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Neuro-Reachability of Networked Microgrids

Yifan Zhou

Abstract—A neural ordinary differential equations network
(ODE-Net)-enabled reachability method (Neuro-Reachability) is
devised for the dynamic verification of networked microgrids
(NMs) with unidentified subsystems and heterogeneous uncer-
tainties. Three new contributions are presented: 1) An ODE-Net-
enabled dynamic model discovery approach is devised to construct
the data-driven state-space model which preserves the nonlinear
and differential structure of the NMs system; 2) A physics-data-
integrated (PDI) NMs model is established, which empowers vari-
ous NM analytics; and 3) A conformance-empowered reachability
analysis is developed to enhance the reliability of the PDI-driven
dynamic verification. Extensive case studies demonstrate the effi-
cacy of the ODE-Net-enabled method in microgrid dynamic model
discovery, and the effectiveness of the Neuro-Reachability approach
in verifying the NMs dynamics under multiple uncertainties and
various operational scenarios.

Index Terms—Networked microgrids, data driven, neural
ordinary differential equation network, reachability analysis,
conformance theory.

I. INTRODUCTION

ETWORKED microgrids (NMs) allow microgrids to sup-
N port coordinately various smart community functions [1]
and help increase electricity resilience [2], [3]. However, two
major challenges arise in the dynamic analysis of today’s low-
inertia NMs [4], which prevent NMs from serving as dependable
resiliency resources: I) Lack of effective analytics to handle the
combinatorial explosion in verifying the NMs dynamics under
the infinitely many uncertain scenarios [5], and II) Unattainabil-
ity of accurate models for each and every microgrid, especially
the dynamic models of converters, loads and circuits [6], [7].
Reachability analysis is a novel method which can provably
enclose all dynamic trajectories under uncertain perturbations
and large disturbances in NMs [5], [8], [9]. It prevails over
traditional time-domain simulations [10] and energy function
approaches [11], [12] mainly due to the capability of processing
infinitely many uncertain scenarios efficiently. Even though
reachability analysis is proved to be a promising solution to
Challenge I, Challenge II above has been a major obstacle
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that prevents it from being widely adopted in the planning and
operations of NMs.

Learning reliable dynamic models for the unidentified subsys-
tems from measurements, therefore, is of paramount importance
for the data-driven NMs dynamic analysis. Koopman operator
and dynamic mode decomposition are popular approaches to
constructing linear approximation of nonlinear systems from
data[13], [14], whereas they are inefficient to establish nonlinear
ODE models for rapidly-fluctuating NMs subject to ‘random
walks’ of operating points disturbed by uncertainties [15]. Ma-
chine learning emerges to be a promising approach to power
system dynamics analysis, either for time-domain trajectory
prediction [16] or for stability assessment [17]. While earlier
studies have concentrated mainly on direct applications of neural
networks to power system analysis [18], [19], a recent trend
is to integrate power system characteristics with deep neural
network (DNN) techniques, such as recurrent neural networks
accounting for time-series power dynamics [20], [21], convolu-
tional neural networks considering the grid-like data from power
systems [22], [23], and physics-informed neural networks taking
advantage of a priori knowledge of power system’s physics mod-
els [24]. Nevertheless, discovering dynamic models behind data,
which is a long standing open problem, is substantially more
important in the sense of providing deep insights of the system
dynamics and allowing for formal verification and control of the
system.

The overarching goal of this paper is to establish a data-driven
method well suited to discovering the strongly nonlinear NMs
dynamics as well as to verifying the NMs dynamics under un-
certainties. To this end, this paper devises a Neuro-Reachability
method. The key innovation is to integrate the neural ordi-
nary differential equations network (ODE-Net) with reachability
analysis and conformance theory to allow for a data-driven
formal verification of the NMs dynamics under uncertainties.
The contributions of this work are threefold:

® An ODE-Net-enabled model discovery method is devised

to construct a nonlinear ODE model for the uncertainty-
perturbed NMs, which can best preserve the dynamic be-
haviours of NMs without assuming a priori any specific
dynamic modes. This modeling approach can effectively
address the data rich, information poor (DRIP) problem
widely existing in today’s microgrids.

® A physics-data-integrated (PDI) modelling approach is

then introduced to combine both physics-based and data-
driven ODE models, which enables reachability analysis
to verify the PDI-NMs dynamics incorporating the hierar-
chical control of DERs and network transients.
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ExSys.

e Reachability analysis for NMs is empowered with a con-
formance theory as a ‘feedback’ mechanism to further
improve the reachset accuracy induced by possible incon-
formance of the PDI-NMs behaviours compared with the
real NMs dynamics.

The remainder of the paper is organized as follows. Sec-
tion II introduces the ODE-Net-enabled dynamic model dis-
covery. Section III establishes the NMs model integrated by
both physics-based and data-driven subsystems. Section IV
devises the conformance-empowered reachability analysis for
the PDI-NMs dynamics. Section V presents case studies on a
typical NMs system to validate the Neuro-Reachability method.
Finally, Section VI concludes the paper.

II. ODE-NET-ENABLED DYNAMIC MODEL DISCOVERY FOR
MICROGRIDS

Pursuant to the attainablility of physics models, the overall
NMs system can always be partitioned into an internal subsystem
(InSys) and an external subsystem (ExSys), as illustrated in
Fig. 1. InSys, where the structure and parameters are precisely
known, can be readily formulated by assembling the dynamic
models of its components. ExSys, in contrast, has to be modeled
via a data-driven approach due to the absence of physics models,
the unavailability of state measurements, and/or the need to
preserve the consumer privacy.

