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Abstract 
Three-dimensional (3D) topological insulators (TIs) have generated tremendous research interest 
over the past decade due to their topologically-protected surface states with linear dispersion and 
helical spin texture. The topological surface states offer an important platform to realize 
topological phase transitions, topological magnetoelectric effects and topological 
superconductivity via 3D TI-based heterostructures. In this review, we summarize the key findings 
of magneto and quantum transport properties in 3D TIs and their related heterostructures with 
normal insulators, ferromagnets and superconductors. For intrinsic 3D TIs, the experimental 
evidences of the topological surface states and their coupling effects are reviewed. Whereas for 
3D TI related heterostructures, we focus on some important phenomenological magnetotransport 
activities and provide explanations for the proximity-induced topological and quantum effects.  
 
1. Overview 
Topological invariants and quantum Hall effects (QHE) are the benchmarks in condensed matter 
physics which relate the fundamental topological order to quantum mechanical phenomenon in 
matter. Both concepts apply to an important class of quantum materials, known as topological 
insulators (TIs). The former is related to the bulk state of the TIs due to a bandgap inversion, while 
the latter characterizes the topological boundary states due to their nontrivial Berry’s phase and 
Chern number. Because of the topological and symmetry protection, the topological states behave 
very differently from the ordinary (non-topological) insulator. Such topologically-protected states 
appear as topological surface (edge) states in three (two) dimensions. A striking property arises 
from the surface (edge) band crossing at a singularity (known as Dirac point) with a linear 
dispersion surface (edge) band structure, which can host massless Dirac fermions with unique spin 
texture [1-4]. The discovery of these topological surface (edge) states has fascinated by their 
topological related quantum states, such as quantum spin Hall [5] and quantum anomalous Hall [6] 
effects, arising from the inverted surface gap states with non-trivial topology. These topological 
effects serve as fundamental grounds for realization of topological phase transitions [7, 8] and 
more complicated interacting states [9]. Moreover, the topological phases’ properties have 
stimulated research ideas and proposals to realize the unconventional magnetoelectric and 
quantum phenomena using the heterostructure platforms in TIs.  

In this review, we discuss the progress of magneto and quantum transport findings in 3D TIs 
and their related heterostructures. We begin with the discussion on band inversion induced 
topology as the origin of the topological surface states (TSS). Depending on the proximitized 
materials at the termination surface of the 3D TIs, the symmetry protection in the surface states 
can either be preserved or broken, which can give rise to distinct properties in transport. This 
thereby signifies the importance of the assembly of 3D TI based heterostructures in a clean manner, 
where the stacking of atomically flat 2D layered materials is favorable. In the experimental part, 
we summarize the growth techniques for achieving high quality 3D TIs thin film and their 
heterostructures. This is followed by the reviews of the magnetotransport signatures, including the 
Berry’s phase from quantum oscillation, half-integer QHE, and surface Landau level (LL) energies 
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in quantum capacitance, to confirm the existence of the TSS. More strikingly, the surface gap 
induced by intersurface hybridization, magnetic exchange interaction, and superconductivity 
pairing can lead to intriguing quantum phenomena, including topological phase transitions, 
unusual electromagnetic activity, and topological superconductivity, etc. in the 3D TI based 
heterostructures. The important transport results in the different topological surface gapped states 
are subsequently discussed in the later sections.  
 
1.1 Band Inversion 
Topologically-protected surface states are a manifestation of their topological invariants in TIs. 
The topological invariants arise from a concept of band inversion, where the conduction and 
valence bands are inverted at the bandgap [10]. This band inversion can change the topology of 
the system to a nonzero quantum number and gives rise to a gapless state at the boundary. This is 
because the nontrivial topology is a discrete characteristic of inverted gap states, and the topology 
cannot change as long as the inverted bulk gap remains open. Thus, for the topology to change 
across the boundary into a trivial one, the gap must close at the interface. This bulk-boundary 
correspondence guarantees gapless boundary states. Therefore, the band inversion mechanism is 
also called a topological phase transition.  

An important ingredient for the band inversion is spin-orbit coupling (SOC) [10, 11]. SOC 
arises from the interaction between spin (of electrons) and its orbital motion (of the nucleus) as 
explained by a general form of Hamiltonian [4] as HSOC= λL∙S, where λ is the SOC strength and 
L and S are the orbital and spin angular momentum operators, respectively. It is known that spin-
orbit interaction is a relativistic effect that can cause a distortion in electronic band structures. For 
a small bandgap element (or compound made of elements) with large SOC, the coupling strength 
is strong enough to flip the band structure at the gap, causing a negative gap. When this mechanism 
is associating with a transformation in topological order, topologically protected boundary states 
can exist. An example of SOC driven band inversion is the CdTe/HgTe quantum well, which is 
known as the first discovered 2D TI [12]. The prediction was made theoretically [11] based on the 
inverted band structure of HgTe with zero bandgap at the Γ point due to the strong SOC. The gap 
is opened by constructing a quantum well with CdTe to break the cubic symmetry. Importantly, 
although the SOC can shift the band structures, it does not break the existing time-reversal 
symmetry (TRS) [13].  
 
1.2 Linear Dispersion Relation 
A consequence of the bulk band inversion with nonzero topology is a pair of boundary states cross 
at the time-reversal invariant momentum (TRIM). The energy dispersion near this crossing point 
displays a linear energy-momentum relationship. This dispersion relation is also known as Dirac 
dispersion as it can be described by the Dirac energy equation in the massless limit [14]. In 2D 
TIs, it appears as helical edge states, whereas in 3D TIs as surface Dirac cone. This makes TIs the 
second realized Dirac materials after graphene. Therefore, the surface electrons in 3D TIs are 
described to behave as massless Dirac fermions. A prominent property of the surface Dirac 
fermions is that they carry a nonzero Berry’s phase [15, 16]. The surface Dirac fermions acquire a 
π Berry’s phase after completing a closed trajectory adiabatically around the Fermi surface. The π 
Berry’s phase has a significant effect on magnetoelectric and quantum transport of the 3D TIs. In 
magnetoelectric transport, the π Berry’s phase causes the Dirac fermions to interfere destructively 
along the time-reversed scattering paths, leading to the weak antilocalization effect in TSS [17, 
18]. This can happen because the TSS conduction channel lies in the quantum diffusion regime 
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where the phase-coherent length exceeds the charges’ mean free path, and thus the Dirac fermions 
maintain their phase coherence upon scattering. In QH regime, the π Berry’s phase leads to the 
half-integer LL filling factor (ν) in Dirac TSS [19, 20], which is distinguishable from the bulk 
states’ LLs.  
 
1.3 Helical Spin States 
The helical spin polarization in TSS, which is also known as spin-momentum locking, is distinct 
from the ordinary surface states. The spin in the surface is always pointing to the direction 
perpendicular to the momentum vector and flipped with opposite momentum. The spin species 
exhibit a left-handed helicity above the Dirac point and flip to right-handed below the Dirac point 
[21]. Also, the spin degeneracy in TSS Dirac fermions is lifted because the spin polarization is 
locked to momentum. This makes the TSS very different from the well-studied Dirac material, 
graphene, as the latter has both spin and valley degeneracies. Therefore, 3D TI is also ascribed as 
1/4 graphene, which offers a simpler platform to study Dirac physics. The spin-momentum locking 
induced helical spin states naturally gives rise to various interesting spin-related physics. One of 
the emerging research is the searching of Majorana fermions on TSS in the presence of proximity-
induced or bulk doping superconductivity [22, 23]. Another field is 3D TIs based spintronics on 
generation and detection of the surface spin-polarized current in 3D TI/ferromagnet structure [24].  
 
