Invent. math. (2021) 225:131-157 q
https://doi.org/10.1007/s00222-020-01026-w Checldiog

updates

Satellites of infinite rank in the smooth concordance
group

Matthew Hedden! - Juanita Pinzén-Caicedo?

Received: 12 September 2018 / Accepted: 30 November 2020 /
Published online: 2 January 2021
© Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract We conjecture that satellite operations are either constant or have
infinite rank in the concordance group. We reduce this to the difficult case
of winding number zero satellites, and use SO (3) gauge theory to provide a
general criterion sufficient for the image of a satellite operation to generate
an infinite rank subgroup of the smooth concordance group C. Our criterion
applies widely; notably to many unknotted patterns for which the correspond-
ing operators on the topological concordance group are zero. We raise some
questions and conjectures regarding satellite operators and their interaction
with concordance.

1 Introduction

Oriented knots are said to be concordant if they cobound a properly embed-
ded cylinder in [0, 1] x S°. One can vary the regularity of the embeddings,
and typically one considers either smooth or locally flat continuous embed-
dings. Either choice defines an equivalence relation under which the set of
knots becomes an abelian group using the connected sum operation. These
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concordance groups of knots are intensely studied, with strong motivation
provided by the profound distinction between the groups one defines in the
topologically locally flat and smooth categories, respectively. Indeed, many
questions pertaining to 4-manifolds with small topology (like the 4-sphere)
can be recast or addressed in terms of concordance. Despite the efforts of
many mathematicians, the concordance groups are still rather poorly under-
stood. In both categories, for instance, the basic question of whether the groups
possess elements of any finite order other than two remains open.

Some of the most powerful tools for analyzing concordance groups come
from satellite operations. To define these, consider a knot in a solid torus
P C S' x D?. Assign to an arbitrary knot K the image of P under the canon-
ical identification of a neighborhood of K with S! x D?. The corresponding
satellite knot is denoted P (K). We refer to the absolute value of the algebraic
intersection number of K with D? as the winding number of the satellite. Since
framings of a properly embedded annulus in [0, 1] x S° are naturally identi-
fied with framings of either circle on the boundary, it follows that the satellite
operator P descends to concordance classes. Thus, for any knot P C S! x D?
we obtain a self-map on the (smooth or topological) concordance group:

P:C—C.

It is important to note that these maps are typically not homomorphisms.
Indeed, the first author has conjectured that they essentially never are:

Conjecture 1 The only homomorphisms on the concordance groups induced
by satellite operators are the zero map, the identity, and the involution induced
by orientation reversal.

Despite their conjectural disregard for addition, satellite operations have
nonetheless proved to be extremely useful for studying the structure of these
groups and figure prominently in many applications and structural theorems,
like [2,5-8,10,12,14,26-28,31,33-36], to cite only a few.

Particularly noteworthy is work of Cochran—Harvey—Leidy [7], which con-
jectured a fractal nature of the concordance group derived from the abundance
of satellite operators. As evidence, they introduced the notion of robust
doubling operators and showed that they interact well with the Cochran—Orr—
Teichner filtration [11]. In particular, a robust doubling operator has infinite
rank and is injective on large subsets of concordance. More work in this direc-
tion came from Cochran—Davis—Ray [2], who showed that many operators with
non-zero winding number are injective on homological variants of the con-
cordance group; Cochran—Harvey—Powell [8] provided further evidence that
concordance is a fractal set by defining metrics using gropes, with respect to
which winding zero satellites are contractions. Despite these efforts, it remains
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unknown whether there exists any injective winding number zero satellite
operator. Interesting questions can be made regarding surjectivity as well. A
winding number zero operator is never surjective, as its image consists of knots
with bounded genus. By using an additive concordance invariant with values
bounded by the genus, such as the Ozsvath—Szab6—Stipsicz Y invariant [45],
one can show that its image cannot even generate concordance; see Wang [55]
and Livingston [37,38]. Much more subtle is the winding number one case,
addressed by Levine [31], who showed that there is a winding number one
satellite operator whose image does not contain zero. The burgeoning litera-
ture on the structure of satellite operations motivates us to make the following
conjecture:

Conjecture 2 The image of every non-constant satellite operator has infinite
rank.

Since, in light of Conjecture 1, we have no reason to expect the image
to be a subgroup, rank should be interpreted as the rank of the subgroup
generated by the image. It is relatively easy to verify the conjecture in the case
of patterns with non-zero winding number, since the algebraic concordance
class is additive in an appropriate sense under satellites. We make this precise
in Proposition 8 below. Conjecture 2 then reduces to the winding number zero
case, which is significantly harder. The purpose of this article is to provide a
general criterion to guarantee that such an operator has infinite rank. To state
our result, we recall that the rational linking number between disjoint curves
¥, n in a rational homology sphere is defined to be 1/d times the algebraic
intersection number of y with a 2-chain whose boundary maps to dn. Its
reduction modulo Z is the linking form on first homology. Note that the rational
linking number assigns a number to a framed curve, defined to be the linking of
the curve with a push-off defined by the framing. This generalizes the familiar
manner in which framings of curves in homology spheres are expressed as
integers. In these terms, we have our main theorem

Theorem 3 Let P C S' x D? be a pattern with winding number zero, and
consider the branched double cover (P(U)). If dD? has framed lifts to
Y (P (U)) with non-zero rational linking number, then P : C — C has infinite
rank.

Here, 3 D? is equipped with the framing induced by the disk it bounds, and
this framing lifts to X (P (U)). It is interesting to compare our result to that of
Cochran—Harvey—Leidy [7]. Robust doubling operators have the property that
the Blanchfield self-pairing of a lift of 8 D? to the infinite cyclic cover of P(U)
is non-trivial. If the homology class of the lift of dD? to (P (U)) has non-
trivial self-pairing under the Q/Z-valued linking form, it follows easily that
its lift to the infinite cyclic cover will have non-trivial Blanchfield self-pairing
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as well. We do not, however, require any conditions on isotropic submodules
of linking forms as in [7]. Moreover, our results extend to the case where the
branched cover X (P (U)) is a homology sphere (with trivial linking form). In
particular, patterns with P(U) an unknot are of primary interest. In such cases
the image of the satellite operator consists of topologically slice knots, so that
P acts as zero on the topological concordance group. The methods of [7] do
not apply in this setting, being manifestly topological.

