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Abstract—This letter devises a quantum electromagnetic tran-
sients program (QEMTP) which is the first attempt to tackle
the computational challenges in solving EMTP through quantum
computing. The main contributions lie in: (1) A quantum-enabled
EMTP formulation with Dommel’s model encoded in quantum
states; 2) An Harrow-Hassidim-Lloyd (HHL)-based QEMTP to
solve the discrete-time nodal equations; 3) An iteration-based HHL
revision for mitigating temporal errors to achieve high accuracy of
QEMTP with limited quantum resources. Case studies verify the
correctness and efficacy of QEMTP in simulating both fast and
slow dynamics.

Index Terms—Power system dynamics, quantum electroma-
gnetic transients program (QEMTP), quantum computing.

I. INTRODUCTION

E
LECTROMAGNETIC transients program (EMTP) is a

fundamentally important tool capable of providing com-

plete and accurate information of electromagnetic dynamics, in-

cluding spectra centered around DC and fundamental frequency

up to ultra-high frequency transients [1]. In recent years, the

necessity of using EMTP in system planning and operations

swiftly grows with the ever-increasing integration of power

electronics devices and variable distributed energy resources.

Solving EMTP remains to be a formidable problem even

on the powerful and expensive real-time simulators such as

RTDS [2]. The curse of dimensionality makes existing EMTP

algorithms unscalable and unable to offer real-time, high-fidelity

results needed for managing massive electronic devises and

ensuring resilient power system operations.

Recent breakthroughs in quantum computing shed lights on

a ‘quantum leap’ of EMTP solutions. While the complexity

of numerical integration (i.e., the core of EMTP) on classical

computers scales polynomially with the problem size, the quan-

tum computer attains a logarithmically-growing computational
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complexity [3]. Thus, a quantum computing empowered EMTP,

previously nonexistent, is promising to achieve an exponential

speedup over today’s EMTP tools.

This letter is the first attempt to bridge the gap between

classical and quantum EMTP approaches. Major innovations

of Quantum EMTP (QEMTP) include: 1) a quantum-encoded

EMTP formulation; 2) an Harrow-Hassidim-Lloyd (HHL) al-

gorithm [4] based EMTP solver; and 3) a practical revision of

HHL with an error compensation technique for improving accu-

racy. The proof-of-concept of QEMTP under various transients

scenarios verifies its accuracy and efficacy.

II. QUANTUM EMTP FORMULATION

A. Classical EMTP Formulation

Classical EMTP formulation in the matrix form can be estab-

lished as [1]:

G0v(t) = is(t) + ih(t) := i(t) (1)

Here, v denotes the vector of nodal voltages; is denotes the

vector of current sources; ih denotes the vector of “history”

terms; i denotes the vector of “assembled” nodal current in-

jections including current sources and history terms; G0 is the

equivalent conductance matrix of dimension N .

B. Quantum EMTP Formulation

Reformulating (1) into a quantum representation leads to:

G|v〉 = |i〉 (2)

Here, G is a rescaled unit-determinant matrix of G0; |v〉 and

|i〉 respectively denoted normalised quantum representations of

v(t) and i(t) defined on �log2(N)� qubits:

|i〉 =
∑

k ik|k〉
‖∑k ik|k〉‖2

, |v〉 =
∑

k vk|k〉
‖∑k vk|k〉‖2

where |k〉 represents the computational basis (k = 1, . . . , N );

ik and vk are the kth element of i and v, respectively.

Equation (2) embeds EMTP into Hilbert space. Therefore,

any operators on (2) will be of exponential dimension. A silent

feature of (2) is that G is sparse and symmetrical,1 meaning its

eigenvalues are real and its eigenvectors can form an orthonor-

mal basis. Decompose G in its eigenbasis:

G =
∑

j
λj |uj〉〈uj | (3)

1For non-Hermitian matrices, the algorithm still applies by augmenting the

formulation as: [
0 G

G
†
0
][ 0
v
] = [ i

0
]. Consequently, the result is obtained by

extracting the lower-half entries.
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Fig. 1. Schematic diagram of HHL-based QEMTP circuit.

where (λj ,uj) are the jth eigenpair of G.

