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Quantum Electromagnetic Transients Program

Yifan Zhou ", Member, IEEE, Fei Feng

Abstract—This letter devises a quantum electromagnetic tran-
sients program (QEMTP) which is the first attempt to tackle
the computational challenges in solving EMTP through quantum
computing. The main contributions lie in: (1) A quantum-enabled
EMTP formulation with Dommel’s model encoded in quantum
states; 2) An Harrow-Hassidim-Lloyd (HHL)-based QEMTP to
solve the discrete-time nodal equations; 3) An iteration-based HHL
revision for mitigating temporal errors to achieve high accuracy of
QEMTP with limited quantum resources. Case studies verify the
correctness and efficacy of QEMTP in simulating both fast and
slow dynamics.

Index Terms—Power system dynamics, quantum electroma-
gnetic transients program (QEMTP), quantum computing.

1. INTRODUCTION

LECTROMAGNETIC transients program (EMTP) is a
fundamentally important tool capable of providing com-
plete and accurate information of electromagnetic dynamics, in-
cluding spectra centered around DC and fundamental frequency
up to ultra-high frequency transients [1]. In recent years, the
necessity of using EMTP in system planning and operations
swiftly grows with the ever-increasing integration of power
electronics devices and variable distributed energy resources.
Solving EMTP remains to be a formidable problem even
on the powerful and expensive real-time simulators such as
RTDS [2]. The curse of dimensionality makes existing EMTP
algorithms unscalable and unable to offer real-time, high-fidelity
results needed for managing massive electronic devises and
ensuring resilient power system operations.
Recent breakthroughs in quantum computing shed lights on
a ‘quantum leap’ of EMTP solutions. While the complexity
of numerical integration (i.e., the core of EMTP) on classical
computers scales polynomially with the problem size, the quan-
tum computer attains a logarithmically-growing computational
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complexity [3]. Thus, a quantum computing empowered EMTP,
previously nonexistent, is promising to achieve an exponential
speedup over today’s EMTP tools.

This letter is the first attempt to bridge the gap between
classical and quantum EMTP approaches. Major innovations
of Quantum EMTP (QEMTP) include: 1) a quantum-encoded
EMTP formulation; 2) an Harrow-Hassidim-Lloyd (HHL) al-
gorithm [4] based EMTP solver; and 3) a practical revision of
HHL with an error compensation technique for improving accu-
racy. The proof-of-concept of QEMTP under various transients
scenarios verifies its accuracy and efficacy.

1I. QUANTUM EMTP FORMULATION
A. Classical EMTP Formulation

Classical EMTP formulation in the matrix form can be estab-
lished as [1]:

Gov(t) = i(t) + in(t) == i(t) ()

Here, v denotes the vector of nodal voltages; 25 denotes the
vector of current sources; 25, denotes the vector of “history”
terms; ¢ denotes the vector of “assembled” nodal current in-
jections including current sources and history terms; Gy is the
equivalent conductance matrix of dimension N.

B. Quantum EMTP Formulation
Reformulating (1) into a quantum representation leads to:
Glv) = i) (2)

Here, G is a rescaled unit-determinant matrix of Go; |v) and
|2) respectively denoted normalised quantum representations of
v(t) and ¢(¢) defined on [log, (N )] qubits:

|1,> _ Zklkm) |’U> _ Zkvk|k>
1225 dklk)ll2” 122k vklB)|2

where |k) represents the computational basis (k =1,..., N);
i1, and vy, are the k*" element of 4 and v, respectively.

Equation (2) embeds EMTP into Hilbert space. Therefore,
any operators on (2) will be of exponential dimension. A silent
feature of (2) is that G is sparse and symmetrical,! meaning its
eigenvalues are real and its eigenvectors can form an orthonor-
mal basis. Decompose G in its eigenbasis:

G =) hluy){ul

3

!For non-Hermitian matrices, the algorithm still applies by augmenting the
formulation as: [GOT %:}[2

extracting the lower-half entries.

1= [8] Consequently, the result is obtained by
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Fig. 1.  Schematic diagram of HHL-based QEMTP circuit.

where (1;,u;) are the j* eigenpair of G.

Similarly, |2) is also decomposed in the eigenbasis of G:
)=, bilu) 4)
Combining (3) and (4) yields the quantum-based solution:
o) = &7y = (32 45 Tl ) (D biluy))
= Zj A5 bjlug)

Based on (2)-(5), the next step is to build proper quantum

circuits to execute above functionality in Hilbert space, which
will be detailed in Section III.

