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Abstract. The fixed point spectra of Morava E-theory En under the action
of finite subgroups of the Morava stabilizer group Gn, and their K(n)-local
Spanier–Whitehead duals can be used to approximate the K(n)-local sphere
in certain cases. For any finite subgroup F of G2 at p = 2 we prove that the
K(2)-local Spanier–Whitehead dual of the spectrum EhF

2 is Σ44EhF
2 . These

results are analogous to the known results at height 2 and p = 3. The main

computational tool we use is the topological duality resolution spectral se-

quence for the spectrum E
hS

1

2

2 at p = 2.
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The Spanier–Whitehead dual DX of a spectrum X is defined as the function
spectrum

DX = F (X,S0).

In chromatic homotopy theory we are interested in the categories of spectra localized
with respect to Morava K-theories K(n) for a fixed prime p. For a K(n)-local
spectrum X, it is natural to consider the local Spanier–Whitehead dual, which is
the function spectrum in the K(n)-local category

DX = F (X,LK(n)S
0).

Some of the most important K(n)-local spectra are LK(n)S
0 itself and spectra

which approximate it. The K(n)-local sphere can be thought of as the homotopy
fixed points of Morava E-theory En under the action of Morava stabilizer group
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Gn (see [DH04]). At n = 1 and 2, for appropriate finite subgroups H ⊂ Gn the
K(n)-local sphere can be decomposed in terms of EhH

n as in, for example, [Hen07],
[GHMR05], [BG18], and [Beh06], hence EhH

n are important building blocks of the
K(n)-local category.

While it is, of course, true that

DEhGn

n = F (EhGn

n , EhGn

n ) ≃ EhGn

n ,

it turns out that determining DEhH
n is more complicated for finite and other closed

subgroups H ⊂ Gn, even already at chromatic height n = 1.
For example, at p = 2 and n = 1 the maximal finite subgroup of G1

∼= Z2×C2 is
C2 and the homotopy fixed point spectrum EhC2

1 fits into a fiber sequence [Bou79]

LK(1)S
0 → EhC2

1 → EhC2

1 .

The K(1)-local Spanier–Whitehead dual of EhC2

1 is shown to be [HM07]

DEhC2

1 = F (EhC2

1 , LK(1)S
0) ≃ Σ−1EhC2

1

thus allowing us to rewrite the fiber sequence above as

DEhC2

1 → LK(1)S
0 → EhC2

1 .

Now let n = 2 and p = 3. There exists a fiber sequence (see [Beh06])

(1) DQ(2) → LK(2)S
0 → Q(2),

where Q(2) is built from EhG24

2 and EhD8

2 (G24 is the maximal finite subgroup of
G2 and D8 is another finite subgroup isomorphic to the dihedral group of order 8;
see [GHMR05] for details on structure of these subgroups). Hence EhG24

2 , EhD8

2 and
their Spanier–Whitehead duals can be thought of as building blocks for LK(2)S

0 at
p = 3. In [Beh06] it is proved that

DEhG24

2 ≃ Σ44EhG24

2 ,

DEhD8

2 ≃ Σ44EhD8

2 .

It was conjectured ([Beh06]) that at n = p = 2 there is a decomposition analogous

to (1) of LK(2)S
0 in terms of spectra built from EhG24

2 , EhC6

2 , and EhC4

2 (see more
on these subgroups of G2 at p = 2 in Section 1) and their Spanier–Whitehead
duals. The first step in proving such a result is the identification of the Spanier–
Whitehead duals of the relevant spectra. The main result of this paper is the
following 2-primary statement which is analogous to the 3-primary case, perhaps
hinting at common underlying structures.

Theorem 1. Let p = 2 and let F be a finite subgroup of the Morava stabilizer

group G2. Then there is a K(2)-local equivalence

DEhF
2 ≃ Σ44EhF

2 .

We prove this using the short resolution of a spectrum closely related to LK(2)S
0

at p = 2 constructed in [BG18]. We use the associated spectral sequence to identify
certain non-zero classes in π∗DEhF

2 , whose existence then forces DEhF
2 ≃ Σ44EhF

2 .
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1. Background

Morava E-theory and the Morava stabilizer group. Fix a prime number
p. The Morava stabilizer group Sn is the group of automorphisms of the height n
Honda formal group law Hn over Fpn . It is computed to be

Sn = (W (Fpn)〈S〉/(aS = Saσ, Sn = p))×.

Here, W (Fpn) = Zp[ω], where ω is a primitive (pn − 1)st root of unity, and σ is the

lift to W (Fpn) of the Frobenius morphism σ : Fpn

(−)p

−−−→ Fpn .
The lift to Sn of the action of the Galois group Gal(Fpn/Fp) defines the (ex-

tended) Morava stabilizer group

Gn = Sn ⋊Gal(Fpn/Fp).

