to j and the generators in positive s degrees.

The spectrum E"@2¢ is 192-periodic with periodicity generator detected by the
permanent cycle A8 € H(Goy, Fig).

The function spectrum F(E"2 E"C3), The spectrum F(E, E"®) has two
group actions as given in Lemma 5: the action of Gy on the source and the residual
action of G5 /GJ on the target. The action on the source is used in computing the
FE» page of the fixed point spectral sequence

ES* = H*(Goy, m F(E, E"%2)) =5 7, F(E"C> | phG3).

Since Goy is a subgroup of G}, it acts trivially on Go/G} and we have
Ey* = H*(Gay, 1. X3 E)[Gy/G3].

Proposition 7. Consider the fized point spectral sequence
(13) ESt = H*(Gay, mY 3E)[Ga/GL] = m_ F(E"2 EMC:),
Assume that for some k € [0,7] (and all n)

ABntR ¢ pO SRR — [10(Ghy, Bagt1020) [Go /G
is a permanent cycle. Then

F(EhGM, EhG;) ~ Y3424k PhGaa [[Gg/Gé]].

Proof. Spectral sequence (13) is a module over the homotopy fixed point spectral
sequence (12). Using this module structure we see that if A*+" is a permanent
cycle, then any element

0 0,—3424k+192n
a € H(Gaa, Eaakt192n) C Ey

is a permanent cycle as well.

Now we note that there is the residual action of the group Go/G} on the target in
the function spectra F(E, EhGé) and F(EhC2, EhGé), and on the homotopy fixed
point spectral sequence (13), hence the differentials commute with this action. To
be more explicit, consider a coset [g] € Go/GL. By Lemma 5, part (2), the action
of [g] on m,F(E,E"®2) = 71, 3E[G,/G}] is trivial on 7,2 3F and natural on
G2/G4: [g][h] = [gh]. Hence for

alh] € H®(Ga4, Fopr1920)[Ga/GL] = EQ—3+24k+192n
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we have [g].(alh]) = a[gh], where on the left [g].(a]h]) denotes the action of [g] €
G2/G2 on alh], and on the right a[gh] is an element of E,[G2/G3]. This allows us
to write any a[h] as the result of the action a[h] = h.a[1] and we have

dy(alh]) = dr([h].(a[1])) = [h].d\(a).

This shows that the differentials in this spectral sequence are linear with respect
to elements in G, /G4 and we have

W*F(EhGM, EhG;) o g, 3424k phGay [G2/G].
Now note that (see [Beh06, Lemma 2.3.5])
EhC24[Gy/Gh] ~ EMC24 A S[G,/Gl].
Then the composition
F(EhG21, BhG2) A EhC24 & S[Go/GL] 2
2y F(EMG, MG A S[G2/Gh] & F(EMG>1, Eh6),

where the map ¢ : E"2 A S[G2/GL] — E"} is the action map of [Beh06, Cor.
2.3.4] and p : EhG2e A F(ERG24 EMGy) —y F(EhG2, EhGi‘) is the module structure
map, gives F(EhG“,EhGé) the structure of a module over E"%2¢[G,/G]. Using
this module structure and the map

Ak . g—3+24k F(EhGM’EhG;)’

detected by the permanent cycle A*, we get the required equivalence of spectra. [J

The next lemma shows that we can relax the assumptions of Proposition 7.

Lemma 8. Consider the homotopy fized point spectral sequence (13)
B3 = H*(Gas, Brys)[G2/G3] = miosyaF (B2, B"%2),

Assume that A f(5) € Eg’73+24k+192" is a permanent cycle, where f(j) is a power
series in j such that f(0) # 0 mod (2). Then AF is a permanent cycle.

Proof. The spectral sequence (13) is a module over the homotopy fixed point spec-
tral sequence for m, E"G>+ and the differentials in the latter spectral sequence are
j-linear. Hence we have

d.(AFf(5)) = f(§)dr(AF) =0

and the condition f(0) # 0 mod (2) ensures that f(j) is invertible in the target
of d,.. 0

In the next section we will show that A2T8" f(j) for f(j) as in Lemma 8 is a
permanent cycle in spectral sequence (13). Then we will use Proposition 7 and
Lemma 8 to deduce F(E"C21, EhC) ~ 145 EhG24[G, /GL].
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4. HOMOTOPY GROUPS COMPUTATION

We begin by examining the homotopy fixed point spectral sequence for 7, E"¢24
([BG18, Fig. 4] or [Bau08, p. 32]) and making the following observation.

