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Merging computational fluid dynamics and machine

learning to reveal animal migration strategies
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Abstract

1. Understanding how migratory animals interact with dynamic
physical environments remains a major challenge in migration bi-
ology. Interactions between migrants and wind and water currents
are often poorly resolved in migration models due to both the lack
of a high-resolution environmental data, and a lack of understand-
ing of how migrants respond to fine scale structure in the physical

environment.

2. Here we develop a generalizable, data-driven methodology to study
the migration of animals through complex physical environments.
Our approach combines validated Computational Fluid Dynamic
(CFD) modeling with animal tracking data to decompose migratory
movements into two components: movement caused by physical forc-
ing, and movement due to active locomotion. We then use a flexible

recurrent neural network model to relate local environmental con-
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ditions to locomotion behavior of the migrating animal, allowing us
to predict a migrant’s force production, velocity and trajectory over

time.

3. We apply this framework to a large data set containing measured
trajectories of migrating Chinook salmon through a section of river in
California’s Sacramento-San Joaquin Delta. We show that the model
is capable of describing fish migratory movements as a function of
local flow variables, and that it is possible to accurately forecast

migratory movements on which the model was not trained.

4. After validating our model, we show how our framework can be
used to understand how migrants respond to local flow conditions,
how migratory behavior changes as overall conditions in the system
change, and how the energetic cost of migratory movements depend
on environmental conditions in space and time. Our framework is

flexible and can readily be applied to other species and systems.

Computational Fluid Dynamics; Migration; Bionergetics; Machine Learning.

1 Introduction

Migration is an essential part of many animal life cycles (Dingle 2015). For
animals that swim and fly, migration often involves not only long-distance nav-
igation and ecological interactions with conspecifics and predators, but also
complex interactions with the physical environment in the form of air and wa-
ter currents (Smith, 2012, Dingle, 2015, Flack et al., 2018). The way migratory
animals interact with abiotic currents can determine the energetic cost of migra-
tion (Pennycuick, 2008) and even whether migration is feasible at all (Alexander,
1998, Pennycuick, 2003). Because climate change and anthropogenic habitat
alteration are modifying air and water currents at both small and large scales

(Boning et al., 2008, Kling and Ackerly, 2020, Silva et al., 2018), management
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plans must increasingly consider how human activities influence the physical
environment through which migrants travel (Thorstad et al., 2008). There is
a growing recognition that managing migratory species must involve managing
landscapes to facilitate successful migration (Silva et al., 2018, De Lucas, Janss,
and Ferrer, 2004). However, to make informed decisions about how changes to
the environment will alter the ability of animals to migrate, we need a deeper
understanding of how air and water currents influence migratory physiology and
also migratory behavior.

In the past, efforts to understand how migrants interact with abiotic forcing
have tended to take a migration physiology perspective, where the emphasis
has been on combining biomechanical models with physiological data to under-
stand the cost of migration in flows (e.g., Martin et al., 2015). For example,
classic work on animal migration considered the energetic costs of large-scale
mean wind or water currents on the cost of a migratory journey and on the fuel
loads required at stopovers, as well as the ranges migrants could achieve under
favorable and unfavorable currents (Pennycuick, 2003, Pennycuick, 2008). More
recently, several studies have analyzed physical data or models of wind or hydro-
dynamics in the context of animal migration (Weber et al., 2006, North et al.,
2008, Arenas et al., 2015; Gao et al., 2015, Reddy et al., 2016). Nevertheless, a
major outstanding challenge in migration biology is understanding how migrant
behavior and physical forcing by wind and water currents interact to determine
how migrants move across a landscape, and the costs they incur when doing so.

One of the limitations of many animal tracking data sets is that only the
positions and movements (e.g., via animal-borne accelerometers) of the animal
are recorded, and details of the physical environment through which the animal
moves are unknown. Because of this, movements must often be studied and

interpreted without knowledge of the physical forces and sensory cues that in-
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fluenced the observed motion of the animal. This severely limits the types of
questions about migration behavior that can be answered with movement data.
While modern animal-borne sensors can aid in this problem (Hughey et al.,
2018), at present, such sensors are often expensive and too heavy to be carried
by small animals. Moreover, animal-borne sensors have the added limitation
that they record conditions only in the vicinity of the sensor, leaving the range
of conditions available to the animal elsewhere in the environment unknown.

Here, we present an alternative approach to the problem of inferring the
physical variables an animal experiences as it moves. This approach combines
animal tracking data with high-resolution physical models of the region through
which the tracked animal moves. The essential data requirements are (1) ani-
mal tracking data describing the physical position of an animal or animals over
time, (2) measurements of the structure of the physical environment (e.g., river
bathymetry, local landscape topography), and (3) a collection of sample mea-
surements of the physical variables one wishes to model (e.g., local water or
wind velocity), preferably collected from the study region over the same range
of conditions as those experienced by tracked animals. The latter two data
sources are used to build a dynamic model of the physical environment that
can then be used to infer the physical forces a tracked animal experienced at
each location in the tracking data set. The end result of fusing animal tracking
data with the physical model is a data set containing positions, velocities, and
accelerations of each tracked animal (inferred from the tracking data), as well as
estimates of the physical forces experienced by the animal at each point in time.
Such data can then be used to infer how physical forces influence movement
behavior, and to address a suite of questions related to the energetic output
required to produced observed movements.

In what follows, we illustrate how to fuse animal tracking data and physi-
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cal variables using, as an example, migratory juvenile Chinook salmon migrat-
ing through a section of river in the Sacramento-San Joaquin Delta in Califor-
nia. Tracking data consist of high spatial- and temporal-resolution tracks from
salmon as they move through a key segment of the migration route. To model
the flow environment these animals experience, we combine river bathymetry
data with flow measurements taken in several places throughout the study region
to develop a Computational Fluid Dynamics (CFD) model of water flow through
the entire study domain. We use the CFD model to estimate the dynamic fluid
environment experienced by each individual along its migratory trajectory. We
show how this data set can then be used to estimate the force exerted on the
animal by moving water as well as the force produced by the animal through
locomotion. Finally, to explore how cues from the physical environment — in
this case the flow cues experienced by fish — influence active swimming behavior,
we develop a recurrent neural network model to predict active locomotion as a
function of flow cues, and to forecast fish movement trajectories over the near
term. Taken together, the elements of our methodology allow one to explore a
broad suite of questions about how migrants interact with environmental flows
that have been challenging to address in past studies of animal migration. We
illustrate several applications of our approach by applying it to questions about
navigation behavior and migratory energetics over a wide dynamic range of flow

conditions.