This section devises an ODE-Net-enabled method to discover
a state-space model of ExSys.

A. ODE-Net-Based State-Space Model Formulation

The functional formulation of ExSys is established as
z=N(z, u) ey

Here, function N\ represents a state-space form of ExSys and
is to be learned from the measurements; x and u respectively
denote the state variables and input variables of ExSys. This
ODE-governed, learned ExSys model can be integrated with the
InSys model for assessing the overall NMs dynamics. Details of
x and u are introduced in Subsection III-B. The rationale behind
an ODE-governed ExSys model is provided in Appendix C.

Fig. 2 illustrates the dynamic model discovery using ODE-
Net. Taking = and w at time ¢ as the inputs, ODE-Net outputs
the time derivative of  and therefore explicitly establishes the
ExSys dynamic model in (1) by the forward propagation in the
neural network.
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Fig.2. ODE-Net-enabled dynamic model discovery of ExSys.
Given a time series of NMs trajectories as
{(t1,te, .. tn), (1,22, ..., &), (G1,U2,...,0,)}, ODE

-Net best matches the ExSys dynamics by minimizing the error
between the state measurements & and the numerical solution
of (1):

. - = 1 -
meanL(xi) = Z 5771'”331' — Z;|2
=1 =1 (2)

ti
st = @1 —|—/ N(z,u,0)dt
ty

where 6 denotes the ODE-Net parameters; 7; denotes the
weighting factor at time point s.

B. Continuous Backpropagation Technique

The main difficulty in the optimization of (2) lies in the ODE
integration operation in the constraints. In this subsection, the
continuous propagation technique [25] is applied to handle the
ODE integration in the ODE-Net training.

Lagrange multiplier A is first introduced to (2) to remove the
ODE constraints and build the following loss function:

L= ZL(%) — /tn AT (@ = N(z,u,0)dt (3)

to

Backpropagation computes the gradient of the loss function
with respect to the ODE-Net parameters to minimize the loss
function [26]. With the loss function (3) involving the integra-
tion operator, the partial derivative of £ with respect to 6 is
calculated as:
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The Lagrange multiplier variables are given by [27]:

a’ ON
— = 5
dt ox )
where the boundary conditions are set as:
T 4+ T 4+ T (- Ox
AT =00 (") =0 (t]) + 6)
oL
Then, (4) can be derived into:
oL " aN
o / AT ™
00 to 89

Collecting (5) and (7) leads to an ODE integration problem:

T T 8*
dt | 570 L 4
Subsequently, 50 can be obtained from (8) by any ODE
solver, e.g., Trapezordal integration. Given the final value of
A(t),i.e., AT (t,) in (6), rather than the initial value, (8) requires

solving the ODEs backwards in time, which leads to a reverse-
mode integration [25]:

®)

oL oL f
| = =5 —dt XT—dt
20|, ~ 00|, /t Z /
(€))
with A(t) also solved by the reverse-mode integration:
0.
ATt ) =AT(t) +/ —th (10)
ti

Further, consider a set of time series of NMs trajectories as
{@®, 2 40 )) (0™ 2™ 4™} For the j*" mea-
surement, let 3 L(J) 0 be the gradlent of the loss function com-
puted by (9). The overall gradient is obtained:

00 =1 00
Consequently, the ODE-Net parameters are updated using
gradient descent so that £ can be decreased during training:
oL

6 0—r—
— ’/‘60

Y

12)

where r denotes the learning rate.

The continuous backpropagation incorporates the “ODE
solver” in the gradient descent for the ODE-Net parameter opti-
mization, and hence effectively retains the intrinsic continuous
differential structure of the dynamical NMs.

C. Neural Network Structure Design

The keystone of ODE-Net is to model the continuous-time
nonlinear dynamics via the continuous backpropagation. As
for realization, ODE-Net can be built upon any well-designed
DNN architectures (e.g. multi-layer perceptron, residual neural
network). However, a deep ODE-Net involves a large number
of parameters and prohibitively high cost for computing 3 Na:
and 3 0 in the continuous backpropagation. To resolve this
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problem, [25] devises a continuous-depth network, which en-
ables a linear memory cost with network depth and controllable
numerical error.

In a classical neural network, the hidden layers follow a
discrete structure (i.e., layers 1, 2, - - -, K as illustrated by the
solid-line neurons in Fig. 2), and therefore formulates a set of
difference equations for forward propagation:

Zp+1 = 2z + h(zk, Ok) (13)

Here, k € N7T denotes the discrete layer; zj, and 8}, respectively
denote the output states and parameters of the k' hidden layer.

The continuous-depth network regards the forward propaga-
tion of the discrete layers in (13) as an Euler discretization of
a set of continuous differential equations, i.e., it continuously
propagates the states from the input layer to the output layer (see
the dotted-line neurons in Fig. 2). This idea leads to a continuous
“layer dynamics™:

dz(k)
dk

Here, k € R™ denotes the continuous layer; z (k) and 8, respec-
tively denote the output states and parameters of the continuous
hidden layer. As can be seen from (14), z k., i.e., the final output
of the hidden layer, can be directly obtained by integrating over
the continuous layers.