(&)

III. QUANTUM EMTP ALGORITHM

A. HHL-Based QEMTP Solver

This subsection devises an HHL-based QEMTP solver (see
Fig. 1). Three quantum registers are adopted, i.e., 7o for storing
nodal current inputs and nodal voltage outputs, w for working
on QEMTP equations, and a for storing ancilla qubits.

At each time step, ¢ is updated to initialize |¢p) =
|0}, ® |0),. Then, three steps are carried out [4]:

® Quantum Phase Estimation (QPE), which estimates the

eigenvalues of G with an operator U = ¢'¢7:

wa) = (3, biluilt)n) @100 ()

where |11) is the quantum state after going through QPE;
|A.;) is the qubit representation of the j th eigenvalue of G.
e Controlled Rotation, which rotates register a with a spe-
cific angle conditioned on |A),, to produce a normalised

state:
1>> (N

C? C
[2) =) bj[ts)iol ) w (1/1—A2|O>+
J J

e [Inverse QPE, which compiles register w to |0),, to un-
compute the quantum states so that the final solution can
be obtained by postselecting |1) on register a:

st>=ijluj>w< 1——|0> ;|1>> (8)

D ) ZA 'bjluj)io ~ |v) ©)

|i>io ®

Consequently, the HHL algorithm outputs the nodal voltages
v on the quantum register z0. HHL theoretically provides an ex-
ponential enhancement in computational complexity compared
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Algorithm 1: Quantum EMTP Algorithm.

1 > Initialization: torray, At, Emax, G, in(t) ;
2 for t € tarray do

3 if Power network changes then

4 | Update G, i,(t);

5 end

6 Prepare © = 5 (t) + s (t), v« = 0, & = 2max, kK = 0;
7 while / do

s > HHL-based EMTP solving:

9 Prepare quantum registers 70, w and a;

10 Execute QPE, rotation and inverse QPE successively;
1 Output |v) = [¢).) by (9);

12 Quantum state tomography |v) — v ;

13 Update v« = v« + v ;

14

15 > HHL Error Compensation:

16 Compute HHL error § = ||Gv —i||,, k =k + 1;
17 if £ <&max or k > Itermax then

18 | break;

19 end

20 Update ¢ = 72 — Gv;

21

22 end

23 Update result array Varray = {Varray, Vs } ;

24 end

25 > Qutput: time-series nodal voltages Varray ;

with its classical counterparts. From the space complexity per-
spective, QEMTP formulation in the Hilbert space only employs
[logy(N)] qubits to describe a N-dimensional vector, which is
a logarithmic reduction. From the time complexity perspective,
HHL runs at O(log(N)) [5], while the best general-purpose
classical algorithm (i.e., the conjugate-gradient algorithm) runs

at O(N).

B. Enhanced QEMTP

HHL aims at approximating |v) by a quantum superposition,
as detailed in (9), with the following stopping criteria [5]:

Prob(|[|®) — [v)]l2 < €) > 0.5 (10)

where ¢ is a desired error; |0) represents final quantum state to
be output; Prob denotes probability. Restricted by the qubits
resources, depth of quantum circuits and noise on quantum
computers, an executable error for the HHL quantum circuit may
lead to growing errors or even divergence during the step-by-step
QEMTP calculation. To tackle the challenge, we revise the
HHL algorithm to effectively mitigate the error accumulation,
as follows.

Denote the quantum state tomography of |v) as v. Then, v is
modified with Av depending on the HHL error:

GAv =1— Gv (11)

Because (11) has an identical form as (1), HHL is then recur-
sively executed to solve Awv until a satisfactory precision is
reached. Algorithm 1 summarizes the QEMTP procedure.
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Fig. 2. QEMTP results of RLC series circuit.
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Fig. 3. Quantum circuit for base case of RLC series circuit (width: 7; depth:

102; number of CNOT gates: 54).

IV. CASE STUDY
A. Validity of QEMTP

QEMTP is implemented in IBM Qiskit [6] and is verified
first on a RLC series circuit switching into a DC source. Fig. 2
shows that QEMTP produces accurate electromagnetic results
for the base case, underdamped case and overdamped case. The
perfect match with those results from both classical EMTP and
state-space approach verifies the effectiveness of QEMTP. The
quantum circuit for the base case is illustrated in Fig. 3.