2. Symmetry Protection and Breaking 
2.1 Gapless Topological Surface States 
The TSS with Dirac energy dispersion and helical spin state can be expressed in a simplified (in 
the limit of k → 0) 2D effective Hamiltonian as: [25-27]: 𝐻𝐻 = 𝑣𝑣�𝑘𝑘�⃗ × 𝜎⃗𝜎� ∙ 𝑛𝑛� = 𝑣𝑣(𝜎𝜎𝑥𝑥𝑘𝑘𝑦𝑦 − 𝜎𝜎𝑦𝑦𝑘𝑘𝑥𝑥), 
where v is the effective velocity, and k and σ denote the wave vector and Pauli matrices, 
respectively. This linear k term in the effective Hamiltonian infers the linear dispersion of the TSS. 
The helical spin texture takes the opposite direction for the conduction and valence band. This spin 
texture is similar to the Fermi surface of 2D electron gas with Rashba SOC, inferring the inversion 
symmetry is broken at the surface states. These` gapless surface states necessarily emerge when 
the insulator is physically terminated by an ordinary insulator (including vacuum), as shown in 
Figure 2a. These gapless surface states are protected by a series of topological protections [21]. 
The fundamental Z2 topological invariants guarantee the existence of gapless surface states so long 
as the bulk gap stays open and inverted. As the spin eigenvalues at opposite momentum states (k 
and -k) are exactly opposite, electrons with k state cannot be backscattered into the -k state or vice 
versa because of the spin mismatch [2]. Therefore, the TSS is protected from backscattering. Also, 
the linear dispersive TSS can host massless Dirac fermions with π Berry’s phase, which prevents 
weak localization through destructive interference paths [28]. The surface states have the 
remarkable property that they cannot be localized by disorder so long as the symmetries of charge 
conservation and time reversal are retained.  
 
2.2 Proximity-Induced Magnetism 
The TSS is protected from nonmagnetic perturbations by TRS, while magnetism is essential to 
break the TRS. When a 3D TI comes into contact with a ferromagnetic layer (or is chemically 
doped with magnetic atoms), the spontaneous magnetization induces an exchange field (or 
exchange coupling), which modifies the electronic structure of the surface states. The effective 
Hamiltonian by the magnetic exchange coupling can be described as [29, 30] 𝐻𝐻𝑚𝑚 = 𝑚𝑚𝜎𝜎𝑧𝑧, where 
m is the mass term signifies a mass gap proportional to JeffM, where Jeff and M are the effective 
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exchange coupling and magnetization on the ferromagnetic layer (or magnetic atoms), 
respectively. The exchange interaction due to the presence of magnetic ordering opens a magnetic 
gap at the Dirac point (Figure 2b) in the energy spectrum of the TSS and causes the surface Dirac 
fermions to become massive. The magnetic gap size is proportional to the magnetization and the 
exchange field strength from the magnetic layer, as shown by the resulting energy dispersion as 

[31]: 𝐸𝐸 = ±�𝑣𝑣ℏ𝑘𝑘2 + �1
2
𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀𝑧𝑧�

2
. For a ferromagnetic layer with out-of-plane magnetization, the 

induced exchange gap size is ½JeffMz. The theoretical calculations estimate the magnetic gap is 
typically in the range of several to tens of meV [29, 32]. The induced magnetism in TSS by 
proximity effect can also generate an anomalous Hall effect (AHE) in ρxy, which can be expressed 
as [33, 34]: 𝜌𝜌𝑥𝑥𝑥𝑥 = 𝜌𝜌𝐻𝐻𝐵𝐵 + 𝜌𝜌𝐴𝐴𝐴𝐴 , where ρH and ρAH are the Hall and anomalous Hall resistivities, 
respectively. The magnetic exchange gap can modulate the Berry’s phase (γ) as [35]: 𝛾𝛾 =
𝜋𝜋 �1 − 𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀𝑧𝑧

2𝐸𝐸𝐹𝐹
�, where EF is the Fermi energy measured from the Dirac point. This causes the 

Berry’s phase deviation from π and weakens the associated destructive interference in charge 
transport, leading to the weak localization (WL) effect. In the quantization regime, the induced 
magnetic gap causes the N= 0 LL pinning to either top valence or bottom conduction bands, 
depending on the sign of magnetization [36].  
 
2.3 Proximity-Induced Superconductivity 
When in proximity to a conventional superconductor, superconductivity can be induced in 3D TI 
by transferring cooper pairs into the TSS. The superconductor coupling can be expressed in a 
generic form of pairing Hamiltonian as [37, 38]: 𝐻𝐻∆ = ∑ ∆𝑠𝑠𝑐𝑐𝑘𝑘

†𝑐𝑐−𝑘𝑘
†

𝑘𝑘  and the Hermitian conjugates, 
where the ∆S is the superconducting pair potential applying to the electron creation sites in the 
momentum space. The superconductivity can break the charge conversation symmetry in the 
surface states without destroying the TRS. As a result of symmetry breaking, a pairing gap can 
open at the Fermi level due to the proximity effect from the coupling with the superconductor, as 
illustrated in Figure 2c. This can happen because, in 3D TIs, the dispersion relation of the opposite 
spin states is an even function of momentum k due to the TRS. The induced pairing gap can 
transform the energy spectrum at the Fermi level of the 3D TI to 𝐸𝐸 = ±�𝑣𝑣ℏ𝑘𝑘2 + ∆𝑠𝑠2 − 𝐸𝐸𝐹𝐹 [39]. 
The pairing gap is generally smaller than the superconducting gap of the contacted superconductor, 
where ∆S2/EF is typically of the order of µeV [40]. TI/SC heterostructures have generated 
tremendous interest in the condensed matter community as they can induce an unconventional 
superconductor in 3D TIs, called a topological superconductor, with topological vortices that can 
host Majorana bound states [22, 41-43]. The existence of Majorana quasiparticle states have been 
suggested by a variety of experiments in transport and spectroscopies in the detection of Majorana 
zero modes [44, 45], Majorana bound states [46-48], and chiral Majorana edge states [49].  
 
3. Materials Growth  
The striking TSS characteristic has stimulated tremendous interest over the past decade to search 
for the ideal candidates. To this end, the Bi2Se3 family with a relatively large bulk gap ~300 meV 
and simple Dirac cone surface state has stood out from the competition [3, 4, 50]. Nevertheless, as 
the gap size is equivalent to a small gap semiconductor, significant bulk conduction was observed 
in Bi2Se3 due to its natural doping as inferred by its metallic temperature dependency. The early 
research on 3D TI devices has been focused on the isolation of surface transport from the bulk and 
the elimination of bulk carriers for the convenience of probing their surface states. Tremendous 
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efforts have been made in materials synthesis to achieve the truly bulk insulating 3D TIs with high 
surface mobility.  

Various growth methods have been experimented with by material science growers to produce 
high-quality 3D TI single crystals. The synthesis methods can generally be grouped into three 
types according to their outcomes, namely nanostructures, thin films, and bulk crystals, as 
illustrated in Figure 3. A convenient method to grow crystalline nanostructures, such as 2D 
nanoflakes, nanoribbons, and 1D nanowires, etc. is chemical vapor transport (CVT). In CVT, the 
vapor precursors (vapors or vaporized solids) react through thermal reactions, transport by carrier 
vapor, and condense on a solid substrate. CVT is extremely advantageous in preparing low 
dimensional nanowires for probing 1D physics, such as Aharonov Bohm oscillations [51-53] and 
Coulomb blockade [54]. Nevertheless, the CVT-grown 2D flakes are usually small (hundreds of 
nanometers to microns) [55] and thus device fabrication is challenging. In contrast, molecular 
beam epitaxy (MBE) is known to produce a thin film with a large area of epitaxial growth [56] 
and controllable thickness. Another benefit of the MBE system in growing 3D TIs is controllable 
doping. For example, tuning the chemical composition ratio between Bi and Sb can eventually 
lead to the intrinsic (Bi,Sb)2Te3 3D TI [57]. However, the only disadvantage of MBE is its stringent 
substrate-dependent which requires lattice matching to the growth materials. Another widely used 
method is the preparation of high mobility 3D TI is the random exfoliation from the bulk crystals. 
Similar to graphene, the Bi2Se3 family 3D TIs are layered materials with van der Waals bonding 
between each quintuple layer, which can be exfoliated into thin flakes using the scotch tape 
method. This method has also been used intensively to prepare heterostructures with other 2D or 
bulk materials by stacking method using a micromanipulator. The advancement in random 
exfoliation and dry transfer techniques in van der Waals layered materials has opened a new 
opportunity for high quality electronic devices with clean interface [58-60]. As the device quality 
strongly depends on the quality of the parent crystals, the bulk crystals growers play an important 
role to optimize the growth conditions for single crystals with desired stoichiometry and 
crystallography phase. Typically, high-quality 3D TI bulk crystals were grown by vertical 
Bridgman or flux methods [19, 61, 62].  
 