Similarly, |i〉 is also decomposed in the eigenbasis of G:

|i〉 =
∑

j
bj |uj〉 (4)

Combining (3) and (4) yields the quantum-based solution:

|v〉 = G
−1|i〉 =

(

∑

j
λ
−1

j |uj〉〈uj |
)(

∑

j
bj |uj〉

)

=
∑

j
λ
−1

j bj |uj〉
(5)

Based on (2)-(5), the next step is to build proper quantum

circuits to execute above functionality in Hilbert space, which

will be detailed in Section III.

III. QUANTUM EMTP ALGORITHM

A. HHL-Based QEMTP Solver

This subsection devises an HHL-based QEMTP solver (see

Fig. 1). Three quantum registers are adopted, i.e., io for storing

nodal current inputs and nodal voltage outputs, w for working

on QEMTP equations, and a for storing ancilla qubits.

At each time step, i is updated to initialize |ψ0〉 = |i〉io ⊗
|0〉w ⊗ |0〉a. Then, three steps are carried out [4]:
� Quantum Phase Estimation (QPE), which estimates the

eigenvalues of G with an operator U = eiGτ :

|ψ1〉 =
(

∑

j
bj |uj〉io|λj〉w

)

⊗ |0〉a (6)

where |ψ1〉 is the quantum state after going through QPE;

|λj〉 is the qubit representation of the jth eigenvalue of G.
� Controlled Rotation, which rotates register a with a spe-

cific angle conditioned on |λ〉w to produce a normalised

state:

|ψ2〉 =
∑

j

bj |uj〉io|λj〉w
(√

1−C2

λ
2

j

|0〉+C

λj

|1〉
)

a

(7)

� Inverse QPE, which compiles register w to |0〉w to un-

compute the quantum states so that the final solution can

be obtained by postselecting |1〉 on register a:

|ψ3〉 =
∑

j

bj |uj〉io
(√

1−C2

λ
2

j

|0〉+C

λj

|1〉
)

a

(8)

|1〉a
==⇒

|ψ∗〉 =
∑

j

λ
−1

j bj |uj〉io ≈ |v〉 (9)

Consequently, the HHL algorithm outputs the nodal voltages

v on the quantum register io. HHL theoretically provides an ex-

ponential enhancement in computational complexity compared

with its classical counterparts. From the space complexity per-

spective, QEMTP formulation in the Hilbert space only employs

�log2(N)� qubits to describe a N -dimensional vector, which is

a logarithmic reduction. From the time complexity perspective,

HHL runs at O(log(N)) [5], while the best general-purpose

classical algorithm (i.e., the conjugate-gradient algorithm) runs

at O(N).

B. Enhanced QEMTP

HHL aims at approximating |v〉 by a quantum superposition,

as detailed in (9), with the following stopping criteria [5]:

Prob(‖|v̂〉 − |v〉‖2 ≤ ε) > 0.5 (10)

where ε is a desired error; |v̂〉 represents final quantum state to

be output; Prob denotes probability. Restricted by the qubits

resources, depth of quantum circuits and noise on quantum

computers, an executable error for the HHL quantum circuit may

lead to growing errors or even divergence during the step-by-step

QEMTP calculation. To tackle the challenge, we revise the

HHL algorithm to effectively mitigate the error accumulation,

as follows.

Denote the quantum state tomography of |v〉 as v. Then, v is

modified with ∆v depending on the HHL error:

G∆v = i−Gv (11)

Because (11) has an identical form as (1), HHL is then recur-

sively executed to solve ∆v until a satisfactory precision is

reached. Algorithm 1 summarizes the QEMTP procedure.
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Fig. 2. QEMTP results of RLC series circuit.

Fig. 3. Quantum circuit for base case of RLC series circuit (width: 7; depth:
102; number of CNOT gates: 54).

IV. CASE STUDY

A. Validity of QEMTP

QEMTP is implemented in IBM Qiskit [6] and is verified

first on a RLC series circuit switching into a DC source. Fig. 2

shows that QEMTP produces accurate electromagnetic results

for the base case, underdamped case and overdamped case. The

perfect match with those results from both classical EMTP and

state-space approach verifies the effectiveness of QEMTP. The

quantum circuit for the base case is illustrated in Fig. 3.

