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Quantum Power Flow

Fei Feng, Student Member, IEEE, Yifan Zhou

Abstract—This letter is a proof of concept for quantum power
flow (QPF) algorithms which underpin various unprecedentedly
efficient power system analytics exploiting quantum computing.
Our contributions are three-fold: 1) Establish a quantum-state-
based fast decoupled model empowered by Hermitian and constant
Jacobian matrices; 2) Devise an enhanced Harrow-Hassidim-Lloyd
(HHL) algorithm to solve the fast decoupled QPF; 3) Further
improve the HHL efficiency by parameterizing quantum phase
estimation and reciprocal rotation only at the beginning stage.
Promising test results validate the accuracy and efficacy of QPF
and demonstrate QPF’s enormous potential in the era of quantum
computing.

Index Terms—Quantum power flow, quantum computing, fast
decoupled power flow.

I. INTRODUCTION

RADITIONAL tools for real-time operation of modern

power systems, such as probabilistic power flow, N —
x security screening and Monte Carlo methods, remain to be
intractable problems. Power flow equations, if solved by the
classical direct iterative algorithms, scale with time as O(N)
for an N x N system [1]. However, tremendous amount of
repetitive power flow calculations are needed to analyze the
impact of uncertainties (e.g., output from distributed energy
resources, fluctuating demands, and random failures or faults)
through traditional methods such as probabilistic power flow,
making the exiting approaches impossible to meet the real-time
operation requirements [2].

Theoretically, quantum computing algorithms can achieve
exponential speedups over classical methods using noisy-free
quantum computers [3], [4]. This work is the first attempt of
leveraging quantum supremacy to resolve the intractable chal-
lenge related to power flow calculations. The key innovation is
to architect a practical quantum power flow (QPF) model and
solver through an improved Harrow-Hassidim-Lloyd (HHL) [5]
algorithm. This letter demonstrates QPF’s potential to meet the
growing needs of power flow calculation and support fast and
resilient power system operations.
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II. QUANTUM POWER FLOW

A. Fast Decoupled QPF Formulation

Fast decoupled power flow [6] is a most widely used variant
of Newton-Raphson power flow owing to its excellent com-
putational efficiency and convergence performance. It adopts
constant Jacobian matrices based on the fact that in a bulk power
grid voltage angles are mainly related to active power and voltage
magnitudes to reactive power, and thus reduces the costs for
updating the Jacobian matrix in each iteration. Inspired by the
fast decoupled approach, we extend the traditional power flow
into a quantum computing model:

[V7IAP) = B'|[VA#) (1)
[VTIAQ) = B"|AV) )

where |-) denotes the normalised quantum states, which will be
futher explained in Subsection 1I-B; AV and A@ are the dif-
ferences of voltage magnitudes and angles, respectively; B’ and
B” are coefficient matrices derived from the admittance matrix.
Given AV and A@, power mismatches AS = [AP, AQ]T can
be updated by

AS=|S-Y(0) VoV 3)

where S = [P, Q] represents the active/reactive power in-
jections, Y (0) is the admittance matrix, o means Hadamard
product.

B. HHL-Based QPF Algorithm

Apart from having constant Jacobian matrices, a striking
feature of the QPF model is that B’ and B” are both Hermitian
and sparse. This allows for a direct translation of the classical
power flow into the quantum language.

Taking (2) as an example, the spectral decomposition of B”
can be devised as

¢
B" =% hilb{) (V]| S
i=1

where A; and |b) are the ' eigenvalue and eigenvector of
B”. Written in the eigenbasis of B”, [V 1AQ) = Y5, o |b!),
which gives

¢
AV) =BHVTIAQ) = Y ataulh)) o)
i=1
An improved HHL algorithm, as shown in Fig. 1, is developed
to achieve the aforementioned QPF computations in three steps.
Three registers (R., R,, R;) are initialized at the beginning of
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Fig. 1. Quantum circuit architecture for the HHL-based QPF algorithm.