Our resultis proved in the context of S O (3) gauge theory, and uses instanton
moduli spaces of adapted bundles over 4-manifolds in conjunction with the
Chern—Simons invariants of flat connections on the 3-manifolds arising as
cross sections of their ends. This technique was pioneered by Furuta [19]
and Fintushel-Stern [17], and later refined by the first author and Kirk [24,
25] for the purpose of studying such questions. Indeed, our result should be
viewed as a vast generalization of the main theorem of [25], which showed
that the Whitehead doubling operator has infinite rank, and of [47], which
showed that some generalizations of the Whitehead doubling operator also
have infinite rank. The technique is inherently smooth; indeed, as remarked
above, any unknotted pattern will be zero on topological concordance. Itis also
worth emphasizing that it seems very difficult, if not impossible, to prove a
result of this form using most other known smooth concordance invariants. For
instance, Y cannot prove that an infinite set of knots whose genera are bounded
(like the image of any of our patterns) are independent in concordance [38,
Theorem 9.2]; it seems similarly unlikely that any invariants derived from the
stable equivalence class of the knot Floer homology complex can prove such
a result [29]. While the correction terms of branched covers [30,43] or knot
Floer homology of the branch loci therein [23] should contain a great deal of
concordance information, they are quite challenging to compute. Similarly,
the various concordance invariants coming from Khovanov homology and its
generalizations [39,41,48] are extremely difficult to compute for families and
are not expected to behave predictably under satellites.

We use the instanton cobordism obstruction to show that, given a pattern
satisfying the rational linking number hypothesis, an infinite collection of torus
knots can be chosen such that their images under P are Z-linearly independent.
While we use an independent set of knots (a subset of torus knots) to prove
our theorem, we suspect that this was unnecessary. In fact, we make a rather
bold strengthening of our conjecture:

Conjecture 4 For any non-constant winding number zero operator P, there
exists a knot K for which the set {P(nK)},cz has infinite rank.

Thus we expect satellite operators to expand the concordance group, in the
sense that the image of a finite rank subgroup will often have infinite rank. This
again drives home the expectation that they are not homomorphisms. It would
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Satellites of infinite rank in the smooth concordance group 135

be very interesting to verify that Whitehead doubles of the n-fold connected
sums of the trefoil knot are independent in concordance when n > 0, or to find
any knot for which the Whitehead double of both K and — K are non-zero in
concordance.

Finally, we remark that in 3-dimensional topology, JSJ theory applied to
knot complements tells us that the decomposition of a knot as an iterated
satellite is quite rigid. It is reasonable to ask whether there are 4-dimensional
remnants of this rigidity. As a sample, given a winding number zero satellite
operator P, we can define the P--filtration of the concordance group to be
the descending filtration whose i-th term is the subgroup generated by i-fold
iterated satellites with pattern P:

.- C(P*()) S (P(C)) CC.

Question 5 [f P is a non-constant winding zero operator, does each associated
graded group of the P-filtration have infinite rank?

Since the genera of knots in the image of P are bounded, Shida Wang’s
results imply the first quotient C/(P(C)) is of infinite rank [55]. Again, it
would be interesting to understand even the seemingly simpler question of
whether iterations of a pattern P on subsets of C are independent. In the case
of iterated Whitehead doubles, Kyungbae Park [46] has shown that the first
two iterated Whitehead doubles of the trefoil are independent. For patterns
with non-zero winding number, Wenzhao Chen gave a criterion for iterates
of an operator to be independent and has shown that infinitely many iterated
satellites with the Mazur pattern are independent [4]. As a final question, we
have

Question 6 If P and Q are winding number zero satellite operators inducing
isomorphic filtrations of C, are P and Q concordant as knots in the solid torus?

Outline: The next section verifies Conjecture 2 for satellites with non-zero
winding number, then turns to topological constructions essential for the
proof of our main result. Section 3 offers an overview of the instanton cobor-
dism obstruction derived from instanton moduli spaces and Chern—Simons
invariants. Section 4 uses this obstruction in conjunction with the topological
constructions from Sect. 2 to prove the main result. Finally, Sect. 5 contains
some examples that illustrate the way our result can be applied in practice. In
particular, we show how to check whether an operator satisfies the hypothe-
sis of Theorem 3 and how to use this method to easily produce examples of
topologically slice operators with infinite rank on smooth concordance.
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2 Topological preliminaries and key constructions

In this section we introduce notation and then verify Conjecture 2 in the case
of satellite operators with non-zero winding number. The proof breaks down
completely when the winding number is zero, but it inspires the rough idea
that one should look for invariants of winding number zero satellite knots that
remember the companion and are robust enough to distinguish infinitely gener-
ated subgroups of the topologically slice subgroup of the smooth concordance
group. For us, these will be gauge theoretic properties and invariants of the
2-fold branched covers which behave well with respect to definite cobordisms.
To begin, we provide a more precise definition of a satellite.

Definition 7 Let P C S! x D? be an oriented knot in the solid torus. Consider
an orientation-preserving embedding # : S' x D> — §3 whose image is a
tubular neighborhood of a knot K so that S! x {x € dD?} is mapped to
the canonical longitude of K. The knot 4 (P) is called the satellite knot with
pattern P and companion K , and is denoted P (K ). The winding number of the
satellite is defined to be the algebraic intersection number of P with {*} x DZ.

We now verify Conjecture 2 for patterns with non-zero winding number.

Proposition 8 Let P C S' x D? be a pattern for a satellite operator with
non-zero winding number, w. Then P : C — C has infinite rank.

Proof We appeal to the jump function of the Tristram—Levine signature, whose
definition and basic properties we quickly review. Given a knot K, let Vi be
a Seifert matrix and consider the associated matrix

A =0 =0)Vk + (1 =17 HVg =1 =) (Vg =17 Vg),

If ¢ = ¢*% € §! is a unit complex number, then A(¢) is a Hermitian matrix.
For those ¢ € S' for which A(¢) is non-singular, we let ok (¢) denote the
signature of A(¢), and extend this definition to all of S! by taking the average
of the one-sided limits. Since det(A(#)) = (1 — 1) A (¢t~'), where Ak (?)
is the Alexander polynomial of K, the function o : ' — Z is continuous
except at the unit roots of Ak (¢), and is therefore a step function with finitely
many jumps. These discontinuities are recorded by the signature jump function,
defined as

Sk (§) = % <;£I?+ ok (s) — lim 0K(S)> .

s—>C~

We now observe that, while the signature function is not a concordance
invariant, if Ky and K are concordant, then ok, ({) = ok, (¢) forthose £ € § !
that are not a root of Ak, or Ag,. This is an immediate consequence of the

@ Springer



Satellites of infinite rank in the smooth concordance group 137

fact that the Seifert form of a slice knot, in this case K#m(K»>"), is metabolic
(here m(K) denotes the mirror image). It follows that the jump function is a
concordance invariant: 8, ({) = dk,(¢) forall¢ € § Vif Ky ~ K,. Moreover,
the jump function provides a homomorphism from the (topological) concor-
dance group to Z. More details can be found in [20, Section 13]. Finally, notice
that the jump function §g is zero except at the roots of Ag and therefore the
support of the jump functions of a finite set of knots is finite. Thus, to show
that P has infinite rank it is enough to show that there exists a family of knots
{Ki}ien for which the set {¢ € S | 8p(k,)(¢) # 0} is infinite.

