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Abstract4

1. Understanding how migratory animals interact with dynamic5

physical environments remains a major challenge in migration bi-6

ology. Interactions between migrants and wind and water currents7

are often poorly resolved in migration models due to both the lack8

of a high-resolution environmental data, and a lack of understand-9

ing of how migrants respond to fine scale structure in the physical10

environment.11

2. Here we develop a generalizable, data-driven methodology to study12

the migration of animals through complex physical environments.13

Our approach combines validated Computational Fluid Dynamic14

(CFD) modeling with animal tracking data to decompose migratory15

movements into two components: movement caused by physical forc-16

ing, and movement due to active locomotion. We then use a flexible17

recurrent neural network model to relate local environmental con-18
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ditions to locomotion behavior of the migrating animal, allowing us19

to predict a migrant’s force production, velocity and trajectory over20

time.21

3. We apply this framework to a large data set containing measured22

trajectories of migrating Chinook salmon through a section of river in23

California’s Sacramento-San Joaquin Delta. We show that the model24

is capable of describing fish migratory movements as a function of25

local flow variables, and that it is possible to accurately forecast26

migratory movements on which the model was not trained.27

4. After validating our model, we show how our framework can be28

used to understand how migrants respond to local flow conditions,29

how migratory behavior changes as overall conditions in the system30

change, and how the energetic cost of migratory movements depend31

on environmental conditions in space and time. Our framework is32

flexible and can readily be applied to other species and systems.33

Computational Fluid Dynamics; Migration; Bionergetics; Machine Learning.34

1 Introduction35

Migration is an essential part of many animal life cycles (Dingle 2015). For36

animals that swim and fly, migration often involves not only long-distance nav-37

igation and ecological interactions with conspecifics and predators, but also38

complex interactions with the physical environment in the form of air and wa-39

ter currents (Smith, 2012, Dingle, 2015, Flack et al., 2018). The way migratory40

animals interact with abiotic currents can determine the energetic cost of migra-41

tion (Pennycuick, 2008) and even whether migration is feasible at all (Alexander,42

1998, Pennycuick, 2003). Because climate change and anthropogenic habitat43

alteration are modifying air and water currents at both small and large scales44

(Boning et al., 2008, Kling and Ackerly, 2020, Silva et al., 2018), management45
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plans must increasingly consider how human activities influence the physical46

environment through which migrants travel (Thorstad et al., 2008). There is47

a growing recognition that managing migratory species must involve managing48

landscapes to facilitate successful migration (Silva et al., 2018, De Lucas, Janss,49

and Ferrer, 2004). However, to make informed decisions about how changes to50

the environment will alter the ability of animals to migrate, we need a deeper51

understanding of how air and water currents influence migratory physiology and52

also migratory behavior.53

In the past, efforts to understand how migrants interact with abiotic forcing54

have tended to take a migration physiology perspective, where the emphasis55

has been on combining biomechanical models with physiological data to under-56

stand the cost of migration in flows (e.g., Martin et al., 2015). For example,57

classic work on animal migration considered the energetic costs of large-scale58

mean wind or water currents on the cost of a migratory journey and on the fuel59

loads required at stopovers, as well as the ranges migrants could achieve under60

favorable and unfavorable currents (Pennycuick, 2003, Pennycuick, 2008). More61

recently, several studies have analyzed physical data or models of wind or hydro-62

dynamics in the context of animal migration (Weber et al., 2006, North et al.,63

2008, Arenas et al., 2015; Gao et al., 2015, Reddy et al., 2016). Nevertheless, a64

major outstanding challenge in migration biology is understanding how migrant65

behavior and physical forcing by wind and water currents interact to determine66

how migrants move across a landscape, and the costs they incur when doing so.67

One of the limitations of many animal tracking data sets is that only the68

positions and movements (e.g., via animal-borne accelerometers) of the animal69

are recorded, and details of the physical environment through which the animal70

moves are unknown. Because of this, movements must often be studied and71

interpreted without knowledge of the physical forces and sensory cues that in-72

3



fluenced the observed motion of the animal. This severely limits the types of73

questions about migration behavior that can be answered with movement data.74

While modern animal-borne sensors can aid in this problem (Hughey et al.,75

2018), at present, such sensors are often expensive and too heavy to be carried76

by small animals. Moreover, animal-borne sensors have the added limitation77

that they record conditions only in the vicinity of the sensor, leaving the range78

of conditions available to the animal elsewhere in the environment unknown.79

Here, we present an alternative approach to the problem of inferring the80

physical variables an animal experiences as it moves. This approach combines81

animal tracking data with high-resolution physical models of the region through82

which the tracked animal moves. The essential data requirements are (1) ani-83

mal tracking data describing the physical position of an animal or animals over84

time, (2) measurements of the structure of the physical environment (e.g., river85

bathymetry, local landscape topography), and (3) a collection of sample mea-86

surements of the physical variables one wishes to model (e.g., local water or87

wind velocity), preferably collected from the study region over the same range88

of conditions as those experienced by tracked animals. The latter two data89

sources are used to build a dynamic model of the physical environment that90

can then be used to infer the physical forces a tracked animal experienced at91

each location in the tracking data set. The end result of fusing animal tracking92

data with the physical model is a data set containing positions, velocities, and93

accelerations of each tracked animal (inferred from the tracking data), as well as94

estimates of the physical forces experienced by the animal at each point in time.95

Such data can then be used to infer how physical forces influence movement96

behavior, and to address a suite of questions related to the energetic output97

required to produced observed movements.98

In what follows, we illustrate how to fuse animal tracking data and physi-99
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cal variables using, as an example, migratory juvenile Chinook salmon migrat-100

ing through a section of river in the Sacramento-San Joaquin Delta in Califor-101

nia. Tracking data consist of high spatial- and temporal-resolution tracks from102

salmon as they move through a key segment of the migration route. To model103

the flow environment these animals experience, we combine river bathymetry104

data with flow measurements taken in several places throughout the study region105

to develop a Computational Fluid Dynamics (CFD) model of water flow through106

the entire study domain. We use the CFD model to estimate the dynamic fluid107

environment experienced by each individual along its migratory trajectory. We108

show how this data set can then be used to estimate the force exerted on the109

animal by moving water as well as the force produced by the animal through110

locomotion. Finally, to explore how cues from the physical environment – in111

this case the flow cues experienced by fish – influence active swimming behavior,112

we develop a recurrent neural network model to predict active locomotion as a113

function of flow cues, and to forecast fish movement trajectories over the near114

term. Taken together, the elements of our methodology allow one to explore a115

broad suite of questions about how migrants interact with environmental flows116

that have been challenging to address in past studies of animal migration. We117

illustrate several applications of our approach by applying it to questions about118

navigation behavior and migratory energetics over a wide dynamic range of flow119

conditions.120

2 Materials and Methods121

The methodology we use to integrate tracking data with estimates of the flows122

animals experience is illustrated in Fig. 1. In addition to estimating phys-123

ical variables at each point in time, the framework includes a step to pre-124

dict movement behavior of animals as a function of these physical variables125
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(Fig. 1e,f) to determine the extent to which physical variables affect movement126

decisions. The data inputs to the modeling framework are animal trajectories127

and the bathymetry and hydrodynamic data needed to build the CFD model128

(Fig. 1a and 1b). The hydrodynamic data consist of two-dimensional (along-129

stream and lateral) near-surface river water velocity measurements collected130

with four Acoustic Doppler Current Profilers (ADCPs) (see Section 2.1 below),131

and river bathymetry obtained from the 2010 California Department of Water132

Resources and the United States Geological Survey’s 2m-resolution multibeam133

sonar survey (Wang et al., 2018). Fish trajectories consisted of two-dimensional134