2 Materials and Methods

The methodology we use to integrate tracking data with estimates of the flows
animals experience is illustrated in Fig. 1. In addition to estimating phys-
ical variables at each point in time, the framework includes a step to pre-

dict movement behavior of animals as a function of these physical variables
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(Fig. le,f) to determine the extent to which physical variables affect movement
decisions. The data inputs to the modeling framework are animal trajectories
and the bathymetry and hydrodynamic data needed to build the CFD model
(Fig. la and 1b). The hydrodynamic data consist of two-dimensional (along-
stream and lateral) near-surface river water velocity measurements collected
with four Acoustic Doppler Current Profilers (ADCPs) (see Section 2.1 below),
and river bathymetry obtained from the 2010 California Department of Water
Resources and the United States Geological Survey’s 2m-resolution multibeam
sonar survey (Wang et al., 2018). Fish trajectories consisted of two-dimensional
(along-stream and lateral) tracks obtained from the California Department of
Water Resources (see Section 2.1 below).

We use the hydrodynamic data as inputs to simulate the flow-field in the sec-
tion of river system with sub-meter spatial resolution and one second temporal
resolution using an Unsteady Reynolds-averaged Navier Stokes (URANS) CFD
model (Fig. la-c). We use the fish trajectories to first quantify the kinematics
of motion (i.e., the velocities and accelerations of the fish) and, subsequently,
the hydrodynamic information to quantify the dynamics of motion, i.e., the
drag forces experienced by the fish and the locomotion forces exerted by the
fish (Fig. 1d). We then model the locomotion force of each individual using the
information from the fish trajectories and local hydrodynamic forces by training
the neural network model describing fish locomotion behavior. Subsequently,
we employ the trained neural network for multivariate time-series prediction of
locomotion forces as a function of the time series of hydrodynamic forces and
behavioral responses (Fig. le). After producing predictions of locomotory be-
havior, we used the drag force and the locomotion force predicted by the neural

network to predict each individual fish’s trajectory (Fig. 1f).
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Figure 1: Modeling
framework. a) Physical
features of the environ-
ment and inflow data
are collected along with
b) migrant movement
trajectories. c¢) Phys-
ical data are used to
build  Computational
fluid dynamic (CFD)
modeling of water flow.
d) CFD predictions
are combined with ob-
served fish movements
used to decompose mo-
tion into drag-induced
forcing by the flow
and active locomotion.
e) The Long Short-
Term Memory Neural
Network  (LSTM-NN)
model is developed to
forecast locomotion. f)
Locomotion predictions
and flow are combined
to forecast movement
trajectories and predic-
tions are compared to
out-of-sample data.
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2.1 Field data

Flow and animal tracking data were provided by the California Department
of Water Resources. These data were collected through a large collaborative
study of a segment of the San Joaquin River within an agricultural and urban
watershed in the California Central Valley (study details provided in AECOM,
2015). The spatial locations of fish implanted with acoustic transmitters were
inferred using tag detections by a hydrophone array extending over roughly
1km of the San Joaquin River at the junction with Old River — a tributary —
and immediately downstream of the Southernmost extent of the Sacramento-
San Joaquin Delta. The Delta is an inverted alluvial fan estuary formed at
the confluence of the Sacramento River from the North and the San Joaquin
River from the South, as well as numerous tributaries. This watershed is used
by several species of salmonids of high conservation concern. Subpopulations of
Chinook salmon ( Oncorhynchus tshawytscha) and steelhead (O. mykiss) traverse
portions of the San Joaquin River and the Delta during their juvenile migration
to the Pacific Ocean (Williams, 2006), where they mature before returning as
adults (Sridharan et al., 2006 for a detailed description of the hydrometeorology
and hydrodynamics in the Delta).

Our study domain includes distinct regions as shown in Fig. la: (i) a 500m
long reasonably straight prismatic section of the mainstem San Joaquin River
about 150m downstream of a meandering section where the flow is Southeast
to Northwest, (ii) a junction at the Northwestern region of the straight section
where the Old River bifurcates to the West, and (iii) a sharp 90° bend Eastward
in the mainstem San Joaquin River. During the period when the study was
conducted, the bifurcation into Old River was blocked by a temporary earthen
barrier (white box in Fig. 1a). The Eastward bend at the northern end of the

domain is characterized by an approximately 10m deep scour hole along the
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North bank where the flow separates and strongly recirculates before rejoining
the freestream along the San Joaquin River (see Appendix D for the bathymetry
of study domain).

Two-dimensional near-surface velocity fields were acquired by AECOM Tech-
nical Services between 23 April and 30 May, 2012 using moored RDI Chan-
nel Master side-looking broadband Acoustic Doppler Current Profilers (AD-
CPs) operating at 600 Khz. Each cross-section was comprised of 2m-bins,
over which point velocity measurements were averaged over several minutes. A
5m-resolution flow field was reconstructed at fifteen-minute intervals through-
out the study domain by first numerically computing the streamlines from the
Southermost ADCP cross-section and performing an inverse distance weighting
interpolation using the velocity vectors obtained from the instrumented cross-
sections (Stumpner, 2013a, Stumpner, 2013b). Fish trajectories were obtained
from 424 Fall-run Chinook salmon implanted with injectable HTT hydroacoustic
tags (M800 and 795Lm models) which were detected at thirteen HTI hydroa-
coustic detectors (model 590) deployed in an two-dimensional array throughout
the system. By colocating fish position using a minimum of four detectors, fish
positions were typically estimated at a precision of within 1m every two seconds
(AECOM, 2015). In the present study, we used 184 of these tracks that were
sufficiently long to be included in the neural network analysis. We applied our
own post-processing pipeline to raw tag detections. This consisted of breaking
tracks from each fish into sub-segments if subsequent locations were separated
by more than 30 seconds in time. Within each sub-segment, we smoothed tracks
using a third-order Savitzky-Golay filter with filter length of 22 seconds. Po-
sitions were also interpolated to a regular time interval of 2 seconds between

subsequent locations.
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2.2 Fish behavior
2.2.1 Movement Kinematics

The first step in our workflow is describing the kinematics of fish movement. The
accuracy of position data in the depth dimension was poor, likely due to con-
straints on the positioning of hydrophones determined by the relatively shallow
average depth of the study region (AECOM, 2015). As a result, we were unable
to study movements of fish in the depth dimension, and we retained only the
horizontal coordinates of the position of each fish. Accordingly, tracks are rep-
resented as 2-dimensional trajectories through the river section, and we consider
only horizontal components of the fish kinematics and dynamics. Henceforth,
we assign the East-West direction as the x-dimension and the North-South di-
rection as the y-dimension. To keep track of the relative motion of fish and
flowing water, we define two reference frames: an inertial frame (z,y) fixed at
a point on the river bank and a relative frame (2/,y’) moving along the fish
trajectory with water velocity v, see Fig. 1d. Given these reference frames,

the position of a fish can be defined as follows:

g ="r,+1r,. (1)

Here, r, is the fish position with respect to the inertial frame (x,y), r, is the fish
position with respect to the relative frame (2’,4') and r,, is the position of the
relative frame with respect to the inertial frame. By recursively differentiating
Eq. 1 with respect to time we obtain the velocity v, and acceleration a, of each
fish as follows

Vg =V, + Vy, (2)

a, = a, + a,. (3)

10
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v, and a, are the fish’s velocity (or overground velocity) and acceleration with
respect to the inertial frame, v, and a, are the fish relative velocity and accel-
eration with respect to the relative frame and v,, and a,, are the velocity and
acceleration of the relative frame with respect to the inertial frame. The latter
quantities can also be interpreted as velocity and acceleration of a water parcel
along the fish’s trajectory. Eq. 2 and Eq. 3 are useful to decompose the fish

motion (see Section 2.2.2 below).