Fidelity, as defined below, is a preferred metric to measure the

similarity of quantum states:

F (ρ1, ρ2) = [Tr
√√

ρ1ρ2
√
ρ1]

2 (12)

Fig. 4. QEMTP fidelity of RLC series circuit.

Fig. 5. Illustration of latency test system.

TABLE I
LATENCY SYSTEM PARAMETERS

Fig. 6. QEMTP results of the latency circuit.

Therefore, we use fidelity to quantify the precision of QEMTP.

As shown in Fig. 4(a), the fidelity between QEMTP and classical

EMTP is consistently above 99.9999%, exhibiting the accu-

racy of QEMTP in performing electromagnetic simulations.

Meanwhile, a flat fidelity curve also indicates that QEMTP

effectively mitigates the inherent error accumulation in HHL.

Fig. 4(b) further illustrates that reducing the error threshold ξmax

improves the accuracy of the QEMTP results.

B. QEMTP Application in a Latency Network

Since a common feature of power systems is the co-existence

of fast-slow dynamics, QEMTP is further applied to a typical

latency test system in [7] as an abstraction of the fast-slow

dynamic systems (see Fig. 5). Table I presents the test system

parameters.

QEMTP results show that the electromagnetic transients fol-

low a fundamental frequency (60 Hz) carrier superimposed with

high-frequency components. Fig. 6 also shows that the QEMTP

results match those from the classical EMTP and state-space

approach, further verifying the capability of QEMTP in handling
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Fig. 7. QEMTP results of the latency circuit under a short-circuit fault.

Fig. 8. Efficacy of error compensation in QEMTP.

the complicated fast-slow dynamics. Specifically, the zoomed

view during the starting period (the most oscillating period)

shows QEMTP’s satisfactory performance in capturing the fast

dynamics, while the zoomed plot for the final stage shows

QEMTP’s capability in mitigating the error accumulation.

Further, QEMTP is tested through the analysis of a large

disturbance case. With a short-circuit fault occurred at bus 3 at

2.4 ms, the latency circuit is virtually split into a fast subsystem

and a slow subsystem, which is coincident with the QEMTP

results in Fig. 7. Moreover, Fig. 7(b) shows that QEMTP accu-

rately captures the ultra-fast oscillations of the fast subsystem

initiated by a large disturbance.

C. Further Discussion

To achieve high fidelity and robustness in a step-by-step

EMTP, QEMTP enhances HHL with an error compensation

technique, as detailed in Subsection III-B. Fig. 8 shows that,

while QEMTP accurately matches the classical EMTP results,

simply applying HHL to EMTP without error compensation

suffers from severe error accumulation and fails to provide

accurate transient trajectories after several timesteps. As a rule

of thumb, QEMTP takes a slight effort of 2–4 iterations to satisfy

the accuracy requirement of EMTP.

Although QEMTP is successfully prototyped, its real-world

application is still restricted by today’s quantum hardware,

which is a common obstacle in this Noisy Intermediate-Scale

Quantum (NISQ) era [8]. The execution of multiple shots for

Fig. 9. Impact of noisy quantum environment on QEMTP’s performance.

circuit measurement often hinders transforming the superior

efficiency of quantum algorithms from theory to reality at the

moment. Unavoidable noise and short coherence time also dis-

turb the accuracy of quantum circuits. Fig. 9 briefly investigates

QEMTP’s performance in noisy quantum environment based on

IBM QasmSimulator. QEMTP indeed exhibits certain tolerance

of noise with the assist of error compensation, while HHL never

survives under noisy environment. However, with a larger noise,

QEMTP still suffers slow convergence. Our ongoing work is to

enhance QEMTP’s applicability in NISQ era by developing a

hybrid quantum-classical QEMTP.

V. CONCLUSION

This letter is the first attempt to exploit the quantum comput-

ing capabilities in power system transient analysis. A quantum-

enabled EMTP formulation is established, and an HHL-based

QEMTP algorithm is devised. A revised HHL is devised to

achieve a trade-off between high precision and limited quantum

resource. Test results from a RLC circuit and a fast-slow dynamic

system verify the correctness and efficacy of QEMTP. Even

though the practicality of QEMTP is still restricted by avail-

ability of quantum resources, condition number of conductance

matrix, executable depth of quantum circuit and noise of quan-

tum computers [9], QEMTP opens a door to the development of

numerous quantum grid analytics.
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