Goerss–Hopkins–Miller theory (see [GH04], [Rez98]) produces a functor

E : {Formal group laws} → {E∞-ring spectra}

(k,Γ) 	→ E(k,Γ),

where k is a perfect field of characteristic p and Γ is a formal group law of finite
height over k. Morava E-theory En at the prime p is the value of this functor on
(Fpn , Hn) where Hn is, again, the Honda formal group law. Its coefficients are

(En)∗ ≃ W (Fpn)�u1, . . . un−1�[u
±1],

where |ui| = 0 and |u−1| = 2. By [DH04], the homotopy fixed points of action of
Gn on En recover the K(n)-local sphere LK(n)S

0 ≃ EhGn
n . For any closed subgroup

H of Gn we can form the homotopy fixed point spectrum EhH
n and there exists a

fixed point spectral sequence [DH04]

E∗,∗
2 = H∗

c (Gn, E∗E
hH
n ) ∼= H∗(H, π∗En) =⇒ π∗E

hH
n .

Finite and other closed subgroups of Gn play an important role in computa-
tions because they are often much easier to work with but still carry significant
information. We will next introduce several subgroups of interest to us at n = 2.

We can write each element of G2 as a pair

(a+ bS, φe); a ∈ (W (Fp2))×, b ∈ W (Fp2), e ∈ {0, 1},

where φ is the Frobenius morphism, and define the norm map by

G2
N
−→ W (Fp2)× ⋊Gal(Fpn/Fp)

(a+ bS, φe) 	→ (aφ(a)− pbφ(b), φe).

It is easy to check that the map N takes values in Z
×
p × Gal(Fp2/Fp). The group

G1
2 is defined as the kernel of the reduced norm map

1 → G
1
2 → G2

N
−→ Z

×
p ×Gal(Fp2/Fp) → Z

×
p /F ≃ Zp → 1,

where F = C2 at p = 2 and F = Cp−1 at p �= 2 is the maximal finite subgroup of
Z×
p . We also define S12 := G1

2 ∩ S2.

Finite subgroups and short resolutions. The results of this paper concern the
case n = p = 2. In order to explain our motivation for this project, we will first
review some details about the n = 2, p = 3 case. We will write E = E2.
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p = 3. It can be shown that S2 contains a cyclic subgroup C3 at p = 3; it is also
easy to see that it contains a subgroup C8 = F

×
9 generated by a primitive 8th root

of unity ω. Let C4 be the subgroup generated by ω2. The maximal finite subgroup
G24 of G2 has order 24 and can be defined by the non-split group extension

1 → C3 ⋊ C4 → G24 → Gal(F9/F3) → 1.

The semidihedral group SD16 = (F9)
× ⋊Gal(F9/F3) is the second finite subgroup

of interest; note that it contains the dihedral group D8. See [GHMR05, Section 1]
for more details on the structure and generators of these subgroups.

The fixed point spectra EhSD16 and EhG24 are crucial for understanding the
K(2)-local category at p = 3 due to the existence of short resolutions of LK(2)S

0.

Namely, in [GHMR05] the authors show that there exists a resolution of LK(2)S
0

(2) LK(2)S
0 → EhG24 → Σ8EhSD16 ∨ EhG24 →

→ Σ8EhSD16 ∨ Σ40EhSD16 → Σ40EhSD16 ∨ Σ48EhG24 → Σ48EhG24 .

Behrens [Beh06] used this resolution and related calculations to show that there
exists a fiber sequence

DQ(2) → LK(2)S
0 → Q(2),

where Q(2) is built from EhSD16 and EhG24 . This explains the apparent self-duality
of the resolution (2) and the presence of suspensions in it. Namely, the presence
of Σ48EhG24 in the resolution is related to the facts that DEhG24 ≃ Σ44EhG24 and
that the resolution has length 4.

p = 2. It can be shown that S2 at p = 2 contains two elements of order 4, i and
j, which generate a subgroup Q8 < S2, on which C3 = F

×
4 acts by permuting i, j

and ij. There is one isomorphism class of non-abelian, maximal, finite subgroups
of S2, given by the binary tetrahedral group G24 = Q8⋊F

×
4 (see [Hew95, Corollary

1.5]) and G48 := G24 ⋊ Gal(F4/F2) ⊆ G2 (for details on these subgroups see, for
example, [Hen, Section 2]). Note that the group G24 at p = 2 is not the same as
the maximal finite subgroup of G2 at p = 3, even though the usual notation is the
same. We will also use subgroups C2 = {±1} and C6 = {±1} × F

×
4 .

The analog of (2) at p = 2 is the following resolution of EhS1
2 [BG18]

(3) EhS1
2 → EhG24 → EhC6 → Σ48EhC6 → Σ48EhG24 .