(along-stream and lateral) tracks obtained from the California Department of135

Water Resources (see Section 2.1 below).136

We use the hydrodynamic data as inputs to simulate the flow-field in the sec-137

tion of river system with sub-meter spatial resolution and one second temporal138

resolution using an Unsteady Reynolds-averaged Navier Stokes (URANS) CFD139

model (Fig. 1a-c). We use the fish trajectories to first quantify the kinematics140

of motion (i.e., the velocities and accelerations of the fish) and, subsequently,141

the hydrodynamic information to quantify the dynamics of motion, i.e., the142

drag forces experienced by the fish and the locomotion forces exerted by the143

fish (Fig. 1d). We then model the locomotion force of each individual using the144

information from the fish trajectories and local hydrodynamic forces by training145

the neural network model describing fish locomotion behavior. Subsequently,146

we employ the trained neural network for multivariate time-series prediction of147

locomotion forces as a function of the time series of hydrodynamic forces and148

behavioral responses (Fig. 1e). After producing predictions of locomotory be-149

havior, we used the drag force and the locomotion force predicted by the neural150

network to predict each individual fish’s trajectory (Fig. 1f).151
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Figure 1: Modeling
framework. a) Physical
features of the environ-
ment and inflow data
are collected along with
b) migrant movement
trajectories. c) Phys-
ical data are used to
build Computational
fluid dynamic (CFD)
modeling of water flow.
d) CFD predictions
are combined with ob-
served fish movements
used to decompose mo-
tion into drag-induced
forcing by the flow
and active locomotion.
e) The Long Short-
Term Memory Neural
Network (LSTM-NN)
model is developed to
forecast locomotion. f)
Locomotion predictions
and flow are combined
to forecast movement
trajectories and predic-
tions are compared to
out-of-sample data.
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2.1 Field data152

Flow and animal tracking data were provided by the California Department153

of Water Resources. These data were collected through a large collaborative154

study of a segment of the San Joaquin River within an agricultural and urban155

watershed in the California Central Valley (study details provided in AECOM,156

2015). The spatial locations of fish implanted with acoustic transmitters were157

inferred using tag detections by a hydrophone array extending over roughly158

1km of the San Joaquin River at the junction with Old River – a tributary –159

and immediately downstream of the Southernmost extent of the Sacramento-160

San Joaquin Delta. The Delta is an inverted alluvial fan estuary formed at161

the confluence of the Sacramento River from the North and the San Joaquin162

River from the South, as well as numerous tributaries. This watershed is used163

by several species of salmonids of high conservation concern. Subpopulations of164

Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) traverse165

portions of the San Joaquin River and the Delta during their juvenile migration166

to the Pacific Ocean (Williams, 2006), where they mature before returning as167

adults (Sridharan et al., 2006 for a detailed description of the hydrometeorology168

and hydrodynamics in the Delta).169

Our study domain includes distinct regions as shown in Fig. 1a: (i) a 500m170

long reasonably straight prismatic section of the mainstem San Joaquin River171

about 150m downstream of a meandering section where the flow is Southeast172

to Northwest, (ii) a junction at the Northwestern region of the straight section173

where the Old River bifurcates to the West, and (iii) a sharp 90◦ bend Eastward174

in the mainstem San Joaquin River. During the period when the study was175

conducted, the bifurcation into Old River was blocked by a temporary earthen176

barrier (white box in Fig. 1a). The Eastward bend at the northern end of the177

domain is characterized by an approximately 10m deep scour hole along the178
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North bank where the flow separates and strongly recirculates before rejoining179

the freestream along the San Joaquin River (see Appendix D for the bathymetry180

of study domain).181

Two-dimensional near-surface velocity fields were acquired by AECOM Tech-182

nical Services between 23 April and 30 May, 2012 using moored RDI Chan-183

nel Master side-looking broadband Acoustic Doppler Current Profilers (AD-184

CPs) operating at 600 Khz. Each cross-section was comprised of 2m-bins,185

over which point velocity measurements were averaged over several minutes. A186

5m-resolution flow field was reconstructed at fifteen-minute intervals through-187

out the study domain by first numerically computing the streamlines from the188

Southermost ADCP cross-section and performing an inverse distance weighting189

interpolation using the velocity vectors obtained from the instrumented cross-190

sections (Stumpner, 2013a, Stumpner, 2013b). Fish trajectories were obtained191

from 424 Fall-run Chinook salmon implanted with injectable HTI hydroacoustic192

tags (M800 and 795Lm models) which were detected at thirteen HTI hydroa-193

coustic detectors (model 590) deployed in an two-dimensional array throughout194

the system. By colocating fish position using a minimum of four detectors, fish195

positions were typically estimated at a precision of within 1m every two seconds196

(AECOM, 2015). In the present study, we used 184 of these tracks that were197

sufficiently long to be included in the neural network analysis. We applied our198

own post-processing pipeline to raw tag detections. This consisted of breaking199

tracks from each fish into sub-segments if subsequent locations were separated200

by more than 30 seconds in time. Within each sub-segment, we smoothed tracks201

using a third-order Savitzky-Golay filter with filter length of 22 seconds. Po-202

sitions were also interpolated to a regular time interval of 2 seconds between203

subsequent locations.204
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2.2 Fish behavior205

2.2.1 Movement Kinematics206

The first step in our workflow is describing the kinematics of fish movement. The207

accuracy of position data in the depth dimension was poor, likely due to con-208

straints on the positioning of hydrophones determined by the relatively shallow209

average depth of the study region (AECOM, 2015). As a result, we were unable210

to study movements of fish in the depth dimension, and we retained only the211

horizontal coordinates of the position of each fish. Accordingly, tracks are rep-212

resented as 2-dimensional trajectories through the river section, and we consider213

only horizontal components of the fish kinematics and dynamics. Henceforth,214

we assign the East-West direction as the x-dimension and the North-South di-215

rection as the y-dimension. To keep track of the relative motion of fish and216

flowing water, we define two reference frames: an inertial frame (x, y) fixed at217

a point on the river bank and a relative frame (x′, y′) moving along the fish218

trajectory with water velocity vw, see Fig. 1d. Given these reference frames,219

the position of a fish can be defined as follows:220

rg = rr + rw. (1)

Here, rg is the fish position with respect to the inertial frame (x, y), rr is the fish221

position with respect to the relative frame (x′, y′) and rw is the position of the222

relative frame with respect to the inertial frame. By recursively differentiating223

