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Neuro-Reachability of Networked Microgrids
Yifan Zhou , Member, IEEE, and Peng Zhang , Senior Member, IEEE

Abstract—A neural ordinary differential equations network
(ODE-Net)-enabled reachability method (Neuro-Reachability) is
devised for the dynamic verification of networked microgrids
(NMs) with unidentified subsystems and heterogeneous uncer-
tainties. Three new contributions are presented: 1) An ODE-Net-
enabled dynamic model discovery approach is devised to construct
the data-driven state-space model which preserves the nonlinear
and differential structure of the NMs system; 2) A physics-data-
integrated (PDI) NMs model is established, which empowers vari-
ous NM analytics; and 3) A conformance-empowered reachability
analysis is developed to enhance the reliability of the PDI-driven
dynamic verification. Extensive case studies demonstrate the effi-
cacy of the ODE-Net-enabled method in microgrid dynamic model
discovery, and the effectiveness of the Neuro-Reachability approach
in verifying the NMs dynamics under multiple uncertainties and
various operational scenarios.

Index Terms—Networked microgrids, data driven, neural
ordinary differential equation network, reachability analysis,
conformance theory.

I. INTRODUCTION

N
ETWORKED microgrids (NMs) allow microgrids to sup-

port coordinately various smart community functions [1]

and help increase electricity resilience [2], [3]. However, two

major challenges arise in the dynamic analysis of today’s low-

inertia NMs [4], which prevent NMs from serving as dependable

resiliency resources: I) Lack of effective analytics to handle the

combinatorial explosion in verifying the NMs dynamics under

the infinitely many uncertain scenarios [5], and II) Unattainabil-

ity of accurate models for each and every microgrid, especially

the dynamic models of converters, loads and circuits [6], [7].

Reachability analysis is a novel method which can provably

enclose all dynamic trajectories under uncertain perturbations

and large disturbances in NMs [5], [8], [9]. It prevails over

traditional time-domain simulations [10] and energy function

approaches [11], [12] mainly due to the capability of processing

infinitely many uncertain scenarios efficiently. Even though

reachability analysis is proved to be a promising solution to

Challenge I, Challenge II above has been a major obstacle
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that prevents it from being widely adopted in the planning and

operations of NMs.

Learning reliable dynamic models for the unidentified subsys-

tems from measurements, therefore, is of paramount importance

for the data-driven NMs dynamic analysis. Koopman operator

and dynamic mode decomposition are popular approaches to

constructing linear approximation of nonlinear systems from

data [13], [14], whereas they are inefficient to establish nonlinear

ODE models for rapidly-fluctuating NMs subject to ‘random

walks’ of operating points disturbed by uncertainties [15]. Ma-

chine learning emerges to be a promising approach to power

system dynamics analysis, either for time-domain trajectory

prediction [16] or for stability assessment [17]. While earlier

studies have concentrated mainly on direct applications of neural

networks to power system analysis [18], [19], a recent trend

is to integrate power system characteristics with deep neural

network (DNN) techniques, such as recurrent neural networks

accounting for time-series power dynamics [20], [21], convolu-

tional neural networks considering the grid-like data from power

systems [22], [23], and physics-informed neural networks taking

advantage of a priori knowledge of power system’s physics mod-

els [24]. Nevertheless, discovering dynamic models behind data,

which is a long standing open problem, is substantially more

important in the sense of providing deep insights of the system

dynamics and allowing for formal verification and control of the

system.

The overarching goal of this paper is to establish a data-driven

method well suited to discovering the strongly nonlinear NMs

dynamics as well as to verifying the NMs dynamics under un-

certainties. To this end, this paper devises a Neuro-Reachability

method. The key innovation is to integrate the neural ordi-

nary differential equations network (ODE-Net) with reachability

analysis and conformance theory to allow for a data-driven

formal verification of the NMs dynamics under uncertainties.

The contributions of this work are threefold:
� An ODE-Net-enabled model discovery method is devised

to construct a nonlinear ODE model for the uncertainty-

perturbed NMs, which can best preserve the dynamic be-

haviours of NMs without assuming a priori any specific

dynamic modes. This modeling approach can effectively

address the data rich, information poor (DRIP) problem

widely existing in today’s microgrids.
� A physics-data-integrated (PDI) modelling approach is

then introduced to combine both physics-based and data-

driven ODE models, which enables reachability analysis

to verify the PDI-NMs dynamics incorporating the hierar-

chical control of DERs and network transients.
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Fig. 1. Illustration of NMs modeling with physics-based InSys and data-driven
ExSys.

� Reachability analysis for NMs is empowered with a con-

formance theory as a ‘feedback’ mechanism to further

improve the reachset accuracy induced by possible incon-

formance of the PDI-NMs behaviours compared with the

real NMs dynamics.

The remainder of the paper is organized as follows. Sec-

tion II introduces the ODE-Net-enabled dynamic model dis-

covery. Section III establishes the NMs model integrated by

both physics-based and data-driven subsystems. Section IV

devises the conformance-empowered reachability analysis for

the PDI-NMs dynamics. Section V presents case studies on a

typical NMs system to validate the Neuro-Reachability method.

Finally, Section VI concludes the paper.

II. ODE-NET-ENABLED DYNAMIC MODEL DISCOVERY FOR

MICROGRIDS

Pursuant to the attainablility of physics models, the overall

NMs system can always be partitioned into an internal subsystem

(InSys) and an external subsystem (ExSys), as illustrated in

Fig. 1. InSys, where the structure and parameters are precisely

known, can be readily formulated by assembling the dynamic

models of its components. ExSys, in contrast, has to be modeled

via a data-driven approach due to the absence of physics models,

the unavailability of state measurements, and/or the need to

preserve the consumer privacy.