Table 1 Summary of the utilities and drawbacks of the different growth methods for 3D TIs  

Method Utility Drawback 
Chemical vapor 
transport 
 

• 1D nanostructures for 1D physics 
• 2D nanocrystals  
 

• Limitation of sample size 
(submicron to microns) 
• Limit to mesoscopic-scale device  
 

Molecular beam 
epitaxy 
 

• Large area epitaxial growth  
• Thin film with controllable thickness  
• Heterostructures with clean interface 
 

• Require lattice-matching to the 
substrate 
 
 

Melt-growth/ 
Flux-growth/ 
Bridgman-growth 
 

• Large grain size/single-crystal 
• High mobility  
• Allows van der Waals stacking with 
other 2D materials 
 

• Challenging exfoliation for thin 
flakes with uniform thickness 

 
4. Evidence of Topological Surface States 
4.1 Ambipolar Conduction  
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Although the 3D TI with the topologically protected surface state had been discovered in 
photoemission spectroscopy almost instantly after the prediction, it has taken much longer for 
transport experiments to demonstrate the most fundamental signature of surface states, namely the 
ambipolar Dirac electronic transport and their unique Landau quantization. A key challenge 
holding up the progress is the significant bulk carriers, which impede the surface conduction. For 
example, in Bi2Se3 3D TI, the single Dirac cone surface state guarantees an ambipolar electron-
hole transport with a gapless Dirac point. However, the heavy n-type doping in Bi2Se3 due to Se 
vacancies shifts the Fermi level deep into the bulk conduction band, which limits the access to its 
surface band. Progress towards this end has been made to reduce the bulk carrier density by 
extrinsic chemical doping in the thin sample. Ambipolar field effect with minimum conductivity 
at charge neutrality point was reported by Kim et al. [63] in Bi2Se3 thin flake by applying 
electrolyte top gating together with Si/SiO2 bottom gate control (Figure 4a, top panel). The 
chemical doping with F4TCNQ electrolyte was applied to induce p-type doping to the bulk. The 
weak temperature-dependent ρxx(Vg) peak was assigned to its gapless Dirac point, similar to 
graphene. The ambipolar behavior with hole and electron carriers were confirmed from its Hall 
carrier density, nH, plotted as a function of gate voltage. As shown in Figure 4a (bottom panel), the 
nH shows a sign change at the ρxx(Vg) peak and the hole (electron) density increase linearly with 
increasing Vg to both ends. These results verified the ambipolar transport is originated from the 
surface state rather than from the bulk band.  
 
4.2 Quantum Oscillations 
A prominent property of surface Dirac fermions is the Landau quantization of their energy states 
in the presence of a perpendicular magnetic field. A classical picture of the Landau quantization 
can be viewed as the surface Dirac fermions confined in the cyclotron orbits with finite energy 
states known as LLs. When a 3D TI is subjected to a magnetic field, the density of states (DoS) is 
periodically modulated as a function of magnetic field due to the change of DoS across different 
LLs. This leads to an oscillating feature in longitudinal resistivity (or conductivity) known as 
Shubnikov–de Haas (SdH) oscillations. The SdH oscillations provide an effective way to 
quantitatively characterize the TSS even if it overlaps with the 3D bulk states. In SdH oscillations 
regime, the longitudinal conductivity (σxx) follows the relation [64]: ∆𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑥𝑥0 cos�2𝜋𝜋 �𝐵𝐵𝐹𝐹

𝐵𝐵
−

1
2

+ 𝛽𝛽��, where B is the external magnetic field, BF is the oscillation frequency, and β is the phase 
factor (0 = β < 1). The parameter β is related to the Berry’s phase γ by a factor of 2π. The Berry’s 
phase is zero for a parabolic energy dispersion (β= 0) and, as already noted, π for Dirac fermions 
with linear energy dispersion (β= 1/2). For bulk conducting 3D TIs, the phase factor directly 
reflects the Berry’s phase of the system, which can be used to distinguish the Landau quantization 
from the 2D electron gas from the bulk states and Dirac fermions from the TSS. The phase factor 
β in the SdH oscillations can be experimentally determined from an analysis of the LL fan diagram, 
in which the Nth minima in σxx are plotted against their corresponding reciprocal values of a 
magnetic field (1/BN). From the ∆σxx relation, the Nth minima occur when the argument of the 
cosine term equals (2N-1)π, which simplifies the relation to 𝑁𝑁 = 𝐵𝐵𝐹𝐹

𝐵𝐵𝑁𝑁
+ 𝛽𝛽. Therefore, the plot of N 

versus 1/BN makes a straight line with a slope of BF corresponding to the oscillation frequency. 
The linear fit to the LL fan diagram can be extrapolated to zero limits of 1/BN, and the intercept 
on the N-index axis gives the phase factor β. Depending on the β value obtained from the fan 
diagram, one can conclude the origin of the conduction channels to the SdH.  
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Quantum oscillations arisen from the TSS were reported by Qu et al. [65] in Bi2Te3 bulk 
crystal. Figure 4b shows the SdH oscillations correspond to successive occupying of LL as the 
magnetic field is increased. The surface origin of the SdH oscillations was confirmed by analyzing 
the angular dependence of the oscillation frequency. For non-metallic (light bulk doping) samples, 
the LL minima as a function of tilt angle θ coincide well with 1/cosθ curve, in contrast to the 
deviation for their metallic (heavy bulk doping) samples. The derived surface mobility >9000 
cm2/Vs is 10 times greater than bulk carrier mobility. Nevertheless, the 2D surface states only 
account for ~0.3% of the total conductance at 0.3 K, which indicates a significant bulk carrier 
conduction in Bi2Te3 3D TIs. This limits the access of Landau quantization near their surface states 
Dirac points. Later, the successful growth of quaternary tetradymite Bi1.5Sb0.5Te1.7Se1.3 crystals 
was found to achieve a large surface contribution up to 70% [66]. Cleaner SdH oscillations were 
observed in ρxx(B) curve for the 30 µm-thick Bi1.5Sb0.5Te1.7Se1.3 crystal. Interestingly, the carrier 
type of the Bi1.5Sb0.5Te1.7Se1.3 crystal changes from a hole in fresh to electron-doped in aged 
conditions, as indicated by the sign change in Hall coefficient. The constructed LL fan diagram 
(Figure 4c) from surface states across the Dirac point presents a non-zero (close to 0.5) intercept 
β, reflecting the non-ideal π Berry’s phase in the TSS presumably due to the conducting bulk 
channel. Moreover, the fittings to the LL fan to Dirac model give the band parameters: Fermi 
velocity, vF = 4.6×105 m/s, effective mass, m*= 0.32me, and surface g-factor, gs= 20, which shows 
a good agreement with the photoemission spectroscopy.  
 