2.2.2 Movement Dynamics

Once the kinematics are defined, we subsequently apply the momentum equa-
tion (i.e., Newton’s second law of motion) to each fish to quantify its movement
dynamics. In the horizontal plane, we identify two forces for each fish: locomo-
tion force Fy and drag force Fp, see Fig 1d. We assumed that vertical forces
such as gravitational force and buoyancy balance each other resulting in null
vertical acceleration. Defining the fish’s mass as my;sn, the fish dynamics can
be summarized as

MfishAg =F; +Fp. (4)

The drag force acts opposite to the relative motion of the fish moving with

respect to the surrounding flow and it can be defined (Hoerner, 1965) as
1
Fp = —5pudsCallvg = vull(vg = va), (5)

where p,, is the water density, As is the fish’s wetted area and Cy is the drag
coeflicient, see Appendix A for how we calculate Cgq and Ay. The term vy — vy,
is the fish relative velocity v, with respect to the relative frame (see Eq. 2). The
locomotion force can then be calculated by inverting the momentum equation,

see Eq. 4. For this approach to be useful for understanding how instantaneous

11
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fish behaviors contribute to their overall migration trajectories, we need infor-
mation on the drag force at a spatial and temporal resolution commensurate
with the tracking data. While my;s, can be obtained from the metadata as-
sociated with the tracking experiments and a4 can be directly obtained from
the tracking data, F'p cannot be calculated at the desired resolution from the
fifteen-minute 5m-resolution interpolated ADCP v,, fields. We therefore devel-
oped the CFD model of the river system to estimate v,,, and used this estimate
to infer Fp and compute Fy. The details of the CFD modeling are described
in the following sections.

The tracking data consist of 184 fish tracks for a total of 129,830 location
points with a standardized temporal resolution of 2s. We show several ex-
ample tracks in Fig 1b. Given the fish position x4(t,) from each track, the
fish velocity with respect to the inertial frame (see section 2.2.1) is v, (¢,) =~
(xg(tnt1) — x4(tn))/At, where ¢, = [2,4,6,...] and At = 2s. The fish ve-
locity with respect to the relative frame is obtained by reversing Eq. 2 such
that v,.(t,) = vy(tn) — v (tn). Vw(ts) is computed from the CFD results for
each fish track (see section 2.3). Consequently a,.(t,) ~ (v, (t,) — v, (tn—1))/AL.
With the kinematics defined thus, it is now possible to calculate the locomotion

force for each fish by combining Eq. 4 and Eq. 5 such that

Fp(t,) = %PwAdeHVr(tn)”Vr(tn) +mypisnag(tn) = f(Vg(tn), vu(tn)).  (6)

It is important to notice that F (¢, ) is a function of v4(t,) and vy, (t,) as shown

in Eq. 6.

2.3 Hydrodynamic variables

The next step in our workflow is to compute the drag force Fp on the fish. Since

Fp is a function of v,, (see Eq. 5) we simulated the flow dynamics of the river

12
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using a three-dimensional CFD model based on Unsteady Reynolds-Averaged
Navier-Stokes (URANS) equations. The river flow is considered incompressible
and isothermal with the deflection of the water surface being represented by a
two-phase water-air Volume of Fluid (VOF) model. We used the openFOAM
solver interFoam (Deshpande, Anumolu, and Trujillo, 2012) to develop this
model. Although the tracking data we used are two-dimensional, we constructed
a three-dimensional CFD model to realistically represent the statistics of the
turbulence and the flow dynamics at the scour hole and in regions near the
channel banks. We assumed tracks were located within the uppermost cell of
the CFD volume corresponding to approximately 0.3 meters below the water

surface.

2.3.1 Solver and Model Parameters

The interFoam solver in openFoam implements the continuity and momentum
equations for isothermal and incompressible flows along with an additional equa-
tion tracking the fraction of air within each parcel of water. The URANS models
requires turbulence closure equations in order to be a well-posed PDE system
(Menter, 1994). We used the k — w equations to represent the statistics of the
unresolved turbulence. The boundary conditions for the velocity and the water
elevation are based on field measurements, see Section 2.1. The empirical flow
velocity time-series is available at the inlet section for the three-month period
from March to May with a time resolution of 15 minutes supersampled linearly

at 2s intervals.

2.3.2 Modeling active locomotion: a neural network approach

The final step in our workflow (Fig. le,f) is to develop a model describing how
fish locomotion depends on features of the environment, including the hydrody-

namic forces the animal experiences as it moves through the water. The details

13
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of sensory integration, processing, and decision-making during navigation are
poorly understood for most migratory species, including migratory fishes. To
avoid making ad hoc assumptions that might arbitrarily restrict the form of the
relationship between physical variables and movement behavior, we modeled
effects of flow on movement behavior using a flexible approach for time-series
prediction, the Long Short-Term Memory Neural Network (LSTM-NN).

We selected the LSTM-NN as a reasonable model of movement behavior for
two reasons: first, in the past, LSTMs have been used successfully to model
movements of vehicles and pedestrians (e.g., Xue, Huynh, and Reynolds, 2018,
Altché and De La Fortelle, 2017). Second, there is detailed documentation
in the literature (Kang and Choi, 2005) on how LSTMs are implemented in
TensorFlow (Abadi et al., 2015). This existing software implementation makes
LSTMs a convenient modeling tool for describing the relationship between phys-
ical variables and migrant behavior when no a priori model exists. Details of
the underlying structure of the LSTM and how it maps inputs to outputs is
given in the Appendix D. In the Discussion, we further elaborate on the pros
and cons of LSTM and the situations in which it is likely to provide a good
model of navigation behavior.

In the current application, we use the LSTM to predict the locomotory force
produced by migrating fish at each time step. We take, as input to the net-
work, the fish’s overground velocity, v4, and the water velocity, v,,, because
Fr. = f(vg,vy) as shown in Eq. 6. This assumes the fish could measure
overground velocity, which could be accomplished, for example, through visual
means, by estimating the optic flow of visual features on the benthos (e.g., the
river bed itself, submerged debris or aquatic vegetation). In the past, envi-
ronmental variables such as water acceleration, hydrostatic pressure (Goodwin

et al., 2014), turbulent structures (Lacey et al., 2012), turbulent kinetic energy
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intensity (Gao et al., 2015), and circulation around the fish (Oteiza et al., 2017)
have been used to explain fish movement behaviors. We decided to use the
water velocity experienced by the fish because the river system under consider-
ation is characterized by a relatively low turbulent kinetic energy content, and
because other mechanisms of behavior response to variables such as the local
shear or circulation are not understood in complex environmental flows. More-
over, exploratory analyses including other variables in LSTM-NN training did
not indicate improved performance.