This section devises an ODE-Net-enabled method to discover

a state-space model of ExSys.

A. ODE-Net-Based State-Space Model Formulation

The functional formulation of ExSys is established as

ẋ = N (x,u) (1)

Here, function N represents a state-space form of ExSys and

is to be learned from the measurements; x and u respectively

denote the state variables and input variables of ExSys. This

ODE-governed, learned ExSys model can be integrated with the

InSys model for assessing the overall NMs dynamics. Details of

x andu are introduced in Subsection III-B. The rationale behind

an ODE-governed ExSys model is provided in Appendix C.

Fig. 2 illustrates the dynamic model discovery using ODE-

Net. Taking x and u at time t as the inputs, ODE-Net outputs

the time derivative of x and therefore explicitly establishes the

ExSys dynamic model in (1) by the forward propagation in the

neural network.

Fig. 2. ODE-Net-enabled dynamic model discovery of ExSys.

Given a time series of NMs trajectories as

{(t1, t2, . . . , tn), (x̂1, x̂2, . . . , x̂n), (û1, û2, . . . , ûn)}, ODE

-Net best matches the ExSys dynamics by minimizing the error

between the state measurements x̂ and the numerical solution

of (1):

min
θ

n
∑

i=1

L(xi) =

n
∑

i=1

1

2
ηi‖xi − x̂i‖2

s.t.xi = x̂1 +

∫ ti

t1

N (x,u,θ)dt

(2)

where θ denotes the ODE-Net parameters; ηi denotes the

weighting factor at time point i.

B. Continuous Backpropagation Technique

The main difficulty in the optimization of (2) lies in the ODE

integration operation in the constraints. In this subsection, the

continuous propagation technique [25] is applied to handle the

ODE integration in the ODE-Net training.

Lagrange multiplier λ is first introduced to (2) to remove the

ODE constraints and build the following loss function:

L =

n
∑

i=1

L(xi)−

∫ tn

t0

λ
T (ẋ−N (x,u,θ)) dt (3)

Backpropagation computes the gradient of the loss function

with respect to the ODE-Net parameters to minimize the loss

function [26]. With the loss function (3) involving the integra-

tion operator, the partial derivative of L with respect to θ is

calculated as:

∂L

∂θ

=

n
∑

i=1

(

∂L

∂xi

∂xi

∂θ
−

∫ ti

ti−1

λ
T

(

∂ẋ

∂θ
−

∂N

∂x

∂x

∂θ
−

∂N

∂θ

)

dt

)

=
n
∑

i=1

∂L

∂xi

∂xi

∂θ
+

n
∑

i=1

(

λ
T (t−i )

∂xi

∂θ
− λ

T (t+i−1)
∂xi−1

∂θ

)

+

n
∑

i=1

∫ ti

ti−1

(

dλ
T

dt

∂x

∂θ
+ λ

T ∂N

∂x

∂x

∂θ
+ λ

T ∂N

∂θ

)

dt

(4)
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The Lagrange multiplier variables are given by [27]:

dλ
T

dt
= −λ

T ∂N

∂x
(5)

where the boundary conditions are set as:

λ
T (t+n ) = 0,λT (t+i ) = λ

T (t−i ) +
∂∗

∂L
xi (6)

Then, (4) can be derived into:

∂L

∂θ
=

∫ tn

t0

λ
T ∂N

∂θ
dt (7)

Collecting (5) and (7) leads to an ODE integration problem:

d

dt

[

λ
T

∂∗
∂Lθ

]

=

[

−λ
T ∂∗

∂N x

λ
T ∂∗

∂N θ

]

(8)

Subsequently, ∂∗
∂Lθ can be obtained from (8) by any ODE

solver, e.g., Trapezoidal integration. Given the final value of

λ(t), i.e., λT (tn) in (6), rather than the initial value, (8) requires

solving the ODEs backwards in time, which leads to a reverse-

mode integration [25]:

∂L

∂θ

∣

∣

∣

∣

t1

=
∂L

∂θ

∣

∣

∣

∣

tn

+

∫ t1

tn

λ
T ∂N

∂θ
dt =

n
∑

i=2

∫ ti−1

ti

λ
T ∂N

∂θ
dt

(9)

with λ(t) also solved by the reverse-mode integration:

λ
T (t+i−1) = λ

T (t−i ) +

∫ ti−1

ti

λ
T ∂N

∂x
dt (10)

Further, consider a set of time series of NMs trajectories as

{(t(1), x̂(1), û(1)), . . . , (t(m), x̂(m), û(m))}. For the jth mea-

surement, let ∂∗
∂L(j) θ be the gradient of the loss function com-

puted by (9). The overall gradient is obtained:

∂L

∂θ
=

∑m

j=1

∂L(j)

∂θ
(11)

Consequently, the ODE-Net parameters are updated using

gradient descent so that L can be decreased during training:

θ ←− θ − r
∂L

∂θ
(12)

where r denotes the learning rate.

The continuous backpropagation incorporates the “ODE

solver” in the gradient descent for the ODE-Net parameter opti-

mization, and hence effectively retains the intrinsic continuous

differential structure of the dynamical NMs.

C. Neural Network Structure Design

The keystone of ODE-Net is to model the continuous-time

nonlinear dynamics via the continuous backpropagation. As

for realization, ODE-Net can be built upon any well-designed

DNN architectures (e.g. multi-layer perceptron, residual neural

network). However, a deep ODE-Net involves a large number

of parameters and prohibitively high cost for computing ∂∗
∂N x

and ∂∗
∂N θ in the continuous backpropagation. To resolve this

problem, [25] devises a continuous-depth network, which en-

ables a linear memory cost with network depth and controllable

numerical error.