2 | Initial Voltage: |

— | V=1.020 |

| Vml0Z0

5:Slack bus | Vi=1.020 |
@ | V=1.020

Power Injection: !

1.002.20 b g =—0.55-02) !

LI §=-035-018; !

[ S5=-0.95-0.01j |

3 4 | S=02402j |

Fig. 2. Five-bus system for QPF tests.

QPF. R, contains the binary representation of the eigenvalues of
B’ and B”. R, stores the qubit representation of [V~ AQ) and
[V-LAP), and R, regulates the angles of operators in ancilla
quantum encoding (AQE) [3].

Step 1: Quantum phase estimation (QPE) It aims to deter-
mine the eigenvalue of unitary operators by using
phase kickback and quantum inverse Fourier trans-
form (QFT). In the phase kickback, R, is set to |0)
and followed by Hadamard gates to provide superpo-
sition states [5]. If register R, is |0), the controlled
unitary operator does nothing to register I?,; if reg-
ister R, is |1), then the eigenvalues of controlled
unitary operators can be kicked into |1) on register
R.. Eventually, quantum phase estimation can pick
up the binary decimals of eigenvalue |A;). After QPE,
a quantum state can be generated in the eigenbasis of
B"as 330, ailks) @ [b]).

Inverse rotation This step aims to kick the reciprocal
of %, into state |1) for measurement. The reciprocal
of eigenvalues from QPE can be achieved through the

1—%2|0>+

% |1). Benefiting from invariant B and B”, the QPE
and inverse rotation are parameterized only in the
first iteration to update phase angle operators, signif-
icantly improving the efficiency of HHL.

Inverse QPE (QPE) The inverse QPE subroutine
disentangles the register R, to |0) by using controlled
operator and leaves the remaining state as:

Step 2:

controlled operators in AQE : |0) —

Step 3:

C

¢ o2
> ailo) @ [b)( 1= —510)+ 1) (©
i=1 g

Ag

Once the measurement of R; is |1), the corresponding iterative
results [VAO) and |AV) are in post-measurement states. Then,
power flow variables 8, V can be updated for the next iteration.
The QPF iterations continues until the mismatches AP and AQ
achieve a convergence tolerance of &.
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Fig. 3. Voltage profiles in Test II with different methods.

Algorithm 1: QPF Algorithm.

Initialize: 6, V., B, B", P, Q, ¢;
while AP, AQ>¢ do
Update: AP, AQ Eq. (3);
if 15! iteration then

‘ Input: B/, B = HHL;
end

Input: AP, V =HHL = A®@,
Input: AQ, V =HHL = AV,
Update: 0, V;

end
Result: 6, V and the branch power flow.

QPF for the first time architect an AC power flow solution in
quantum computers. Algorithm 1 presents the pseudo code of
QPE.

III. CASE STUDY

The effectiveness and efficiency of QPF are verified on a
five-bus test system (see Fig. 2). Test I/II verifies the QPF perfor-
mance on normal and stressed conditions. QPF is implemented
in IBM’s Qiskit (0.23.4) where the number of R, is set to 4.

A. Validity of QPF

This subsection verifies the correctness and convergence
performance of QPF by comparing QPF results against those
from classical fast decoupled power flow and Newton-Raphson’s
method. Table I presents the iteration process and the final power
flow results under Test I. Fig. 3 shows the voltage convergence
performance in Test II, where the load on bus 1 is increased to
2.2+0.8j p.u.. The following insights can be obtained:

e The QPF results are identical to the classical results, which

validates the correctness and generality of QPF.

® The computation process shows that HHL exhibits satisfac-
tory accuracy at each iteration. The reason is that sufficient
quantum registers are employed for quantum eigenanaly-
sis. In this case, if the number of quantum registers is lower
than 4, QPF might fail to pick up accurate results.

e Compared with results under the normal condition, the
iteration number in Test II is increased to 34. This is
because the power system is close to solvability region
boundary and its voltage profiles deteriorate.