The resulting trained LSTM-NN is a function that relates the overground
velocity and water velocity experienced by a migrating fish at some time ¢,_1

to the locomotion force produced by that fish at time t,,:

FL (tn) = LSTM(Vg (tn—l), Vuw (tn_1)), (7)

where ¢, is the discrete time-step with n = [0,1,..., N — 1, N]. We note that
the use of v in this formulation allows us to explicitly model the locomotion of
the fish as a function of its memory of its response to the local environment, as
well as its current sensory experience. Details of LSTM-NN structure and how

inputs map to predictions are given in Appendix C.

2.4 LSTM-NN fitting, predictions, and out-of-sample test-
ing

We used the LSTM-NN module available in TensorFlow (Abadi et al., 2015)

for predicting Fy. The training data set consisted of the time-series of over-

ground velocities of fish and water velocities along the fish tracks. Furthermore,

we used the time-series related to the observed components of the locomotion

force Fr, (t,) and F,(t,) computed with the field data, see Eq. 6, as reference
output for the LSTM-NN training. We optimized the LSTM-NN settings to

15
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minimize the average error of AFy, and AFp , where A is the difference be-
tween the predicted and actual value. We tested a number of LSTMs-NNs with
an increasing number of cells and used the k-Nearest-Neighbor method (Arya
et al., 1998) to select the architecture with the optimal number of cells (see
Appendix C). We found an LSTM-NN with 112 cells to be the optimal con-
figuration, because it produced AFr, and AFp, with minimal average error.
After the end of the cascade of LSTM-NN cells, we included a dense layer of two
rectified linear activation functions, ReLU, to output the model results (Abadi
et al.; 2015). The length of the training data set was 60% of the original data
set subdivided in 72 batches; the total length of the data set consist of 129,830

data points. We trained the LSTM over 30 epochs.

2.5 Forecasting fish movements

Once the LSTM-NN model of Fp,(t,) is fitted to training data, it can be used
to predict migrant trajectories by applying the forward Euler method to Eq. 4
as follows:

Vg(tn) = vg(ta—1)
At

Mfish ~ mfishag(tn) = FL(tn) + FD(tn)a (8)

Hence, considering Eq. 2 and Eq. 5

Fr(ty) = LSTM(vy(tn-1), Vu(tn_1))

Vy(tn) = Vg(tn-1) + (Fr(ta) + Fp(ta)) 52 (9)

Mfish

Xg(tn) = Xg(tn—1) + vg(tn) At

The initial conditions v4(ty), v (to) and x4(to) are determined from the cor-
responding field data. This scheme can be used both to predict fish velocities

and trajectories in-sample, and to predict entirely new trajectories, given the

16



368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

appropriate input data.

3 Results

3.1 CFD results

We used the CFD model of the study domain to compute flows over the duration
that fish were present. In Fig. 2a, we show a snapshot of the water velocity
field in the horizontal section near the water surface (where the fish trajectories
are assumed to be contained). The contour colors represents the water velocity
magnitude, while the vectors represent the direction of local flow. The southeast
region close to the inlet is characterized by a flow that tends to be uniform. In
contrast, the northwest region close to the barrier shows a large area of flow
recirculation; two counter-rotating vortexes appear along the barrier Fig. 2b. A
vortex rotating in the counterclockwise direction on the northern bank is visible
in Fig. 2c. The formation of this vortex is due to the sharp bend of the river
course and associated scour hole, causing the flow to recirculate along the north
bank. We validated the CFD model by comparing the velocity profiles from the
numerical simulation against the velocity profiles from the field measurement;
we show in Fig. 2d and 2e that the CFD results (lines) are in good agreement
with the ADCP measurements from two cross sections which include a typical

variation of +5.8¢m/s within each velocity bin (dots; AECOM, 2015).

3.2 Fish migration behavior and LSTM model predictions

The tracking data provided is an extensive collection of fish velocity and tra-
jectory estimates from across the study domain. By applying the velocity de-
composition introduced above to the fish trajectory data and CFD-generated

flow velocity predictions, we were able to estimate the distinct contributions of
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Figure 2: a) Snapshots of the velocity field magnitude at one point in time. The
color bar indicates flow magnitude in units of m/s. Lines through the domain
show cross-sections used for model validation. Red line: Section 1 (shown in
panel €). Green line: Section 2 (shown in panel d). b) Zoomed in view of the
Western bank showing regions of weak recirculation flow. ¢) Zoomed in view
of the Northern bank showing a vortex. d) Comparison between CFD flow
predictions (line) and water velocity magnitude measured by ADCP (blue dots
and error bars) in Section 2. Profiles averaged over 30 minutes. e) Comparison
between CFD predictions and data.

water flow and migrant locomotion to the observed overground velocity of each
migrating animal. In Fig. 3b, we show the probability density function (pdfs)
of the magnitudes of the fish overground velocity, ||vg||, and the fish relative ve-
locity ||vy|| (i-e., the animal’s velocity relative the the moving water), as well as
the magnitude of water velocity at observed fish locations ||vy||. Note that the
overall magnitude of relative velocity of the fish — the component of velocity due
to active locomotion — often exceeds the magnitude of water velocity, indicating
that fish regularly swim at speeds that are higher than the speeds of the flows in
which they are swimming. This can be seen more directly in the distribution of
the ratio of relative velocity magnitude to the overground velocity magnitude,

Fig. 3a. The right tail of this distribution shows cases where fish are swimming
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Figure 3: Empirical velocity data and LSTM-NN prediction performance. a)
Pdf of the ratio of the magnitudes of the fish relative velocity to the water
velocity. b) Pdfs of magnitude of the fish relative and overground velocity (green
and blue distributions, respectively) and pdf of water speed at fish locations
computed from CFD model (red distribution). c¢) Pdfs of prediction errors
from the LSTM model shown as percentage error in predicted direction (orange
distribution) and magnitude (grey distribution) of locomotion force.

Employing Eq. 6, velocity estimates can be used to estimate the locomotory
force produced by each fish to achieve its observed motion. The LSTM-NN
model of locomotion accurately predicted this locomotory force in the 51,932
data points (40% of the original data set) that were held out during training,
Fig. 3c. Typical errors for direction are within 20% of observed values, and
magnitude estimates are typically accurate to well within 10% of observed val-
ues, Fig. 3c. Our results indicate that our model of fish swimming behavior is
able to predict this behavior for times and locations on which the model was
not trained (i.e., on the out-of-sample data).