In a classical neural network, the hidden layers follow a

discrete structure (i.e., layers 1, 2, · · · , K as illustrated by the

solid-line neurons in Fig. 2), and therefore formulates a set of

difference equations for forward propagation:

zk+1 = zk + h(zk,θk) (13)

Here, k ∈ N
+ denotes the discrete layer; zk and θk respectively

denote the output states and parameters of the kth hidden layer.

The continuous-depth network regards the forward propaga-

tion of the discrete layers in (13) as an Euler discretization of

a set of continuous differential equations, i.e., it continuously

propagates the states from the input layer to the output layer (see

the dotted-line neurons in Fig. 2). This idea leads to a continuous

“layer dynamics”:

dz(k)

dk
= h(z(k),θh) =⇒ zK = z1+

∫ K

1

h(z,θh)dk (14)

Here, k ∈ R
+ denotes the continuous layer;z(k) andθh respec-

tively denote the output states and parameters of the continuous

hidden layer. As can be seen from (14), zK , i.e., the final output

of the hidden layer, can be directly obtained by integrating over

the continuous layers.

Based on the continuous-depth network, the chain rule is

applied to compute ∂∗
∂N x and ∂∗

∂N x for (8):

∂N

∂x
= θT

K

∂zK

∂z1

∂z1

∂x
,
∂N

∂θh

= θT
K

∂zK

∂θh

(15)

To obtain ∂∗
∂zK

z1 and ∂∗
∂zK

θh in the equation above, the reverse-

mode ODE integration discussed in Subsection II-B is again

applied. Specifically, in analogy to (3), the following ODEs are

formulated [25] for the gradient of zK with respect to z(k):

d

dk

[

∂∗
∂zK

z
∂∗

∂zK
θh

]

=

[

−( ∂∗
∂zK

z)T ∂∗
∂h

z

( ∂∗
∂zK

z)T ∂∗
∂h

θh

]

(16)

Then, in analogy to (11) and (12), the numerical solution of (16),

i.e., ∂∗
∂zK

z1 and ∂∗
∂zK

θh, is obtained by the ODE integration.

III. PHYSICS-DATA-INTEGRATED ODE MODELING FOR NMS

DYNAMICS

Based on the ODE-Net-enabled ExSys formulation, this sec-

tion establishes the overall dynamic model of NMs by combining

the physics-based InSys and data-driven ExSys, as illustrated in

Fig. 1.

A. Physics-Based Formulation of InSys

Given the model of each component (e.g., a DER, a power

load, a branch), InSys can be explicitly formulated as a system

of differential algebraic equations (DAEs):

ṡin = gin(sin, iin,win, sex) (17a)

i̇
in

= f in(sin, iin) +minv (17b)

niniin + nexiex = 0 (17c)
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Here, (17a) formulates the dynamics of each component in

InSys, where sin denotes the state variables of each compo-

nent; function gin is formulated according to the dynamics

of each component; iin denotes the current injections from

each component and is normally formulated under the DQ

coordinates for the inverter-dominated NMs; win denotes the

uncertain inputs caused by DERs in InSys; sex represents the

global control signals sent by ExSys, i.e., Ω and e as detailed in

Appendix. B. Equation (17b) formulates the current injections

from each component, where v denotes the DQ-axis voltages at

each bus of InSys and boundary buses of ExSys; min denotes

the DQ-axis incidence matrix between components and buses.

Equation (17c) formulates the Kirchhoff’s Current Law at the

buses of InSys and boundary buses of ExSys, where iex denotes

the current injections from ExSys; matricesnin andnex denotes

the directed component-bus incidence matrix.

Since InSys represents the identified subsystem in NMs, all the

state variables of InSys can be acquired by either measurements

or dynamic state estimation.

B. Data-Driven Formulation of ExSys

Following (17), ExSys interacts with InSys through its current

injections iex and global control signals sex. Thus, iex and sex
are retained for dynamic simulations of NMs and are supposed

to be measurable, which represent the fundamental electrical-

and cyber- interactions between ExSys and InSys.

Accordingly, ExSys is functionally formulated as:

ṡex = gex(iin, sin, iex, sex,win,wex) (18a)

i̇
ex

= fex(iin, sin, iex, sex,win,wex) (18b)

Here, (18a) formulates the dynamics of control variables sending

from ExSys to InSys; (18b) formulates the dynamics of the

current injections from ExSys;wex denotes the uncertain factors

in ExSys. Note that (18) can readily incorporate additional

measurable and shareable states of ExSys.

ODE-Net is used to establish the ODE model in (18), follow-

ing the procedures in Section II. The ExSys formulation in (1)

can now be expanded by:N = [gex;fex]denoting the dynamics

of ExSys; x = [sex; iex] denoting the state variables of ExSys;

and u = [iin; sin;win;wex] assembling the input variables in

(18).

C. Physics-Data-Integrated (PDI) NMs Model

The entire NMs model is established by combining the

physics-based formulation of InSys and data-driven formulation

of ExSys:

⎧

⎨

⎩

ṡ = g(i, s,w) (19a)

i̇ = f(i, s,w) +mv (19b)

0 = ni (19c)

where s, i and w respectively assemble the state variables,

current injections and uncertainties of InSys and ExSys.

The DAE model in (19) can be rigorously converted to a

system of nonlinear ODEs [28], as briefly introduced below.

Denote the matrix constructed by the maximal linearly inde-

pendent columns of n as n1, and the matrix constructed by the

other columns as n0. Since n1 is non-singular, (19c) leads to

the following:

n0i0 + n1i1 = 0 =⇒ i1 = −n−1
1 n0i0 (20)

where i0 and i1 respectively denote the sub-vectors of i corre-

sponding to n0 and n1.