¢ QPF inherits the convergence characteristics of the classi-
cal fast decoupled method, which is slightly weaker than
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TABLE I
VOLTAGE PROFILES IN TEST I WITH DIFFERENT METHODS (P.U.)

Algorithm ITteration V3 Vau 03 04
1 1.0141 1.0282  -0.1143  -0.0368
2 0.9946  1.0181 -0.1139  -0.0340
QPF 3 0.9950  1.0183  -0.1144  -0.0393
4 0.9948  1.0182  -0.1144  -0.0393
5 0.9948 1.0182  -0.1144  -0.0393
6* 09948 1.0182 -0.1144 -0.0393
1 1.0141 1.0282  -0.1143  -0.0368
2 0.9946  1.0181 -0.1139  -0.0340
Classical Fast 3 0.9950 1.0183  -0.1144  -0.0393
Decoupled 4 0.9948  1.0182  -0.1144  -0.0393
5 0.9948  1.0182 -0.1144  -0.0393
6* 09948 1.0182 -0.1144 -0.0393
Classical Newton 1 1.0092  1.0251 -0.1136  -0.0382
“Ra hson 0.9951 1.0183  -0.1144  -0.0392
P 3% 09948 1.0182 -0.1144 -0.0392
*Final power flow result.
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Fig. 4. Probabilistic voltages at buses 3 and 4 and their correlations (a)
Probabilistic voltages at bus 3 (b) The correlation of voltages between buses
3 and 4 (c) The correlation of power injections between buses 3 and 4 (d)
Probabilistic voltages at bus 4.

that of Newton’s. This is because constant coefficient ma-
trix can not adjust the calculation direction of QPF at each
iteration. However, since the same convergence criteria is
adopted for different power flow algorithms, the final power
flow result of QPF is always as accurate as Newton’s.

B. QPF-Based Stochastic Power Flow Analysis

This subsection extends QPF to the stochastic power flow
analysis considering correlations between system variables. The
power injections at buses 3 and 4 follow Gaussian probability
distributions, where the correlation coefficient is set to be 0.75.
The convergence tolerance is & = 107°.

Five thousand samples are generated randomly via Monte
Carlo sampling. The probability distributions of voltage magni-
tudes at buses 3 and 4 as well as their correlations are obtained
from QPF, as shown in Fig. 3.

® QPF is promising to be employed for stochastic power

flow analyses. For instance, it can be seen that the voltage
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magnitude of bus 3 follows Gaussian distribution. Var-
ious correlation and dependence (i.e. Copulas, Pearson
analysis) models can be readily integrated into QPF to
obtain precisely the probability distributions of system
states. Therefore, in the future QPF can serve as a potent
tool for probabilistic system analyses. It opens a door to
quantum-enabled, unprecedentedly efficient risk assess-
ment and reliability analysis for electric grids.
e QPF will show unprecedented computational efficiency in
repetitive power flow calculations. The time complexity
of classical power flow algorithm at each iteration (i.e.,
solving linear equations on classical computers) is O(N),
while QPF acquires an exponential speedup resulting in
O(log(NN)). This supremacy will be more striking for ultra-
scale power systems and high-dimensional uncertainties.
QPF s still under theoretical development as it still encounters
excessively large depth of quantum circuit and short coherence
time in today’s noisy-intermediate-scale quantum (NISQ) com-
puters. Nevertheless, QPF lays the foundation for power flow
analysis on noisy-free quantum computers of a distant future.

IV. CONCLUSION

This letter opens the door for power system quantum analytics
by developing a QPF algorithm. A fast decoupled QPF model
is devised and solved by an enhanced HHL algorithm. QPF is
a general approach for arbitrary AC power systems, and the
proof-of-concept on a small test system has been successful.
Despite existing gaps for practical applications of QPF in system
operations and planning due to large quantum depths, short
coherence times and noises on today’s quantum computers,
QPF lays solid foundation for power system analytics on the
next generation quantum computers with much lower noises and
computational power. It is expected to grow into a enormously
useful tool for energy management and security analysis.
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