4.3 Half-Integer Quantum Hall Effect 
In a strictly 2D electron system, SdH oscillations occur as a precursor of the QHE. Similar to SdH 
oscillations, QHE is a manifestation of LLs for the Dirac fermions confined in 2D surface states. 
The difference is that SdH oscillations typically detect the large Nth LLs, whereas QHE probes the 
lower indices LLs due to the larger energy spacings. QHE is a quantized version of the Hall effect, 
which can be probed by measuring the transverse charge flows in a perpendicular magnetic field. 
The 2D conductivity tensor is derived from the inverse of the resistivity tensor as: �

𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑥𝑥𝑥𝑥� =

�
𝜌𝜌𝑥𝑥𝑥𝑥 𝜌𝜌𝑥𝑥𝑥𝑥
𝜌𝜌𝑦𝑦𝑦𝑦 𝜌𝜌𝑥𝑥𝑥𝑥�

−1
= 1

𝜌𝜌𝑥𝑥𝑥𝑥2 +𝜌𝜌𝑥𝑥𝑥𝑥2
�
𝜌𝜌𝑥𝑥𝑥𝑥 𝜌𝜌𝑥𝑥𝑥𝑥
𝜌𝜌𝑦𝑦𝑦𝑦 𝜌𝜌𝑥𝑥𝑥𝑥�, where σxy and ρxy are the Hall conductivity and resistivity. 

In the QH regime, when the Fermi level is controlled in between two neighboring LLs, the σxx 
reduces to a minimum as the DoS vanishes inside the LL gap, while the σxy develops into a Hall 
plateau, which quantizes at an integer factor of e2/h. When the Fermi level is inside an LL, the σxx 
takes a finite value, and the σxy changes toward the next filling level. QHE in surface states of 3D 
TIs exhibits several unique behaviors owing to their π Berry’s phase and zero spin degeneracy. 
The π Berry’s phase has an important impact on the surface quantization. The LL filling factor (ν) 
for Dirac fermions is not proportional to the LL index (N) but follows a proportionality of 𝜈𝜈 =
𝑔𝑔 �𝑁𝑁 + 1

2
�, where the degeneracy g= 1 for the non-degenerate spin species. This infers the half-

integer QHE in Dirac TSS. While the early works showed ambipolar transport or quantum 
oscillations in 3D TIs, these are not smoking gun signatures of the topological surface states as 
these signatures can also appear in semiconductors with normal band gap or trivial surface states. 
However, the π Berry’s phase and half-integer QHE discussed in this section mark solid evidences 
to distinguish topological surface states from trivial band insulators.  
 

The success in suppression of bulk conduction in ternary and quaternary Bi-based tetradymite 
has stimulated the surface QHE at a strong magnetic field as reported by Yoshimi et al. [20] in 
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(Bi1-xSbx)2Te3, and Xu et al. [19] in BiSbTeSe2 3D TIs. Although the ν takes a half-integer value 
in the surface QHE, the individual half-integer QH conductance of each surface cannot be 
measured directly in a standard Hall measurement. The top and bottom surface states with two 
independent Dirac fermions form a pair of edge mode conducting channels at the surfaces in a 
perpendicular magnetic field. Thus, the fully quantized Hall plateaus at integer number are 
attributed to the consequence of two states of half-integer QHE from the top and bottom surface 
states, and the σxy can be expressed as [19, 20, 61]: 𝜎𝜎𝑥𝑥𝑥𝑥 = (𝜈𝜈𝑏𝑏 + 𝜈𝜈𝑡𝑡)

𝑒𝑒2

ℎ
= ��𝑁𝑁𝑏𝑏 + 1

2
�+

�𝑁𝑁𝑡𝑡 + 1
2
�� 𝑒𝑒

2

ℎ
, where the Nt and Nb are the LL indices of top and bottom TSS, respectively. The νt 

or νb change sign when crossing the Nt= 0 or Nb= 0 LLs. As shown in Figure 4d, the TSS QH 
plateaus always take integer steps as a result of the fixed top surface LL filling factor of 1/2 while 
the bottom surface LL filling changed by Nb+1/2 with the backgate voltage. Follow-up work by 
Xu et al. [67] resolves a series of integer QH states corresponding to top and bottom surface LLs 
as controlled by the top and bottom gates. Figure 4e shows the color plots divide the dualgate axes 
into a series of QH parallelograms, centered around well-developed or developing QH states with 
quantized σxy in integer units of e2/h. The Nt(b) is the corresponding top (bottom) surface LL integer 
index that can be adjusted by the top (back) gate to be of either Dirac electrons or holes.  

An interesting quantum state in 3D TIs is the ν= 0 QH state, which emerges as the top and 
bottom surfaces fill the LLs with the opposite sign filling factors, 𝜈𝜈𝑡𝑡 = −𝜈𝜈𝑏𝑏. As shown in Figure 
4e, A diagonal series of ν= 0 Hall plateaus (white regions) separate the electron-dominated regions 
in red and the hole-dominated regions in blue. This implies that the ν= 0 QH states in 3D TIs is a 
resultant of their counterpropagating edge channels. Unlike the other integer QH states in TSS that 
carry dissipationless edge modes, the ν= 0 state is dissipative; namely, the ρxx tends toward 
maximization (instead of vanishing) in the magnetic field. Following the conductivity tensor 
calculation, both the σxy and σxx tend to develop towards zero when ρxx>>ρxy. The disorder can 
cause scattering between the counterpropagating states, resulting in the non-chiral dissipative 
transport with large resistance.  
 
4.4 Surface Landau Level Energies 
The TSS LLs follow a Dirac LL energy relation as [68, 69]: 𝐸𝐸𝑁𝑁 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁)𝑣𝑣𝐹𝐹�2𝑒𝑒ℏ|𝑁𝑁|𝐵𝐵, where N 
is the LL index, and vF is Fermi velocity. The surface LL energy spacing changes as a square root 
of N, as opposed to constant energy spacing in ordinary metals and insulators. Also, different from 
the linear proportionality with the magnetic field in an ordinary insulator, the TSS’s LL spacing 
scales as a function of the square root of magnetic field. Another important signature is the N= 0 
LL, which is pinned to the Dirac point of the TSS and independent of the magnetic field. This 
generates an LL fan with a symmetrical appearance of the square root of N states on both the 
positive (electron) and negative (hole) energy sides of the Dirac point. Besides that, it is important 
to note that the LL energy is indexed to N instead of ν, meaning that the LL energy relation is 
applied to individual surface LLs. Experimentally, it is highly favorable to study the TSS LLs in 
energy parameter space. The surface LL energy in BiSbTeSe2 was estimated from the thermal 
activation energy of ~6 meV at 31 T [19], which is much smaller than the theoretical value (~60 
meV), presumably due to the thermal smearing. Alternatively, quantum capacitance (CQ) is 
directly related to the density of states, which allows a quantitative evaluation of the surface LL 
energies in 3D TI. The CQ forms dip at a minimum DoS corresponding to a gap feature. The CQ 
can be expressed as [70-73]: CQ= Ae2 dn

dμ
 , where A, n, and μ are the effective surface area, surface 
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charge density, and chemical potential, respectively. The chemical potential-density relation, μ(n) 
can thus be obtained by integrating the electronic compressibility (dμ/dn) with respect to n.  

Figure 5a shows the color map of the chemical potential (μb) as a function of charge density 
(nb) of the bottom surface of a BiSbTeSe2 thin flake (~17 nm) measured at different charge density 
(nt) of the top surface [74]. The μb(nb) curves taken at the four different QH states near the center 
CNP with (νt, νb) of (-½,-½), (-½,+½), (+½,-½) and (+½,+½) are shown in Figure 5b. The step 
height in μb indicates the LL spacing ∆b of the corresponding QH state. The ∆b of ~40±2 meV at 
the magnetic field of 18T agrees well with the Dirac LL energy relation for TSS. Interestingly, the 
comparable energy spacing for the ν= 0 and ±1 QH states inevitably confirms that they all lie in 
the lowest LL gap i.e. ∆0,-1 and ∆+1,0. The top and bottom TSS can be individually probed by 
applying excitation voltages to the gates coupled capacitively to different surfaces. As a result, the 
LL energies of each surface state can be extracted. Figure 5c summarizes the top and bottom 
surface LL energies, Eb and Et for the ν= 0 and ±1 QH states. In ν= +1 (-1) QH states, the Eb and 
Et display the same sign for both Nb and Nt because the chemical potentials of both surfaces reside 
in electron (hole) LLs. This is consistent with the origin of parallel-propagating states in 
conduction. Whereas the Eb and Et reveal the nearly equal magnitude and opposite sign for the two 
ν= 0 QH states due to the opposite occupation of at Nb and Nt. The LL energies from the top and 
bottom surfaces balance out and give rise to the ν= 0 states.  
 