Taking derivative of (19c) yields the following:

0 = ni̇ = nf̂(i0, s) + nmv =⇒ v = −(nm)−1nf̂ (21)

where f̂(i0, s,w) = f(i, s,w) by substituting (20) to f .

Therefore, (19) is converted to an ODE model:
{

ṡ = ĝ(i0, s,w) (22a)

i̇0 = −m0(nm)−1nf̂(i0, s) + f̂0(i0, s) (22b)

wherem0 and f̂0 respectively extract the components ofm and

f̂ corresponding to i0.

The obtained ODE model in (22) is rigorously equivalent to

the original DAE model (19a) without adopting any lineariza-

tion. Hence, it can be used for the transient analysis under small

or large disturbances. The PDI-NMs model in (22) can then be

abstracted as:

Ẋ = F (X,W ) (23)

where X denotes the state variables of NMs integrating states

of both InSys and ExSys; W denotes to the uncertainty inputs.

IV. NEURO-REACHABILITY ANALYSIS OF NMS DYNAMICS

Based on the PDI-NMs model, this section devises a Neuro-

Reachability method for dynamic verification of NMs.

A. Reachset for NMs

Reachability analysis verifies the NMs dynamics by calculat-

ing reachsets, i.e., a provable enclosure of all possible dynamic

trajectories under infinitely many uncertain scenarios. Given the

set of initial NMs states X 0 and the set of DER uncertainties W ,

the time-point reachset is defined as the set of all the possible

NMs states at time t:

R(t) =
{

X(t) =

∫ t

0

F (X(τ),W (τ))dτ
∣

∣

∣

X(0) ∈ X 0,W ∈ W
}

(24)

In this research, the uncertainty set W is formulated by an

unknown-but-bounded set; and zonotope bundle is utilized for

reachset formulation [29], i.e., an intersection of finite zonotopes

which is able to represent arbitrary polytopes with a satisfactory

computational efficiency.

Applying Taylor expansion to (23) at (X∗,W ∗) gives:

Ẋ ∈ F ∗ + J(X −X∗) + Jw(W −W ∗) + el (25)

where F ∗ = F (X∗,W ∗); J = ∂∗
∂F ∗X and Jw = ∂∗

∂F ∗W re-

spectively denote the Jacobian matrix referring to the first-order

Taylor series; el is the Lagrange remainder [30]. For computa-

tional convenience, R(t) is shifted to R(t)−X∗ to perform the
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set computation. Therefore, the time-point reachset of the NMs

dynamics can be computed by the evolution of the previous

time-point reachset:

R(t) =
(

eJ∆R(t−∆)
)

⊕

∫ ∆

0

eJ(∆−τ)WFdτ ⊕Rel (26)

where ∆ denotes the time step; ⊕ denotes the Minkowski ad-

dition. In (26), the first term computes the reachset propagation

resulting from the NMs states, i.e., J(X −X∗). The second

term computes the reachset propagation resulting from the inputs

WF = Jw(W −W ∗) + F ∗, which composes both the uncer-

tainty impact Jw(W −W ∗) and the linearization point impact

F ∗. And the third term in (26) computes the set of linearization

error [30] to ensure an provable over-approximation of the

nonlinear NMs dynamics.

Further, the reachset during time interval [t−∆, t] can be

calculated as the union of the time-point reachable sets during

the interval as R([t−∆, t]) = ∪τ∈[t−∆,t]R(τ).

B. Conformance Reachset for PDI-NMs

The ODE-Net-enabled model learned from a finite set of

training samples, although sufficiently precise for the training

set, would not perfectly replicate the real dynamics of the system

under any circumstances. To address the possible inaccuracy of

the PDI-NMs model, this subsection empowers the reachability

analysis done in Subsection IV-A with the conformance the-

ory as a ‘feedback’ mechanism to further improve the Neuro-

Reachability reliability.

1) Conformance-Empowered Reachset Formulation: Incor-

porating the model inaccuracy into the Taylor expansion of NMs

dynamics leads to the following:

Ẋ ∈ F ∗ + J(X −X∗) + Jw(W −W ∗) + el + em (27)

Compared with (25), an additional term em is introduced to ad-

dress the impact of the discrepancy between the PDI-NMs model

and the real NMs trajectories. In this research, the PDI-NMs

model inaccuracy is formulated as multidimensional intervals

Em = [em, em], where em and em respectively denotes the

infimum and supremum of the PDI-NMs model inaccuracy.

Correspondingly, the reachset computation can be modified as:

Rc(t) =
(

eJ∆Rc(t−∆)
)

⊕Rel⊕
∫ ∆

0

eJ(∆−τ)(WF + Em)dτ
(28)

Here,Rc denotes a conformance reachset incorporating the PDI-

NMs model error Em.

Given a specific Em, Rc can be readily computed following

Subsection IV-A. However, theoretically, Em is a posteriori

error depending on specific NMs states and DER uncertainties,

and is supposed to be computed by comparing the PDI-NMs

dynamics with the real NMs trajectories. To tackle this diffi-

culty, an optimization approach to estimating Em is introduced

by constructing a minimal-volume conformance reachset while

ensuring a provable enclosure of the time-series measurements

of the real NMs dynamics.

Fig. 3. Illustration of conformance reachset.