Eq. 1 with respect to time we obtain the velocity vg and acceleration ag of each224

fish as follows225

vg = vr + vw, (2)

ag = ar + aw. (3)
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vg and ag are the fish’s velocity (or overground velocity) and acceleration with226

respect to the inertial frame, vr and ar are the fish relative velocity and accel-227

eration with respect to the relative frame and vw and aw are the velocity and228

acceleration of the relative frame with respect to the inertial frame. The latter229

quantities can also be interpreted as velocity and acceleration of a water parcel230

along the fish’s trajectory. Eq. 2 and Eq. 3 are useful to decompose the fish231

motion (see Section 2.2.2 below).232

2.2.2 Movement Dynamics233

Once the kinematics are defined, we subsequently apply the momentum equa-234

tion (i.e., Newton’s second law of motion) to each fish to quantify its movement235

dynamics. In the horizontal plane, we identify two forces for each fish: locomo-236

tion force FL and drag force FD, see Fig 1d. We assumed that vertical forces237

such as gravitational force and buoyancy balance each other resulting in null238

vertical acceleration. Defining the fish’s mass as mfish, the fish dynamics can239

be summarized as240

mfishag = FL + FD. (4)

The drag force acts opposite to the relative motion of the fish moving with241

respect to the surrounding flow and it can be defined (Hoerner, 1965) as242

FD = −1
2ρwAfCd||vg − vw||(vg − vw), (5)

where ρw is the water density, Af is the fish’s wetted area and Cd is the drag243

coefficient, see Appendix A for how we calculate Cd and Af . The term vg −vw244

is the fish relative velocity vr with respect to the relative frame (see Eq. 2). The245

locomotion force can then be calculated by inverting the momentum equation,246

see Eq. 4. For this approach to be useful for understanding how instantaneous247
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fish behaviors contribute to their overall migration trajectories, we need infor-248

mation on the drag force at a spatial and temporal resolution commensurate249

with the tracking data. While mfish can be obtained from the metadata as-250

sociated with the tracking experiments and ag can be directly obtained from251

the tracking data, FD cannot be calculated at the desired resolution from the252

fifteen-minute 5m-resolution interpolated ADCP vw fields. We therefore devel-253

oped the CFD model of the river system to estimate vw, and used this estimate254

to infer FD and compute FL. The details of the CFD modeling are described255

in the following sections.256

The tracking data consist of 184 fish tracks for a total of 129, 830 location257

points with a standardized temporal resolution of 2s. We show several ex-258

ample tracks in Fig 1b. Given the fish position xg(tn) from each track, the259

fish velocity with respect to the inertial frame (see section 2.2.1) is vg(tn) ≈260

(xg(tn+1) − xg(tn))/∆t, where tn = [2, 4, 6, . . . ] and ∆t = 2s. The fish ve-261

locity with respect to the relative frame is obtained by reversing Eq. 2 such262

that vr(tn) = vg(tn)− vw(tn). vw(tn) is computed from the CFD results for263

each fish track (see section 2.3). Consequently ar(tn) ≈ (vr(tn)−vr(tn−1))/∆t.264

With the kinematics defined thus, it is now possible to calculate the locomotion265

force for each fish by combining Eq. 4 and Eq. 5 such that266

FL(tn) = 1
2ρwAfCd||vr(tn)||vr(tn) +mfishag(tn) = f(vg(tn),vw(tn)). (6)

It is important to notice that FL(tn) is a function of vg(tn) and vw(tn) as shown267

in Eq. 6.268

2.3 Hydrodynamic variables269

The next step in our workflow is to compute the drag force FD on the fish. Since270

FD is a function of vw (see Eq. 5) we simulated the flow dynamics of the river271
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using a three-dimensional CFD model based on Unsteady Reynolds-Averaged272

Navier-Stokes (URANS) equations. The river flow is considered incompressible273

and isothermal with the deflection of the water surface being represented by a274

two-phase water-air Volume of Fluid (VOF) model. We used the openFOAM275

solver interFoam (Deshpande, Anumolu, and Trujillo, 2012) to develop this276

model. Although the tracking data we used are two-dimensional, we constructed277

a three-dimensional CFD model to realistically represent the statistics of the278

turbulence and the flow dynamics at the scour hole and in regions near the279

channel banks. We assumed tracks were located within the uppermost cell of280

the CFD volume corresponding to approximately 0.3 meters below the water281

surface.282

2.3.1 Solver and Model Parameters283

The interFoam solver in openFoam implements the continuity and momentum284

equations for isothermal and incompressible flows along with an additional equa-285

tion tracking the fraction of air within each parcel of water. The URANS models286

requires turbulence closure equations in order to be a well-posed PDE system287

(Menter, 1994). We used the k − ω equations to represent the statistics of the288

unresolved turbulence. The boundary conditions for the velocity and the water289

elevation are based on field measurements, see Section 2.1. The empirical flow290

velocity time-series is available at the inlet section for the three-month period291

from March to May with a time resolution of 15 minutes supersampled linearly292

at 2s intervals.293

2.3.2 Modeling active locomotion: a neural network approach294

The final step in our workflow (Fig. 1e,f) is to develop a model describing how295

fish locomotion depends on features of the environment, including the hydrody-296

namic forces the animal experiences as it moves through the water. The details297
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of sensory integration, processing, and decision-making during navigation are298

poorly understood for most migratory species, including migratory fishes. To299

avoid making ad hoc assumptions that might arbitrarily restrict the form of the300

relationship between physical variables and movement behavior, we modeled301

effects of flow on movement behavior using a flexible approach for time-series302

prediction, the Long Short-Term Memory Neural Network (LSTM-NN).303

We selected the LSTM-NN as a reasonable model of movement behavior for304

two reasons: first, in the past, LSTMs have been used successfully to model305

movements of vehicles and pedestrians (e.g., Xue, Huynh, and Reynolds, 2018,306

Altché and De La Fortelle, 2017). Second, there is detailed documentation307

in the literature (Kang and Choi, 2005) on how LSTMs are implemented in308

TensorFlow (Abadi et al., 2015). This existing software implementation makes309

LSTMs a convenient modeling tool for describing the relationship between phys-310

ical variables and migrant behavior when no a priori model exists. Details of311

the underlying structure of the LSTM and how it maps inputs to outputs is312

given in the Appendix D. In the Discussion, we further elaborate on the pros313

and cons of LSTM and the situations in which it is likely to provide a good314

model of navigation behavior.315

In the current application, we use the LSTM to predict the locomotory force316

produced by migrating fish at each time step. We take, as input to the net-317

work, the fish’s overground velocity, vg, and the water velocity, vw, because318

FL = f(vg,vw) as shown in Eq. 6. This assumes the fish could measure319

overground velocity, which could be accomplished, for example, through visual320

means, by estimating the optic flow of visual features on the benthos (e.g., the321

river bed itself, submerged debris or aquatic vegetation). In the past, envi-322

ronmental variables such as water acceleration, hydrostatic pressure (Goodwin323

et al., 2014), turbulent structures (Lacey et al., 2012), turbulent kinetic energy324
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intensity (Gao et al., 2015), and circulation around the fish (Oteiza et al., 2017)325

have been used to explain fish movement behaviors. We decided to use the326

water velocity experienced by the fish because the river system under consider-327

ation is characterized by a relatively low turbulent kinetic energy content, and328

because other mechanisms of behavior response to variables such as the local329

shear or circulation are not understood in complex environmental flows. More-330

over, exploratory analyses including other variables in LSTM-NN training did331

not indicate improved performance.332

The resulting trained LSTM-NN is a function that relates the overground333

velocity and water velocity experienced by a migrating fish at some time tn−1334

to the locomotion force produced by that fish at time tn:335

FL(tn) = LSTM(vg(tn−1),vw(tn−1)), (7)