Both resolutions (2) and (3) have the property that all possible Toda brackets
formed from the maps in the resolutions are zero. Hence they refine to towers of
fibrations and give rise to tower spectral sequences. Namely, (3) refines to a tower
of fibrations

(4) F3 = Σ45
E

hG24 �� E
hS

1

2

��

F2 = Σ46
E

hC6 �� X2

��

F1 = Σ−1
E

hC6 �� X1

��

F0 = E
hG24

≃
�� E

hG24
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and we have a tower spectral sequence

Et,s
1 = πtFs =⇒ πt−sE

hS1
2 .

We can map EhG24 (or any other spectrum) into the tower (4) and arrive at a
spectral sequence computing the homotopy of the function spectrum

(5) Et,s
1 = πtF (EhG24 ,Fs) =⇒ πt−sF (EhG24 , EhS1

2).

2. Action of Gn on function spectra

In this section we work at an arbitrary height n and write G = Gn and E = En

in order to simplify the notation. For an element g ∈ G and α ∈ πnF (E,E) let tg
and sg denote the actions on the target and source:

tg(α) = (ΣnE
α
−→ E

g
−→ E) = g ◦ α,(6)

sg(α) = (ΣnE
g
−→ ΣnE

α
−→ E) = α ◦ g.(7)

Assuming that G acts on E on the left, we can see that tg is a left action of G on
F (E,E), and sg is a right action of G on F (E,E), hence we now have a left action
of Gop ×G on F (E,E).

There exist at least two ways to define a Gop ×G action on E∗�G� so that there
was a Gop × G equivariant isomorphism E∗�G� ∼= π∗F (E,E), with the action on
π∗F (E,E) as in (6) and (7). Non-equivariant and G-equivariant versions of this
isomorphism are also discussed in [DH04], [Str00], [BD10], [GHMR05], and [Hov04].

2.1. First isomorphism. In this paper we will use the isomorphism discussed
below in Section 2.2, but another equivariant isomorphism is used more often, and
we would like to write down some details about it first.

Let (a ∈ E∗, γ ∈ G) be an element of E∗�G�. For g ∈ G, consider the two actions
on E∗�G�: the right action given by

(8) rg(a, γ) = (a, γg),

and the left action given by (g.a denotes the action of g on a ∈ E∗)

(9) lg(a, γ) = (g.a, gγ).

Theorem 2. There exists a Gop ×G equivariant isomorphism of E∗-algebras

φ : E∗�G� → π∗F (E,E),

such that

φ(rg(a, γ)) = sg(φ(a, γ)),

φ(lg(a, γ)) = tg(φ(a, γ)).

Proof. The non-equivariant version of this statement is proved in [Hov04, Theorem
5.5], and the equivariant version is discussed in [GHMR05]. Hovey defines the map
φ as

φ : E∗�G� → π∗F (E,E)

(Sn a
−→ E, γ) 	→ (ΣnE

γ
−→ ΣnE

a
−→ E ∧E

μ
−→ E)
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and proves that it is an isomorphism of E∗-algebras. In order to prove the equi-
variant statement, let g ∈ G. Then we have

sg(φ(a, γ)) = sg(Σ
nE

γ
−→ ΣnE

a
−→ E ∧E

μ
−→ E)

= (ΣnE
g
−→ ΣnE

γ
−→ ΣnE

a
−→ E ∧ E

μ
−→ E)

= (ΣnE
γg
−→ ΣnE

a
−→ E ∧E

μ
−→ E) = φ(a, γg) = φ(rg(a, γ)). �

For the other two actions we have:

tg(φ(a, γ)) = tg(Σ
nE

γ
−→ ΣnE

a
−→ E ∧E

μ
−→ E)

= (ΣnE
γ
−→ ΣnE

a
−→ E ∧E

μ
−→ E

g
−→ E)

= (ΣnE
gγ
−→ ΣnE

g.a
−−→ E ∧ E

μ
−→ E) = φ(g.a, gγ) = φ(lg(a, γ)).

2.2. Second isomorphism. In this section we would like to consider a different
action of Gop × G on E∗�G�. Namely, let the left action Lg of G and the right
action Rg of G be as follows:

Lg(a, γ) = (a, gγ),

Rg(a, γ) = (g−1.a, γg).

Theorem 3. There exists a Gop ×G equivariant isomorphism of E∗-algebras

ψ : E∗�G� → π∗F (E,E),

such that

ψ(Lg(a, γ)) = tg(ψ(a, γ)),

ψ(Rg(a, γ)) = sg(ψ(a, γ)).

Proof. We define the map ψ as (following [Str00, p. 1029])

ψ : E∗�G� → π∗F (E,E).

(Sn a
−→ E, γ) 	→ (ΣnE

a
−→ E ∧ E

μ
−→ E

γ
−→ E).