4.5 Surfaces’ Capacitive Coupling  

When the thickness of the 3D TIs is comparable to the magnetic length, 𝑙𝑙𝐵𝐵 = � ℏ
𝑒𝑒𝑒𝑒

 [75], the top 

and bottom surfaces become strongly correlated because of the intersurface interaction under 
application of a strong magnetic field. The correlated topological excitonic gapped state is a 
quantum coherent gapped state involving only the interlayer Coulomb interaction [76, 77]. When 
the top and bottom surfaces are independently doped to induce electrons in one layer and holes in 
the other, the interlayer electron-hole pairs form indirect excitons, which can support the 
topological exciton condensate at low enough temperature. This correlated state can occur when a 
3D TI film is thinned to a thickness where the top and bottom surface states are coupled strongly 
yet not strong enough for their wave functions to hybridize. This usually appears at 2D surface 
separations in an order of lB. The relatively flat LL band serves as a ground for the topological 
excitonic condensate, while the lowest QH state with the widest separation from other LLs is ideal 
for the realization of this effect.  

On the other hand, for thin enough 3D TIs, applying a gate voltage on one surface affects the 
charge density in the other through a capacitive coupling effect, which may interplay with the 
topological excitonic state in the thin limit. Our work [78] on thickness-dependent QHE of 
BiSbTeSe2 3D TI shows the capacitive coupling effect can also affect the gate-dependent QH 
transitions under magnetic field of 18T, which may enable insight into this phenomena. The 
intersurface capacitive coupling effect is revealed by the bending of the QH plateau-to-plateau 
transition, as traced by the dashed lines in the dualgate map (Figure 5d), where screening in the 
bulk is weaker at the low carrier density region. This leads to a pronounced bending of Nt= 0 and 
Nb= 0 tracelines near the overall CNP as observed in thinner samples. From the fitting to the charge 
density of the top surface modulated by the bottom gate, a thickness-dependent capacitive coupling 
effect can be illustrated by the color scale bar, where blue and yellow represent the capacitively-
coupled and decoupled surface states, respectively. As a consequence of the capacitive coupling, 
a zeroth LLs anti-crossing causes the splitting in both Nt and Nb= 0 LLs at the overall CNP. The 
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resulting zeroth QH plateau formed at the CNP is attributed to a gap opened at the Dirac point. 
The origin of this gapped state can be ascribed to the hybridization between the top and bottom 
surface states. A key signature of the intersurface hybridization is the degeneracy lifting of the N= 
0 levels in Landau quantization [79-82]. Note that, as the gap feature is observed at a thickness 
above the 2D limit (< 10 nm) and a reasonably high magnetic field, there is a possibility of the 
excitonic insulator gap [83] developed in this regime. Moreover, the width of the zeroth Hall 
plateau at the CNP increases slowly from 16 down to 10 nm as oppose to the exponentially 
increment expected in the hybridization gap, suggesting the existence of a weak thickness-
dependent gapped state other than the single-particle tunneling gap.  
 
5. Topological Phase Transitions 
5.1 Finite Size Effect 
Each surface state in a 3D TI is associated with its own Dirac cone wavefunction. The TSS breaks 
down at a finite film thickness when the wavefunctions between the top and bottom surface states 
overlap. The intersurface hybridization leads to a mass gap open at the Dirac point and thus is 
called the hybridization gap. The Hamiltonian of the TSS is modified by the finite mass term in 
the effective 2D model as: 𝐻𝐻𝑝𝑝 = ∆ℎ𝜎𝜎𝑧𝑧, where the ∆h represents the hybridization matrix element. 
The hybridization gap size scales up exponentially with a decrease in layer number of 3D TI due 
to the strong tunneling between the surfaces [79-82, 84]. Figure 6a illustrates the hybridization of 
top and bottom surface bands to form the hybridization gap in the surface spectrum as the film 
thickness reduces below dc. Here the dc is defined as the thickness above which there is no 
measurable surface gap. Similarly, the hybridization gap can result in a decline in the π Berry’s 
phase of the TSS, where the modified Berry’s phase is related to the hybridization gap as [85]: 
𝛾𝛾 = 𝜋𝜋 �1 − ∆ℎ

𝐸𝐸𝐹𝐹
� . This causes the Berry’s phase to deviate from π and weakens the associated 

destructive interference in charge transport. A direct consequence of the reduced Berry’s phase is 
the constructive quantum interference in the electronic paths of massive Dirac fermions, leading 
to the weak localization (WL) effect. The competition between WL and the preexisting WAL lead 
to an opposite trend in ∆σxx with magnetic field in magneto-transport [86, 87]. Also, the 
hybridization gap opening at the Dirac point can lead to a decline of the metallic surface transport. 
The hybridization gap can be more reliably shown in temperature dependence transport in ultrathin 
3D TIs. As shown in Figure 6b, the resistance of Bi2Se3 films systematically change with thickness 
from bulk down to 2 quintuple layers (QL) [88]. The metallic behavior was observed in thick films, 
while a sharp divergence at low temperature was observed as the thickness reduced below 5 QL. 
This insulating behavior is strong evidence of the insulating ground gapped state due to the 
intersurface hybridization. The hybridization gap size can be calculated from the thermal activation 
energy as demonstrated by Cho et al. [89] in a 3 QL Bi2Se3 flake with a 250 meV surface energy 
gap.  
 
5.2 In-Plane Magnetic Field Effect 
For TSS with a small hybridization gap, the gapped surface band structure evolves under a 
magnetic field applied in-plane to the 3D TI film surface. Different from the perpendicular 
magnetic field which increases the surface bands splitting and causes a nearly linear increment of 
the hybridization gap with the magnetic field [81], the film undergoes a quantum phase transition 
from an insulating to a semimetallic state, driven by the parallel magnetic field. This magnetic 
field-driven topological phase transition was proposed by Zyuzin et al. [90] in hybridized 3D TIs. 
A magnetic energy is defined in their model as εB = vF κB, where κB ~ d/2lB2, to explain the surface 
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band shifting. As illustrated in Figure 6c, when the ∆h > εB, the band structure consists of a pair of 
quadratic bands corresponding to the top and bottom hybridized surface bands, split by the TRS-
breaking gap at k = 0. As the magnetic field increases, the two quadratic bands shift oppositely 
along the vertical axis (Zeeman-like band splitting). At ∆h = εB, the quadratic band closes at the 
conduction and valence band edges and turns the film into a semimetal. The band dispersion 
remains quadratic along ky, but is linear in kx. Further increasing the magnetic field (∆h < εB) will 
shift the bands to two crossing Dirac points separated in ky axis by 2κ0 = 2(εB2 − ∆h2)1/2/∇vf. 
Eventually, the film turns into a Dirac semimetal.  

The experimental observation was reported by Xu et al. [91] in a ∼10 nm thin BiSbTeSe2 
where a giant negative MR was observed by applying an in-plane magnetic field. As shown in 
Figure 6d, the ρmax of the hybridized BiSbTeSe2 drops by a factor of ∼20 (giving an MR∼-95%) 
from a resistive value of ∼12h/e2 at zero magnetic field to a value ∼0.55h/e2 at the magnetic field 
of 45 T. The corresponding insulator-semimetal transition can be interpreted by the previously 
discussed theoretical prediction, where the in-plane magnetic field can introduce the opposite 
Zeeman-like shifting of the top and bottom surface Dirac cones in the momentum space. Also, an 
effective Zeeman energy was introduced by taking into account the spin and orbital magnetic 
moments modified g-factor, as EB = geffµBB. The experimentally obtained gap closing rate, EB/B 
of about 0.02 meV/T, which give rise to an in-plane g-factor of ~20.  
 