where tn is the discrete time-step with n = [0, 1, ..., N − 1, N ]. We note that336

the use of vg in this formulation allows us to explicitly model the locomotion of337

the fish as a function of its memory of its response to the local environment, as338

well as its current sensory experience. Details of LSTM-NN structure and how339

inputs map to predictions are given in Appendix C.340

2.4 LSTM-NN fitting, predictions, and out-of-sample test-341

ing342

We used the LSTM-NN module available in TensorFlow (Abadi et al., 2015)343

for predicting FL. The training data set consisted of the time-series of over-344

ground velocities of fish and water velocities along the fish tracks. Furthermore,345

we used the time-series related to the observed components of the locomotion346

force FLx(tn) and FLy (tn) computed with the field data, see Eq. 6, as reference347

output for the LSTM-NN training. We optimized the LSTM-NN settings to348
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minimize the average error of ∆FLx and ∆FLy , where ∆ is the difference be-349

tween the predicted and actual value. We tested a number of LSTMs-NNs with350

an increasing number of cells and used the k-Nearest-Neighbor method (Arya351

et al., 1998) to select the architecture with the optimal number of cells (see352

Appendix C). We found an LSTM-NN with 112 cells to be the optimal con-353

figuration, because it produced ∆FLx
and ∆FLy

with minimal average error.354

After the end of the cascade of LSTM-NN cells, we included a dense layer of two355

rectified linear activation functions, ReLU , to output the model results (Abadi356

et al., 2015). The length of the training data set was 60% of the original data357

set subdivided in 72 batches; the total length of the data set consist of 129,830358

data points. We trained the LSTM over 30 epochs.359

2.5 Forecasting fish movements360

Once the LSTM-NN model of FL(tn) is fitted to training data, it can be used361

to predict migrant trajectories by applying the forward Euler method to Eq. 4362

as follows:363

mfish
vg(tn)− vg(tn−1)

∆t ≈ mfishag(tn) = FL(tn) + FD(tn), (8)

Hence, considering Eq. 2 and Eq. 5364


FL(tn) = LSTM(vg(tn−1),vw(tn−1))

vg(tn) = vg(tn−1) + (FL(tn) + FD(tn)) ∆t
mfish

xg(tn) = xg(tn−1) + vg(tn)∆t

(9)

The initial conditions vg(t0), vw(t0) and xg(t0) are determined from the cor-365

responding field data. This scheme can be used both to predict fish velocities366

and trajectories in-sample, and to predict entirely new trajectories, given the367
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appropriate input data.368

3 Results369

3.1 CFD results370

We used the CFD model of the study domain to compute flows over the duration371

that fish were present. In Fig. 2a, we show a snapshot of the water velocity372

field in the horizontal section near the water surface (where the fish trajectories373

are assumed to be contained). The contour colors represents the water velocity374

magnitude, while the vectors represent the direction of local flow. The southeast375

region close to the inlet is characterized by a flow that tends to be uniform. In376

contrast, the northwest region close to the barrier shows a large area of flow377

recirculation; two counter-rotating vortexes appear along the barrier Fig. 2b. A378

vortex rotating in the counterclockwise direction on the northern bank is visible379

in Fig. 2c. The formation of this vortex is due to the sharp bend of the river380

course and associated scour hole, causing the flow to recirculate along the north381

bank. We validated the CFD model by comparing the velocity profiles from the382

numerical simulation against the velocity profiles from the field measurement;383

we show in Fig. 2d and 2e that the CFD results (lines) are in good agreement384

with the ADCP measurements from two cross sections which include a typical385

variation of ±5.8cm/s within each velocity bin (dots; AECOM, 2015).386

3.2 Fish migration behavior and LSTM model predictions387

The tracking data provided is an extensive collection of fish velocity and tra-388

jectory estimates from across the study domain. By applying the velocity de-389

composition introduced above to the fish trajectory data and CFD-generated390

flow velocity predictions, we were able to estimate the distinct contributions of391
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(b) (c)

(d)

(a)

(e)

Figure 2: a) Snapshots of the velocity field magnitude at one point in time. The
color bar indicates flow magnitude in units of m/s. Lines through the domain
show cross-sections used for model validation. Red line: Section 1 (shown in
panel e). Green line: Section 2 (shown in panel d). b) Zoomed in view of the
Western bank showing regions of weak recirculation flow. c) Zoomed in view
of the Northern bank showing a vortex. d) Comparison between CFD flow
predictions (line) and water velocity magnitude measured by ADCP (blue dots
and error bars) in Section 2. Profiles averaged over 30 minutes. e) Comparison
between CFD predictions and data.

water flow and migrant locomotion to the observed overground velocity of each392

migrating animal. In Fig. 3b, we show the probability density function (pdfs)393

of the magnitudes of the fish overground velocity, ||vg||, and the fish relative ve-394

locity ||vr|| (i.e., the animal’s velocity relative the the moving water), as well as395

the magnitude of water velocity at observed fish locations ||vw||. Note that the396

overall magnitude of relative velocity of the fish – the component of velocity due397

to active locomotion – often exceeds the magnitude of water velocity, indicating398

that fish regularly swim at speeds that are higher than the speeds of the flows in399

which they are swimming. This can be seen more directly in the distribution of400

the ratio of relative velocity magnitude to the overground velocity magnitude,401

Fig. 3a. The right tail of this distribution shows cases where fish are swimming402
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at speeds that far exceed the speed of local water movement.403

(a) (b) (c)

Figure 3: Empirical velocity data and LSTM-NN prediction performance. a)
Pdf of the ratio of the magnitudes of the fish relative velocity to the water
velocity. b) Pdfs of magnitude of the fish relative and overground velocity (green
and blue distributions, respectively) and pdf of water speed at fish locations
computed from CFD model (red distribution). c) Pdfs of prediction errors
from the LSTM model shown as percentage error in predicted direction (orange
distribution) and magnitude (grey distribution) of locomotion force.

Employing Eq. 6, velocity estimates can be used to estimate the locomotory404

force produced by each fish to achieve its observed motion. The LSTM-NN405

model of locomotion accurately predicted this locomotory force in the 51,932406

data points (40% of the original data set) that were held out during training,407

Fig. 3c. Typical errors for direction are within 20% of observed values, and408

magnitude estimates are typically accurate to well within 10% of observed val-409

ues, Fig. 3c. Our results indicate that our model of fish swimming behavior is410

able to predict this behavior for times and locations on which the model was411

not trained (i.e., on the out-of-sample data).412

Given a prediction for the locomotory force, the equation system in Eq. 9413

can be used to predict a fish’s trajectory, xg(tn), in addition to the locomotion414
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forces, accelerations, and velocities.415

We show the distributions of error in predicting position prediction measured416

in body length for several time ahead predictions, e.g. from 2s up to 30s (pre-417

dictions shown are for 51,932 data points held out-of-sample during training)418

(a)

(b)

(c)

(d) (e)

(f) (g)