Since ψ(a, γ) = φ(γ.a, γ), ψ is an isomorphism of E∗-algebras. We will check the
equivariant part of the statement, just as in Theorem 2:

tg(ψ(a, γ)) = tg(Σ
nE

a
−→ E ∧ E

μ
−→ E

γ
−→ E)

= (ΣnE
a
−→ E ∧ E

μ
−→ E

γ
−→ E

g
−→ E)

= (ΣnE
a
−→ E ∧ E

μ
−→ E

gγ
−→ E) = ψ(a, gγ) = ψ(Lg(a, γ))

and

sg(ψ(a, γ)) = sg(Σ
nE

a
−→ E ∧ E

μ
−→ E

γ
−→ E)

= (ΣnE
g
−→ ΣnE

a
−→ E ∧ E

μ
−→ E

γ
−→ E)

= (ΣnE
g−1.a
−−−→ E ∧ E

μ
−→ E

γg
−→ E) = ψ(g−1.a, γg) = ψ(Rg(a, γ)).

The hardest part of this is the third equality which can be visualized as follows (we
are using that γ and γg act by ring maps):

γ.(a(g.x)) = (γ.a)(γ.(g.x)) = ((γgg−1).a)((γg).x) = γg((g−1.a)x). �
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Now assume we would like to understand π∗F (EhK , EhH) for H,K ⊆ G. The
isomorphism φ is often better suited to this task if we first take the fixed points
with respect to K, and then the fixed points with respect to the diagonal action of
H on π∗F (EhK , E). This is the approach used in [GHMR05] and [BD10]. But if we
wanted to take the fixed points in the other order, it might be more advantageous
to use the isomorphism ψ. This is the approach we will take in this paper, inspired
by [Str00], where ψ was used to compute DE.

3. Spanier–Whitehead dual of EhG24: First steps

For the rest of the paper we work in the K(2)-local category at p = 2 and write
E = E2. We begin with a recollection of computations from [Str00, Prop. 16],
where it was proved that there is an equivalence of E-modules (for n = 2 and any
prime)

F (E,EhG2) ≃ Σ−4E,

inducing a G2-equivariant isomorphism on homotopy groups. This can be shown by
computingH∗(G2, E

∗E) and using the Devinatz–Hopkins spectral sequence [DH04]

(10) Es,t
2 = Hs

c (G, πtF (X,Z)) =⇒ πt−sF (X,ZhG).

We will emulate Strickland’s analysis for the group G
1
2 ⊂ G2 instead of G2. One

of the key facts we need is that G2 contains an open Poincaré duality subgroup of
dimension 4. A profinite p-group G is called a Poincaré duality group of dimension
k if G has cohomological dimension k and

Hn
c (G,Zp�G�) =

{
Zp, n = k,

0, n �= k,

where the action used to define group cohomology is the natural left action of G on
the topological ring Zp�G�. A group H is called a virtual Poincaré duality group
if it possesses a finite-index subgroup G which is a Poincaré duality group. The
groups G2 and G1

2 are not Poincaré duality groups, but they are virtual Poincaré
duality groups.

Lemma 4. We have

Hn
c (G

1
2,Z2�G

1
2�) =

{
Z2, n = 3,

0, n �= 3.

Proof. The group G2 contains an open Poincaré duality subgroup K of dimension
4 and G1

2 contains an open Poincaré duality subgroup K1 = K ∩ G1
2 of dimension

3. For details on generators of K and K1 and their properties, see [Bea15, Section
2]. Open subgroups of a profinite group are precisely those closed subgroups which
have finite index. In fact, K1 fits into a short exact sequence

1 → K1 → S
1
2 → G24 → 1.

Then we have an isomorphism supplied by Shapiro’s lemma

H∗
c (G

1
2,Z2�G

1
2�)

∼= H∗
c (K

1,Z2�K
1�). �

Lemma 5. (1) There exists a G2-equivariant isomorphism

π∗F (E,EhG1

2) ∼= π∗Σ
−3E�G2/G

1
2�,
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where the action of G2 on the left hand side is on the source in an element

of π∗F (E,EhG1

2) and the action of g ∈ G2 on the right hand side is given by

g.(a, γG1
2) = (g−1a, (γg)G1

2) for a ∈ E∗ and a coset γG1
2. These are right

actions of G2.

(2) The isomorphism of (1) is also equivariant with respect to the left action

of the group G2/G
1
2
∼= Z2, which is the residual action on the target in the

function spectrum, and the natural action on G2/G
1
2 on the right hand side.

Proof. We will use the spectral sequence (10) and we need to compute

E∗,∗
2

∼= H∗
c (G

1
2, π∗F (E,E)).

Our starting point is the isomorphism of Theorem 3: π∗F (E,E) ∼= E∗�G2�, under
which the action on the target in π∗F (E,E) corresponds to the action which we
called Lg in Section 2.2, namely g.(a, γ) = (a, gγ).