Based on the continuous depth network, the chain rule is
applied to compute 3 Nac and g—;/ac for (8):

ON g 0zx 0z ON

_ 9z1 ON _ o1 02k
ox K9z, ox’ 00, K50,

To obtain 3 az* 0}, in the equation above, the reverse-
mode ODE 1ntegrat10n discussed in Subsection II-B is again
applied. Specifically, in analogy to (3), the following ODEs are
formulated [25] for the gradient of z i with respect to z(k):

d gz | |- e
dk | 2-6, (2=2)T 29,

OZK

K
= h(z(k),0r) = zk = Z1+/ h(z,0,)dk (14)
1

5)

(16)

Then, in analogy to (11) and (12), the numerical solution of (16),
i.e., ai—*Kzl and B‘Z—;eh, is obtained by the ODE integration.

III. PHYSICS-DATA-INTEGRATED ODE MODELING FOR NMS
DyYNAMICS

Based on the ODE-Net-enabled ExSys formulation, this sec-
tion establishes the overall dynamic model of NMs by combining
the physics-based /nSys and data-driven ExSys, as illustrated in
Fig. 1.

A. Physics-Based Formulation of InSys

Given the model of each component (e.g., a DER, a power
load, a branch), InSys can be explicitly formulated as a system
of differential algebralc equatlons (DAEs):

_ g ( iln’w’bn7 Sex) (173)
n'"i" + ni = 0 (17¢)
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Here, (17a) formulates the dynamics of each component in
InSys, where s denotes the state variables of each compo-
nent; function g is formulated according to the dynamics
of each component; #'™ denotes the current injections from
each component and is normally formulated under the DQ
coordinates for the inverter-dominated NMs; w®” denotes the
uncertain inputs caused by DERs in InSys; s°® represents the
global control signals sent by ExSys, i.e., 2 and e as detailed in
Appendix. B. Equation (17b) formulates the current injections
from each component, where v denotes the DQ-axis voltages at
each bus of InSys and boundary buses of ExSys; m'™ denotes
the DQ-axis incidence matrix between components and buses.
Equation (17¢) formulates the Kirchhoff’s Current Law at the
buses of /nSys and boundary buses of ExSys, where ¢°* denotes
the current injections from ExSys; matrices n' and n* denotes
the directed component-bus incidence matrix.

Since InSys represents the identified subsystem in NMs, all the
state variables of InSys can be acquired by either measurements
or dynamic state estimation.

B. Data-Driven Formulation of ExSys

Following (17), ExSys interacts with InSys through its current
injections ., and global control signals s.,. Thus, %., and s.,
are retained for dynamic simulations of NMs and are supposed
to be measurable, which represent the fundamental electrical-
and cyber- interactions between ExSys and InSys.

Accordingly, ExSys is functionally formulated as:

éﬁm — gem(izn7 sl7l7i€$

ie:}c _ fem(iin, Sin, 26

,Sez7win’wem) (183)

Sem,win7wex) (18b)

3

Here, (18a) formulates the dynamics of control variables sending
from ExSys to InSys; (18b) formulates the dynamics of the
current injections from ExSys; w®* denotes the uncertain factors
in ExSys. Note that (18) can readily incorporate additional
measurable and shareable states of ExSys.

ODE-Net is used to establish the ODE model in (18), follow-
ing the procedures in Section II. The ExSys formulation in (1)
can now be expanded by: N/ = [g°*; f*] denoting the dynamics
of ExSys; = [s¢*;1°”] denoting the state variables of ExSys;
and u = [¢""; 8'"; w'™™; w®*] assembling the input variables in
(18).

C. Physics-Data-Integrated (PDI) NMs Model

The entire NMs model is established by combining the
physics-based formulation of /nSys and data-driven formulation
of ExSys:

5=g(i,s,w) (19a)
i= f(i,s,w)+mv (19b)
0=ni (19¢)

where s, ¢ and w respectively assemble the state variables,
current injections and uncertainties of /nSys and ExSys.

The DAE model in (19) can be rigorously converted to a
system of nonlinear ODEs [28], as briefly introduced below.
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Denote the matrix constructed by the maximal linearly inde-
pendent columns of 7 as 121, and the matrix constructed by the
other columns as ng. Since n; is non-singular, (19c) leads to

the following:
notg + Nt =0 = 1, = —n;lno’io (20)

where 2( and 2, respectively denote the sub-vectors of ¢ corre-
sponding to gy and n;.
Taking derivative of (19¢) yields the following:

0=ni= nf(io, s)+nmv—v= —(nm)’ln}' (21)

where f (i, s,w) = f(i,s, w) by substituting (20) to f.
Therefore, (19) is converted to an ODE model:
{ s = g(iOa va)

19 = 7m0(nm)*1n}'(i0, s) + fo(4o, )

(22a)
(22b)

where m and fo respectively extract the components of m and
}' corresponding to 2.

The obtained ODE model in (22) is rigorously equivalent to
the original DAE model (19a) without adopting any lineariza-
tion. Hence, it can be used for the transient analysis under small
or large disturbances. The PDI-NMs model in (22) can then be
abstracted as:

X =F(X,W) (23)

where X denotes the state variables of NMs integrating states
of both InSys and ExSys; W denotes to the uncertainty inputs.

IV. NEURO-REACHABILITY ANALYSIS OF NMS DYNAMICS

Based on the PDI-NMs model, this section devises a Neuro-
Reachability method for dynamic verification of NMs.