Figure 4: Trajectory prediction performance over different forecast time hori-
zons. a) Pdfs of the error in predicting the position of the fish [in body lengths]
for several of the prediction horizons. The vertical line at two body lengths in-
dicates that the mode of the error in predicting fish positions is well contained
for even large forecast time horizons. b) Mean error (red) and standard devi-
ation (black) in predicting the position over forecast horizon (time in seconds)
and average distance traveled by the fish (scale in green [in body lengths]). c)
Example of a single trajectory prediction. Blue line shows observed trajectory;
red points show predicted trajectory for 2s-ahead predictions. d) Zoomed into
a straight section of the track (zoom 1) for 2s-ahead prediction. Black points
show an initial location of the fish from which the Eq. 9 is initialized. Red
points show predicted location 2s-later e) Zoomed into a curved section of the
track (zoom 2) for 2s-ahead prediction. f) and g) 6s-ahead predictions zoomed
into the sections shown in d) and e) respectively. Colors and symbols in e), f)
and g) are as in d).
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in Fig. 4a; while the tail of the error distribution includes significantly larger419

errors as the prediction horizon increases, the mode of the error distribution420

only grows by roughly one body length when moving from a prediction horizon421

of 2 seconds to a horizon of 30 seconds. Red and blue distributions in Fig. 4a422

show 2s-ahead and 6s-ahead predictions, illustrating that increasing the fore-423

cast horizon from 2 to 6 seconds does not result in a dramatic decrease in the424

quality of predictions. Nevertheless, the discrepancies between the observed and425

predicted trajectories do continue to grow as the prediction horizon is increased426

as one would expect. In Fig. 4b, we show the dependence of the mean and stan-427

dard deviation of the error in predicting position on the forecast horizon. Up to428

forecast horizons of 30 seconds, the mean prediction error remains below four429

fish body lengths. It is worth noting that the mean and standard deviation of430

prediction error represent a small fraction of the typical travel distance during431

any given forecast horizon. For example, in 30s the average travel distance is432

91.1 body lengths while the mean error is about 3.5 body lengths, green scale433

in Fig. 4b. In Fig. 4c, we show a sequence of predictions along the length of434

a long trajectory. In Fig. 4c the blue line is the actual trajectory of a tagged435

fish while the red dots are the 2s-ahead predictions; this fish trajectory consists436

of 455 points corresponding to 906s of the fish’s trajectory through our study437

region. We zoom into two parts of the trajectory which are structurally different438

from each other: a relatively straight section in Fig. 4d and a sharply curving439

section in Fig. 4e. In these plots, the black dots are initial locations to initialize440

the model in Eq. 9. In both sections of the track, there is close alignment441

between the observed and predicted trajectory points. In Figs. 4f - 4g, we show442

the same sections of the track for 6s ahead predictions (3 time-steps ahead);443

while the accuracy tends to decrease as the prediction horizon increases, errors444

remain reasonably bounded, even in the highly curved region of the trajectory.445
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Figure 5: Predicted water flow, velocity ratio and locomotory scope under high
(upper panels) and low (lower panels) net flow conditions. a) Flow velocity field.
b) Ratio of the relative velocity of the fish to the water velocity. c) Locomotory
scope, SL. Note large differences in range of predicted scope between high
(upper) and low (lower) flow conditions.

By combining the CFD model to predict flow, and the LSTM-NN to predict446

fish locomotion in response to flows, one can explore a wide range of questions447

about how flow and locomotory behavior of animals interact under different448

conditions. For example, by exploiting the first two equations in Eq. 9, it is449

possible to estimate the movements of fish across the entire flow domain for450

different environmental conditions of interest. In Fig. 5a, we show snapshots of451

the water velocity vector field in the river system during the period of lowest and452

highest outgoing flows, respectively. In Fig. 5b, we show the “relative swimming453

velocity”, Rfw, defined as the ratio of the magnitudes of relative velocity of fish454

and the water velocity, for the same flow conditions shown in Fig. 5a. Two455

key patterns are immediately evident. First, the relative swimming velocities of456

the fish regularly exceed water velocity throughout much of the domain. This457

predicted spatial pattern is consistent with the empirical observation shown458

in Fig. 3a-b that the observed relative swimming velocities regularly exceed459
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water velocity. Moreover, this demonstrates the degree to which fish movements460

appear to be driven by active swimming behavior rather than simple passive461

forcing by the flows. The second pattern evident in Fig. 5b is that there is462

strong spatial heterogeneity in the ratio of fish to water velocities, and these463

spatial patterns change as the overall flow transitions from weak to strong. For464

example, during low flows, the relative swimming velocity is greatest in the open465

channel, upstream of the bend. During high flows, relative swimming velocity466

is much slower in this same region. During high flow, the relative velocities of467

fish are smaller than the water velocity in the regions of high circulation near468

the channel bifurcation, whereas this pattern is not evident at low flows.469

To determine the impact this spatial and flow-dependent variation in be-470

havior has on migration energetics, we can estimate the rate of power output471

required to achieve predicted movements across the domain. We do this by472

defining a quantity we will call “locomotory scope,” SL = 1 + FL · vr/RMR,473

which characterizes the power output required to fuel resting metabolism and474

locomotion, normalized by the resting metabolic rate (RMR) (see Appendix A475

for RMR calculation). The locomotory scope is a measure of the power output476

of an animal measured in units of resting metabolic rate. Thus, a locomotory477

scope of one corresponds to a case where an individual devotes no power to478

locomotion, whereas a value of five corresponds to a case where the total rate479

of power output (including resting metabolism) is five times resting metabolic480

rate. Note that locomotory scope as it is defined here is not the same as aerobic481

scope because we neglect any power loss due to inefficiencies in force produc-482

tion, and we do not consider other sources of power consumption (e.g., specific483

dynamic action) that could be relevant during migration. Thus, locomotory484

scope should be taken as a lower bound on the relative power output required485

during movements.486
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Our analysis of predicted locomotory scope reveals strong spatial patterns in487

power output as well as strong differences in patterns across specific instances488

of low and high flow conditions, Fig. 5c. Under low flow conditions, locomotory489

scope was generally below 1.5, indicating that the power required to produce490

predicted migratory movements across the domain was generally less than half of491

the resting metabolic rate of migrants. The highest relative power outputs were492

predicted to be along the center of the main channel, upstream of the channel493

bend, and in a region of relatively high circulation near the eastward channel494

bend, Fig. 5c. In strong contrast to these patterns, locomotory scope during495

high flows was as large as 10 in some regions of the domain, indicating that496

predicted movements in those regions required total power outputs 10 times497

higher than resting metabolic rate. The highest rates of power output were498

predicted to be in the region of strong flow recirculation near the eastward499

channel bend and along the eastern bank in the same region. However, even500

outside of these regions the locomotory scope exceeded a value of 1.5 throughout501

much of the domain. One might expect migrants to take advantage of strong502

oceanward flows in the high flow conditions by drifting passively rather than503

swimming actively. To the contrary, our model suggests that migrants generally504

use far more power under high flow scenarios, particularly in local regions of505

strong unsteady flow. This is due, at least in part, to the fact that in weak506

flows, the locomotion force tends to be biased in alignment with the direction of507

local water flow (Appendix A), whereas in more powerful flows, fish locomotion508

is aligned opposite or orthogonal to the direction of local water flow.509

4 Discussion510

Here, we have developed a general methodology to combine quantitative es-511

timates of a turbulent environment with measurements of the movements of512
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animals to better understand migratory behavior in the wild. Our methodol-513