Litherland proved a formula for the signature function of a satellite knot
[32]. Expressed in terms of the jump function, this formula reads as

Spx)(€) = 8pn(¢) + 8k (™), 1)

where w is the winding number. Litherland also showed that the set {57, ,} of
jump functions of torus knots is independent in the additive group of functions
on the circle [32]. In particular, the set {¢ € S' | 67, (¢) # 0 for some T}, 4}
contains infinitely many distinct elements. Since the function ¢ — ¢ is finite
to one, the set {¢ € S' | 87, (¢™) # O for some T}, 4} is also infinite. It then
follows from (1) that the support of jump functions of satellites of torus knots
with pattern P is infinite as well. Thus, the operator defined by P has infinite
rank. |

The proof of the above proposition clearly breaks down in the winding num-
ber zero case, as the signature function of the satellite forgets the companion
knot entirely. This is not simply a deficit of the signature function. Indeed,
in the case that P is unknotted, or even merely an Alexander polynomial one
knot, the topological concordance class of P(K) is trivial for any K by work
of Freedman [16]. Thus, far subtler techniques are required. For the remainder
of this section, we pave our way to apply an instanton cobordism obstruction
to the problem at hand by constructing some explicit cobordisms.

Recall, then, that closed oriented 3-manifolds Y and Y are oriented cobor-
dant if there exists a compact oriented 4-manifold W with oriented boundary
oW = —Yy u Yy, where we follow the “outward normal first” convention
for orientations induced on the boundary. The manifold W is called a cobor-
dism from Yy to Y1, and Yy (resp. Y1) will be referred to as the “incoming”
(resp. “outgoing”) boundary component. We will construct cobordisms whose
incoming boundary component is the branched double cover of a satellite knot,
and whose outgoing boundary contains a manifold obtained by Dehn surgery
on the companion as a summand. These cobordisms allows us to isolate the
companion knot K from P(K), and thereby utilize desirable gauge theoretic
properties of surgeries on the former to obstruct sliceness of the latter in the
spirit of the signature argument.
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138 M. Hedden, J. Pinzén-Caicedo

The 2-fold cover of a 3-manifold branched over a knot K will be denoted by
Y (K), as the 3-manifold should be obvious from the context. In the case of a
satellite knot P(K) in the 3-sphere, there is a decomposition of X (P (K)) as
the union of the 2-fold cover of S! x D? branched over P and a 2-fold covering
space of the knot complement S3\N (K); see, for example [50] or [40]. The
isomorphism type of this latter covering space depends only on the parity of
the winding number. In the case that the winding number is even, the cover
is the disjoint union of two copies of S3\ N (K). We make this decomposition
precise with the following proposition. An image depicting the decomposition
can be found in Fig. 2.

Proposition 9 Let P C S' x D? be a pattern knot with even winding number,
and let X (P) denote the 2-fold cover of the solid torus, branched over P.
Then there is a decomposition of the 2-fold branched cover of the satellite
X(P(K)):

T (P(K) = Z(P)U2(S\N(K)). )

where the gluing takes place along 0% (P) =T\ u T, T, = 0 (S3\N(K))l..
Moreover; the gluing map h identifies the lift of (x x D>, S' x %) in T; with
the pair (jug , Ax) in the corresponding copy of S\ N (K).

Proof The branched double cover of S! x D? branched over P is, away from
P, simply the 2-fold cover defined by the homomorphism

Hi(S'xDN\P)ZZDZ > 17— 7/2

that measures the parity of the projection onto the summand generated by the
meridian of P. As the pattern knot has even winding number, the restriction
of this homomorphism to the subgroup of 7y (S Ix DZ\P) generated by the
boundary torus is trivial. Thus, the restriction of the branched covering to the
boundary of the solid torus is the trivial 2-fold cover, consisting of the dis-
joint union of two 2-tori 77 and 7>, interchanged by the covering involution.
It follows that we can extend the branched covering involution on X (P) to
an involution on the manifold (P)U2 (S*\N(K)), where the boundary tori
of X (P) and the knot complements are identified as stated. The quotient of
this latter space under the involution is the 3-sphere, obtained from the solid
torus and the knot complement by identifying their boundaries with a diffeo-
morphism / satisfying i(x x dD?) = ug and A(S'! x %) = Ag. The image
of the branch locus P C S' x D? under this identification is the satellite
P (K), hence the manifold described by the right side of Eq. (2) is homeomor-
phic to the 2-fold branched covering of the 3-sphere branched over P(K), as
claimed. O
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Satellites of infinite rank in the smooth concordance group 139

Next, we briefly recall the definition of the rational linking number of a pair
of disjoint oriented closed curves in a rational homology sphere, X (see Seifert
and Threlfall [51, Section 77, p. 288] for a good reference). Suppose y, n are
two such curves. Alexander duality over QQ implies H;(X\y) = Q, and under
this isomorphism [] € H1(X\y) can be expressed as a multiple of the class
of the meridian to y. The rational linking number lkx (y, 1) is defined to be
this multiple:

(] =lks(y,n) - [yl

A more geometric perspective is provided by intersection numbers with
rational Seifert surfaces. A rational Seifert surface for an oriented curve y C X
is a smoothly embedded surface F},, C X\N(y) representing a generator of
H>(Z\N(y), 9) = Z,whose boundary is a positive multiple of y in homology:
[0F,] =d-[y] € HI(N(y)), withd > 0. The rational linking number of y
and n can alternatively be characterized as follows:

1
lks(y,n) = E(Fy -n €Q,

where - denotes algebraic intersection number. The rational linking number is
symmetric in y and 7, and can be viewed as a simultaneous generalization of
the ordinary linking number between null-homologous curves and the linking
pairing on first homology. Indeed, the value of /kx (y, n) modulo Z depends
only on the homology classes [y], [n] and equals the Q/Z-valued linking
pairing on H;(X). Like ordinary linking numbers, the rational linking number
is an invariant of the concordance class of the link y U n. Finally, we observe
that the linking number assigns a well-defined rational number to a framed
curve, defined to be the linking number between a curve and its push-off using
the given framing.

A framed curve 7 in a 3-manifold X also determines a smooth 4-manifold
W), given by 2-handle attachment along 1. The incoming and outgoing bound-
ary components of W, are ¥ and X, respectively, where X, is the 3-manifold
obtained by Dehn surgery along »n using its given framing. The following
lemma describes the constraints on the topology of the 2-handle cobordism
imposed by the rational linking number. Homology groups will be assumed to
have coefficients in Z.

Lemma 10 Lefschetz duality gives rise to a unimodular pairing:
Hy(Wy, ) @ Hy(Wy, &) — Z,

which one can calculate geometrically via intersections between properly
embedded surfaces. The relevant groups, Hy(Wy, X) = Z and Hy(W, ;) =
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7, are generated by the classes of the core D* x x and cocore ¥ x D? of the
2-handle D* x D?, respectively, which we denote [C] and [C*]. They are
oriented in the standard way, so that they intersect once, positively.