There is an isomorphism of G1
2-modules

(11) E∗�G2� ∼= E∗�G
1
2�⊗̂E∗

E∗�G2/G
1
2�

where E∗�G2/G
1
2� has trivial action. This gives an isomorphism

H∗
c (G

1
2, E∗�G2�) ∼= H∗

c (G
1
2, E∗�G

1
2�)⊗̂E∗

E∗�G2/G
1
2�

and we are reduced to computing H∗
c (G

1
2, E∗�G

1
2�). But since G

1
2 acts trivially on

E∗ (by definition of Lg), we have an isomorphism of G1
2-modules

E∗�G
1
2�

∼= Z2�G
1
2�⊗̂Z2

E∗

and H∗
c (G

1
2, E∗�G

1
2�) = H∗

c (G
1
2,Z2�G

1
2�)⊗̂Z2

E∗.
Hence we have

Hn
c (G

1
2, E

tE) =

{
Et�G2/G

1
2�, n = 3,

0, n �= 3.

Substituting these results into the spectral sequence (10) we see that it cannot
have any differentials or extensions due to sparseness. Hence it collapses and we
have an isomorphism of homotopy groups

π∗F (E,EhG1

2) ∼= π∗Σ
−3E�G2/G

1
2�.

Theorem 3 implies that this isomorphism is equivariant with respect to the right
action of G2: on the source in the function spectrum and induced from Rg on
π∗Σ

−3E�G2/G
1
2�.

To prove the second statement, we keep track of the action of G2/G
1
2 at each

step, starting with (11), where the action is the natural action of the group on the
group ring E∗�G2/G

1
2�. This action extends to the action on group cohomology,

and on the E2 = E∞ page of the spectral sequence. �

In this paper we want to identify the function spectrum F (EhG48 , EhG2) and we

will do that by first understanding F (EhG24 , EhG1

2). The next lemma allows us to
think about the latter function spectrum as a homotopy fixed point spectrum.

Lemma 6. Let H be any finite subgroup of G2. Then we have an equivalence

F (EhH , EhG1

2) ≃ F (E,EhG1

2)hH .
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Proof. Since the K(2)-localization of the Tate spectrum EtH vanishes, the homo-
topy fixed point spectrum EhH and the homotopy orbit spectrum EhH are equiv-
alent. The lemma then follows from the equivalences

F (EhH , EhG1

2) ≃ F (EhH , EhG1

2) ≃ F (E,EhG1

2)hH . �

The homotopy of F (E,EhG1

2)hG24 can now be computed using the fixed point
spectral sequence

Es,t
2 = Hs(G24, πtF (E,EhG1

2)) =⇒ πt−sF (E,EhG1

2)hG24 .

We will later show that we actually only need to know very little information about
some permanent cycles in order to compute this spectral sequence completely.

Fixed point spectral sequence for π∗E
hG24. Here we will recall some basic

facts about the homotopy fixed point spectral sequence

(12) Es,t
2 = Hs(G24, πtE) =⇒ πt−sE

hG24 .

For more details see [Rez, Theorem 18.2], [Bau08], or [BG18, Section 2.3].
There is an isomorphism

H0(G24, E∗) ∼= W (F4)�j�[c4, c6,Δ
±1]/(c34 − c26 = (12)3Δ,Δj = c34)

and

H∗(G24, E∗) ∼= H0(G24, E∗)[η, ν, μ, ǫ, κ, κ̄]/R,

where R is the ideal generated by the following relations:

2η = 2μ = 2ǫ = 2κ = 4ν = 8κ̄ = 0;

η2κ = ην = 2ν2 = ν4 = 0;

ηǫ = ν3, νǫ = ǫ2 = 0, ν2κ = 4κ̄, ǫκ = κ2 = 0;

μν = c4ν = c6ν = 0, μǫ = c4ǫ = c6ǫ = 0, μκ = c4κ = c6κ = 0;

μ2 = η2c4, μc4 = ηc6, μc6 = ηc24, c4κ̄ = η4Δ, c6κ̄ = η3μΔ.
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Figure 1. The E2 page of the spectral sequence (12). The hori-
zontal axis is t− s and the vertical axis is s.
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We include for reference the chart for the E2 page of the spectral sequence (12) in
Figure 1. This is Figure 3 from [BG18]. The notation in Figure 1 is as follows:
� = W (F4)�j�, � = F4�j�, ⊗ = W (F4)�j�/(8, 2j) generated by a class of the
form Δiκ̄j , a bullet denotes a class of order 2 and a circled bullet is a class of
order 4. The solid lines of slope 1 indicate multiplication by η and lines of slope
1/3 indicate multiplication by ν. A dashed line indicates that xη = jy, where x
and y are generators in the appropriate bidegrees. The E2 page is 24-periodic with
periodicity generator Δ ∈ H0(G24, E24). This algebraic periodicity does not extend
to topological periodicity since the spectral sequence (12) has differentials on the
powers of Δ given by

d5(Δ) = κ̄ν,

d7(Δ
4) = Δ3κ̄η3.

The differentials are linear with respect to j and the generators in positive s degrees.
The spectrum EhG24 is 192-periodic with periodicity generator detected by the
permanent cycle Δ8 ∈ H0(G24, E192).

