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Abstract—Non-line-of-sight (NLOS) imaging is a rapidly advancing technology that provides asymmetric vision: seeing without being
seen. Though limited in accuracy, resolution, and depth recovery compared to active methods, the capabilities of passive methods are
especially surprising because they typically use only a single, inexpensive digital camera. One of the largest challenges in passive
NLOS imaging is ambient background light, which limits the dynamic range of the measurement while carrying no useful information
about the hidden part of the scene. In this work we propose a new reconstruction approach that uses an optimized linear
transformation to balance the rejection of uninformative light with the retention of informative light, resulting in fast (video-rate)
reconstructions of hidden scenes from photographs of a blank wall under high ambient light conditions.

Index Terms—Linear inverse problems, Passive Non-Line-of-Sight Imaging, Occlusion, Optimized preconditioning
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1 INTRODUCTION

S YSTEMS and algorithms that enable imaging of scenes
that are not otherwise accessible or visible could prove

to be useful in areas such as autonomous navigation, search-
and-rescue operations, and even medical imaging. Since its
first conception and demonstration [1], [2], non-line-of-sight
(NLOS) imaging has become an active research area with
many significant advances.

NLOS imaging can be broadly split into two catagories:
active, and passive. In active NLOS imaging, the observer
has some control over the illumination of the scene, and
in passive imaging, the observer simply measures light
that is already present within the environment. Most active
imaging modalities use pulsed lasers to probe the hidden
scene, by bouncing light off of a visible relay surface, into the
hidden area, back to the relay surface, and finally to ultrafast
detectors such as single-photon avalanche diodes with time-
correlated single photon counting modules [3], [4], or streak
cameras [2]. The time-of-flight of the laser photons returning
then provides information about the hidden scene that can
be decoded. Different system architectures and information
encoding principles provide different capabilities, such as
3D object imaging [3], occluder-aided imaging [5] including
2.5D full-room reconstructions [6], and recovering hidden
motion [7], [8]. There are a variety of reconstruction ap-
proaches used, including back-projection [9], fast convolu-
tional methods [3], [10], f-k migration [11], Fermat paths [12],
speckle correlations [13], and more. Reference [14] provides
a thorough review of many existing NLOS techniques. The
controlled illumination and time-resolved sensing allows for
impressive 3D recovery capabilities that can not be achieved
by passive sensing. However, many active NLOS imaging
methods require expensive, ultra-fast optics, impractical
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acquisition times, or high-powered lasers that are not eye
safe.

In passive imaging, many techniques use the shadows
cast by occluding objects to make inferences about the
hidden scene [15], [16], [17], [18]. Others use spatial co-
herence [19], or time-resolved sensing without controlling
the illumination [20]. Some techniques recover both the
scene and the occluder structure using motion [21] or deep
matrix factorization [22]. Passive imaging techniques avoid
some of the issues with active imaging, as they require
less expensive equipment, are stealthier, and often require
shorter acquisition time. However, passive methods are not
competitive with active imaging in terms of reconstruction
accuracy or recovery of 3D information [23]. Furthermore,
these methods face difficulties when there is significant
ambient light intensity or very low signal light intensity.
This is particularly problematic in the common situation
where the light source(s) illuminating the hidden area also
directly illuminate the surface in the detector’s field-of-view
(FOV), resulting in measurements with a low signal-to-
background ratio (SBR). Some passive methods deal with
this by recovering motion only, as this essentially allows
the temporally constant background to be cancelled [17].
Others subtract a pre-calibrated background measurement,
estimate the background contribution by fitting a linear
model [24], aim to cancel the background contribution in
the measurements [15], or only function well in high SBR
regimes that are unlikely to be seen outside of a laboratory
setting. Background estimation or cancellation has also been
shown to be important for estimating other scene parame-
ters outside of imaging [23].