A. Reachset for NMs

Reachability analysis verifies the NMs dynamics by calculat-
ing reachsets, i.e., a provable enclosure of all possible dynamic
trajectories under infinitely many uncertain scenarios. Given the
set of initial NMs states X'° and the set of DER uncertainties W,
the time-point reachset is defined as the set of all the possible
NMs states at time ¢:

R(t) = {X(t):/OtF(X(T),W(T))dT‘ ”

X(0) € X0, W € W}

In this research, the uncertainty set ¥V is formulated by an
unknown-but-bounded set; and zonotope bundle is utilized for
reachset formulation [29], i.e., an intersection of finite zonotopes
which is able to represent arbitrary polytopes with a satisfactory
computational efficiency.

Applying Taylor expansion to (23) at (X, W™) gives:

XeF+JX -X)+J,(W-W")4e (25
where F* = F(X* W*); J = 2=X and J,, = =W re-

spectively denote the Jacobian matrix referring to the first-order
Taylor series; e; is the Lagrange remainder [30]. For computa-
tional convenience, R (¢) is shifted to R(¢) — X * to perform the
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set computation. Therefore, the time-point reachset of the NMs
dynamics can be computed by the evolution of the previous
time-point reachset:

A
R(t) = (e’*R(t - A)) @ / T ATIWrdr @ Re (26)
0
where A denotes the time step; @ denotes the Minkowski ad-
dition. In (26), the first term computes the reachset propagation
resulting from the NMs states, i.e., J(X — X ™). The second
term computes the reachset propagation resulting from the inputs
Wp = Jw(W — W*) + F*, which composes both the uncer-
tainty impact J,,(W — W) and the linearization point impact
F*. And the third term in (26) computes the set of linearization
error [30] to ensure an provable over-approximation of the
nonlinear NMs dynamics.

Further, the reachset during time interval [t — A, ¢] can be
calculated as the union of the time-point reachable sets during
the interval as R([t — A, t]) = Urcp—a g R(7).

B. Conformance Reachset for PDI-NMs

The ODE-Net-enabled model learned from a finite set of
training samples, although sufficiently precise for the training
set, would not perfectly replicate the real dynamics of the system
under any circumstances. To address the possible inaccuracy of
the PDI-NMs model, this subsection empowers the reachability
analysis done in Subsection IV-A with the conformance the-
ory as a ‘feedback’ mechanism to further improve the Neuro-
Reachability reliability.

1) Conformance-Empowered Reachset Formulation: Incor-
porating the model inaccuracy into the Taylor expansion of NMs
dynamics leads to the following:

XeF +J(X-X)4+Ju(W—-W"+e +e, 27)

Compared with (25), an additional term e,,, is introduced to ad-
dress the impact of the discrepancy between the PDI-NMs model
and the real NMs trajectories. In this research, the PDI-NMs
model inaccuracy is formulated as multidimensional intervals
Em = [€, Em], Where e, and €,, respectively denotes the
infimum and supremum of the PDI-NMs model inaccuracy.
Correspondingly, the reachset computation can be modified as:

Re(t) = (e?Re(t — A)) & Ra®

2 J(A-T) (28)
/ e (WF + gm)dT

0

Here, R denotes a conformance reachset incorporating the PDI-
NMs model error &,,.

Given a specific &,,, R. can be readily computed following
Subsection IV-A. However, theoretically, &,, is a posteriori
error depending on specific NMs states and DER uncertainties,
and is supposed to be computed by comparing the PDI-NMs
dynamics with the real NMs trajectories. To tackle this diffi-
culty, an optimization approach to estimating &,, is introduced
by constructing a minimal-volume conformance reachset while
ensuring a provable enclosure of the time-series measurements
of the real NMs dynamics.
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Fig. 3. Illustration of conformance reachset.

Model: Given a

~a  time
trajectories  {t, X, W} = {(¢1, to,

2) &,-Optimization
ries of  NMs
oy tn), (X1, Xy, X)), (W, Wo, ..., W)}, R(t)
can be computed following Subsection IV-A with the NMs
initial state set as X° = {X} and the DER uncertainty set as
W = {W} As discussed above, since the PDI-NMs model
may not perfectly conform with the real NMs dynamics, the
reachset R(t) from (26), computed with W and X°, possibly
does not enclose X. Inspired by the conformance theory in [31],
[32], &, is optimized to ensure that the conformance reachset
R.(t) encloses the time-series NMs states X :

Se-

Em-opt model: nglin Ztet Vol(R.(t))
" (29)
st.X(t) € Re(t),Vt et

Here, R is computed as (28) with aforementioned X° and W;
Vol(-) computes the volume of the reachset. Optimization in
(29) solves an &,, such that R. encloses X with a minimal
modification on the reachset. As a special case, if the PDI-NMs
model perfectly replicates the NMs trajectories X, (29) gives
Em = 0.

Fig. 3 illustrates the basic idea of this optimization-based
conformance reachset method. For better visualization, the tra-
jectories generated by the PDI-NMs model (denoted by the green
line) differs largely from the real NMs trajectories (denoted by
the red line), which further leads to a quite loose conformance
reachset (denoted by the yellow area). Fortunately, case studies
in Section V will show that the ODE-Net-based dynamic model
is quite accurate and the obtained neuro-reachsets is rather tight.
Taking time period [t — A, t] as an example, following (26), the
conventional reachset R(t) (Fig. 3(d)) is computed incorporat-
ing the evolution of NMs states (Fig. 3(b)), DER uncertainty
inputs (Fig. 3(c)) and linearization error (Fig. 3(d)). Then, as
illustrated in Fig. 3(e), the conformance reachset R..(¢), which
amends R(¢) with the impact of the model inaccuracy set &,,,
will enclose the real NMs states at time ¢ with a minimized set
volume. The above process is successively computed over the
time horizon to optimize a &,, such that R. encloses the real
NMs trajectories.