Given a prediction for the locomotory force, the equation system in Eq. 9

can be used to predict a fish’s trajectory, x,4(t,), in addition to the locomotion
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We show the distributions of error in predicting position prediction measured
in body length for several time ahead predictions, e.g. from 2s up to 30s (pre-

dictions shown are for 51,932 data points held out-of-sample during training)
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Figure 4: Trajectory prediction performance over different forecast time hori-
zons. a) Pdf s of the error in predicting the position of the fish [in body lengths]
for several of the prediction horizons. The vertical line at two body lengths in-
dicates that the mode of the error in predicting fish positions is well contained
for even large forecast time horizons. b) Mean error (red) and standard devi-
ation (black) in predicting the position over forecast horizon (time in seconds)
and average distance traveled by the fish (scale in green [in body lengths]). c)
Example of a single trajectory prediction. Blue line shows observed trajectory;
red points show predicted trajectory for 2s-ahead predictions. d) Zoomed into
a straight section of the track (zoom 1) for 2s-ahead prediction. Black points
show an initial location of the fish from which the Eq. 9 is initialized. Red
points show predicted location 2s-later e) Zoomed into a curved section of the
track (zoom 2) for 2s-ahead prediction. f) and g) 6s-ahead predictions zoomed
into the sections shown in d) and e) respectively. Colors and symbols in e), f)
and g) are as in d).
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in Fig. 4a; while the tail of the error distribution includes significantly larger
errors as the prediction horizon increases, the mode of the error distribution
only grows by roughly one body length when moving from a prediction horizon
of 2 seconds to a horizon of 30 seconds. Red and blue distributions in Fig. 4a
show 2s-ahead and 6s-ahead predictions, illustrating that increasing the fore-
cast horizon from 2 to 6 seconds does not result in a dramatic decrease in the
quality of predictions. Nevertheless, the discrepancies between the observed and
predicted trajectories do continue to grow as the prediction horizon is increased
as one would expect. In Fig. 4b, we show the dependence of the mean and stan-
dard deviation of the error in predicting position on the forecast horizon. Up to
forecast horizons of 30 seconds, the mean prediction error remains below four
fish body lengths. It is worth noting that the mean and standard deviation of
prediction error represent a small fraction of the typical travel distance during
any given forecast horizon. For example, in 30s the average travel distance is
91.1 body lengths while the mean error is about 3.5 body lengths, green scale
in Fig. 4b. In Fig. 4c, we show a sequence of predictions along the length of
a long trajectory. In Fig. 4c the blue line is the actual trajectory of a tagged
fish while the red dots are the 2s-ahead predictions; this fish trajectory consists
of 455 points corresponding to 906s of the fish’s trajectory through our study
region. We zoom into two parts of the trajectory which are structurally different
from each other: a relatively straight section in Fig. 4d and a sharply curving
section in Fig. 4e. In these plots, the black dots are initial locations to initialize
the model in Eq. 9. In both sections of the track, there is close alignment
between the observed and predicted trajectory points. In Figs. 4f - 4g, we show
the same sections of the track for 6s ahead predictions (3 time-steps ahead);
while the accuracy tends to decrease as the prediction horizon increases, errors

remain reasonably bounded, even in the highly curved region of the trajectory.
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Figure 5: Predicted water flow, velocity ratio and locomotory scope under high
(upper panels) and low (lower panels) net flow conditions. a) Flow velocity field.
b) Ratio of the relative velocity of the fish to the water velocity. ¢) Locomotory
scope, Sp. Note large differences in range of predicted scope between high
(upper) and low (lower) flow conditions.

By combining the CFD model to predict flow, and the LSTM-NN to predict
fish locomotion in response to flows, one can explore a wide range of questions
about how flow and locomotory behavior of animals interact under different
conditions. For example, by exploiting the first two equations in Eq. 9, it is
possible to estimate the movements of fish across the entire flow domain for
different environmental conditions of interest. In Fig. 5a, we show snapshots of
the water velocity vector field in the river system during the period of lowest and
highest outgoing flows, respectively. In Fig. 5b, we show the “relative swimming
velocity”, Ry, defined as the ratio of the magnitudes of relative velocity of fish
and the water velocity, for the same flow conditions shown in Fig. 5a. Two
key patterns are immediately evident. First, the relative swimming velocities of
the fish regularly exceed water velocity throughout much of the domain. This
predicted spatial pattern is consistent with the empirical observation shown

in Fig. 3a-b that the observed relative swimming velocities regularly exceed
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water velocity. Moreover, this demonstrates the degree to which fish movements
appear to be driven by active swimming behavior rather than simple passive
forcing by the flows. The second pattern evident in Fig. 5b is that there is
strong spatial heterogeneity in the ratio of fish to water velocities, and these
spatial patterns change as the overall flow transitions from weak to strong. For
example, during low flows, the relative swimming velocity is greatest in the open
channel, upstream of the bend. During high flows, relative swimming velocity
is much slower in this same region. During high flow, the relative velocities of
fish are smaller than the water velocity in the regions of high circulation near
the channel bifurcation, whereas this pattern is not evident at low flows.

To determine the impact this spatial and flow-dependent variation in be-
havior has on migration energetics, we can estimate the rate of power output
required to achieve predicted movements across the domain. We do this by
defining a quantity we will call “locomotory scope,” S;, = 1+ Fp - v,./RMR,
which characterizes the power output required to fuel resting metabolism and
locomotion, normalized by the resting metabolic rate (RMR) (see Appendix A
for RMR calculation). The locomotory scope is a measure of the power output
of an animal measured in units of resting metabolic rate. Thus, a locomotory
scope of one corresponds to a case where an individual devotes no power to
locomotion, whereas a value of five corresponds to a case where the total rate
of power output (including resting metabolism) is five times resting metabolic
rate. Note that locomotory scope as it is defined here is not the same as aerobic
scope because we neglect any power loss due to inefficiencies in force produc-
tion, and we do not consider other sources of power consumption (e.g., specific
dynamic action) that could be relevant during migration. Thus, locomotory
scope should be taken as a lower bound on the relative power output required

during movements.
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Our analysis of predicted locomotory scope reveals strong spatial patterns in
power output as well as strong differences in patterns across specific instances
of low and high flow conditions, Fig. 5c. Under low flow conditions, locomotory
scope was generally below 1.5, indicating that the power required to produce
predicted migratory movements across the domain was generally less than half of
the resting metabolic rate of migrants. The highest relative power outputs were
predicted to be along the center of the main channel, upstream of the channel
bend, and in a region of relatively high circulation near the eastward channel
bend, Fig. 5c. In strong contrast to these patterns, locomotory scope during
high flows was as large as 10 in some regions of the domain, indicating that
predicted movements in those regions required total power outputs 10 times
higher than resting metabolic rate. The highest rates of power output were
predicted to be in the region of strong flow recirculation near the eastward
channel bend and along the eastern bank in the same region. However, even
outside of these regions the locomotory scope exceeded a value of 1.5 throughout
much of the domain. One might expect migrants to take advantage of strong
oceanward flows in the high flow conditions by drifting passively rather than
swimming actively. To the contrary, our model suggests that migrants generally
use far more power under high flow scenarios, particularly in local regions of
strong unsteady flow. This is due, at least in part, to the fact that in weak
flows, the locomotion force tends to be biased in alignment with the direction of
local water flow (Appendix A), whereas in more powerful flows, fish locomotion

is aligned opposite or orthogonal to the direction of local water flow.