Lemma 9. For any n there is an isomorphism
hG
Tas+192n £772 = Fy.

If a,, € 7r45+192nEhG24 is a gemerator, then a,kn # 0. Furthermore, a, is detected
by the class A'8"kn € H(Gay, 50411020 F)-

The next result follows from [GHMRO5, Prop. 2.6] and details can be found in
[BG18, p. 925]. Let H; be a closed subgroup and let Hs be a finite subgroup of Ga,
and let Hy =), U; for a decreasing sequence of open subgroups U;. Then we have
an isomorphism

(14) o F (BN B 2him [T m B
H2\G2/Ui

where H, ; = Hy N 2U;z~! C Hy is the isotropy subgroup of the coset zUs;.
In order to use this decomposition we will need some information about 7, Er
for various subgroups H C GGo4. What we need is collected in the lemma below.

Lemma 10. (1) For any H C Gay such that the central Cy = {£1} is con-
tained in H we have

7T_1EhH =0.
(2) For F' = Cy C Ga4 and C6 C Gy

hF hF
Tas+192n B = Tae4102n "7 = 0.

Proof. The subgroups of Go4 which contain the central Cy are Cs, Cy, Cg, Qs, and
G24. The homotopy groups of E*2, E"C4 and E"®s can be read off of Prop. 2.8,
Prop. 2.9, and Prop. 2.12 in [BG18]. For E"?s we note that there is an equivalence
([Hen, p. 28])

Eth ~ EhG24 v 264EhG24 v 2128EhG24

and 7m_1 EMG24 = qga BMG2a = 19, BhG24 = (. |
Lemma 11. There ezists (for each n) a surjective map

Tz 100 F(E"C2, B1S3) 2y,
such that any element

fr € Tuss1920 F(E"C2 ES2),

for which p'(fn) # 0, has Adams—Novikov filtration at most 5 and has the property
fnkn # 0.

Proof. We compute with the tower spectral sequence (5)
Bt = 1 F(E'%2 §,) = m_ JF(E"C21 E"S2),
where we examine the fate of

0,45+192n hGzi hG
E; & Tys 1000 F (B2, B2,
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The three potential differentials supported by E?745+192n land in
Tas 1000 F(E"C24 EMC6) = 1464 190, F(EMC24 ) EhC6) =
= Ty7 1000 F(E"C28 A8 EhG2a) —

all of which are zero groups by (14) and Lemma 10. Then E{*°+192% o p0.45+192n,
and the projection p from the top to the bottom of the duality tower (4)

hG hSiy P hG hG
Tas102n F (B2 E™2) = 451900 F (E"724, B2

is surjective. Composing it with the unit map ¢ of the ring spectrum E"%2¢ we have
a surjective map p’

P 7T45+192nF(EhG247EhS§) L Tusy102n F (B9 BMO2) L mys 1, B9 2 Fy,
The rest follows from Lemma 9. O
Corollary 12. In the spectral sequence (13)
B3 = HY(Goy, mY P E[Gy/GY]) = m_ JF(E"C2 E'C2)
there exists (for each n) a permanent cycle
A8, (j) € By 2T — HO(Gay, B_gia541020) [G2/Gh]
such that g,(0) # 0 mod (2).

Proof. We use the fact that F(EhC2 EhS:) — F(EhC2 EhG:) A Gal(Fy/Fs)
(Lemma 1.37 in [BG18]). Then the map

1
P Mas 102 F(EMC24 EMS2) — Fy
from Lemma 11 restricts to a surjective map
I s 10 F(E"C2, EM62) 5y,

where any y, € 541000 F(E"C24 E"C2) such that r(y,) # 0 is detected in the
spectral sequence (13) by a permanent cycle in Adams-Novikov filtration at most 5.
Now we analyze the spectral sequence

Ey' = H*(Go4, m Y3 E[G2/Gl]) = H* (G4, 1143 E)[G2/G3].