As X is a rational homology sphere, the long exact sequence of the pair
(W,, ) shows that Hy(W,) = Z. Thereis anintersection pairing on this latter
group, and it remains to compute the self-pairing of a generator. To construct
a generator, consider a rational Seifert surface Iy, for n. By definition, 0 F), is
an embedded multi-curve in N (n), and is homologous to d - [n'] — k - [u],
where 1’ is the framing of n, u is the meridian, and d, k € 7, withd > 0. Let
G be a singular 2-chain in 9N (n) realizing a homology between 0 F, and d
parallel copies of ' union k oppositely oriented copies of . We can construct
a closed 2-chain 77; representing a generator of Hy(Wy) by considering the
union of Fy, G, d parallel copies of the core of the 2-handle, and k copies of
the cocore: fn =F,UGUdCUKC".

The pairings above are natural with respect to the maps on homology
induced by the inclusions W), C (W,, X) and W, C (W), X)), in the sense
that there is a commutative triangle

HZ(Wn) X HZ(Wn)

! x
Hy(Wy, ) @ Hy(Wy, Zy) Z

where the diagonal and horizontal maps are the pairings on absolute and rel-

ative homology, respectively. Now [ Fy,] maps to d[C] and k[C*]in Hy(W, ¥)
and Hy(W), X)), respectively, under the inclusions. Indeed, this holds on the
chain level since F, U G U kC* and F,, U G U dC are represented by chains
in C2(X) and Cy(%,)), respectively. Naturality of the pairings then implies

[Fy] - [Fy] = d[C]- k[C*] = dk
On the other hand, the framing of n is identified with the rational number
/ 1 /
lks;(n, ) = E(F” ) = 7
where the last equality follows from the fact that [0F,] = d - [n'] — k - [n].
Thus the self pairing of[F 1is equal to d* - lks;(n, 1), as claimed.

We analyze H(X;) using the exact sequence of the pair (W), %;):

0— Hy (%)) — Hy(Wy)) — Hy(Wy, X)))— H{(Z)) — Hi(W)) — 0

Iz 1

Ik —* 7
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Satellites of infinite rank in the smooth concordance group 141

where k = d - lks(n,n') as above, and we use that H3(W,, X,) =
H{(Wy, ;) = 0 (which follows from the fact that W), can also be viewed
as 2-handle cobordism from L, to ). If k # 0, the sequence reduces to

0 \ZXk

> 7 > Hi(%,) — Hi(W) — 0,
which leads, in turn, to an exact sequence
0 — Z/k — Hi(%)) — Hi(W) — 0.

But H{ (W) is the quotient of H|(X) by the subgroup generated by [n], a
subgroup of order d. It follows that

|H1(3p)] = |k] - = |lks(n, nO| - |H\(D)].

|Hi (%)
d

Proposition 11 If P C S' x D? is a pattern with winding number zero and
(p, q) is a pair of arbitrary relatively prime nonzero integers, then ¥ (P (K))

is cobordant to a 3-manifold containing S]3) /q (K) as a connected summand.

Moreover, if the rational linking number of (either) framed lift of dD? to
X(PU)) satisfies lkspwy) (LU, ,u’U) < —q/p, then the cobordism can be
taken to be negative definite.

Proof Referring to our decomposition of the cover X (P (K)) in Proposition
9, let T = 0 (S3\N(K)) C X(P(K)) denote the boundary torus of either
copy of the knot complement found in X (P (K)). The cobordism posited by
the proposition is obtained by attaching a 4-dimensional 2-handle to a curve
n C T, with framing n" given by a parallel copy of 7 in the torus. There are
two steps. First, we show that the boundary of handle attachment along 1 with
torus framing n’ contains Dehn surgery along K as a connected summand.
This is a well-known result, but we include a proof for completeness. We then
determine the sign of the intersection form for this 2-handle cobordism in
terms of the rational linking number of the framed lift of 8 D? and the slope
of n.

To clarify the computations, endow H;(7T) with a basis represented by a
meridian-longitude pair (g, Ax) for the knot K, viewed as a subset of S°.
Thus aslope n C T for p/q Dehn filling is given by a simple closed curve in T
representing the element p-[ug]+¢q -[Ax] € H{(T). A tubular neighborhood
of 7 intersects the torus 7" in a submanifold A C T which is homeomorphic
to an annulus [0, 1] x S'. Let ' be the framing of 1 given by either boundary
component of this annulus.
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142 M. Hedden, J. Pinzén-Caicedo

Form a smooth 4-manifold W by attaching a 4-dimensional 2-handle D? x
D?tothe product [0, 1]x (P (K)) along {1} x 1y with framing given by {1} x7’.
To see that the “outgoing” component of dW is a connected sum >, (K)#Y,
recall that the 2-handle attachment replaces a tubular neighborhood N (1) of
{1} x 5 in {1} x Z(P(K)) with the solid torus D> x dD> C D? x D>.
Next, decompose the belt sphere {*} x 8D? into two arcs and consider the
corresponding decomposition of D? x d D? into the union of two 3-dimensional
2-handles H; and H_.Identify N (n) asaproduct[—1, 1]x A, where[—1, 0] x
A represents the intersection of N (1) with s3 \N(K),and [0, 1] x A represents
the intersection of N (n) with E(P(K))\(S3\N(K)). Notice that removing
[0, 1] x A from E(P(K))\(S3\N(K)) does not change its homeomorphism
type, nor does removing [—1,0] x A from S*\N(K). The complement of
N(n) in {1} x X(P(K)) can therefore be written as a union of

S(P(K)\(S\N(K)) and  S*\N(K), 3)

glued along the annulus 7\ A. Therefore the “outgoing” component of W is
obtained as the union of the pieces

S(P(KO\NS\N(K)UH, and S \N(K)UH_,

with the gluing of the 3-dimensional 2-handle determined in each case by the
identification of a central curve of {1} x A with the central circle of H1. In
other words, these 3-manifolds are precisely

Y\B® and S} (K)\B’
where Y denotes Dehn filling of E(P(K))\(S3\N(K)). This shows that the
“outgoing” component of dW is diffeomorphic to Y #Sf7 /q (K). For more
details see [21, Lemma 7.2] or [22, Section 2.2].