The &,,-opt model is intractable to optimize due to
the complicated set calculations in the objective and con-
straints. For efficient volume computation, R, is over-
approximated by hyperrectangles. Denote D = (e 2R¢(t —
A)) @ fOA e (A= Wrdr @ R.;, which can be readily com-
puted as the conventional reachset by (26). Denote E =
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fOA e (A7) dr. Accordingly, the volume of the conformance
reachset is over-approximated as:

Vol(R.(t)) = Vol(D @& EE,,)

_ (30)
C Vol(box(D) & Ele,, . €m)]) 2 Vol (R.(t))

Consequently, the objective of &,,-opt, i.e., minimizing the
conformance reachset volume, is simplified into minimizing the
summation of edge lengths of the hyperrectangle R.(t). The
new objective becomes:

“min 17 (sup (D) — inf (D) + | E|(@, — e,,)

€m,€,,

€29

On the other hand, the constraints of &,,-opt require that the
NMs trajectories are enclosed by the conformance reachset R,
which are also handled by hyperrectangles:

{X(t) < sup(D ® EE,,) = sup(D) + |Ele,, )
X (t) > inf(D @ EE,,) = inf(D) + |Ele,,
Combining (31) and (32) leads to a reformulated &,,-opt
model in the form of linear programming that can be tractably
solved.
Further, with a set of time series of NMs trajectories, &,,-opt

results from each trajectory are joint to obtain the overall &,,:
" W
En=J,_, &

where &(,{ ) denotes the optimization result from (31) and (32)
for the j* measurements.

(33)

V. CASE STUDIES

This section demonstrates the technical merit and efficacy
of the Neuro-Reachability method for NMs. The algorithm is
implemented in MATLAB R2019b.

A. Case Design

Case studies are conducted on the 4-microgrid NMs in Fig. 1,
with the DER controller parameters modified from [33]. The
NMs parameters are provided in Appendix. A. The DERs can
be equipped with droop controllers and/or secondary controllers.
Five cases are designed to verify the Neuro-Reachability method.
Each case shares the same settings of NMs topology and load
condition, with different control strategies of DERs as well as
power source mixes.

Case 1: All the DERs are equipped with droop control; microgrid
4 is supposed to be model-free and data-driven, while other
microgrids are physics-based with formulations detailed in
Appendix. B;

Case 2: All the DERs, both in InSys and ExSys, are equipped
with hierarchical control (i.e., both droop and secondary
controls) under an all-to-all communication among DERs,
and microgrid 4 is data-driven similar as Case 1;

Case 3: All settings are the same with Case 1, except that
microgrid 3 (which comprises 2 DERSs) is data-driven while
microgrids 1, 2, 4 are physics-based;
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Fig. 5. Training process of ODE-Net for NMs dynamic model discovery.

Case 4: All settings are the same with Case 3, except that the
DER at bus 6 in microgrid 3 is replaced by a synchronous
generator (SG);

Case 5: All settings are the same with Case 3, except that the
DER at bus 6 in microgrid 3 is replaced by an energy storage
unit (ESU);

Uncertainty settings: By default, the uncertainty of each
DER is set as 20%, which means that the reference active power
of DER controllers can randomly deviate from the prediction
to address the impact of uncertain renewables. Mathematically,
uncertainty is modelled as an unknown-but-bounded set [29] in
reachability analysis.

Dataset settings: NMs undergo frequent transients due to
the fluctuating of DERs. Thereby, measurements are acquired
under uncertain perturbations to construct the training set for
ODE-Net. In this paper, the training data contains time-series
measurements lasting for 270 seconds. Fig. 4 shows the training
data, taking a single dimension (i.e., power output from DER1)
for illustration purpose.

B. Validity of ODE-Net-Based NMs Model Discovery

1) Performance of ODE-Net: This subsection demonstrates
the performance of ODE-Net in learning the state-space model
of microgrids. A two-layer perceptron architecture is used for
ODE-Net, with 40 neurons in each layer. The trapezoidal rule
is employed for NMs dynamic integration. The Adaptive Mo-
ment Estimation (Adam) [34] algorithm is applied to enable an
adaptive learning rate during the ODE-Net training.

Fig. 5 presents the ODE-Net training process for Case 1.
At the starting stage, ODE-Net is randomly initialized and
largely deviates from the real NMs trajectories, as illustrated in
Fig. 5(b). Then, after the neural network training via continuous
backpropagation, ODE-Net converges to a perfect match of the
NMs trajectories on the training set, as illustrated in Fig. 5(c).
Additionally, Fig. 5(d) presents the evolution of loss function at
the logarithmic scale. As a rule of thumb, 1500 iterations lead
to convergence of the ODE-Net.
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Fig.6. ODE-Netperformance on the test set of NMs dynamics (A f: frequency

deviation). (a)-(c), droop control under no fault, short-circuit fault and open-
circuit fault respectively. (d)-(f), hierarchical control under no fault, short-circuit
fault and open-circuit fault respectively.