ogy combines animal tracking data with high resolution physical modeling of514

environmental flows – here achieved using computational fluid dynamics – to515

estimate the dynamic flow environment migrants experience and determine the516

component of force of migratory movements due to active locomotion by the517

animal. Finally, we employ recurrent neural network methods to relate the518

physical conditions experienced by the migrant to locomotion behavior, and519

use this model to forecast movements over times and conditions outside those520

included in the training data.521

Reconstruction of the local physical environment and decomposition of active522

and passive components of movement have the potential to offer new insights523

into the processes that influence the movements of migrating animals in complex524

environments. This approach extends recent work to characterize how migrants525

move in relation to coarser-scale environmental flows such as water currents and526

regional wind patterns (e.g. the use of favorable prevailing winds and fast air527

streams by migrating insects, Alerstam et al., 2011). Our approach also holds528

significant promise as a tool for management of migratory species because, af-529

ter careful testing on out-of-sample data, our framework allows one to make530

predictions about both the physical and behavioral consequences of modifying531

the migratory environment, for example by raising or lowering flow, altering the532

bathymetry or course of the river, or installing equipment such as water diver-533

sion facilities along the migration route (Thorstad et al., 2008, Silva et al., 2018).534

Although we have applied our framework to migratory fish in a river system,535

the same methods could be used to understand migratory strategies of flying536

species by combining high-fidelity tracking during flight (Ling et al., 2018) with537

CFD modeling of environmental features of interest (e.g. wind turbines, Martin538

et al., 2017) or physical modeling of turbulent convective flow in the atmospheric539
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boundary layer (Reddy et al., 2016). It is well known that flying animals also540

respond to local air flows (Scacco et al., 2019, Shepard, Ross, and Portugal,541

2016 and Dabiri, 1993); however, constructing and validating models of air flow542

poses some unique challenges. For example, it is often challenging to collect543

high-resolution time-varying data on air currents in the atmosphere that can be544

used during model validation. For small-scale flow phenomena such as boundary545

layer flows over localized topography and built-up areas on the order of a few546

hundred square-meters to a few square kilometers, wind-tunnel experiments over547

downscaled models can provide validation data sets for high-resolution URANS548

and LES models of atmospheric flow (e.g., Kellnerová et al., 2018 and Jimenez549

and Moser, 1998). For flows distributed over larger open areas, on the order of550

tens of square kilometers, a combination of wind-vane, flux tower and LiDAR551

and Radar measurements may be used to produce reliable estimates of the air552

currents (Friedrich et al., 2012 and Madala et al., 2015). An alternate strategy553

more recently has been to dynamically or statistically downscale global circula-554

tion models to spatial-temporal resolutions required for regional-scale analysis555

and validate these downscaled models using a regional network of weather sta-556

tions (Winstral, Jonas, and Helbig, 2017 and Wagenbrenner et al., 2016). For557

many physical modeling methods, open source software packages are readily558

available (e.g., openFoam), as are packages for constructing statistical models559

(e.g., R, TensorFlow) of migration behavior once the locomotion component of560

migratory movements has been computed (Fig. 1e,f).561

Computational fluid dynamics, and computational modeling of the flow en-562

vironment more generally, have already proven to be useful for studying environ-563

mental flows in the context of animal migrations. For example, Gisen, Weichert,564

and Nestler (2016) developed a 3D CFD model of a hydropower dam tailrace565

using a Detached-Eddy Simulation turbulence model to evaluate impacts on566
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migrants. Reddy et al. (2016) developed a computational model of thermals in567

the atmospheric boundary layer to study how soaring birds navigate complex568

turbulent motion of air. Gualtieri et al. (2019) modeled fish migration through569

a river system as particles characterized by two bioenergetic parameters, one re-570

lated to the drag force a fish experienced and one related to the energy needed571

by a fish to remain in a specific location. Similar assumptions were adopted572

by Ramón, Acosta, and Rueda (2018) who studied the hydrodynamic drivers573

of juvenile salmon movements using CFD to compute the flow field across a574

river system. Although Gualtieri et al. (2019) and Ramón, Acosta, and Rueda575

(2018) modeled fish as passive particles dragged by the river flow, as we show576

here, even small migratory fish can swim very actively, and in many cases, their577

locomotion force production is significant. Indeed, our analysis of relative ve-578

locity of fish and water (Fig. 5) shows that the component of ground speed due579

to active locomotion is often greater in magnitude than the water speed, even in580

relatively fast flows. Our findings corroborate results from other systems (e.g.,581

Arenas et al., 2015), and suggests more generally that even small migratory an-582

imals such as the juvenile salmon considered here (mean length 112 mm) spend583

significant amounts of energy on locomotion, even when the net direction of584

environmental flow aligns with the direction of migration.585

Several researchers have begun using CFD models to attempt to understand586

how migrants navigate complex physical environments at spatial and temporal587

resolutions similar to those considered in our study. For instance, Goodwin588

et al. (2014) used a steady-state RANS CFD model to compute water field589

velocity in combination with an ad hoc fish behavioral model to represent fish590

movements in the vicinity of hydropower facilities. Gao et al. (2015) used a sim-591

ilar approach for a slot fishway, applying a parametric model of fish movement.592

Martin et al. (2017) combined a CFD model of a wind turbine and aerody-593
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namic modeling of bat flight to understand how flying bats might interact with594

the forces produced by wind turbines. In the present study, we extended the ap-595

proaches of these past models by developing a URANS CFD model to compute596

time-dependent flow variables. We employed a time-dependent CFD model be-597

cause the flow-field through complex channel morphologies like the one studied598

here can be extremely dynamic, particularly in river and estuary systems where599

flows can change due to a variety of reasons including precipitation, effects of600

tides, sudden storms and floods and local water diversions and runoff. A dy-601

namic, time-varying CFD model allows us to model changes in flows that occur602

as inflows change. In general, a dynamic model will be necessary to correctly603

decompose drag and locomotion forces when the flow field changes appreciably604

over time. Not accounting for changes in flow will lead to biased estimates of605

these components.606

After we validated that model against empirical flow measurements, we used607

flow estimates, along with observed fish migration trajectories, to infer the drag608

and locomotory forces that produced observed fish accelerations. Rather than609

prescribing an ad hoc model of locomotion behavior, we used a flexible recur-610

rent neural network model (the LSTM-NN) to describe how flow cues and past611

behavior influence locomotion behavior in the near future. Importantly, this612

approach provides accurate near-term forecasts of migrant behavior on out-of-613

sample data. Thus, our model both captures observed patterns of locomotion in614

complex flows, and is capable of making accurate out-of-sample predictions to615

evaluate hypothesis about the implications of migratory behavior across space616

and over ranges of environmental conditions (e.g., Fig. 5).617

To predict swimming behavior, we relied on a flexible multivariate time618

series method. Multivariate time series analysis methods such as the LSTM-619

NN have become popular in many fields including healthcare (Kang and Choi,620
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2014), phoneme classification ( Kang and Choi, 2005 ), and activity and ac-621

tion recognition (Pavlovic, Frey, and Huang, 1999, Geurts, 2001, Fu, 2015, Yu622

and Lee, 2015). In our analysis, the LSTM-NN model of swimming behavior623

revealed that knowledge of the flow environment the animal experiences as it624

moves can allow one to make accurate out-of-sample forecasts of a fish’s future625