To complete the proof, we analyze the intersection form of the 2-handle
cobordism W. According to Lemma 10, H>(W) = Z, and the sign of the
intersection form is given by the sign of the rational linking number of the curve
n with its framing 1’. One can compute lks(p(ky) (1, ) from its definition as

the rational homology class represented by one curve in the complement of
the other. To begin, we claim that

[n'] = p-[nk] € HI(Z(P(K)\N (),
where 1, denotes a parallel copy of 1. in the interior of the knot complement

S3\N(K), embedded in X (P (K))\N(n) according to the decomposition (3)
of the latter. Here, “parallel” is defined by the framing lifted from the Seifert
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framing of dD?. Since [nl=p-lukl+q -1 k]l € H(T),and [Ag] =0 €
Hi(S*\N(K)), the claimed equality follows. Therefore,

lkspxym,n') = p - lkspy (M, Wy)-

Now observe that the equality [n] = p - [ux] + ¢q - [Ax] € H{(T) also holds
in the homology of the complement of 1/, since the splitting torus lies in the
complement of 1’ . Therefore

lkspky(n, W) = p - lkspky (ks Kx) + q - lkspky) (ks iy)-

The linking of Ax and u) equals one, by considering the intersection of a
Seifert surface for K with ;. Combining the two equalities, we arrive at

les(py (1. 1) = p? - Tks ) (K- k) + Pq.-

Thus the linking number, and hence the intersection pairing on Hp (W), will
be negative if and only if pzlkz( P (MK, M’K) + pg < 0 or, equivalently, if

and only if lks(pk)) (LK, 1) = lkspw) (LU, ky) < —q/p, as claimed.
O

We derive a corollary from Proposition 11 that will be used to prove
Theorem 3.

Corollary 12 Let P C S' x D? be a pattern with winding number zero, and
let K be a knot which can be unknotted by changing only positive crossings.
Iflkspy) (U, i) < O, then there exists relatively prime positive integers
P, q and anegative definite cobordism W from £ (P(K)) to S;/q (K)#Y, where

both SZ / q(K ) and Y are 7./2-homology spheres, and Y depends only on P
and the pair (p, q).

Knots which can be unknotted by changing positive crossings are abundant,
take positive knots for example. For our purposes, the positive torus knots 7
will be sufficient.

Proof Choose 1 to be a curve in T = 8(53\N(K)) C X(P(K)) repre-
senting the element p - [ug] + q - [Ax] € Hi(T;Z) as in the preceding
proposition. Assume ¢ /p lies in the interval (0, —lks (p(k)) (LK, 1)), Where
lkz(p(]()) (g, ,lL/K) = lkz(p(U)) (nu, M/(J) denotes the rational linking num-
ber in X(P(K)) between the meridian and its parallel copy determined by
the framing lifted from dD?, using the decomposition of Proposition 9.
The cobordism W described in the proof of Proposition 11 has intersec-
tion form presented by d*( pzlkz (g, [,L/K)) + pg), which is negative since
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0<q/p < —lkspk) (UK, [L/K). According to Lemma 10, the order of the
first homology of the outgoing boundary of W is given by

llkspxy(m, n)| - |HI(Z(P(K))| = |P21kE(P(K))(l/«K» wWe) + pql
|H{ (2 (P(K))].

The order of Hi (X (P (K)) is odd, since the branched 2-fold cover of a knot in
$3 is a Z/2-homology sphere. Picking p to be odd, and the parity of g opposite
that of the numerator of lks (p(k)) (LK, ,u’K), ensures that the product above is
also odd. Hence, the outgoing boundary component is a Z/2-homology sphere.
Now the outgoing end of the cobordism W contains S>, (K) as a connected
summand, and its remaining summand is the 3-manifold resulting from Dehn
filling the complement in X (P (K)) of one of the lifts of S3\N(K). In terms
of the decomposition of Proposition 9, this is a Dehn filling of the manifold

(P)U (ST\N(K)).
h

Since K can be unknotted by a series of positive-to-negative crossing changes,
there is a negative definite cobordism (rel boundary) from S3\N (K) to
S3\N(U) ~ §1x D2, see[25, Lemma 3.5] or [3]. Applying this relative cobor-
dism to the remaining copy of S>\ N (K) in the outgoing boundary component
of W, we obtain a new cobordism whose outgoing manifold is the connected
sum of 5139 1q(K) with a manifold Y. Notice that Y is obtained by filling both
boundary components of X (P) with solid tori, and thus it depends only on
the pattern P and the integers (p, ¢). Moreover, Y#Sf’7 / q(K ) has homology
isomorphic to that of the outgoing end of W, since the latter is obtained by
a sequence of —1 surgeries along a null-homologous split link of unknots
(which realize the crossing changes in an unknotting sequence for K as in [49,
Chapter 6.C]). Choosing p, g as above ensures Y#S3, (K), and hence Y is a

r/q
Z./2-homology sphere. O

3 Instanton obstruction to sliceness

In this section we survey a method which uses moduli spaces of anti-self-dual
(ASD) connections on SO (3) bundles over 4-manifolds with cylindrical ends
to study the 3-dimensional Z/2-homology cobordism group. This technique
provides an obstruction to the existence of a negative definite 4-manifold whose
boundary is a given disjoint union of 3-manifolds. To explain it, recall that the
relative Chern—Simons invariant c¢s («, 8) between flat S O (3) connections «, 8
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on a closed oriented 3-manifold, is defined as the integral

cs(a, B) = —L Tr(F(A;) ANF(Ay)) e R/Z,
87 Jio,11xy

where A; is any path of connections between « and 8. The right hand side is
the Chern—Weil integrand for the first Pontryagin class. Integrality of the first
Pontryagin number of a bundle on a closed 4-manifold implies that, modulo Z,
the integral is independent of the chosen path, and invariant under the gauge
group actions on « and . The obstruction is phrased in terms of the minimal
Chern—Simons invariant. For a Z/2-homology 3-sphere Y, this is defined as

7(Y) := min{cs(w, 0) | « flat connection on Y} € (0, 1],

where 6 is the trivial connection on the unique (trivial) SO (3) bundle on Y,
and where we have identified R /Z with (0, 1] in the obvious way (we could, in
fact, lift the relative and minimal Chern—Simons values to R /47, but will have
no need to do so for our purposes. See Section 2.2 of [24] for more details.)

Using Fintushel-Stern’s results on equivariant Yang—Mills theory on pseud-
ofree orbifolds [17] in conjunction with the Chern—Simons invariants, Furuta
developed a powerful cobordism obstruction [19, Theorem 2.1] based on com-
pactness results for equivariant ASD connections, see also [18, Theorem 5.1].
Drawing on work of Floer [15], Taubes [52,53], Morgan—Mrowka—Ruberman
[42], and Donaldson [13], Hedden and Kirk extended Furuta’s technique to
non-compact 4-manifolds with more general cylindrical ends. The following
theorem, in the case that the numerator p of the surgery coefficient is 1 and
with the additional assumption that the obstructed 4-manifold X is an integral
homology punctured sphere, is a restatement of Furuta’s theorem [19, Theo-
rem 2.1]. Furuta mentions, without proof, that the result extends to obstruct
X with definite intersection form and with “certain torsions in their homology
groups.” Such extensions were taken up and further refined by Hedden—Kirk
[24], and the p > 1 case stated here utilizes their refinements for definite
4-manifolds whose ends have Z/2-homology sphere cross sections. We will
use [24] as the main reference since it provides a convenient unified treatment.
The following result will be used to establish Theorem 3.