Further, Fig. 6 illustrates the ODE-Net performance on the test
set, which verifies its ability to generalize beyond the training set.
Three types of scenarios are studied, i.e., no-fault, a short-circuit
fault at bus 19, and an open-circuit fault of branch 2-3. Each fault
occurs at 0.3 s and is cleared at 0.32 s. An interesting finding is
that the ODE-Net-enabled NMs formulation accurately captures
the uncertain NMs transients not only under the frequently
fluctuating DER uncertainties, but also under large disturbances,
although the latter scenarios never appear in the training set. This
shows the robustness of the ODE-Net-enabled NMs formulation.

2) Comparison Between ODE-Net and Conventional DNN
Techniques: To further illustrate the superiority of ODE-Net in
modelling continuous-time dynamics of NMs, ODE-Net is com-
pared with three representative DNN techniques, i.e., multi-layer
perceptron (MLP), residual neural network (ResNet), and long
short-term memory (LSTM). The configuration of each DNN is
set as:

® An MLP comprised of 3 hidden layers with 200 hidden

units in each layer;

® A ResNet comprised of 10 hidden layers with double-layer

skips and 200 hidden units in each layer;

e An LSTM network with 200 hidden units.

Conventional DNN learns a nonlinear function between inputs
and outputs. Therefore, discretization on differential equations
in (1) is inevitable [35], [36]:

x(t) —x(t — A)
A
= SV @(t),ult) + Nl — &) ult - A) (34

Here, we adopt the trapezoidal rule where A denotes the time
step. Consequently, loss function for conventional DNN is con-
structed by using the distance between the real derivatives y =
x(t)—x(t—A ) . . ~

2M)-2(t=4) 4nd the trained derivatives § = TN (z(t), u(t) +
N(z(t — A)u(t — A))), :

n

n
_ 1 A
r%ln g Lpyn = E 5771”3/2 —Y;ll2

i=1 i=1

(35)
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Fig. 7. Comparison between ODE-Net and conventional DNN methods for

NMs dynamic analysis.

Comparing (35) with (2), an obvious distinction is that ODE-Net
is capable of directly minimizing the difference between real
dynamic states and trained dynamic states.

Fig.7 presents the simulation results. Although both ODE-Net
and DNN methods exhibit satisfactory accuracy on the training
set (see Fig. 7(a) for time-domain trajectories and boxplot statis-
tics), Fig. 7(b) clearly illustrates that their performance differs
largely on the test set containing frequently perturbed NMs
dynamics. Among the selected conventional DNN techniques,
LSTM exhibits the best performance on the test set. Still, ODE-
Net has a 50% higher precision than LSTM despite its simplest
network architecture (i.e., a two-layer MLP). In addition, ODE-
Net s able to take irregularly or sparsely sampled measurements
since it directly handles the differential equations. In contrast,
conventional DNN usually requires the measurements to be well
aligned or synchronized to ensure a proper discreteziation.

Another advantage of ODE-Net is that with the discovered
state-space model, various power system analytics (e,g., tran-
sient simulation, dynamic verification, stability analysis) can be
conducted by regarding the ODE-Net-based ExSys as a special
type of “dynamic component” and incorporating the data-driven
model into the existing system model.

C. NMs Dynamic Verification via Neuro-Reachability

This subsection studies the NMs dynamics with both un-
certain perturbations and fault disturbances via the Neuro-
Reachability analysis.

Fig. 8 studies the neuro-reachsets under the quasi-static sce-
nario, where the NMs is only perturbed by the DER uncer-
tainties. The simulation shows that the neuro-reachsets tightly
encloses the model-driven reachsets, which verifies both the ac-
curacy and conservativeness of the method. In particular, in Case
2 where the DERs are equipped with both droop and secondary
control, the Neuro-Reachability is supposed to learn not only
the interactive currents between ExSys and InSys, but also the
control signals from ExSys. Fig. 8(b) still shows a tight and
perfect over-approximation of the real reachsets, which exhibits
the potential of the Neuro-Reachability method in learning the
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Fig. 9. Illustration of numerical stability of neuro-reachsets.

NMs dynamic model with complicated hierarchical control.
Neuro-Reachability shows the superiority of hierarchical control
from two aspects: i) reachsets in Case 2 are narrower than the
those in Case 1, which reflects strengthened robustness of the
NMs against uncertainties; ii) reachsets in Case 2 get stable
faster than those in Case 1, which reflects a speedy power
sharing between the DERs during the NMs dynamics induced
by uncertain perturbations.

Fig. 9 further illustrates that for a duration of 100 s, neuro-
reachsets remain numerically stable. Meanwhile, the 2D projec-
tion of reachsets at 2 s, 10 s and 100 s shows that reachsets do not
diverge over the time. In fact, Neuro-Reachability inherits the
numerical stability of conventional reachability methods [30],
since the data-driven model error is formulated as a constant set
En as presented in (28).

Further, Fig. 10 studies the neuro-reachsets under a mo-
mentary short-circuit fault occurred at 0.3 s and cleared at
0.32 s. Even though the ODE-Net-based NMs formulation
is learned from the dynamics of small disturbances induced
by the DERSs’ uncertainties, simulation results show that the
Neuro-Reachability method accurately and tightly captures the
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fast NMs dynamics under heterogeneous uncertainties during
disturbances. Comparing the neuro-reachsets in Case 1 and Case
2, it is obvious that the hierarchical control exhibits restrained
frequency/voltage dips and enhanced damping on the oscilla-
tions of the NMs states. Specifically, the reachable sets during the
periods from the fault occurrence through the fault clearance are
magnified by the subplots. Neuro-Reachability thus effectively
mimics the NMs transients initiated by large disturbances.