4 Discussion

Here, we have developed a general methodology to combine quantitative es-

timates of a turbulent environment with measurements of the movements of
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animals to better understand migratory behavior in the wild. Our methodol-
ogy combines animal tracking data with high resolution physical modeling of
environmental flows — here achieved using computational fluid dynamics — to
estimate the dynamic flow environment migrants experience and determine the
component of force of migratory movements due to active locomotion by the
animal. Finally, we employ recurrent neural network methods to relate the
physical conditions experienced by the migrant to locomotion behavior, and
use this model to forecast movements over times and conditions outside those
included in the training data.

Reconstruction of the local physical environment and decomposition of active
and passive components of movement have the potential to offer new insights
into the processes that influence the movements of migrating animals in complex
environments. This approach extends recent work to characterize how migrants
move in relation to coarser-scale environmental flows such as water currents and
regional wind patterns (e.g. the use of favorable prevailing winds and fast air
streams by migrating insects, Alerstam et al., 2011). Our approach also holds
significant promise as a tool for management of migratory species because, af-
ter careful testing on out-of-sample data, our framework allows one to make
predictions about both the physical and behavioral consequences of modifying
the migratory environment, for example by raising or lowering flow, altering the
bathymetry or course of the river, or installing equipment such as water diver-
sion facilities along the migration route (Thorstad et al., 2008, Silva et al., 2018).
Although we have applied our framework to migratory fish in a river system,
the same methods could be used to understand migratory strategies of flying
species by combining high-fidelity tracking during flight (Ling et al., 2018) with
CFD modeling of environmental features of interest (e.g. wind turbines, Martin

et al., 2017) or physical modeling of turbulent convective flow in the atmospheric
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boundary layer (Reddy et al., 2016). It is well known that flying animals also
respond to local air flows (Scacco et al., 2019, Shepard, Ross, and Portugal,
2016 and Dabiri, 1993); however, constructing and validating models of air flow
poses some unique challenges. For example, it is often challenging to collect
high-resolution time-varying data on air currents in the atmosphere that can be
used during model validation. For small-scale flow phenomena such as boundary
layer flows over localized topography and built-up areas on the order of a few
hundred square-meters to a few square kilometers, wind-tunnel experiments over
downscaled models can provide validation data sets for high-resolution URANS
and LES models of atmospheric flow (e.g., Kellnerova et al., 2018 and Jimenez
and Moser, 1998). For flows distributed over larger open areas, on the order of
tens of square kilometers, a combination of wind-vane, flux tower and LiDAR
and Radar measurements may be used to produce reliable estimates of the air
currents (Friedrich et al., 2012 and Madala et al., 2015). An alternate strategy
more recently has been to dynamically or statistically downscale global circula-
tion models to spatial-temporal resolutions required for regional-scale analysis
and validate these downscaled models using a regional network of weather sta-
tions (Winstral, Jonas, and Helbig, 2017 and Wagenbrenner et al., 2016). For
many physical modeling methods, open source software packages are readily
available (e.g., openFoam), as are packages for constructing statistical models
(e.g., R, TensorFlow) of migration behavior once the locomotion component of
migratory movements has been computed (Fig. le,f).

Computational fluid dynamics, and computational modeling of the flow en-
vironment more generally, have already proven to be useful for studying environ-
mental flows in the context of animal migrations. For example, Gisen, Weichert,
and Nestler (2016) developed a 3D CFD model of a hydropower dam tailrace

using a Detached-Eddy Simulation turbulence model to evaluate impacts on
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migrants. Reddy et al. (2016) developed a computational model of thermals in
the atmospheric boundary layer to study how soaring birds navigate complex
turbulent motion of air. Gualtieri et al. (2019) modeled fish migration through
a river system as particles characterized by two bioenergetic parameters, one re-
lated to the drag force a fish experienced and one related to the energy needed
by a fish to remain in a specific location. Similar assumptions were adopted
by Ramén, Acosta, and Rueda (2018) who studied the hydrodynamic drivers
of juvenile salmon movements using CFD to compute the flow field across a
river system. Although Gualtieri et al. (2019) and Ramén, Acosta, and Rueda
(2018) modeled fish as passive particles dragged by the river flow, as we show
here, even small migratory fish can swim very actively, and in many cases, their
locomotion force production is significant. Indeed, our analysis of relative ve-
locity of fish and water (Fig. 5) shows that the component of ground speed due
to active locomotion is often greater in magnitude than the water speed, even in
relatively fast flows. Our findings corroborate results from other systems (e.g.,
Arenas et al., 2015), and suggests more generally that even small migratory an-
imals such as the juvenile salmon considered here (mean length 112 mm) spend
significant amounts of energy on locomotion, even when the net direction of
environmental flow aligns with the direction of migration.

Several researchers have begun using CFD models to attempt to understand
how migrants navigate complex physical environments at spatial and temporal
resolutions similar to those considered in our study. For instance, Goodwin
et al. (2014) used a steady-state RANS CFD model to compute water field
velocity in combination with an ad hoc fish behavioral model to represent fish
movements in the vicinity of hydropower facilities. Gao et al. (2015) used a sim-
ilar approach for a slot fishway, applying a parametric model of fish movement.

Martin et al. (2017) combined a CFD model of a wind turbine and aerody-
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namic modeling of bat flight to understand how flying bats might interact with
the forces produced by wind turbines. In the present study, we extended the ap-
proaches of these past models by developing a URANS CFD model to compute
time-dependent flow variables. We employed a time-dependent CFD model be-
cause the flow-field through complex channel morphologies like the one studied
here can be extremely dynamic, particularly in river and estuary systems where
flows can change due to a variety of reasons including precipitation, effects of
tides, sudden storms and floods and local water diversions and runoff. A dy-
namic, time-varying CFD model allows us to model changes in flows that occur
as inflows change. In general, a dynamic model will be necessary to correctly
decompose drag and locomotion forces when the flow field changes appreciably
over time. Not accounting for changes in flow will lead to biased estimates of
these components.

After we validated that model against empirical flow measurements, we used
flow estimates, along with observed fish migration trajectories, to infer the drag
and locomotory forces that produced observed fish accelerations. Rather than
prescribing an ad hoc model of locomotion behavior, we used a flexible recur-
rent neural network model (the LSTM-NN) to describe how flow cues and past
behavior influence locomotion behavior in the near future. Importantly, this
approach provides accurate near-term forecasts of migrant behavior on out-of-
sample data. Thus, our model both captures observed patterns of locomotion in
complex flows, and is capable of making accurate out-of-sample predictions to
evaluate hypothesis about the implications of migratory behavior across space
and over ranges of environmental conditions (e.g., Fig. 5).