5.3 Perpendicular Electric Field Effect 
An external perpendicular electric field can drive the surface bands and transform between 
topologically trivial and non-trivial states in a hybridized 3D TI. This is possible because the 
perpendicular electric field can break the spatial inversion symmetry by applying a potential 
difference between the top and bottom surfaces, and results in a surface band shifting. A necessary 
condition for the electric field-induced topological phase transition is a gap-closing point, where 
the topological invariant exchanges between the topologically trivial (ν= 0) and non-trivial (ν= 1) 
phases after gap reopening. While the gap closes at points other than the TRIM in such an 
inversion-asymmetric system [92-94]. As shown in Figure 6e, applying an E⊥ perpendicular to the 
hybridized 3D TI can cause the upper (lower) surface bands to shift upward (downward) in energy, 
and the surface band structure shows a Rashba-like band splitting. This results in a reduction in 
the surface hybridization gap and as it shifts away from the TRIM. The topology of the film does 
not change until the E⊥ reaches a gap-closing point at EC. As the E⊥ exceeds EC, the surface gap 
reopens with a non-trivial topological invariant (ν= 1), which can host a topological edge state.  

Experimentally, the electric field-induced gap closing mechanism was reported by Zhang et 
al. [95] in Sb2Te3 thin film using an STM probe. However, the electric field strength is limited to 
< 100 mV/nm where only a small range of gap modulation is observed. We demonstrated a 
prominent electric field response in a 9 nm hybridized BiSbTeSe2 by showing more than an order 
of magnitude reduction in ρxx with the applied displacement field (D) via a dualgating [96]. As 
shown in Figure 6f, the ρxx (~13h/e2) falls significantly with D and tends to saturate to a value 
close to the order of h/2e2at large D > 150 mV/nm, implying a suppression of the hybridization 
gap at large D. The surface gap sizes at different D are probed by the thermal activation behavior, 
different conductance and quantum capacitance to provide quantitative analysis on the gap-closing 
feature. This perpendicular electric field-induced gap-closing in the hybridized BiSbTeSe2 
provides a strong indication of the topological phase transition, where the surface hybridization 
gap transforms from a trivial gap to a 2D topological gap. The saturated ρxx ~h/2e2 supports the 
development toward quantum spin Hall edge states at large D.  
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6. Novel Topological Insulator-based Heterostructures 
6.1 Topological Insulator/Ferromagnet Heterostructures  
The magnetic proximity effect can induce an exchange gap in 3D TIs and gives rise to the 
anomalous Hall effect. In TI/FM heterostructures, the exchange field strength depends strongly on 
the interface quality. Note that this kind of heterostructures has been widely studied in spintronic 
devices, in particular spin-orbit torque switching [24, 97-99]. However, this area is not the focus 
of this review as it can be found in other review articles [100-102]. Following the realization of 
QHE in 3D TIs, the magnetic exchange coupling to the surface QH states was demonstrated by 
the following experiments. A study on Co-clusters-decorated BiSbTeSe2 by Zhang et al. [36] 
revealed an anomalous quantization trajectory resulting from the magnetic exchange gap. Figure 
7a and 7b show the QH states of the Co-clusters-decorated BiSbTeSe2 with a quasi-half-integer 
ν= -3/2 Hall plateau evolves at a medium field of -7.2 T. Renormalization group flow (RGF) 
diagram has been used to examine the flow patterns and extract the converging points of the QH 
states in (σxy, σxy) space [103]. In Figure 7a, a flow diagram in σxy versus σxy plane (based on the 
gate-dependent data points) was plotted to analyze the flow between the integer QH states and the 
intermediate ν= -3/2 state at different magnetic field. The ν= -3/2 QH plateau is attributed to the 
contribution of one being the ν= -1/2 quantized bottom surface undecorated TSS and the other 
being the ν= -e2/h Hall conductivity from the top surface with Co-decoration. A delayed LLs 
hybridization model was introduced to explain the anomalous quantization step. Magnetic 
moments of the Co clusters induce a sizeable Zeeman-like exchange gap in the top surface through 
an antiferromagnetic coupling. The magnetic exchange gap causes a shift in zeroth LL to the 
conduction band edge, which leads to an increase in the distance between Nt= -1 and 0 LLs. This 
affects the LL quantization of the BiSbTeSe2 at the moderate magnetic field when the LL energy 
spacing is comparable to the magnetic exchange gap. As illustrated in Figure 7c, at the lower 
magnetic field, the ν= -1 LL hybridization of the top decorated surface is delayed by the extended 
LL spacing due to the exchange gap. As a result, the top and bottom surfaces reach the same LL 
at the different magnetic fields, leading to the anomaly in the quantization trajectory. An estimation 
of the LL width yields a lower bound of 4.8 meV for the magnetic exchange gap induced by the 
Co clusters.  

In the vdW platform, our group has explored similar type of devices in the 
BiSbTeSe2/CrGeTe3/graphite heterostructures configuration [104]. Different from the Co clusters, 
the CrGeTe3 (CGT) is a layered ferromagnetic insulator (FMI). An electrostatic gating can be 
applied through the CGT dielectric layer, which has been prohibited in the Co-clusters layer due 
to the screening effect. The TSS can also be gapped by the proximity coupling to the CGT. 
Additionally, the success in applying top gating via CGT/Gr gate to tune the chemical potential of 
the gapped top surface state is revealed by the developed QH states in the dualgate map (Figure 
7d). The four-quadrant QH plateaus formed near the overall CNP are highly asymmetric with the 
Nt= -1 and Nt= 0 LLs extended over a longer range in topgate voltage than the Nt=0 and Nt=1. 
This asymmetry is attributed to the exchange gap opening due to the TRS-broken surface state by 
the CGT, as illustrated by the surface band structure. The magnetic gap opened at the top surface 
Dirac point causes an upshift in the Nt= 0 LL, residing at the bottom of the conduction band. The 
magnetic exchange gap size evaluated from the asymmetry in the LL spacing is ~26 meV at 9T. 
Besides, with the access to the top gapped surface state, an additional quantization plateau of -
e2/2h was observed in σxy(Vtg) curve in comparison to the normal QHE with integer e2/h steps in 
σxy(Vbg), as shown in Figure 7e. This half-quantized step developed between the ν= -1 and 0 QH 
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states is ascribed to a quasi-zeroth Hall plateau pinned at the transition of the top surface Hall 
conductivity, σxyt from -e2/2h to +e2/2h, with the bottom surface is kept at σxyb= -e2/2h.  

The observation of quasi-half-integer QH conductance in both Co-decorated and CGT 
proximitized BiSbTeSe2 samples can have important consequences in condensed matter and high 
energy physics. The massive Dirac fermions in magnetic gapped TSS can exhibit a parity anomaly 
arising from parity symmetry breaking [105-107]. The resolved unconventional half-quantized QH 
plateau in magnetic-coupled 3D TIs provides a platform to realize the parity anomaly. On the other 
hand, the quantization in TI/FMI heterostructures is favorable for the study of the topological 
magnetoelectric effect (TME), as proposed by Qi et al. [108] and Wang et al. [109] in an FMI 
encapsulated 3D TI configuration. The FMIs in this configuration play two important roles, namely 
the induction of the magnetic exchange gap and chiral edge states on the TSS. A general 
description of the TME is an electric (magnetic) field that generates a topological contribution to 
an antiparallel magnetization (electric polarization) with a universal constant of quantization in 
units of e2/h. This exotic electromagnetic response in 3D TIs can be described by a modified 
Lagrangian (LTI) that includes an axion E·B and a dimensionless topological θ terms in addition 
to the conventional Maxwell term [108-110]: 𝐿𝐿𝑇𝑇𝑇𝑇 = 𝑒𝑒2

2ℎ
𝜃𝜃
𝜋𝜋
𝐸𝐸 ∙ 𝐵𝐵 , where under time-reversal 

invariant, the topological θ term is equal to π (modulo 2π) for TI and zero in a vacuum or ordinary 
insulator.  
 