Neuro-Reachability inherits the efficiency and scalability of
conventional reachability methods. Therefore, the worst time
consumption is of polynomial complexity [30].

D. Efficacy and Versatility of Neuro-Reachability

This subsection studies the impact factors of the NMs reach-
sets via the Neuro-Reachability method.

1) Neuro-Reachsets Under Different Uncertainty Levels:
First, the impact of uncertainties on NMs dynamics is inves-
tigated. Taking DER1’s output-voltage in Case 2 as an example,
Fig. 11 shows that the reachsets expand with the increasing
uncertainties under both no-fault and faulted scenarios. The
propagation of uncertainties in the NMs dynamics is therefore
distinctly demonstrated by the neuro-reachsets at different un-
certainty levels.

2) Neuro-Reachsets Under Different Control Strategies:
Second, the impact of the DERs’ control strategies on NMs
reachsets is investigated. Fig. 8 and Fig. 10 exhibit the effi-
cacy of the hierarchical control to stabilize the system under
uncertainties from the time-domain perspective. Further, Fig. 12
presents the neuro-reachsets from a state-space observation. The
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efficacy of the hierarchical control for restraining the uncer-
tainty impacts, damping the frequency/voltage overshoot and
recovering the NMs states after faults are distinctly verified via
the neuro-reachsets. Hence, Neuro-Reachability is promisingly
helpful for verifying the controller’s performance under the
infinite many uncertain scenarios in the absence of the microgrid
model.

3) Neuro-Reachsets Under Different Power Source Mixes:
Finally, the impact of power source mixes is investigated via
neuro-reachsets. Different power sources influence the NMs
transients by their diverse dynamic features.

Fig. 13 studies the quasi-static reachsets (i.e., with no fault
but only DER uncertainties perturbing the NMs) for Case 3,
Case 4 and Case 5. The neuro-reachsets tightly encloses the
model-driven reachsets in all cases, which again verifies the
correctness of the Neuro-Reachability method. An interesting
finding is that the neuro-reachsets of Case 3 in Fig. 13 are nearly
identical to those of Case 1 in Fig. 8. This is because case 1 and
Case 3 describe the identical NMs only with different microgrids
being data-driven. Results of Case 4, compared with those of
Case 3, show that the neuro-reachsets shrinks when the NMs are
equipped with a SG, benefiting from the inertia and regulating
ability of SG as well as its full dispachability compared with
DERs. The neuro-reachsets is further improved when the NMs
are equipped with an ESU as presented by the neuro-reachsets of
Case 5, indicating enhanced robustness against the uncertainties
with ESU. Meanwhile, it is noteworthy that both the SG and
ESU provide voltage support to boost the NMs voltage, as
illustrated in Fig. 13(b). Additionally, Fig. 14 investigates the
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neuro-reachsets of NMs during a short-circuit fault for Case
4 (i.e., equipped with a SG) and Case 5 (i.e., equipped with
an ESU). The Neuro-Reachability method, as a data-driven
approach, successfully captures the transient characteristics of
the controllable power sources in restraining the uncertainties
and damping the frequency/voltage dip/rise during the large
disturbances compared with Fig. 12(a).

VI. CONCLUSION

This paper devises a Neuro-Reachability method, a data-
driven approach to verify the uncertainty-disturbed, fast-
changing and strongly-nonlinear dynamics of the NMs with
unidentified subsystems. The ODE-Net-enabled dynamic model
discovery, reachability analysis, and conformance theory con-
jointly enable a flexible and accurate model discovery of real-
world microgrids, as well as provide reliable reachsets for verify-
ing the NMs dynamics under heterogeneous uncertainties. Case
studies of a typical NMs demonstrate the efficacy and robustness
of the devised method. In the future, the Neuro-Reachability
method will be enhanced for the dynamic verification of fully
model-free NMs.

APPENDIX A
TEST SYSTEM PARAMETERS

TABLE I
PARAMETERS OF DERS

DER ID. 1 2 3 4 5
Loc. node 1 6 13 25 33
mMp Ng ro (p.u.) Lo (p.u.) F
Controller 10% 30% 6.24x10-% 3.12x10=3 0.75
parameters ' [ kpu kiv kpe Kic
2 20 105 1600
Secondary « A B By 2 B, By
control 50 5 100 400 0 1

1 m,: active power droop gain; n4: reactive power droop gain; ro: coupling

resistance; L,: coupling inductance; F': current feed-forward gain; k., : voltage
proportional gain; k;,,: voltage integral gain; k,,: current proportional gain; k;.:
current integral gain;

2 B, and B8 # respectively represent secondary control parameters for leader DER
and follower DERs [37]. In this paper, DER1 is chosen as the leader DER.