2) Em-Optimization Model: Given a time se-

ries of NMs trajectories {t, X̂, Ŵ } = {(t1, t2,

. . . , tn), (X̂1, X̂2, . . . , X̂n), (Ŵ 1, Ŵ 2, . . . , Ŵ n)}, R(t)
can be computed following Subsection IV-A with the NMs

initial state set as X 0 = {X̂1} and the DER uncertainty set as

W = {Ŵ }. As discussed above, since the PDI-NMs model

may not perfectly conform with the real NMs dynamics, the

reachset R(t) from (26), computed with W and X 0, possibly

does not enclose X̂ . Inspired by the conformance theory in [31],

[32], Em is optimized to ensure that the conformance reachset

Rc(t) encloses the time-series NMs states X̂:

Em-opt model: min
Em

∑

t∈t
Vol(Rc(t))

s.t.X̂(t) ∈ Rc(t), ∀t ∈ t

(29)

Here, Rc is computed as (28) with aforementioned X 0 and W;

Vol(·) computes the volume of the reachset. Optimization in

(29) solves an Em such that Rc encloses X̂ with a minimal

modification on the reachset. As a special case, if the PDI-NMs

model perfectly replicates the NMs trajectories X̂ , (29) gives

Em = ∅.

Fig. 3 illustrates the basic idea of this optimization-based

conformance reachset method. For better visualization, the tra-

jectories generated by the PDI-NMs model (denoted by the green

line) differs largely from the real NMs trajectories (denoted by

the red line), which further leads to a quite loose conformance

reachset (denoted by the yellow area). Fortunately, case studies

in Section V will show that the ODE-Net-based dynamic model

is quite accurate and the obtained neuro-reachsets is rather tight.

Taking time period [t−∆, t] as an example, following (26), the

conventional reachset R(t) (Fig. 3(d)) is computed incorporat-

ing the evolution of NMs states (Fig. 3(b)), DER uncertainty

inputs (Fig. 3(c)) and linearization error (Fig. 3(d)). Then, as

illustrated in Fig. 3(e), the conformance reachset Rc(t), which

amends R(t) with the impact of the model inaccuracy set Em,

will enclose the real NMs states at time t with a minimized set

volume. The above process is successively computed over the

time horizon to optimize a Em such that Rc encloses the real

NMs trajectories.

The Em-opt model is intractable to optimize due to

the complicated set calculations in the objective and con-

straints. For efficient volume computation, Rc is over-

approximated by hyperrectangles. Denote D = (eJ∆Rc(t−

∆))⊕
∫∆

0 eJ(∆−τ)WFdτ ⊕Rel, which can be readily com-

puted as the conventional reachset by (26). Denote E =
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∫∆

0 eJ(∆−τ)dτ . Accordingly, the volume of the conformance

reachset is over-approximated as:

Vol(Rc(t)) = Vol(D ⊕EEm)

⊆ Vol(box(D)⊕E[em, em)]) � Vol(Rc(t))
(30)

Consequently, the objective of Em-opt, i.e., minimizing the

conformance reachset volume, is simplified into minimizing the

summation of edge lengths of the hyperrectangle Rc(t). The

new objective becomes:

min
em,em

1
T (sup (D)− inf (D) + |E|(em − em)) (31)

On the other hand, the constraints of Em-opt require that the

NMs trajectories are enclosed by the conformance reachset Rc,

which are also handled by hyperrectangles:

{

X̂(t) ≤ sup(D ⊕EEm) = sup(D) + |E|em

X̂(t) ≥ inf(D ⊕EEm) = inf(D) + |E|em

(32)

Combining (31) and (32) leads to a reformulated Em-opt

model in the form of linear programming that can be tractably

solved.

Further, with a set of time series of NMs trajectories, Em-opt

results from each trajectory are joint to obtain the overall Em:

Em =
⋃m

j=1
E(j)
m (33)

where E
(j)
m denotes the optimization result from (31) and (32)

for the jth measurements.

V. CASE STUDIES

This section demonstrates the technical merit and efficacy

of the Neuro-Reachability method for NMs. The algorithm is

implemented in MATLAB R2019b.

A. Case Design

Case studies are conducted on the 4-microgrid NMs in Fig. 1,

with the DER controller parameters modified from [33]. The

NMs parameters are provided in Appendix. A. The DERs can

be equipped with droop controllers and/or secondary controllers.

Five cases are designed to verify the Neuro-Reachability method.

Each case shares the same settings of NMs topology and load

condition, with different control strategies of DERs as well as

power source mixes.

Case 1: All the DERs are equipped with droop control; microgrid

4 is supposed to be model-free and data-driven, while other

microgrids are physics-based with formulations detailed in

Appendix. B;

Case 2: All the DERs, both in InSys and ExSys, are equipped

with hierarchical control (i.e., both droop and secondary

controls) under an all-to-all communication among DERs,

and microgrid 4 is data-driven similar as Case 1;

Case 3: All settings are the same with Case 1, except that

microgrid 3 (which comprises 2 DERs) is data-driven while

microgrids 1, 2, 4 are physics-based;

Fig. 4. Illustration of training set: time-series measurements of NMs dynamics
under perturbations.

Fig. 5. Training process of ODE-Net for NMs dynamic model discovery.

Case 4: All settings are the same with Case 3, except that the

DER at bus 6 in microgrid 3 is replaced by a synchronous

generator (SG);

Case 5: All settings are the same with Case 3, except that the

DER at bus 6 in microgrid 3 is replaced by an energy storage

unit (ESU);

Uncertainty settings: By default, the uncertainty of each

DER is set as 20%, which means that the reference active power

of DER controllers can randomly deviate from the prediction

to address the impact of uncertain renewables. Mathematically,

uncertainty is modelled as an unknown-but-bounded set [29] in

reachability analysis.