6.2 Topological Insulator/Superconductor Heterojunctions 
Superconductivity in 3D TIs is of great interest as it provides a promising route to realize a 
nontrivial topological superconducting state. The topological superconductivity stems from the 
Cooper pairing of spin-polarized surface state electrons when proximitized by a conventional s-
wave superconductor, and such a “spinless” px+ipy pairing superconductor can host a self-
conjugate electron called Majorana fermion [41, 111]. The localized Majorana fermions in vortices 
of topological superconductors form Majorana zero-modes, which obey non-Abelian statistics and 
are useful for topological quantum computation [112].  

A variety of device schemes have been proposed to probe the Majorana modes in the 
topological superconductor, including zero-bias conductance, 4π periodic Josephson effect, and 
half-quantized conductance plateau, etc. At a basic level, these effects rely on the 
superconductivity in the proximitized 3D TI film, which can be proved by probing the induced 
pairing gap. Differential conductance has been widely used to measure the superconductor gap 
spectrum. Depending on the transparency of the superconductive contact, the differential 
conductance spectrum can vary from a plateau that is almost twice as high as the normal state 
conductance (for perfect transparency) to a dip with zero conductance due to the high barrier 
interface (for poor transparency) [113, 114]. While the width of the differential conductance 
plateau/dip gives a measure to the pairing gap. The plateau and dip-like differential conductance 
spectra have been demonstrated in different 3D TI/superconductor heterostructures [115, 116]. For 
example, a Bi2Se3/NbSe2 heterostructure device (Figure 8a) was fabricated by Li et al. [116] to 
study the superconductor proximity effect. The differential conductance spectra (Figure 8b) 
resolve a conductance plateau in the temperature range (4 K – 0.5 K) and a conductance peak 
develops at a temperature below 2 K. The origins of the conductance plateau and zero-bias peak 
are verified by their simulation results for the TI-SC junction with and without bulk conduction 
band involvement. The results suggest that both the surface and bulk states of the Bi2Se3 can 
participate in the superconducting proximity effect. The conductance plateau is solely due to the 
superconducting TSS, while the conductance peak is associated with the bulk states near the 
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conduction band minimum. The width of the conductance plateau of ~2 meV at 0.5 K is 
comparable to the superconducting gap of NbSe2 estimated from the BCS theory (~2.12 meV) 
[117], indicating a strong proximity effect. These results are consistent with spectroscopy studies 
in TI-SC heterostructures [39, 42, 118], suggesting the existence of a proximity induced 
topological superconductor (TSC), which is a precursor to the hosting of Majorana zero modes in 
the vortex core of the TSC. Despite several studies reporting zero bias conductance peaks by 
tunneling spectroscopy within the superconducting gap of the proximity induced TSC under small 
magnetic field [118, 119], the issue of distinguishing Majorana quasiparticle excitations from other 
low energy quasiparticle states is still a work in progress.  

By constructing a lateral junction of two close-by superconductor electrodes separated by a 
3D TI, the bound state of the Josephson effect can be studied. The Josephson junctions with 3D 
TIs can have bound supercurrents mediated by both the normal Andreev reflection and Majorana 
reflection mode. The Majorana bound state transfers only a single electron per cycle across the 
junction in contrast to the Copper pair transmission in Andreev reflection. They can be 
distinguished by the Shapiro response measurements in the Josephson junction. The transport of 
single electron via the Majorana reflection results in a suppression of odd Shapiro steps, 
manifesting a series of even Shapiro steps at a voltage sequence of V= 2nV0 under a radio 
frequency excitation. The Shapiro voltage, V0, is related to the excitation radio frequency as V0 = 
hfRF/2e. This intriguing skipped Shapiro step is referred to as the 4π-periodic energy phase 
dispersion [46-48]. This effect has been experimentally demonstrated by Schüffelgen et al. [120] 
in pseudo-four-terminal Shapiro measurements performed on an in situ fabricated Nb–
(Bi0.06Sb0.94)2Te3–Nb junctions (Figure 8c). As shown in Figure 8d, a fully suppressed first Shapiro 
dip was observed for excitation frequency of 3.0 GHz, in contrast to the full Shapiro step visible 
for 10 GHz and 7.8 GHz irradiations. The intriguing low excitation frequencies response in the 
BST Josephson junction can be explained by the small contribution of supercurrents from the 
Majorana bound state to the total supercurrent (as I = IMBS + IABS), which directly affects the 
Majorana bound state frequency (as fMBS = IMBSRNe/h). Therefore, the suppression of the odd 
number of Shapiro steps becomes visible when fRF is smaller than fMBS [121].  

Quantization of Majorana mode holds great promise for topological quantum computing. To 
realize the quantum effect, one can probe Majorana edge states by coupling a topologically 
nontrivial QH system to a superconducting reservoir [122, 123]. The Majorana edge state is 
topologically equivalent to a chiral topological superconductor with a topological number. 
However, QH edge states are impractical in 3D TI/superconductor as the required strong field 
(several teslas) to generate cyclotron motion in TSS, which can lead to the termination of the 
superconducting state. Compared to the QH system, the quantum anomalous Hall (QAH) insulator 
forms chiral edge modes without magnetic field (with the assistance of a small field to align the 
spin), which is more practical for realization the chiral topological superconductor. An important 
transport signature of the chiral Majorana edge states in the QAH insulator/superconductor 
heterostructure is the half-integer plateau in four-terminal conductance (σ12) within the coercive 
field regime of the QAH insulator [124, 125]. In the bare QAH insulator, an applied external 
magnetic field can induce plateau transition between Chern number +/-1 and zero-plateau. In the 
QAH/superconductor hybrid system, the induced superconductivity in QAH can result in the 
additional Bogoliubov-de Gennes Chern number variation with half-integer conductance plateau 
developed near the zero-plateau transition. In a physical picture, this half-quantized plateau 
signifies an equal probability of backscattering between the normal and Andreev processes in the 
chiral Majorana edge state. Following the proposal by Wang et al. [124], the experimental 
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observation was reported by He et al. [49] in a millimeter size Cr-doped (Bi,Sb)2Te3 QAH film 
with an Nb bar deposited in between two Hall channels (Figure 8e). As shown in Figure 8f, the 
developed half-integer conductance plateau near the QAH transition between full-integer and zero 
plateaus agrees well with the theoretical prediction. Nonetheless the origin of the half-quantized 
conductance plateau remains controversial. As suggested separately by Huang et al. [126] and Ji 
et al. [127], the percolation effect in a disordered QAH/superconductor junction or a good electrical 
contact effect between the QAH and the superconductor films can give rise to a similar effect. 
 