The function spectrum F (EhG24 , EhG1

2). The spectrum F (E,EhG1

2) has two
group actions as given in Lemma 5: the action of G2 on the source and the residual
action of G2/G

1
2 on the target. The action on the source is used in computing the

E2 page of the fixed point spectral sequence

E∗,∗
2 = H∗(G24, π∗F (E,EhG1

2)) =⇒ π∗F (EhG24 , EhG1

2).

Since G24 is a subgroup of G1
2, it acts trivially on G2/G

1
2 and we have

E∗,∗
2

∼= H∗(G24, π∗Σ
−3E)�G2/G

1
2�.

Proposition 7. Consider the fixed point spectral sequence

(13) Es,t
2 = Hs(G24, πtΣ

−3E)�G2/G
1
2� =⇒ πt−sF (EhG24 , EhG1

2).

Assume that for some k ∈ [0, 7] (and all n)

Δ8n+k ∈ E0,−3+24k+192n
2 = H0(G24, E24k+192n)�G2/G

1
2�

is a permanent cycle. Then

F (EhG24 , EhG1

2) ≃ Σ−3+24kEhG24�G2/G
1
2�.

Proof. Spectral sequence (13) is a module over the homotopy fixed point spectral
sequence (12). Using this module structure we see that if Δk+8n is a permanent
cycle, then any element

a ∈ H0(G24, E24k+192n) ⊂ E0,−3+24k+192n
2

is a permanent cycle as well.
Now we note that there is the residual action of the group G2/G

1
2 on the target in

the function spectra F (E,EhG1

2) and F (EhG24 , EhG1

2), and on the homotopy fixed
point spectral sequence (13), hence the differentials commute with this action. To
be more explicit, consider a coset [g] ∈ G2/G

1
2. By Lemma 5, part (2), the action

of [g] on π∗F (E,EhG1

2) = π∗Σ
−3E�G2/G

1
2� is trivial on π∗Σ

−3E and natural on
G2/G

1
2: [g][h] = [gh]. Hence for

a[h] ∈ H0(G24, E24k+192n)�G2/G
1
2� = E0,−3+24k+192n

2 ,
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we have [g].(a[h]) = a[gh], where on the left [g].(a[h]) denotes the action of [g] ∈
G2/G

1
2 on a[h], and on the right a[gh] is an element of E∗�G2/G

1
2�. This allows us

to write any a[h] as the result of the action a[h] = h.a[1] and we have

dr(a[h]) = dr([h].(a[1])) = [h].dr(a).

This shows that the differentials in this spectral sequence are linear with respect
to elements in G2/G

1
2 and we have

π∗F (EhG24 , EhG1

2) ∼= π∗Σ
−3+24kEhG24�G2/G

1
2�.

Now note that (see [Beh06, Lemma 2.3.5])

EhG24�G2/G
1
2� ≃ EhG24 ∧ S�G2/G

1
2�.

Then the composition

F (EhG24 , EhG1

2) ∧EhG24 ∧ S�G2/G
1
2�

μ
−→

μ
−→ F (EhG24 , EhG1

2) ∧ S�G2/G
1
2�

ξ
−→ F (EhG24 , EhG1

2),

where the map ξ : EhG1

2 ∧ S�G2/G
1
2� → EhG1

2 is the action map of [Beh06, Cor.

2.3.4] and μ : EhG24 ∧ F (EhG24 , EhG1

2) → F (EhG24 , EhG1

2) is the module structure

map, gives F (EhG24 , EhG1

2) the structure of a module over EhG24�G2/G
1
2�. Using

this module structure and the map

Δ̃k : S−3+24k → F (EhG24 , EhG1

2),

detected by the permanent cycle Δk, we get the required equivalence of spectra. �

The next lemma shows that we can relax the assumptions of Proposition 7.

Lemma 8. Consider the homotopy fixed point spectral sequence (13)

Es,t
2 = Hs(G24, Et+3)�G2/G

1
2� =⇒ πt−s+3F (EhG24 , EhG1

2).

Assume that Δkf(j) ∈ E0,−3+24k+192n
2 is a permanent cycle, where f(j) is a power

series in j such that f(0) �= 0 mod (2). Then Δk is a permanent cycle.

Proof. The spectral sequence (13) is a module over the homotopy fixed point spec-
tral sequence for π∗E

hG24 and the differentials in the latter spectral sequence are
j-linear. Hence we have

dr(Δ
kf(j)) = f(j)dr(Δ

k) = 0

and the condition f(0) �= 0 mod (2) ensures that f(j) is invertible in the target
of dr. �

In the next section we will show that Δ2+8nf(j) for f(j) as in Lemma 8 is a
permanent cycle in spectral sequence (13). Then we will use Proposition 7 and

Lemma 8 to deduce F (EhG24 , EhG1

2) ≃ Σ45EhG24�G2/G
1
2�.
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4. Homotopy groups computation

We begin by examining the homotopy fixed point spectral sequence for π∗E
hG24

([BG18, Fig. 4] or [Bau08, p. 32]) and making the following observation.