Dataset settings: NMs undergo frequent transients due to

the fluctuating of DERs. Thereby, measurements are acquired

under uncertain perturbations to construct the training set for

ODE-Net. In this paper, the training data contains time-series

measurements lasting for 270 seconds. Fig. 4 shows the training

data, taking a single dimension (i.e., power output from DER1)

for illustration purpose.

B. Validity of ODE-Net-Based NMs Model Discovery

1) Performance of ODE-Net: This subsection demonstrates

the performance of ODE-Net in learning the state-space model

of microgrids. A two-layer perceptron architecture is used for

ODE-Net, with 40 neurons in each layer. The trapezoidal rule

is employed for NMs dynamic integration. The Adaptive Mo-

ment Estimation (Adam) [34] algorithm is applied to enable an

adaptive learning rate during the ODE-Net training.

Fig. 5 presents the ODE-Net training process for Case 1.

At the starting stage, ODE-Net is randomly initialized and

largely deviates from the real NMs trajectories, as illustrated in

Fig. 5(b). Then, after the neural network training via continuous

backpropagation, ODE-Net converges to a perfect match of the

NMs trajectories on the training set, as illustrated in Fig. 5(c).

Additionally, Fig. 5(d) presents the evolution of loss function at

the logarithmic scale. As a rule of thumb, 1500 iterations lead

to convergence of the ODE-Net.
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Fig. 6. ODE-Net performance on the test set of NMs dynamics (Δf : frequency
deviation). (a)-(c), droop control under no fault, short-circuit fault and open-
circuit fault respectively. (d)-(f), hierarchical control under no fault, short-circuit
fault and open-circuit fault respectively.

Further, Fig. 6 illustrates the ODE-Net performance on the test

set, which verifies its ability to generalize beyond the training set.

Three types of scenarios are studied, i.e., no-fault, a short-circuit

fault at bus 19, and an open-circuit fault of branch 2-3. Each fault

occurs at 0.3 s and is cleared at 0.32 s. An interesting finding is

that the ODE-Net-enabled NMs formulation accurately captures

the uncertain NMs transients not only under the frequently

fluctuating DER uncertainties, but also under large disturbances,

although the latter scenarios never appear in the training set. This

shows the robustness of the ODE-Net-enabled NMs formulation.

2) Comparison Between ODE-Net and Conventional DNN

Techniques: To further illustrate the superiority of ODE-Net in

modelling continuous-time dynamics of NMs, ODE-Net is com-

pared with three representative DNN techniques, i.e., multi-layer

perceptron (MLP), residual neural network (ResNet), and long

short-term memory (LSTM). The configuration of each DNN is

set as:
� An MLP comprised of 3 hidden layers with 200 hidden

units in each layer;
� A ResNet comprised of 10 hidden layers with double-layer

skips and 200 hidden units in each layer;
� An LSTM network with 200 hidden units.

Conventional DNN learns a nonlinear function between inputs

and outputs. Therefore, discretization on differential equations

in (1) is inevitable [35], [36]:

x(t)− x(t−∆)

∆

=
1

2
(N (x(t),u(t)) +N (x(t−∆),u(t−∆))) (34)

Here, we adopt the trapezoidal rule where ∆ denotes the time

step. Consequently, loss function for conventional DNN is con-

structed by using the distance between the real derivatives y =
x(t)−x(t−∆)

∆ and the trained derivatives ŷ = 1
2 (N (x(t),u(t)) +

N (x(t−∆)u(t−∆))), :

min
θ

n
∑

i=1

LDNN =
n
∑

i=1

1

2
ηi‖yi − ŷi‖2 (35)

Fig. 7. Comparison between ODE-Net and conventional DNN methods for
NMs dynamic analysis.

Comparing (35) with (2), an obvious distinction is that ODE-Net

is capable of directly minimizing the difference between real

dynamic states and trained dynamic states.

Fig. 7 presents the simulation results. Although both ODE-Net

and DNN methods exhibit satisfactory accuracy on the training

set (see Fig. 7(a) for time-domain trajectories and boxplot statis-

tics), Fig. 7(b) clearly illustrates that their performance differs

largely on the test set containing frequently perturbed NMs

dynamics. Among the selected conventional DNN techniques,

LSTM exhibits the best performance on the test set. Still, ODE-

Net has a 50% higher precision than LSTM despite its simplest

network architecture (i.e., a two-layer MLP). In addition, ODE-

Net is able to take irregularly or sparsely sampled measurements

since it directly handles the differential equations. In contrast,

conventional DNN usually requires the measurements to be well

aligned or synchronized to ensure a proper discreteziation.

Another advantage of ODE-Net is that with the discovered

state-space model, various power system analytics (e,g., tran-

sient simulation, dynamic verification, stability analysis) can be

conducted by regarding the ODE-Net-based ExSys as a special

type of “dynamic component” and incorporating the data-driven

model into the existing system model.

C. NMs Dynamic Verification via Neuro-Reachability

This subsection studies the NMs dynamics with both un-

certain perturbations and fault disturbances via the Neuro-

Reachability analysis.

Fig. 8 studies the neuro-reachsets under the quasi-static sce-

nario, where the NMs is only perturbed by the DER uncer-

tainties. The simulation shows that the neuro-reachsets tightly

encloses the model-driven reachsets, which verifies both the ac-

curacy and conservativeness of the method. In particular, in Case

2 where the DERs are equipped with both droop and secondary

control, the Neuro-Reachability is supposed to learn not only

the interactive currents between ExSys and InSys, but also the

control signals from ExSys. Fig. 8(b) still shows a tight and

perfect over-approximation of the real reachsets, which exhibits

the potential of the Neuro-Reachability method in learning the
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Fig. 8. Neuro-reachsets and its comparison with the model-driven reachsets
(Δf : frequency deviation; v1: voltage amplitude at DER1).