Theorem 13 (Furuta[19] p = 1, Hedden—Kirk [24] p > 1) Consider a family
{%; }lNzl of oriented 7./2-homology 3-spheres. Let (p, q) and (r, s) be two pairs
of relatively prime and positive integers and suppose Ly = S; /q (T5). If

_r
rs(qrs — p)

<min{d L o r@ERD, L t@ER-D) L @)
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then there does not exist a smooth 4-manifold X with H (X, 7Z/2) = 0 and
negative definite intersection form, whose oriented boundary is given by

N
8X=]_[ai2,', with a; € Z,ay > 0.

i=I

In the above, a; ¥; means the disjoint union of a; copies of ¥;, endowed
with the given orientation if ¢; > 0 and opposite otherwise. We sketch a proof
of the theorem, argued by way of contradiction.

Sketch of proof The manifold — Xy = —S; / q(T,, s) 1s diffeomorphic to the
link of the complex surface singularity

rs—
2+ +23° =0,

With this description, — X is clearly Seifert fibered, and bounds two closely
related negative definite smooth 4-manifolds. The first is a resolution R of
the singularity by repeated blow-ups. The second is the smooth negative defi-
nite 4-manifold W obtained from the mapping cylinder of the Seifert fibration

—Ty > 82 by excising neighborhoods of the singularities that arise from the
singular fibers. Thus W has three additional lens space boundary components,
L(r, bp), L(s, by1)and L(grs — p, by), where we suppress the precise values of
b; for simplicity. Over W one constructs a non-trivial S O (3) bundle E by sta-
bilizing an SO (2) bundle £ whose Euler class e(L) € H Y/ generates.
One then defines an associated moduli space M of ASD connections on E. To
do so, we must prescribe boundary conditions for the connections in M, which
amounts to specifying flat connections on the bundles that arise by restricting
E to the components of d W, see [24, Definition 2.1 and Section 2.3]. We take
the trivial flat connection on — X 5, and non-trivial flat connections on the lens
space boundary components which are determined by the unique flat connec-
tions for the restriction of £ along them, see [24, Lemmas 2.10, 2.11]. One
then attaches cylindrical ends to W and defines M to be gauge equivalence
classes of ASD connections which limit exponentially fast in an appropriate
Sobolev space to the prescribed flat connections along the ends. Assuming
non-degeneracy of the boundary flat connections, the virtual dimension of this
moduli space can be computed using the Atiyah—Patodi—Singer index theorem
[24, Proposition 2.6]. Flat connections on lens spaces are non-degenerate, and
the trivial flat connection on any rational homology sphere is non-degenerate,
hence the index theorem computes the virtual dimension in terms of rho invari-
ants of the lens spaces. Using the Neumann—Zagier formula [44], we find that
the dimension equals 1 whenever (p, ¢) and (r, s) are pairs of relatively prime
positive integers, see [24, Equation 3.4]. Moreover, the moduli space is non-
empty, since it possesses a unique singular point that corresponds, by way of
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Hodge theory, to an explicit reducible connection [24, Lemma 2.12]. The slice
theorem [13, Theorem 4.13] endows the singular point with a neighborhood
diffeomorphic to a half open interval [0, €).

Assume that a negative definite 4-manifold X as in the theorem exists. One
can glue it to the disjoint union of W and (ay — 1) copies of the resolution R
along ay Xy to obtain

X=XUWU ay — DR.

The fact that X and R are negative definite allows one to argue, again through
the Atiyah—Patodi—Singer index theorem, that the extension E E of E — W by
the trivial bundles over X and R possesses a moduli space M of ASD con-
nections with the same virtual dimension as M. The flat connections along
the new ends arising from the boundary components of X are all taken to
be trivial, and we rely here on the fact that the trivial flat connection is non-
degenerate. As above, Hodge theory shows that reducible connections on E
give rise to singular points of M. The enumeration of these singularities is
more subtle for E, but the hypothesis that the boundary components of X are
Z./2-homology spheres reduces it, by [24, Theorem 2.16], to the calculation
of a quantity derived from the intersection form on H?(X), see [24, Defini-
tion 2.14]. Our assumption that H'(X; Z/2) = 0 implies that the order of the
torsion subgroup of H%(X, 3X) is odd, which further implies that the afore-
mentioned cohomological quantity is also odd, see [25, Proof of Proposition
2.1]. It follows that the number of singular points in M is odd. This shows
that the moduli space M is non- -compact, since a compact 1-manifold has an
even number of boundary points (which we identify with the singular points
using their [0, €) neighborhoods).

Now failure of compactness in moduli spaces of ASD connections on man-
ifolds with cylindrical ends occurs only through bubbling [54] or by energy
escaping down the ends in the form of broken flow lines for the gradient of the
Chern—Simons functional [13,15,42,52]. Each of these phenomena require a
certain quanta of analytic energy which, for an ASD connection, is given by
the integral over X of the integrand defining the Chern—Simons invariant; for
points in the moduli space M, the energy is given by g /rs(grs — p), a quan-
tity determined by the cup-square of the Euler class of £. The assumptions in
(4) guarantee that bubbling cannot occur (since this quantity is less than 4),
and that a sequence cannot diverge to a broken flow line. Indeed, the minimal
Chern—Simons invariants of +%; and the lens space boundary components
L(r, by), L(s, b1), L(grs — p, by) provide a lower bound for the amount of
energy carried by a broken flow line. The first three terms in (4) give lower
bounds for the minimal Chern—Simons invariant of these lens spaces. It follows
that the moduli space is compact, a contradiction which rules out the existence
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of X. See [24, Section 2.5] for more details on the compactness result for M,
which relies crucially on Morgan—-Mrowka—Ruberman’s “convergence with
no loss of energy” theorem [42, Theorem 6.3.3]. O

The following corollary explains how negative definite cobordisms can be
used to study linear independence in the Z/2-homology cobordism group.
Recall that the Z/2-homology cobordism group ®z > consists of equivalence
classes of oriented Z/2-homology 3-spheres, where two such are equivalent
if they cobound a homology cylinder. Addition is given by connected sum.

Corollary 14 Let {Ei}lN: | be a family of oriented 7./2-homology 3-spheres.
Suppose Xy is cobordant via a negative definite cobordismwith H' (Z; 7./2) =
Oro S;/q (T, s)#Y, where Y is any Z/2-homology 3-sphere and (p, q) and (r, s)
are pairs of relatively prime positive integers with p odd. If

_r
rs(qrs — p)

<min{11 ! r(j:El),...,r(:I:EN_l),r(Y)},(5)

r’ s’ qrs—p’

then Xy has infinite order in ®z, and is independent from the other mani-
folds:

(Zn) N (2, ..., Zy—1) = {0},

where (—) denotes the subgroup of ®z, generated by —.