Lemma 9. For any n there is an isomorphism

π45+192nE
hG24 ∼= F4.

If an ∈ π45+192nE
hG24 is a generator, then anκ̄η �= 0. Furthermore, an is detected

by the class Δ1+8nκ̄η ∈ H5(G24, π50+192nE).

The next result follows from [GHMR05, Prop. 2.6] and details can be found in
[BG18, p. 925]. Let H1 be a closed subgroup and let H2 be a finite subgroup of G2,
and let H1 =

⋂
i Ui for a decreasing sequence of open subgroups Ui. Then we have

an isomorphism

(14) π∗F (EhH1 , EhH2) ∼= lim
∏

H2\G2/Ui

π∗E
hHx,i ,

where Hx,i = H2 ∩ xUix
−1 ⊆ H2 is the isotropy subgroup of the coset xUi.

In order to use this decomposition we will need some information about π∗E
hH

for various subgroups H ⊆ G24. What we need is collected in the lemma below.

Lemma 10. (1) For any H ⊆ G24 such that the central C2 = {±1} is con-

tained in H we have

π−1E
hH = 0.

(2) For F = C2 ⊂ G24 and C6 ⊂ G24

π45+192nE
hF = π46+192nE

hF = 0.

Proof. The subgroups of G24 which contain the central C2 are C2, C4, C6, Q8, and
G24. The homotopy groups of EhC2 , EhC4 , and EhC6 can be read off of Prop. 2.8,
Prop. 2.9, and Prop. 2.12 in [BG18]. For EhQ8 we note that there is an equivalence
([Hen, p. 28])

EhQ8 ≃ EhG24 ∨ Σ64EhG24 ∨ Σ128EhG24

and π−1E
hG24 = π63E

hG24 = π127E
hG24 = 0. �

Lemma 11. There exists (for each n) a surjective map

π45+192nF (EhG24 , EhS1
2)

p′

−→ F4

such that any element

fn ∈ π45+192nF (EhG24 , EhS1
2),

for which p′(fn) �= 0, has Adams–Novikov filtration at most 5 and has the property

fnκ̄η �= 0.

Proof. We compute with the tower spectral sequence (5)

Es,t
1 = πtF (EhG24 ,Fs) =⇒ πt−sF (EhG24 , EhS1

2),

where we examine the fate of

E0,45+192n
1

∼= π45+192nF (EhG24 , EhG24).
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The three potential differentials supported by E0,45+192n
1 land in

π45+192nF (EhG24 , EhC6) = π46+192nF (EhG24 , EhC6) =

= π47+192nF (EhG24 ,Σ48EhG24) = 0,

all of which are zero groups by (14) and Lemma 10. Then E0,45+192n
1

∼= E0,45+192n
∞ ,

and the projection p from the top to the bottom of the duality tower (4)

π45+192nF (EhG24 , EhS1
2)

p
−→ π45+192nF (EhG24 , EhG24)

is surjective. Composing it with the unit map ι of the ring spectrum EhG24 we have
a surjective map p′

p′ : π45+192nF (EhG24 , EhS1
2)

p
−→ π45+192nF (EhG24 , EhG24)

ι
−→ π45+192nE

hG24 ∼= F4.

The rest follows from Lemma 9. �

Corollary 12. In the spectral sequence (13)

Es,t
2 = Hs(G24, πtΣ

−3E�G2/G
1
2�) =⇒ πt−sF (EhG24 , EhG1

2)

there exists (for each n) a permanent cycle

Δ2+8ngn(j) ∈ E0,−3+48+192n
2 = H0(G24, E−3+48+192n)�G2/G

1
2�

such that gn(0) �= 0 mod (2).

Proof. We use the fact that F (EhG24 , EhS1
2) = F (EhG24 , EhG1

2) ∧ Gal(F4/F2)+
(Lemma 1.37 in [BG18]). Then the map

p′ : π45+192nF (EhG24 , EhS1
2) → F4

from Lemma 11 restricts to a surjective map

r : π45+192nF (EhG24 , EhG1

2) → F2,

where any yn ∈ π45+192nF (EhG24 , EhG1

2) such that r(yn) �= 0 is detected in the
spectral sequence (13) by a permanent cycle in Adams-Novikov filtration at most 5.

Now we analyze the spectral sequence

Es,t
2 = Hs(G24, πtΣ

−3E�G2/G
1
2�)

∼= Hs(G24, πt+3E)�G2/G
1
2�.