Fig. 9. Illustration of numerical stability of neuro-reachsets.

NMs dynamic model with complicated hierarchical control.

Neuro-Reachability shows the superiority of hierarchical control

from two aspects: i) reachsets in Case 2 are narrower than the

those in Case 1, which reflects strengthened robustness of the

NMs against uncertainties; ii) reachsets in Case 2 get stable

faster than those in Case 1, which reflects a speedy power

sharing between the DERs during the NMs dynamics induced

by uncertain perturbations.

Fig. 9 further illustrates that for a duration of 100 s, neuro-

reachsets remain numerically stable. Meanwhile, the 2D projec-

tion of reachsets at 2 s, 10 s and 100 s shows that reachsets do not

diverge over the time. In fact, Neuro-Reachability inherits the

numerical stability of conventional reachability methods [30],

since the data-driven model error is formulated as a constant set

Em as presented in (28).

Further, Fig. 10 studies the neuro-reachsets under a mo-

mentary short-circuit fault occurred at 0.3 s and cleared at

0.32 s. Even though the ODE-Net-based NMs formulation

is learned from the dynamics of small disturbances induced

by the DERs’ uncertainties, simulation results show that the

Neuro-Reachability method accurately and tightly captures the

Fig. 10. Neuro-reachsets under a short-circuit fault.

Fig. 11. Neuro-reachsets under different uncertainty levels of Case 2.

fast NMs dynamics under heterogeneous uncertainties during

disturbances. Comparing the neuro-reachsets in Case 1 and Case

2, it is obvious that the hierarchical control exhibits restrained

frequency/voltage dips and enhanced damping on the oscilla-

tions of the NMs states. Specifically, the reachable sets during the

periods from the fault occurrence through the fault clearance are

magnified by the subplots. Neuro-Reachability thus effectively

mimics the NMs transients initiated by large disturbances.

Neuro-Reachability inherits the efficiency and scalability of

conventional reachability methods. Therefore, the worst time

consumption is of polynomial complexity [30].

D. Efficacy and Versatility of Neuro-Reachability

This subsection studies the impact factors of the NMs reach-

sets via the Neuro-Reachability method.

1) Neuro-Reachsets Under Different Uncertainty Levels:

First, the impact of uncertainties on NMs dynamics is inves-

tigated. Taking DER1’s output-voltage in Case 2 as an example,

Fig. 11 shows that the reachsets expand with the increasing

uncertainties under both no-fault and faulted scenarios. The

propagation of uncertainties in the NMs dynamics is therefore

distinctly demonstrated by the neuro-reachsets at different un-

certainty levels.

2) Neuro-Reachsets Under Different Control Strategies:

Second, the impact of the DERs’ control strategies on NMs

reachsets is investigated. Fig. 8 and Fig. 10 exhibit the effi-

cacy of the hierarchical control to stabilize the system under

uncertainties from the time-domain perspective. Further, Fig. 12

presents the neuro-reachsets from a state-space observation. The
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Fig. 12. State space neuro-reachsets under different control strategies (The
colored zonotopes represent the trajectory of reachsets at different timesteps.
Here, the high-dimensional reachsets are projected to 2-dimensional space for
visualization purpose.). (a) Case 1: DERs with droop control. (b) Case 2: DERs
with hierarchical control.

Fig. 13. Neuro-reachsets under a short-circuit fault under different mixes of
power sources in NMs.

efficacy of the hierarchical control for restraining the uncer-

tainty impacts, damping the frequency/voltage overshoot and

recovering the NMs states after faults are distinctly verified via

the neuro-reachsets. Hence, Neuro-Reachability is promisingly

helpful for verifying the controller’s performance under the

infinite many uncertain scenarios in the absence of the microgrid

model.

3) Neuro-Reachsets Under Different Power Source Mixes:

Finally, the impact of power source mixes is investigated via

neuro-reachsets. Different power sources influence the NMs

transients by their diverse dynamic features.

Fig. 13 studies the quasi-static reachsets (i.e., with no fault

but only DER uncertainties perturbing the NMs) for Case 3,

Case 4 and Case 5. The neuro-reachsets tightly encloses the

model-driven reachsets in all cases, which again verifies the

correctness of the Neuro-Reachability method. An interesting

finding is that the neuro-reachsets of Case 3 in Fig. 13 are nearly

identical to those of Case 1 in Fig. 8. This is because case 1 and

Case 3 describe the identical NMs only with different microgrids

being data-driven. Results of Case 4, compared with those of

Case 3, show that the neuro-reachsets shrinks when the NMs are

equipped with a SG, benefiting from the inertia and regulating

ability of SG as well as its full dispachability compared with

DERs. The neuro-reachsets is further improved when the NMs

are equipped with an ESU as presented by the neuro-reachsets of

Case 5, indicating enhanced robustness against the uncertainties

with ESU. Meanwhile, it is noteworthy that both the SG and

ESU provide voltage support to boost the NMs voltage, as

illustrated in Fig. 13(b). Additionally, Fig. 14 investigates the

Fig. 14. Neuro-reachsets under different mixes of power sources in NMs.

neuro-reachsets of NMs during a short-circuit fault for Case

4 (i.e., equipped with a SG) and Case 5 (i.e., equipped with

an ESU). The Neuro-Reachability method, as a data-driven

approach, successfully captures the transient characteristics of

the controllable power sources in restraining the uncertainties

and damping the frequency/voltage dip/rise during the large

disturbances compared with Fig. 12(a).