Proof Suppose, to the contrary, that either the intersection of the subgroups in
question is non-trivial or Xy has finite order in ®z,. This implies there exist
integers ci, ..., cy with ¢y > 0 such that

CNEN#(QE]#. . .#CN_lzN_l) = 8Q

for Q a smooth 4-manifold with the same Z/2-homology groups as the 4-
ball. Here, we temporarily use the notation c; ¥; to denote the connected sum
(instead of disjoint union) of ¢; copies of X;, with opposite its given orientation
if ¢; < 0. Form the 4-manifold

Xo=0 U cnZ,
CNZN
where cy Z is the boundary connected sum of ¢y copies of the negative definite
cobordism from Xy to S ]37 /q (T;,5)#Y . Attaching 3-handles to X along all of

the connected sum spheres yields a smooth negative definite 4-manifold X
with H'(X; 7Z/2) = 0, and boundary

N-1
0X = cNSf,/q(Tr,s)]_[cNY ]_[ —c;iX;, with ¢; € Z,cny > 0.
i=1
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Relabelling as appropriate, we arrive at a contradiction to Theorem 13. O

There is a well-known homomorphism from the concordance group to the
Z./2-homology cobordism group

Y:C— Oz/2,

defined by sending the concordance class of a knot K to the homology
cobordism class of its branched 2-fold cover X (K). This homomorphism,
in conjunction with Theorem 13, provides a tool for showing that the image
of a satellite operator has infinite rank. Indeed, to show that an operator P has
infinite rank, we only need to argue that the composition X o P does. For this,
it suffices to find an infinite collection of torus knots {7, ; }?il for which the
branched covers of their satellites {X (P (7}, 5,))}72, are independent in @7>.
We accomplish this in the next section.

4 Proof of the main result

We are now in a position to use the instanton obstruction from the previous
section in conjunction with the cobordisms constructed in Sect. 2 to prove our
main theorem. For convenience, we restate it here.

Theorem 3 Let P C S' x D? be a pattern with winding number zero, and
consider the branched double cover (P (U)). If dD?, equipped with the
Seifert framing from D?, has framed lifts in X (P (U)) with non-zero rational
linking number, then there exists an infinite family of knots {K;}7° | for which
{P(K)}:2, is a Z-independent family in C.

The family {K;}7°, will be a carefully selected subset of the torus knots,
chosen so that the instanton obstruction can be applied to the collection
{Z(P(K;))}2, toestablish its independence in the Z/2-homology cobordism
group ®z/>. By the remarks at the end of the last section, this will show that
{P(K;)}2, is an infinite independent family in C. We construct the family of
torus knots recursively. Note that the set of all torus knots is linearly indepen-
dent in C, by Litherland’s result [32], though this fact will not be necessary for
our proof.

Proof Recall that, according to Proposition 9, the lift of 8 D? to S (P) gets
identified with g in X (P (K)) for any choice of companion K. Denote by

I = lkspwy (lu, ky) = lkspky) (LK, k)

the rational linking number between the lifts of 8 D? and its Seifert framed
push-off. Assume first that / is strictly negative. Choose, once and for all,
a pair of relatively prime positive integers p, g with p odd, g having parity
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opposite that of the numerator of /, and satisfying/ < —¢q/p < 0. In terms of
these, we define the function of two variables

p

e(r,s) = ———.
rs(qrs — p)

Corollary 12 provides a negative definite cobordism from X(P(7}.s)) to

53 / q(Tm)#Y for any choice of torus knot. We therefore choose a pair of

relatively prime positive integers r1, s; so that

e(r1, §1) < min {‘L’(Y), %, ﬁ, qusll_p} .

Letting K1 = T, 5,, and 21 = X (P(K)), the hypothesis for Corollary 14
are met, thereby showing that X has infinite order in ®z/;, in other words,
(1) = Z.

Now choose a pair of relatively prime positive integers 1, s2 so that

e(rz,sz)<m1n{t(Y) (3 ! }

’ rz’ S2 qras2—p

Corollary 12 again gives a negative definite cobordism, now from X, =
X (P(T,s,)) to Si/q(Ter)#Y. Corollary 14, together with our previous

choices, gives (X1) = Z, and (X2) N (X1) = 0, so that (2o, &) = Z2.
In general, suppose knots K1, ..., Ky_1 have been chosen so that

(21,50, ..., Zy_1) = ZN L (6)

Proceeding as before, choose 7y, sy so that

e(ry, sy) < min {z(Y), TED), L TESyo), A L quslN_p} .
ForKy =T,y sy and ¥y = X(P(Ky)), Corollary 14 together with Equation
(6) shows that (X1, X, ..., Zy) = ZN.

This recursive procedure defines a family {K;}7°,. Any finite subset of
{P(K;)}?2, generates a full rank subgroup in C, since we have shown its
image under the homomorphism X : C — ®z; has full rank. Since the finite
subset can be chosen arbitrarily, { P(K;)}72, is an independent family in C.

Having treated the case when ! = lks,(p)) (LU, MU) is negative, we notice
that if this quantity is positive for a pattern P then its mirror m (P) has rational
linking number negative. Thus, if {m(P)(K;)}{2, is an independent family,
then {P(m(K;))}?2, is independent as well. O
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5 Examples

In this final section we present a method to compute /, the lift of the Seifert fram-
ing of 3D? to =(P(U)). We also verify that some explicit satellite operators
have infinite rank, and indicate a robust method for obtaining new examples.

5.1 Computing the rational linking number

The hypothesis required of a winding number zero pattern by our theorem can
be easily verified in terms of linear algebra, as we now explain. The algorithm
we present follows from a simple combination of a formula of Cha and Ko [9,
Theorem 3.1], which computes linking numbers in rational homology spheres
described as integral surgery on a framed link, with an algorithm described
by Akbulut and Kirby in [1] to realize branched covers as surgery on a link
derived from a Seifert surface for the branching set.

We first obtain a link surgery presentation for X (P (U)). To construct this,
begin with a Seifert surface F C S! x D? for the pattern P (which exists, by
the winding number zero assumption). An unknotted embedding of S' x D?
into the 3-sphere allows us to consider F as a Seifert surface for P(U). A
framed link L describing X (P (U)) in terms of surgery is obtained from F by
the algorithm in [1, Section 2]. If V is a Seifert matrix for F, then the linking
matrix for this surgery presentation is given by

A=[V+VT]

See Fig. 2 for an example of this procedure.