For the E2 page see Figure 1 (the E2 page is 24-periodic with respect to the t− s
axis), and for the E∞ page, see, for example, [BG18, Fig. 4]. From these we
deduce that yn with the property ynκ̄η �= 0 (and having filtration less than 5) must
be detected by an element in filtration zero, namely in

H0(G24, E48+192n)�G2/G
1
2�,

hence

yn = Δ2+8ngn(j)

for some gn(j). Then the condition ynκ̄η �= 0 guarantees that gn(0) �= 0 mod (2)
(see Theorem 4.6 in [BG18]). �

Proposition 13. There is a K(2)-local equivalence

F (EhG24 , EhG1

2) ≃ Σ45EhG24�G2/G
1
2�.
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Proof. We, again, compute with the fixed point spectral sequence (13)

Es,t
2 = Hs(G24, πtF (E,EhG1

2)) =⇒ πt−sF (E,EhG1

2)G24 ∼= πt−sF (EhG24 , EhG1

2).

By Corollary 12, Δ2+8ngn(j) is a permanent cycle in this spectral sequence for each
n and gn(0) �= 0. Then we apply Proposition 7. �

Now we are ready to prove our main theorem. Let ξ be the canonical topological
generator of Z2

∼= G2/G
1
2 and recall that there exists a fiber sequence

(15) EhG1

2
ξ−1
−−→ EhG1

2 → ΣLK(2)S
0,

where the map ξ is given by the residual action of ξ ∈ G2/G
1
2 on EhG1

2 .

Theorem 1. Let n = p = 2 and let G48 be the maximal finite subgroup of the

Morava stabilizer group G2. Then the K(2)-local Spanier–Whitehead dual of EhG48

is

DEhG48 = F (EhG48 , LK(2)S
0) ≃ Σ44EhG48 .

Proof. We map EhG24 into the fiber sequence (15) to get

(16) F (EhG24 , EhG1

2)
ξ−1
−−→ F (EhG24 , EhG1

2) → ΣDEhG24 .

The map ξ in this fiber sequence is the action of ξ ∈ G2/G
1
2 on the target in the

function spectrum, given by Lemma 5.
Now consider the fiber sequence (see [Beh06], Lemma 2.3.8)

(17) Σ45EhG24�Z2�
τ−1
−−→ Σ45EhG24�Z2� → Σ45EhG24 ,

where the map τ is given by the action of the canonical generator τ ∈ Z2 on Z2. By
Proposition 13 the first two terms in the fiber sequences (16) and (17) are equivalent
and by Lemma 5 the maps ξ − 1 and τ − 1 are equivalent, hence the cofibers are
equivalent as well and we have DEhG24 ≃ Σ44EhG24 .

Now we use Lemma 1.37 from [BG18] which implies that there is a Gal(F4/F2)-
equivariant equivalence

Gal(F4/F2)+ ∧ EhG48
≃
−→ EhG24

and get
DEhG48 ≃ Σ44EhG48 . �

5. Spanier–Whitehead dual of EhF for F ⊆ G48

Lemma 14. Let F be any finite subgroup of G2. Then we have an equivalence

DEhF ≃ (DE)hF .

Proof. The proof goes exactly the same way as for Lemma 6. Since F is finite, the
Tate spectrum vanishes, and we have EhF ≃ EhF . Then

F (EhF , EhG2) ≃ F (EhF , E
hG2) ≃ F (E,EhG2)hF . �

The results of the previous section can be reformulated as the following state-
ment.

Corollary 15. In the homotopy fixed point spectral sequence

Es,t
2 = Hs(G48, πtDE) =⇒ πt−s(DE)hG48 ∼= πt−sDEhG48

the class Δ2 ∈ H0(G48, π44DE) ∼= H0(G48, π48E) is a permanent cycle.
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Using this we can now compute DEhF for various subgroups F ⊆ G48.

Theorem 16. Let F ⊆ G48 ⊂ G2. There is a K(2)-local equivalence

DEhF ≃ Σ44EhF .

Proof. For a subgroup F ⊆ G48, let θF denote the inclusion map F
θF−−→ G48. It

induces a map of spectral sequences

E∗,∗
2

∼= H∗(G48, π∗DE)

��

θF
�� H∗(F, π∗DE) ∼= E∗,∗

2

��

π∗(DE)hG48
θF

�� π∗(DE)hF

and the inclusion of invariants

E0,∗
2 = H0(G48, π∗Σ

−4E)
θF−−→ H0(F, π∗Σ

−4E) = E0,∗
2 .

Let Δ2
F be the image of Δ2 ∈ H0(G48, π44DE) under θF . Then Δ2

F is also a
permanent cycle in the fixed point spectral sequence on the right in the diagram
above,

Es,t
2 = Hs(F, πtDE) =⇒ πt−sDEhF .

Therefore, this spectral sequence is isomorphic to a shift of the homotopy fixed
point spectral sequence Hs(F, πtE) ⇒ πt−sE

hF by 44 and π∗DEhF ∼= π∗Σ
44EhF .

Then, using the module structure of DEhF over the ring spectrum EhF , we can
extend the class Δ2

F ∈ π44DEhF to the required equivalence. �
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