Fidelity, as defined below, is a preferred metric to measure the
similarity of quantum states:

F(p1,p2) = [Try\/v/prp2v/p1)?

(12)

Fig. 4. QEMTP fidelity of RLC series circuit.
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Fig. 5. Illustration of latency test system.
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Fig. 6.  QEMTP results of the latency circuit.

Therefore, we use fidelity to quantify the precision of QEMTP.
As shown in Fig. 4(a), the fidelity between QEMTP and classical
EMTP is consistently above 99.9999%, exhibiting the accu-
racy of QEMTP in performing electromagnetic simulations.
Meanwhile, a flat fidelity curve also indicates that QEMTP
effectively mitigates the inherent error accumulation in HHL.
Fig. 4(b) further illustrates that reducing the error threshold &, 4
improves the accuracy of the QEMTP results.

B. QEMTP Application in a Latency Network

Since a common feature of power systems is the co-existence
of fast-slow dynamics, QEMTP is further applied to a typical
latency test system in [7] as an abstraction of the fast-slow
dynamic systems (see Fig. 5). Table I presents the test system
parameters.

QEMTP results show that the electromagnetic transients fol-
low a fundamental frequency (60 Hz) carrier superimposed with
high-frequency components. Fig. 6 also shows that the QEMTP
results match those from the classical EMTP and state-space
approach, further verifying the capability of QEMTP in handling
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Fig. 8.  Efficacy of error compensation in QEMTP.
the complicated fast-slow dynamics. Specifically, the zoomed
view during the starting period (the most oscillating period)
shows QEMTP’s satisfactory performance in capturing the fast
dynamics, while the zoomed plot for the final stage shows
QEMTP’s capability in mitigating the error accumulation.
Further, QEMTP is tested through the analysis of a large
disturbance case. With a short-circuit fault occurred at bus 3 at
2.4 ms, the latency circuit is virtually split into a fast subsystem
and a slow subsystem, which is coincident with the QEMTP
results in Fig. 7. Moreover, Fig. 7(b) shows that QEMTP accu-
rately captures the ultra-fast oscillations of the fast subsystem
initiated by a large disturbance.

C. Further Discussion

To achieve high fidelity and robustness in a step-by-step
EMTP, QEMTP enhances HHL with an error compensation
technique, as detailed in Subsection III-B. Fig. 8 shows that,
while QEMTP accurately matches the classical EMTP results,
simply applying HHL to EMTP without error compensation
suffers from severe error accumulation and fails to provide
accurate transient trajectories after several timesteps. As a rule
of thumb, QEMTP takes a slight effort of 2—4 iterations to satisfy
the accuracy requirement of EMTP.

Although QEMTP is successfully prototyped, its real-world
application is still restricted by today’s quantum hardware,
which is a common obstacle in this Noisy Intermediate-Scale
Quantum (NISQ) era [8]. The execution of multiple shots for
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Fig. 9. Impact of noisy quantum environment on QEMTP’s performance.
circuit measurement often hinders transforming the superior
efficiency of quantum algorithms from theory to reality at the
moment. Unavoidable noise and short coherence time also dis-
turb the accuracy of quantum circuits. Fig. 9 briefly investigates
QEMTP’s performance in noisy quantum environment based on
IBM QasmSimulator. QEMTP indeed exhibits certain tolerance
of noise with the assist of error compensation, while HHL never
survives under noisy environment. However, with a larger noise,
QEMTP still suffers slow convergence. Our ongoing work is to
enhance QEMTP’s applicability in NISQ era by developing a
hybrid quantum-classical QEMTP.

V. CONCLUSION

This letter is the first attempt to exploit the quantum comput-
ing capabilities in power system transient analysis. A quantum-
enabled EMTP formulation is established, and an HHL-based
QEMTP algorithm is devised. A revised HHL is devised to
achieve a trade-off between high precision and limited quantum
resource. Testresults from a RLC circuit and a fast-slow dynamic
system verify the correctness and efficacy of QEMTP. Even
though the practicality of QEMTP is still restricted by avail-
ability of quantum resources, condition number of conductance
matrix, executable depth of quantum circuit and noise of quan-
tum computers [9], QEMTP opens a door to the development of
numerous quantum grid analytics.
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