VI. CONCLUSION

This paper devises a Neuro-Reachability method, a data-

driven approach to verify the uncertainty-disturbed, fast-

changing and strongly-nonlinear dynamics of the NMs with

unidentified subsystems. The ODE-Net-enabled dynamic model

discovery, reachability analysis, and conformance theory con-

jointly enable a flexible and accurate model discovery of real-

world microgrids, as well as provide reliable reachsets for verify-

ing the NMs dynamics under heterogeneous uncertainties. Case

studies of a typical NMs demonstrate the efficacy and robustness

of the devised method. In the future, the Neuro-Reachability

method will be enhanced for the dynamic verification of fully

model-free NMs.

APPENDIX A

TEST SYSTEM PARAMETERS

TABLE I
PARAMETERS OF DERS

1 mp: active power droop gain; nq : reactive power droop gain; ro: coupling

resistance; Lo: coupling inductance; F : current feed-forward gain; kpv : voltage

proportional gain; kiv : voltage integral gain; kpc: current proportional gain; kic:

current integral gain;
2 βl and βf respectively represent secondary control parameters for leader DER

and follower DERs [37]. In this paper, DER1 is chosen as the leader DER.

This appendix provides the parameters of the test system, i.e.,

the 4-microgrid NMs illustrated in Fig. 1.
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TABLE II
PARAMETERS OF POWER LOADS

TABLE III
COMPOSITION OF MICROGRIDS

1 Without loss of generality, impedance of each branch are assumed

homogeneous with rb = 3.12× 10−3p.u.,Lb = 4.68× 10−3p.u..

APPENDIX B

DETAILS OF PHYSICS-BASED MICROGRID MODEL

This appendix details the physics-based model for each ele-

ment in InSys.

In this paper, a two-layer hierarchical control is employed

for DERs. Differential equations formulating the dynamics of

inner and outer loops are detailed in our previous study [28].

Specifically, droop control is formulated as:

ω = ω∗ −mp(P − P ∗) +Ω (36a)

v = v∗ − nq(Q−Q∗) + e (36b)

where ω denotes DERs’ angular speeds; v denotes DERs’

voltages; ω∗ and v∗ respectively denote the reference values of

speed and voltage;P ∗ andQ∗ respectively denote the desired ac-

tive/reactive power from DERs;mp andnp respectively denotes

the active/reactive power droop gains of DERs. Specifically, P ∗

is impacted by available power from renewable energies, which

introduces uncertainty to NMs dynamics.

Power sharing and voltages/frequency restoration in NMs are

achieved by secondary control, which is formulated as:

dΩ

dt
= −α(ω − ω∗)−AΩ (37a)

de

dt
= −β(v − v∗)−B(Q�Qn) (37b)

Here, Ω and e denote the secondary control signals following

the distributed-averaging proportional-integral logic [37]; α, β,

A and B are parameters for secondary control, where A and

B represents the communication between different DERs; Qn

denotes the reactive power rating of DERs.

Dynamics of power loads and branches are modelled by

impedance dynamics [5]:

Ll

dil
dt

= −rlil + ωsIsLlil +M lv (38)

Lb

dib
dt

= −rbib + ωsIsLbib +M bv (39)

where il and ib respectively denote the DQ-axis currents of loads

and branches. rl and Ll respectively denote the matrices of load

resistances and inductance; M l is the DQ-axis incidence matrix

between power loads and buses; rb, Lb and M b are similarly

defined for branches. Formulation of arbitrary types of power

loads is further provided in [5].

APPENDIX C

ODE-GOVERNED EXSYS FORMULATION

This appendix briefly explains the rationale behind the use of

ODE-Net to learn an ODE-governed ExSys model. Without loss

of generality, we take droop control as an example. To make a

distinction from the main text, this appendix uses subscript for

variables.

Based on the differential equations of DERs, power loads

and branches in Appendix. B, ExSys model can be functionally

abstracted as:

{że = ge(ie, ze,we) (40a)

i̇e = fe(ie, ze) +meve +mbdvbd (40b)

0 = neie + nbdibd (40c)

Here, (40a), (40b) and (40c) respectively formulate the dy-

namics of DER states (ze), component current (ie) and KCL. ve

and vbd separately denote voltages at ExSys buses and bound-

ary buses; ibd denotes current inflows from boundary buses;

we denotes uncertainty from renewable energy. Since ExSys

is unidentified, expressions of ge, fe, me, mbd, ne, nbd are

unknown. Neither are the detailed constituents of ze and ie.

Because (40c) is linear, (40) can be reformulated to a rig-

orously equivalent ODE system [28]. Denoting ne1 as the non-

singular matrix constructed by the maximal linearly independent

columns of ne, (40c) yields:

ie1 = −n−1
e1 (ne0ie0 + nbdibd) (41)

where ne0 denotes the rest columns of ne; ie1 and ie0 are

sub-vectors of ie respectively corresponding to ne1 and ne0.

Substituting (41) into (40) yields:

{że = ĝe(ie0, ze,we) (42a)

i̇e0 = f̂e0(ie0, ze) +mbd0vbd −me0(neme)
−1

(nef̂e(ie0, ze) + nembdvbd + nbdi̇bd)
(42b)

where ĝe(ie0, ze,we) = ge(ie, ze,we) and f̂e(ie0, ze) =
fe(ie, ze) by substituting (41); f̂e0, mbd0 and me0 are respec-

tively sub-vectors/sub-matrices corresponding to ne0.

Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on December 24,2021 at 02:10:39 UTC from IEEE Xplore.  Restrictions apply. 



152 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 37, NO. 1, JANUARY 2022

As indicated by (41), ExSys is reformulated in a pure ODE

form, which enables the application of ODE-Net for dynamic

model discovery.
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