movements, at least over short timescales (e.g. 2s-30s). This suggests not only626

that features of the flow influence the movement decisions animals make as they627

migrate (Liao, 2007, Oteiza et al., 2017), but also that the behavioral rules628

or “behavioral algorithms” (Hein et al., 2020) that relate flow to locomotion629

behavior are at least reasonably similar, both across individual animals, and630

over the range of time periods included in our study. We believe this work-631

flow of building data-driven models of behavior and validating predictions of632

those models on out-of-sample data is crucial, given that our understanding of633

how animals perceive and respond to sensory cues during migration is still far634

from complete. The flexibility of recurrent neural networks frees our approach,635

at least to some extent, from assumptions about the precise functional form636

relating flow variables to the swimming behavior of migrants. However, one637

disadvantage of using a highly flexible framework like LSTM-NN to relate envi-638

ronmental variables to fish behavior is that, due to the complexity of the neural639

network model structure, there is no compact symbolic representation of the640

functional relationships between input and output variables (Martin, Munch,641

and Hein, 2018). We expect future studies will unpack the patterns described642

phenomenologically by our LSTM-NN model of movement behavior. In partic-643

ular, it will be insightful to determine whether migration behavior, like some644

other animal behaviors including predator evasion (Hein et al., 2018) and prey645

interception (Brighton, Thomas, and Taylor, 2017), can be described accurately646

by a set of relatively simple control algorithms (Hein et al., 2020). Future work647
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could apply other modeling paradigms (e.g., control theory, neuro-ecological648

modeling, Brighton, Thomas, and Taylor, 2017, Bar et al., 2015) to address this649

and other fundamental questions, including (i) which variables most influence650

locomotion, (ii) whether migratory behavior varies appreciably over time, and651

(iii) the extent to which different individuals respond to environmental variables652

in different ways. Notably, all of these questions require estimates of both the653

behavioral actions taken by individual migrants and the environmental variables654

experienced by those individuals. Our methodology provides a way to acquire655

such estimates.656

While the overall methodology presented here holds much promise, it nev-657

ertheless has important limitations. Firstly, due to computational limitations658

on the simulation of turbulent flow, the spatial and temporal resolution of our659

CFD model is limited. This means that we cannot resolve fine-scale flow at the660

scale of the migrating fish’s body, nor can we fully resolve temporal fluctuations661

in flow due to turbulence. This makes it challenging to directly link our model662

of locomotion behavior with biomechanical (e.g., Lighthill, 1971, Bandyopad-663

hyay, 2002; Cui et al., 2017) or behavioral models (e.g. Oteiza et al., 2017)664

that describe movement of the migrant’s body. Nevertheless, our model does665

have the ability to resolve larger features in the flow on the spatial scale of tens666

of body lengths. Such features include gradients in water velocity near chan-667

nel banks and zones of strong recirculation (e.g., see Fig. 2). This allowed us668

to conclude, for example, that effects of these features on migratory behavior669

can be significant (Fig. 5). A second limitation of our approach is due to the670

tracking data themselves. Tracking data were acquired through hydrophone de-671

tections of animals implanted with acoustic transmitters. These data therefore672

have limited spatial resolution and the status of tagged animals are unknown673

(e.g., tags from fish consumed by larger predatory fish can still be detected by674
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the hydrophone array). Such limitations are worth considering when choosing a675

tag technology to use for studies that will combine tracking and physical mod-676

eling to study migratory movement behavior. Another important consideration677

is that our framework cannot fully address the question of whether high or low678

flow conditions are more favorable for migration because it does not consider679

how energy use trades off with other potentially important quantities related to680

migration success such as the travel time through regions of high predation risk681

(Anderson, Gurarie, and Zabel, 2005). The times taken by fish to traverse our682

entire study region were longer, on average, when overall flow was weak (mean683

of 63 minutes for trajectories experiencing the weakest 10% of flows) than when684

overall flow was strong (51 minutes for trajectories experiencing strongest 10%685

of flows). However, variability in this trend was significant. Nevertheless, travel686

time and other tradeoffs could be included in our framework by integrating687

additional data sources (e.g. predation risk data).688

Despite its limitations, our framework can be used to gain traction on ques-689

tions that have fascinated migration biologists for many years. Many such690

questions relate to how migrants use energy as they move through a landscape.691

As demonstrated in Fig. 5, our methodology has much potential to address692

these types of questions. For example, when applied to distinct environmental693

conditions observed in our data set, locomotion force predictions revealed that694

fish generally spend far more energy moving through the landscape when the695

overall rate of flow is high than when the rate of flow is low, despite the fact that696

the net flow direction is aligned with the direction of migration. Our analysis697

provides additional insights into the cause of this pattern; when fish swim in698

slow currents their movements are generally oriented uniformly relative to the699

flow with a slight bias toward alignment in the direction of flow (see Appendix700

A). On the other hand, when migrants move through high speed currents, their701
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movements are primarily oriented against the flow or laterally relative to the702

direction of flow. These lateral and opposing movements require greater power703

output. It is also important to note our methodology is in no way limited to704

the study of migratory movements. Both swimming and flying animals mod-705

ulate short-term movement behavior in response to local environmental flows706

(Scacco et al., 2019, Shepard, Ross, and Portugal, 2016 and James, 2007). The707

same methodology presented here can be applied to study animal movement708

behaviors beyond the context of migration.709

In this work, we have presented a general methodology for merging data710

and modeling of environmental currents with tracking data to understand an-711

imal migratory behavior. Our approach extends more traditional methods in712

migration biology, which have often either ignored interactions with wind and713

water currents, or modeled these interactions in simple ways that are not fully714

informed by physical data (e.g., Alexander, 1998, Pennycuick, 2003, Hein, Hou,715

and Gillooly, 2012, Stier et al., 2014). We believe our framework has the poten-716

tial to shed new light on how migrants interact with wind and water currents717

and how behavior and biophysics interact to determine the costs and benefits718

of different migratory strategies and environmental conditions.719
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Appendix A: Drag coefficient, resting metabolic1

rate, and swimming orientation relative to flow2

To estimate the dragging force on each fish, we required an estimate of the drag3

coefficient for these animals. The average fish length was L = 0.112m (AE-4

COM, 2015). The drag coefficient was estimated using a formula for Reynolds5

numbers Re > 2000 based on fish length and fish relative velocity, Cd =6

493.9/R0.922
e (Arenas et al., 2015). Given the average fish relative velocity, vr =7

0.34m/s, average fish length L = 0.112m and water density ρw = 999.06kg/m3
8

we have Cd = 0.033. The fish wetted area Af is estimated using the formula9

Af = 0.28L2.11 = 0.0026m2 (Webb, 1976).10

Mean fish length was also used to estimate resting metabolic rate for the11

locomotory scope calculation. We first used length to estimate average mass12

using scaling a scaling relationship for juvenile Chinook Salmon (Kimmerer et13

al., 2005): mfish = (10−3)(1.8 × 10−3)L3.44, which gave an estimate of mfish ≈14

0.02kg. The resting metabolic rate was calculated using the formula: RMR =15

m0.95
fish10−1.385+0.021T , where T is the water temperature (degrees Celsius, Killen16

et al., 2016).17

Fig. 5c (main text) illustrates that fish swim in ways that can cause them18

to expend far more energy on locomotion when swimming in strong flows than19

when the overall rate of flow through the system is weak. To better understand20

the source of this pattern, we can use the observed tracks along with CFD-21

derived estimates of flow direction to determine how fish orient to local flow in22

low versus high flow conditions. Fig. 1 shows that when the overall rate of flow23

through the system is relatively low, fish movements tend to be oriented more24

or less uniformly with respect to the direction of flow, with a slight bias in the25

direction of the flow (Fig. 1, left circular histogram). When water currents are26