Now, for an arbitrary curve y embedded in the complement of L, denote by
[lkg3(y, L)] the row vector whose i-th entry is [k(y, L;), where L; is the i-th
component of L. The formula of Cha and Ko [9, Theorem 3.1] expresses the
linking of curves in X (P (U)) as follows:

Ikspwy (n, y) = lkgs(n, y) — [lkgs(n, L)] - [A]™" - [Tkgs (v, D)1

Let Ji, J, denote the framed lifts of dD? to the surgery presentation of
X (PU)). We wish to compute | = lkspw)) (Ji, Jl/). The linking number
of J; with Ji’ , viewed as curves in S, will be zero. This is because the framing
is the lift of the Seifert framing. Thus, in this case the first term in the formula
above vanishes, yielding

lkspay (i J)) = —llkgs (J;, L)1 [V 4+ VI ks (), LT, (D)

We can compute this quantity concretely, without reference to the surgery
presentation. If {a;, bi}le denotes a basis for H|(F; Z) = Z*¢, we have an
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Alexander dual basis af, b} for Hj (S3\F; Z) = 7?8, given as follows: for
acurve e C F C S3 in the basis, its dual e* C S3\F is a curve linking e
exactly once, and linking no other basis curve. To check whether the pattern
knot satisfies our hypothesis, one expresses 9 D? in terms of the Alexander

dual basis, by a vector we denote [k (0 D?). Then (7) shows that the quantity
I = —1k@DH[V + VI k@ D*)T

is exactly lkspwy) (Ji, Ji’ ), the linking number of a framed lift of 9 D? to the
branched double cover.

5.2 Method for producing satellite operators of infinite rank

The previous calculation of the linking number yields a concrete method for
producing infinite rank winding number zero satellite operators. To do this,
consider any embedded surface F C S with a single boundary component.
The boundary d F' will be a (possibly trivial) knot, P. Now consider any unknot-
ted curve y C S3\ F. Then the complement of y is homeomorphic to a solid
torus, with P embedded therein with winding number zero (since F is a Seifert
surface for P in the complement). One can express y, as above, as a vector in
terms of the Alexander dual basis for Hy(S?\F; Z) = Z?¢, and compute the
linking number of its framed lift to the branched double cover of P by the same
formula. This provides a far-reaching method for producing satellite operators
with infinite rank. We can also easily specify embeddings of surfaces whose
Seifert forms have trivial Alexander polynomial (for instance, by taking higher
genus Seifert surfaces for an unknot, as in the case of the Whitehead doubling
operator). Finding appropriate y in these cases will produce satellite operators
with infinite rank on smooth concordance, but which represent the zero map
on topological concordance.

5.2.1 Genus one satellite operators with trivial Alexander polynomial

To illustrate this last point, let F have genus one and let {a, b} be the basis
for H(F'; Z). Imposing the condition that the Alexander polynomial of 9 F
be trivial implies that in terms of the given basis the Seifert form for F' has
matrix

n m
V_|:m_1 k]’ where nk = m(m — 1).
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The Seifert matrix for this surface with basis

m curves shown is
1 2
B 13
04 Since (z,y) = (—1,1) is not an integer mul-
tiple of (2,1) or (1, 1), the pattern defined by

this particular choice of axis has infinite rank
as a map on concordance.

Fig.1 A genus 1 satellite operator acting as zero on topological concordance

Then

lks,(J,J) = (x, ) |:1 _2k2m 1 ;nzm} <§) ’

where x = lk(y, a), and y = lk(y, b). It follows that lkx (J, J') # 0 as long
as (x, y) is not an integral multiple of the elements

(1,0 or (52 1) itk =0

0, 1) or <12n{<ﬁ) ifn=0

k —1 k .
(gcdznm,k)’ gcd(m,k)) or (gcd?m—l,k)’ gcd(m—l,k)) lfn’ k 7& 0.

Any unknotted curve y C S3\ F whose homology class lies in the complement
of the above vectors will produce a satellite operator with infinite rank on
smooth concordance which is topologically trivial. Figure 1 gives a specific
example.

5.2.2 Twisted Whitehead doubles

Let Py be the twist knot with k full twists, and consider the curve y shown in
Fig. 2. Viewing P4 as a knot in the solid torus S\ N (y) defines a pattern for a
satellite operator, the positive clasped k-twisted Whitehead doubling operator.
Notice that Py C S 3\N (y) defines the pattern for the positive untwisted
Whitehead double. The Seifert surface Fy, specified by Fig. 2 has Seifert matrix

kK O
Vk:[—] _1:|.

The algorithm described in [1] to produce a surgery description for X (P (U))
yields the framed link L shown to the right of Fig. 2, and it follows from the
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Py % -2
//s 7

A/*)JLY A

Oy

A Seifert surface for the twist knot Py, em- Kirby diagram for X(Pp(U)) obtained from

bedded in S3\ N(v) = S* x D%. Shown is the the Seifert surface for P,. The complement

case k = 2. of the lifts of ¥ = 9D? (shown in red) is
homeomorphic to X(P), and X (P (K)) is ob-
tained by replacing neighborhoods of J; with
S3\ N(K).

Fig. 2 The twisted Whitehead doubling operator Py,

algorithm itself that the linking vector of either J; (the lifts of y) with L is
precisely the linking vector of y with the cores of the 1-handles of F. Thus
lk(Ji, L) = (1,0) and | = lks(J1, J]) = —% # 0sothat P, C S3\y is
of infinite rank for all k.

5.3 A few words about the casel = 0

While the above discussion shows that patterns with / 7% O are abundant and
easily produced, there are certainly patterns with [ = 0. For example, if the
link P U y defining an embedding P C S! x D? is split, then the operator
P : C — C is constant with value [P (U)]. Similarly, if P is slice in the
complement of y, then P : C — C is the zero map. Such examples show
that our result is in some sense optimal; without the linking number condition,
there are examples of patterns whose associated maps have rank zero.

An interesting class of winding number zero patterns with / = 0 is provided
by those P U y which are boundary links, links whose components bound
disjoint Seifert surfaces. If P LIy is a boundary link, then the lift of the Seifert
framing of y = 9 D? to £ (P (U)) will clearly be zero. Indeed, the Seifert sur-
face for y in the complement of the Seifert surface for P will lift to X (P (U)).
Thus a lift of y is null-homologous, and the Seifert framing lifts to the Seifert
framing. It would be interesting to find refined conditions that could address
the structure of satellite operators produced in this realm.

Of particular interest are iterated operators. Let P* = Po Po...o P denote
the r-th iteration of a winding number zero pattern P, and let P” LI y, be the
2-component link which defines the relevant embedding of the unknot in the
solid torus. More precisely, denote by ST, the solid torus containing P”, and
hy : ST, — N(P) C ST the homeomorphism that defines P” +1. Since the
winding number of P C S! x D? is zero, there exists a Seifert surface S for
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y1 in STj that is disjoint from the first iterate P, and F, a Seifert surface for
P that lies in the interior of ST;. Then &, (F,) is a Seifert surface for P"+!
contained in N (P) and thus disjoint from S. This shows that P"*! iy is a
boundary link, and hence any iterated satellite operator of winding number
zero will have [ = 0. This point seems to indicate that the technique utilized
by Theorem 3, while quite useful, is a first level obstruction with respect to
the P-filtration of the concordance group defined in the introduction. It would
be quite interesting to develop tools sensitive to 4-dimensional aspects of the
JSJ decomposition which could analyze the higher terms in these filtrations.
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