To predict swimming behavior, we relied on a flexible multivariate time
series method. Multivariate time series analysis methods such as the LSTM-

NN have become popular in many fields including healthcare (Kang and Choi,
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2014), phoneme classification ( Kang and Choi, 2005 ), and activity and ac-
tion recognition (Pavlovic, Frey, and Huang, 1999, Geurts, 2001, Fu, 2015, Yu
and Lee, 2015). In our analysis, the LSTM-NN model of swimming behavior
revealed that knowledge of the flow environment the animal experiences as it
moves can allow one to make accurate out-of-sample forecasts of a fish’s future
movements, at least over short timescales (e.g. 2s-30s). This suggests not only
that features of the flow influence the movement decisions animals make as they
migrate (Liao, 2007, Oteiza et al., 2017), but also that the behavioral rules
or “behavioral algorithms” (Hein et al., 2020) that relate flow to locomotion
behavior are at least reasonably similar, both across individual animals, and
over the range of time periods included in our study. We believe this work-
flow of building data-driven models of behavior and validating predictions of
those models on out-of-sample data is crucial, given that our understanding of
how animals perceive and respond to sensory cues during migration is still far
from complete. The flexibility of recurrent neural networks frees our approach,
at least to some extent, from assumptions about the precise functional form
relating flow variables to the swimming behavior of migrants. However, one
disadvantage of using a highly flexible framework like LSTM-NN to relate envi-
ronmental variables to fish behavior is that, due to the complexity of the neural
network model structure, there is no compact symbolic representation of the
functional relationships between input and output variables (Martin, Munch,
and Hein, 2018). We expect future studies will unpack the patterns described
phenomenologically by our LSTM-NN model of movement behavior. In partic-
ular, it will be insightful to determine whether migration behavior, like some
other animal behaviors including predator evasion (Hein et al., 2018) and prey
interception (Brighton, Thomas, and Taylor, 2017), can be described accurately

by a set of relatively simple control algorithms (Hein et al., 2020). Future work
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could apply other modeling paradigms (e.g., control theory, neuro-ecological
modeling, Brighton, Thomas, and Taylor, 2017, Bar et al., 2015) to address this
and other fundamental questions, including (i) which variables most influence
locomotion, (ii) whether migratory behavior varies appreciably over time, and
(iii) the extent to which different individuals respond to environmental variables
in different ways. Notably, all of these questions require estimates of both the
behavioral actions taken by individual migrants and the environmental variables
experienced by those individuals. Our methodology provides a way to acquire
such estimates.

While the overall methodology presented here holds much promise, it nev-
ertheless has important limitations. Firstly, due to computational limitations
on the simulation of turbulent flow, the spatial and temporal resolution of our
CFD model is limited. This means that we cannot resolve fine-scale flow at the
scale of the migrating fish’s body, nor can we fully resolve temporal fluctuations
in flow due to turbulence. This makes it challenging to directly link our model
of locomotion behavior with biomechanical (e.g., Lighthill, 1971, Bandyopad-
hyay, 2002; Cui et al., 2017) or behavioral models (e.g. Oteiza et al., 2017)
that describe movement of the migrant’s body. Nevertheless, our model does
have the ability to resolve larger features in the flow on the spatial scale of tens
of body lengths. Such features include gradients in water velocity near chan-
nel banks and zones of strong recirculation (e.g., see Fig. 2). This allowed us
to conclude, for example, that effects of these features on migratory behavior
can be significant (Fig. 5). A second limitation of our approach is due to the
tracking data themselves. Tracking data were acquired through hydrophone de-
tections of animals implanted with acoustic transmitters. These data therefore
have limited spatial resolution and the status of tagged animals are unknown

(e.g., tags from fish consumed by larger predatory fish can still be detected by
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the hydrophone array). Such limitations are worth considering when choosing a
tag technology to use for studies that will combine tracking and physical mod-
eling to study migratory movement behavior. Another important consideration
is that our framework cannot fully address the question of whether high or low
flow conditions are more favorable for migration because it does not consider
how energy use trades off with other potentially important quantities related to
migration success such as the travel time through regions of high predation risk
(Anderson, Gurarie, and Zabel, 2005). The times taken by fish to traverse our
entire study region were longer, on average, when overall flow was weak (mean
of 63 minutes for trajectories experiencing the weakest 10% of flows) than when
overall flow was strong (51 minutes for trajectories experiencing strongest 10%
of flows). However, variability in this trend was significant. Nevertheless, travel
time and other tradeoffs could be included in our framework by integrating
additional data sources (e.g. predation risk data).

Despite its limitations, our framework can be used to gain traction on ques-
tions that have fascinated migration biologists for many years. Many such
questions relate to how migrants use energy as they move through a landscape.
As demonstrated in Fig. 5, our methodology has much potential to address
these types of questions. For example, when applied to distinct environmental
conditions observed in our data set, locomotion force predictions revealed that
fish generally spend far more energy moving through the landscape when the
overall rate of flow is high than when the rate of flow is low, despite the fact that
the net flow direction is aligned with the direction of migration. Our analysis
provides additional insights into the cause of this pattern; when fish swim in
slow currents their movements are generally oriented uniformly relative to the
flow with a slight bias toward alignment in the direction of flow (see Appendix

A). On the other hand, when migrants move through high speed currents, their
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movements are primarily oriented against the flow or laterally relative to the
direction of flow. These lateral and opposing movements require greater power
output. It is also important to note our methodology is in no way limited to
the study of migratory movements. Both swimming and flying animals mod-
ulate short-term movement behavior in response to local environmental flows
(Scacco et al., 2019, Shepard, Ross, and Portugal, 2016 and James, 2007). The
same methodology presented here can be applied to study animal movement
behaviors beyond the context of migration.

In this work, we have presented a general methodology for merging data
and modeling of environmental currents with tracking data to understand an-
imal migratory behavior. Our approach extends more traditional methods in
migration biology, which have often either ignored interactions with wind and
water currents, or modeled these interactions in simple ways that are not fully
informed by physical data (e.g., Alexander, 1998, Pennycuick, 2003, Hein, Hou,
and Gillooly, 2012, Stier et al., 2014). We believe our framework has the poten-
tial to shed new light on how migrants interact with wind and water currents
and how behavior and biophysics interact to determine the costs and benefits

of different migratory strategies and environmental conditions.
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Appendix A: Drag coefficient, resting metabolic
rate, and swimming orientation relative to flow

To estimate the dragging force on each fish, we required an estimate of the drag
coefficient for these animals. The average fish length was L = 0.112m (AE-
COM, 2015). The drag coefficient was estimated using a formula for Reynolds
numbers R, > 2000 based on fish length and fish relative velocity, Cqy =
493.9/R2-922 (Arenas et al., 2015). Given the average fish relative velocity, v, =
0.34m/s, average fish length L = 0.112m and water density p,, = 999.06kg/m3
we have Cy = 0.033. The fish wetted area Ay is estimated using the formula
Ap =0.28L%! = 0.0026m? (Webb, 1976).

Mean fish length was also used to estimate resting metabolic rate for the
locomotory scope calculation. We first used length to estimate average mass
using scaling a scaling relationship for juvenile Chinook Salmon (Kimmerer et
al., 2005): mfisp = (1073)(1.8 x 1073) L34, which gave an estimate of m ;s &~
0.02kg. The resting metabolic rate was calculated using the formula: RMR =
m?-;2%10_1'385+0'021T, where T is the water temperature (degrees Celsius, Killen
et al., 2016).