7. Summary  
In summary, we reviewed the transport properties of the 3D TIs and their related heterostructures 
with a focus on the exfoliated intrinsic 3D TIs from their bulk single crystals. The 
magnetotransport signatures which provide evidence of the TSS, namely the Landau quantization 
as manifested by quantum oscillations, QH plateaus, and quantum capacitance dips were 
discussed. The experimentally observed novel gapped surface states induced by intersurface 
hybridization, proximitized magnetic exchange coupling, and superconductivity pairing, which 
result in the intriguing topological phase transitions, quasi half-quantized Hall plateaus, and 
Majorana bound states, respectively, were also reviewed in the text. As a future outlook, the 3D 
TI based heterostructures fabricated in a clean manner, in particular through an atomically flat van 
der Waals platform, are expected to enhance the proximity coupling induced gapped states in 3D 
TIs, which will open opportunities to realize new topological phases in these heterostructures.  
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Figures 

 
Figure 1. Overview. Intrinsic characteristics and central research topics of three-dimensional 
topological insulators. The inverted bulk gap in 3D TIs is an essential requirement to host 
topological surface states. The topological surface states are characterized by a linear energy 
dispersion with a helical spin texture. A consequence of the topological surface states is the 
manifestation of the half-integer quantum Hall effect. Interfacing 3D TIs with magnetic or 
superconducting layers can break the time-reversal symmetry and gives rise to non-trivial surface 
gap states. Manipulation of the surface gap’s topology is key to realize the topological quantum 
phase transition.  
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Figure 2. 3D TI-based heterostructures. (bottom) Heterostructures of 3D TI film with (a) normal 
insulator, (b) magnetic layer, and (c) superconductor. The blue arrow lines represent the 
topological surface states. (top) Their corresponding band structures at the heterostructure 
interface. (a) Gapless topological surface state, (b) and (c) gapped TSS with proximity-induced 
exchange (∆m) and pairing (∆s) gaps, respectively. The black dashed lines indicate the Fermi level 
of the 3D TI.  
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Figure 3. Synthetic routes. An illustration of a 3D TI device fabricated from the raw materials 
grown by different synthesis methods. (left) TEM micrograph of TI nanocrystals grown by 
chemical vapor transport. Adapted from Ref. [55] (right) Cross-sectional HRTEM of a TI thin 
films grown by a molecular beam epitaxy. Adapted from Ref. [56] (bottom) TI bulk crystal grown 
by a vertical Bridgman furnace served as parent material for random exfoliation into thin flakes. 
Adapted from Ref. [61]  
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Figure 4. Topological surface states. (a) The top panel shows the resistivity of an exfoliated 10 
nm Bi2Se3 thin flake (device shown in the inset) as a function of Vg measured at different 
temperatures. The bottom panel shows the carrier density calculated from ρH as a function of Vg. 
The linear dependence of carrier density with Vg indicates the ambipolar transport by gate tuning. 
Adapted from Ref. [63] (b) dρxx/dH as a function of a magnetic field for a Bi2Te3 bulk crystal with 
a variation of tilt angle between the surface normal and magnetic field. Vertical dashed lines trace 
the minima corresponding to LLs for the different curves. Adapted from Ref. [65] (c) LL fan plots 
of magnetic field versus LL indices extracted from the Rxx maxima and minima in a 30 µm thick 
Bi1.5Sb0.5Te1.7Se1.3 flake. The blue (left) and red (right) data points are measured from the same 
sample at its fresh and aged conditions, respectively, and its chemical potential shifted naturally 
from p-type to n-type. The solid lines are fitting to the SdH oscillations. Adapted from Ref. [66] 
(d) Quantum Hall effect (QHE) of the TSS observed at a high magnetic field of 31 T in an 
exfoliated 160 nm BiSbTeSe2 flake. The arrows point to the σxx minima corresponding to the 
quantum Hall plateau in σxy. Adapted from Ref. [19] (e) Color map of σxy as functions of Vbg and 
Vtg measured at a magnetic field of 18T. The LL filling factors of the top and bottom topological 
surface states are indexed in the map as (νt,νb). Adapted from Ref. [67]   
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Figure 5. Capacitive-coupling in QHE. (a) 2D color map of the chemical potential of bottom 
surface state (μb) as a function of charge density of top (nt) and bottom (nb) surfaces as derived 
from the quantum capacitance of a 17 nm thin BiSbTeSe2 device. Labels in (a) are the filled LL 
filling factors in the bottom and top surfaces (νb, νt). (b) Line cuts of μb(nb) curves at different QH 
plateaus of (νb, νt) as indexed in the figure. The LL energy spacings are derived from the step 
heights of the μb(nb) curves as labeled in the figure. (c) The LL energies of the bottom surface, Eb 
(black dots), and top surface, Et (red dots), for the corresponding LL indices, Nb and Nt. The 
notations of 0± and 0∓ are used for (νb, νt) of (+½,-½) and (-½,+½), respectively, to distinguish the 
two ν= 0 QH states. Adapted from Ref. [74] (d) Color maps of σxy as functions of dualgate voltages 
for the 89 nm, 31 nm, 16 nm, and 10 nm BiSbTeSe2 devices measured at a magnetic field of 18 T. 
The dashed lines in the maps trace the boundaries of LL indices Nt and Nb for top and bottom 
surfaces. The colors in the arrow scale (bottom) indicate the thickness of TI flake with (blue) and 
without (yellow) capacitive-coupling. Adapted from Ref. [78]  
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Figure 6. Topological phase transitions. Schematic of surface band structures at different (a) 
thickness, (c) in-plane magnetic field, and (e) electric field for illustration of topological phase 
transition at 2D crossover regime of a 3D topological insulator. (b) Temperature-dependent sheet 
resistance for Bi2Se3 thin films with different thickness from 200 nm down to 2 nm. Adapted from 
Ref. [88] (d) Maximum resistivity and magnetoresistance as a function of the in-plane magnetic 
field of a 10 nm BiSbTeSe2 flake. Adapted from Ref. [91] (f) Longitudinal resistance as a function 
of displacement field of a 9 nm BiSbTeSe2 flake. Adapted from Ref. [96]  
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Figure 7. TI/ferromagnet heterostructures. RGF diagram analysis in (a) σxx versus σxy plane, 
and (b) σxx (σxy) versus gate voltage (Vg) plots for a Co-particles decorated BiSbTeSe2 device. The 
vertical dashed line in (a) and tilted arrow in (b) indicate the -3/2 QH plateau observed at -7 T and 
1.8 K. (c) Schematic of the density of states of TSS at low (top) and high (bottom) magnetic fields 
for the illustration of the delayed LL hybridization model of the top surface with Co-decoration. 
Adapted from Ref. [36] (d) Color map of Rxx as a function of Vtg and Vbg at a magnetic field of 9 
T for a BiSbTeSe2/CrGeTe3/graphite device as illustrated in the drawing in (d). Schematic of the 
LL band diagrams of the top gapped and bottom gapless TSS extended from the Rxx maps. (e) σxx 
(σxy) versus Vtg and Vbg plots extracted from the red (black) line profiles in the σxy versus dualgate 
color map measured at a magnetic field of 9 T. Inset in (e) is the map of the σxy of the BiSbTeSe2 
as the function of dual-gate voltages. The black and red arrow lines represent the Vtg and Vbg where 
the line profiles in (e) were obtained. The (Nt, Nb) are indexed in the color map. Adapted from Ref. 
[104]  
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Figure 8. TI/superconductor heterostructures. (a) Bi2Se3/NbSe2 heterostructure device for 
probing the proximity induced superconducting gap. (b) differential conductance (dI/dV) as a 
function of bias voltage for the device in (a) measured at different temperatures. (Inset) Simulated 
band structure of the TI/SC junction with Fermi level located slightly above the bulk conduction 
band edge. Adapted from Ref. [116] (c) False-color SEM micrograph of an in situ fabricated 
(Bi,Sb)2Te3/Nb Josephson junction. The stencil bridge casts a shadow that divides the Nb thin film 
into two electrodes with separation ~100 nm, which are solely interconnected by the 
(Bi0.06Sb0.94)2Te3 weak link. (d) Voltage dependency of Shapiro response dV/dI of the device in (c) 
measured at three different fRF of 3.0, 7.8 and 10.0 GHz excitations at T = 1.5 K. Adapted from 
Ref. [120] (e) Hard mask fabricated Cr-doped BST with (left) and without (right) Nb bar grown 
on GaAs substrate. (f) Conductivity σ12 (left) and the derivation dσ12/dB (right) versus magnetic 
field for the Nb/CBST heterojunction device in (e) measured at 20 mK. Adapted from Ref. [49]  
 
 