1



Figure 1: Orientation of fish relative velocity with respect to direction of water
flow; low flow regime (left) high flow regime (right). An angle of 0 corresponds
to alignment with local water velocity, whereas 180 corresponds to alignment
directly against local water velocity. Color scale shows fraction of observations
falling into each orientation bin.

fast, fish movements tend to be oriented opposite the flow or at at angles that27

would move them laterally relative to the flow direction (Fig. 1, right circular28

histogram). Thus, rather than moving in the same way under different flow29

conditions, fish tend to move in ways that oppose powerful local flows when the30

overall rate of flow through the system is high, leading to the high predicted31

costs of locomotion under such conditions (Fig. 5 in main text).32

Appendix B: CFD mesh generation and modeling33

details34

In this Appendix we give more details regarding the mesh generation and bound-35

ary conditions used for the CFD simulations. We used SnappyHexMesh (Weller36

and Tabor, 1998), the openFOAM meshing tool to generate a preliminary mesh37

which we subsequently trimmed to conform to the bathymetry. The prelimi-38

nary mesh consisted of four blocks (Fig. 2a). Each block comprises of a specific39

2



number of cells (Table 1). Block one is characterized by hexahedral cells with40

dimensions 0.8m × 0.64m × 0.3m respectively in the along-stream, lateral and41

vertical direction. Blocks two and three are characterized by hexahedral cells42

with dimensions 0.64m × 0.45m × 0.3m (Fig. 2b). Blocks two and three have43

a slightly finer mash in comparison with block one because most of the large44

coherent structures in the flow occur in the regions spanned by these blocks.45

Block four is at the outlet of the flow domain, and we therefore applied a gentle

nx×ny×nz Total
Block 1 150×210×38 1145700
Block 2 150×210×38 1145700
Block 3 150×210×38 1145700
Block 4 15×210×38 114570

Table 1: Number of cells for preliminary mesh. nx × ny × nz: number of cells
in x, y and z direction respectively.

46

stretch to the cells towards the outlet, Fig. 2c. The resulting cells dimensions at47

the outlet are 2.3m× 0.45m× 0.3m. All the blocks together form a preliminary48

mesh of 3,551,670 cells. We then adapted the preliminary mesh to the topogra-49

phy of the river using the openFOAM tool snappyHexMesh (Fig. 2d and Fig.50

2e). Snapped cells are subject to three consecutive mesh refinements. Hence,51

the refined snapped cells are three time smaller than the cells from the prelim-52

inary mesh. The refined snapped cells are arbitrary polyhedral cells bounded53

by arbitrary polygonal faces. Eventually, after the snapping process, the final54

mesh consists of 17,474,654 cells. Fig. 2f and 2g show the air-water phases55

initialized; the red and blue colors are the water and the air media respectively;56

the white color represents the water-air interface. We applied a zero-gradient57

for the velocity field on the outlet and the atmosphere boundaries, see Fig.2f.58

In the CFD simulations, we apply no-slip conditions to the velocity field on59

the riverbed and on the barrier, see Fig. 2g. We initialize the turbulent kinetic60

energy k at 5.4×10−5m2/s2 and the turbulent kinetic energy dissipation rate ω61

3



(a)

(b) (c)

(d) (e)

(f) (g)

Figure 2: a) Flow domain subdivided in four blocks. b) First 3 contiguous
blocks with different mesh resolution. c) Block 4 with a stretch mesh towards
the outlet. d) Preliminary mesh with outer cells. d) Final mesh with snapped
cells. Boundary and initial conditions: f) Top-down view. g) Down-top view.

at 2s−2 over the flow domain. We set the physical properties of the air and water62

media, such as kinematic viscosity and density for a constant temperature of63

15◦C (the system is considered isothermal). The density and kinematic viscosity64

for the air layer are ρa = 1.225kg/m3 and µa = 1.48 × 10−5m2/s, respectively.65

The density and kinematic viscosity for the water layer are ρw = 999.06kg/m3
66

and µw = 1.138×10−6m2/s, respectively. We set the time step for the simulation67

to 1s to ensure numerical stability.68

Appendix C. LSTM-NN parameterization and struc-69

ture selection70

To select the structure of the LSTM architecture, one must select the number71

of cells to include. We did this by evaluating a range of cell counts and mea-72

suring the prediction bias of models with these different structures. In Fig. 373

each dot represents a LSTM-NN architecture with an assigned number of cells74

while the corresponding mean values of ∆FLx and ∆FLy are displayed on the75

4



Figure 3: Optimal architecture based on kNN test. Average error for the x
locomotion component on the horizontal axes; average error for the y locomotion
component on the vertical axes. Every dot corresponds to a specific number of
cell in the LSTM architecture. Red cross is the optimal configuration with zero
error for both error locomotion components.

horizontal and vertical axis respectively. The optimal architecture correspond76

to the number of cells that produce the minimum error for ∆FLx and ∆FLy.77

In this case an LSTM with 122 cells is the optimal configuration, red cross in78

Fig. 3.79

An LSTM-NN consists of a cascade of interconnected LSTM cells (Fig. 1e80

main text). A key feature of LSTM cells is the presence of an internal state81

which serves as a “memory”, C(t), associated with each cell in the network. A82

generic cell receives three variables: the previous cell’s memory state C(t− 1),83

the previous cell’s output h(t− 1) and the current sensory input variables, x(t).84

The cell then performs different internal operations using so-called “gates” to85

produce two outcomes: the current memory state C(t) and the current output86

h(t). The gates performing the internal operation are the following:87

• Selection gate: select the information to forget. This gate uses x(t) and88

the previous cell’s output h(t − 1) employing a sigmoid function, hence,89

5



ft = σ(Wf [h(t− 1), xt] + bf ), where Wf and bf are weight and bias coef-90

ficients;91

• Input gate: select the information to remember. This step consists of92

two parts: first, a sigmoid function decides which values to update, it =93

σ(Wi[ht−1, xt] + bi). Next, a tanh function creates a vector of new candi-94

date values, C̃(t), that will be added to the state; C̃(t) = tanh(Wc[ht−1, xt]+95

bc).96

• Memory gate: update the previous memory state C(t−1) into a new mem-97

ory state C(t) with the operation C(t) = ftCt−1 + itC̃(t). The product98

ftCt−1 “forgets” information from the previous memory state C(t − 1).99

The product itC̃(t) selects new information to “remember.”100

• Update gate: finally the output cell is computed as h(t) = ot tanh(Ct)101

where ot = σ(Wo[ht−1, xt] + bo).102
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Appendix D. Bathymetry of the investigated site.103

Figure 4: Bathymetry of the investigated site.

104
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