Fig. 5c (main text) illustrates that fish swim in ways that can cause them
to expend far more energy on locomotion when swimming in strong flows than
when the overall rate of flow through the system is weak. To better understand
the source of this pattern, we can use the observed tracks along with CEFD-
derived estimates of flow direction to determine how fish orient to local flow in
low versus high flow conditions. Fig. 1 shows that when the overall rate of flow
through the system is relatively low, fish movements tend to be oriented more
or less uniformly with respect to the direction of flow, with a slight bias in the

direction of the flow (Fig. 1, left circular histogram). When water currents are
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Figure 1: Orientation of fish relative velocity with respect to direction of water
flow; low flow regime (left) high flow regime (right). An angle of 0 corresponds
to alignment with local water velocity, whereas 180 corresponds to alignment
directly against local water velocity. Color scale shows fraction of observations
falling into each orientation bin.

fast, fish movements tend to be oriented opposite the flow or at at angles that
would move them laterally relative to the flow direction (Fig. 1, right circular
histogram). Thus, rather than moving in the same way under different flow
conditions, fish tend to move in ways that oppose powerful local flows when the
overall rate of flow through the system is high, leading to the high predicted

costs of locomotion under such conditions (Fig. 5 in main text).

Appendix B: CFD mesh generation and modeling

details

In this Appendix we give more details regarding the mesh generation and bound-
ary conditions used for the CFD simulations. We used SnappyHexMesh (Weller
and Tabor, 1998), the openFOAM meshing tool to generate a preliminary mesh
which we subsequently trimmed to conform to the bathymetry. The prelimi-

nary mesh consisted of four blocks (Fig. 2a). Each block comprises of a specific
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number of cells (Table 1). Block one is characterized by hexahedral cells with
dimensions 0.8m x 0.64m x 0.3m respectively in the along-stream, lateral and
vertical direction. Blocks two and three are characterized by hexahedral cells
with dimensions 0.64m x 0.45m x 0.3m (Fig. 2b). Blocks two and three have
a slightly finer mash in comparison with block one because most of the large
coherent structures in the flow occur in the regions spanned by these blocks.

Block four is at the outlet of the flow domain, and we therefore applied a gentle

NX XNy XNz Total
Block 1 150x210x38 | 1145700
Block 2 150x210x38 | 1145700
Block 3 150x210x38 | 1145700
Block 4 15x210x38 114570

Table 1: Number of cells for preliminary mesh. nx x ny X nz: number of cells
in z,y and z direction respectively.

stretch to the cells towards the outlet, Fig. 2c. The resulting cells dimensions at
the outlet are 2.3m x 0.45m x 0.3m. All the blocks together form a preliminary
mesh of 3,551,670 cells. We then adapted the preliminary mesh to the topogra-
phy of the river using the openFOAM tool snappyHexMesh (Fig. 2d and Fig.
2e). Snapped cells are subject to three consecutive mesh refinements. Hence,
the refined snapped cells are three time smaller than the cells from the prelim-
inary mesh. The refined snapped cells are arbitrary polyhedral cells bounded
by arbitrary polygonal faces. Eventually, after the snapping process, the final
mesh consists of 17,474,654 cells. Fig. 2f and 2g show the air-water phases
initialized; the red and blue colors are the water and the air media respectively;
the white color represents the water-air interface. We applied a zero-gradient
for the velocity field on the outlet and the atmosphere boundaries, see Fig.2f.
In the CFD simulations, we apply no-slip conditions to the velocity field on
the riverbed and on the barrier, see Fig. 2g. We initialize the turbulent kinetic

energy k at 5.4 x 1075m?/s? and the turbulent kinetic energy dissipation rate w
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Figure 2: a) Flow domain subdivided in four blocks. b) First 3 contiguous
blocks with different mesh resolution. c¢) Block 4 with a stretch mesh towards
the outlet. d) Preliminary mesh with outer cells. d) Final mesh with snapped
cells. Boundary and initial conditions: f) Top-down view. g) Down-top view.

at 2572 over the flow domain. We set the physical properties of the air and water
media, such as kinematic viscosity and density for a constant temperature of
15°C (the system is considered isothermal). The density and kinematic viscosity
for the air layer are p, = 1.225kg/m3 and p, = 1.48 x 10~°m? /s, respectively.
The density and kinematic viscosity for the water layer are p,, = 999.06kg/m3
and j1,, = 1.138x107%m? /s, respectively. We set the time step for the simulation

to 1s to ensure numerical stability.

Appendix C. LSTM-NN parameterization and struc-

ture selection

To select the structure of the LSTM architecture, one must select the number
of cells to include. We did this by evaluating a range of cell counts and mea-
suring the prediction bias of models with these different structures. In Fig. 3
each dot represents a LSTM-NN architecture with an assigned number of cells

while the corresponding mean values of AFy, and AFy, are displayed on the
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Figure 3: Optimal architecture based on kNN test. Average error for the x
locomotion component on the horizontal axes; average error for the y locomotion
component on the vertical axes. Every dot corresponds to a specific number of
cell in the LSTM architecture. Red cross is the optimal configuration with zero
error for both error locomotion components.

horizontal and vertical axis respectively. The optimal architecture correspond
to the number of cells that produce the minimum error for AFy, and AFy,,.
In this case an LSTM with 122 cells is the optimal configuration, red cross in
Fig. 3.

An LSTM-NN consists of a cascade of interconnected LSTM cells (Fig. le
main text). A key feature of LSTM cells is the presence of an internal state
which serves as a “memory”, C(t), associated with each cell in the network. A
generic cell receives three variables: the previous cell’s memory state C(t — 1),
the previous cell’s output h(t — 1) and the current sensory input variables, x(t).
The cell then performs different internal operations using so-called “gates” to
produce two outcomes: the current memory state C(t) and the current output

h(t). The gates performing the internal operation are the following:

o Selection gate: select the information to forget. This gate uses z(t) and

the previous cell’s output h(t — 1) employing a sigmoid function, hence,
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fi = o(Wy[h(t — 1), 2] + bs), where Wy and by are weight and bias coef-

ficients;

Input gate: select the information to remember. This step consists of
two parts: first, a sigmoid function decides which values to update, i; =
o(Wilhi—1, 2] + b;). Next, a tanh function creates a vector of new candi-

date values, C(t), that will be added to the state; C(t) = tanh(We[h_1, z¢]+
be).

Memory gate: update the previous memory state C(t—1) into a new mem-
ory state C(t) with the operation C(t) = f,Cy_1 + i:C(t). The product
ftCy—1 “forgets” information from the previous memory state C(t — 1).

The product i,C(t) selects new information to “remember.”

Update gate: finally the output cell is computed as h(t) = o tanh(C})
where o, = (W, [hi_1, 2] + bo).



» Appendix D. Bathymetry of the investigated site.
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Figure 4: Bathymetry of the investigated site.
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