This appendix provides the parameters of the test system, i.e.,
the 4-microgrid NMs illustrated in Fig. 1.
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TABLE II
PARAMETERS OF POWER LOADS

Load | Loc. Ty L Load | Loc. T] L

ID. node (p.u) (p.u) ID. node (p.u) (p.u.)
1 2 3.32 2.33 15 18 3.68 2.57
2 3 3.67 2.57 16 19 3.69 2.58
3 4 2.75 1.92 17 20 3.66 2.56
4 5 5.49 3.84 18 21 3.66 2.56
5 7 1.64 1.15 19 22 3.65 2.55
6 8 1.64 1.15 20 23 3.66 2.56
7 9 5.50 3.85 21 24 0.78 0.54
8 10 5.52 3.86 22 26 5.48 3.83
9 11 7.38 5.16 23 27 5.47 3.82
10 12 5.54 3.88 24 28 5.42 3.79
11 14 2.74 1.91 25 29 2.70 1.89
12 15 4.89 4.08 26 30 0.24 0.72
13 16 5.55 3.89 27 31 2.17 1.51
14 17 5.53 3.87 28 32 1.55 1.08

TABLE III
COMPOSITION OF MICROGRIDS

Node ID.: 1, 2, 19, 20, 21, 22

DER ID.: 1

Load ID.: 1, 16, 17, 18, 19

Node ID.: 23, 24, 25

DER ID.: 4

Load ID.: 20, 21

Node ID.: 6, 26, 27, 28, 29, 30, 31, 32, 33
DERID.: 2,5

Load ID.: 22, 23, 24, 25, 26, 27, 28

Node ID.: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
DER ID.: 3

Load ID.: 5, 6,7, 8,9, 10, 11, 12,13 ,14, 15

MG 1!

MG 2

MG 3

MG 4

1 Without loss of generality, impedance of each branch are assumed
homogeneous with 7, = 3.12 x 10 3p.u., L;, = 4.68 x 10~ 3p.u..

APPENDIX B
DETAILS OF PHYSICS-BASED MICROGRID MODEL

This appendix details the physics-based model for each ele-
ment in InSys.

In this paper, a two-layer hierarchical control is employed
for DERs. Differential equations formulating the dynamics of
inner and outer loops are detailed in our previous study [28].
Specifically, droop control is formulated as:

w=w"—m,(P—-P)+Q
v=0v"—-n,(Q—-Q")+e

where w denotes DERs’ angular speeds; v denotes DERS’
voltages; w* and v* respectively denote the reference values of
speed and voltage; P* and Q" respectively denote the desired ac-
tive/reactive power from DERs; m,, and 1, respectively denotes
the active/reactive power droop gains of DERs. Specifically, P*
is impacted by available power from renewable energies, which
introduces uncertainty to NMs dynamics.

Power sharing and voltages/frequency restoration in NMs are
achieved by secondary control, which is formulated as:

(36a)
(36b)

dQ *

O =—a(w-w")— AQ (37a)
de X

L= —B-v)-BQ2Q,) (37b)

Here, €2 and e denote the secondary control signals following
the distributed-averaging proportional-integral logic [37]; c, 3,
A and B are parameters for secondary control, where A and
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B represents the communication between different DERs; Q,,
denotes the reactive power rating of DERs.

Dynamics of power loads and branches are modelled by
impedance dynamics [5]:

di

Llﬁ = —rit; +wsIl Lyt + M v (38)
diy, . .

Lba = —ryip + we I Lyiy, + Myv (39)

where 2; and 2, respectively denote the DQ-axis currents of loads
and branches. r; and L; respectively denote the matrices of load
resistances and inductance; M is the DQ-axis incidence matrix
between power loads and buses; 7, L, and M are similarly
defined for branches. Formulation of arbitrary types of power
loads is further provided in [5].

APPENDIX C
ODE-GOVERNED EXSYS FORMULATION

This appendix briefly explains the rationale behind the use of
ODE-Net to learn an ODE-governed ExSys model. Without loss
of generality, we take droop control as an example. To make a
distinction from the main text, this appendix uses subscript for
variables.

Based on the differential equations of DERs, power loads
and branches in Appendix. B, ExSys model can be functionally
abstracted as:

{25 :ge<ieazeawe) (40a)
ie = .fe(iev Ze) + MV + MpgUsg (40b)
0 = n.i. + Npatpg (400)

Here, (40a), (40b) and (40c) respectively formulate the dy-
namics of DER states (z.), component current (¢.) and KCL. v,
and vy separately denote voltages at ExSys buses and bound-
ary buses; 2,4 denotes current inflows from boundary buses;
w, denotes uncertainty from renewable energy. Since ExSys
is unidentified, expressions of g., f., Me, Mpg, N, Npq are
unknown. Neither are the detailed constituents of z. and z..

Because (40c) is linear, (40) can be reformulated to a rig-
orously equivalent ODE system [28]. Denoting 1.1 as the non-
singular matrix constructed by the maximal linearly independent
columns of n., (40c) yields:

de1 = —n_] (Neoteo + Nodiba) 41)

where n,.y denotes the rest columns of n,; 4.1 and %.9 are
sub-vectors of 2. respectively corresponding to mn.; and ng.
Substituting (41) into (40) yields:

{2c = G (G0, Ze, we) (42a)

ieO = feo(i607 ze) + MpgoVpg — meO(neme)71
. . (42b)
(nefe(ieo, Ze) + MeMpaVba + Mpatod)

Where ge(ie(),zeywe) :ge(ielzeawe) and fe(ieOaze) -
fe(ie, z¢) by substituting (41); f .o, Mpao and mg are respec-
tively sub-vectors/sub-matrices corresponding to 7.¢.
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As indicated by (41), ExSys is reformulated in a pure ODE
form, which enables the application of ODE-Net for dynamic
model discovery.
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