For the Es page see Figure 1 (the Es page is 24-periodic with respect to the ¢t — s
axis), and for the E. page, see, for example, [BG18, Fig. 4]. From these we
deduce that y,, with the property y,%n # 0 (and having filtration less than 5) must
be detected by an element in filtration zero, namely in

H°(Ga4, Ess11920)[G2/G3],
hence
Yn = A2+8ngn(j)

for some g¢,,(j). Then the condition y,<n # 0 guarantees that g,(0) # 0 mod (2)
(see Theorem 4.6 in [BG18]). O

Proposition 13. There is a K(2)-local equivalence

F(EhG247 EhGé) ~ 245EhG24 [[G2/G%ﬂ
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Proof. We, again, compute with the fixed point spectral sequence (13)
E' = H*(Gas, mF(B, B"®)) = m_ F(E, B"®%)02 = F(E"C21, B1G3).

By Corollary 12, A2t87g, (j) is a permanent cycle in this spectral sequence for each
n and g, (0) # 0. Then we apply Proposition 7. O

Now we are ready to prove our main theorem. Let £ be the canonical topological
generator of Zy = Go/G3 and recall that there exists a fiber sequence

(15) Jol Ny U R S P
where the map ¢ is given by the residual action of £ € Go/G} on EhC:,

Theorem 1. Let n = p = 2 and let Gus be the mazimal finite subgroup of the
Morava stabilizer group Go. Then the K (2)-local Spanier—Whitehead dual of BG4
18

DE"Ss = F(EM, Ly (5)8%) ~ R4 EhCas,

Proof. We map E"“24 into the fiber sequence (15) to get

(16) F(E"G2s phCz) £74 p(phGas phtsy _, wipphCas

The map ¢ in this fiber sequence is the action of £ € Go/G} on the target in the
function spectrum, given by Lemma 5.
Now consider the fiber sequence (see [Beh06], Lemma 2.3.8)

(17) 245EhG24 HZZH T—1 245EhG24 [[ZQ]] — E45EvaQ47

where the map 7 is given by the action of the canonical generator 7 € Zy on Zs. By
Proposition 13 the first two terms in the fiber sequences (16) and (17) are equivalent
and by Lemma 5 the maps £ — 1 and 7 — 1 are equivalent, hence the cofibers are
equivalent as well and we have DE"G21 ~ 244 phGas

Now we use Lemma 1.37 from [BG18] which implies that there is a Gal(F4/Fs)-
equivariant equivalence

Gal(Fy/Fy) . A ElCGas = phGa
and get
DE"G1s ~ 344 phtas, O

5. SPANIER- WHITEHEAD DUAL OF E"F FOR F C Gus
Lemma 14. Let F be any finite subgroup of Go. Then we have an equivalence
DE" ~ (DE)".

Proof. The proof goes exactly the same way as for Lemma 6. Since F is finite, the
Tate spectrum vanishes, and we have E" ~ Ej, . Then

F(E", E"®?) ~ F(Epp, E"*?) ~ F(E, E"®*)M. O
The results of the previous section can be reformulated as the following state-
ment.
Corollary 15. In the homotopy fized point spectral sequence
Ey' = H*(G4s, mDE) = m_(DE)"% = m,_ DE"+
the class A? € H°(Gys,m44DE) = H°(Gys,m4sE) is a permanent cycle.
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Using this we can now compute DE" for various subgroups F' C Gys.
Theorem 16. Let F C Gyus C Go. There is a K(2)-local equivalence
DENF ~ y44phF

Proof. For a subgroup F' C G,g, let 8 denote the inclusion map F br, Gus. It
induces a map of spectral sequences

Ey* = H*(Gys, 7. DE) X = H*(F,n,DE) ~ E*

ﬂ ﬂ

7. (DE)hGas 7. (DE)hT

and the inclusion of invariants
EY* = HY(Gus, m.S74E) 25 HO(F, 7,5 74E) = ES*.

Let A2 be the image of A2 € H°(Gyg,m44DE) under §r. Then AZ is also a
permanent cycle in the fixed point spectral sequence on the right in the diagram
above,
Eyt = H*(F,7,DE) = m,_ DE"

Therefore, this spectral sequence is isomorphic to a shift of the homotopy fixed
point spectral sequence H*(F,mE) = m;_4E" by 44 and 7, DEM = g, ¥4 EME,
Then, using the module structure of DE" over the ring spectrum E"F we can
extend the class A% € muuDEM to the required equivalence. O
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