In this paper, we investigate the possibility of improv-
ing robustness to ambient light in passive NLOS imaging
through algorithmic development. Instead of relying on
time-resolved measurements, movement in the scene, or
low background light levels, we formulate a new method



Hidden
Scene

Occluding
object

Digital Camera

Background light

Fig. 1. The imaging scenario. A camera takes a photograph of a
Lambertian relay surface, measuring light arriving from both the hidden
scene, some of which is occluded, and also additional ambient back-
ground light. Based on Fig. 1 from [27].

inspired by generalized pseudoinverses [25], [26] that tol-
erates high ambient light contributions to the measure-
ments and performs fast reconstruction of out-of-sight two-
dimensional scenes using only a single photograph of a
plain wall, as depicted in Fig. 1.

2 RELATED WORK

In [15], a planar hidden scene is outside of the direct line
of sight of the observer and is to be reconstructed. The
observer is able to take a photograph of a Lambertian sur-
face with constant albedo that can receive light emitted or
reflected by the hidden scene. Between the hidden scene and
the visible surface is an occluding object that casts subtle
shadows and penumbrae that punctuate the measurement
on the visible wall. These shadows turn an extremely ill-
conditioned inverse problem into one that is tractable. All
positions in the hidden area from which a light source
would cast a unique shadow into the camera FOV comprise
the ‘computational field-of-view’ in which recoveries can be
made. However, despite some attempts to mitigate the issue,
high background levels cause the reconstruction algorithm
proposed in [15] to fail.

The photograph measurement of the visible wall can be
modelled using

y = Af + b, (1)

where A is the light transport model, f is the discretized
hidden scene, y is the camera measurement (i.e., photo-
graph of the visible wall), and b is unmodelled back-
ground light that is not originating directly from within
the computational FOV. The light transport matrix A can
be computed column-by-column by rendering the partially
occluded measurement that would be seen on the relay
surface if only the single scene pixel is radiating light.

Given this model and a potentially noisy camera mea-
surement y, the authors of [15] solve a total variation-
regularized inverse problem (separately for each of the three
RGB color channels) in order to recover the image hidden
from the observer’s view:

f̂ = arg min
f

‖D(Af − y)‖22 + λ‖f‖TV, (2)

where matrix D takes differences between neighboring com-
ponents. The authors note that background light which is
originating from outside of the computational FOV, espe-
cially from the far field, will vary slowly spatially within
the camera’s FOV and can be approximated as constant, i.e.,
bi+1 ≈ bi ≈ b. Therefore, this matrix aims to cancel out the
background light contribution,

(Dy)i = yi+1−yi ≈ (aTi+1f +b)−(aTi f +b) ≈ (DAf)i. (3)

This approach shows reasonable robustness to unmodelled
ambient light contributions at signal-to-background ratios
above 3 or so, but begins to break down at higher am-
bient light levels. Furthermore, this optimization problem
is solved using accelerated proximal gradient descent. The
speed of this is inhibited by the poor conditioning of the
matrix A. Additionally, a second iterative algorithm to
solve the proximal operator of the total variation penalty
is performed following every gradient step. For the imag-
ing scenario in which the experiments were performed,
cond(A) ≈ 7960 and cond(DA) ≈ 270.

3 PROPOSED METHOD

Taking inspiration from the finite differencing procedure
used in the original computational periscopy work [15],
which attempts to cancel out background contributions, we
aim to develop an algorithm that both improves robustness
to background light and also speeds up the reconstruction.
To do so, we seek a preconditioner matrix P such that
‖Pb‖ ≈ 0 for any reasonable background b, and also
such that PA is well conditioned (ideally, PA = I). The
problem of finding such a P can be considered a search
for an approximate left inverse with additional background-
cancelling properties.

To begin, we note that any background light can be
modelled by integrating the response from point lights
positioned over the surface emitting or reflecting the light,
i.e., b =

∫
α∈β e(α)ψ(α) dα, where ψ(α) is the ambient

light contribution to the camera measurement from a point
light with position α = (x, y, z), e(α) is a scalar emittance
factor, and the domain β is over the surface(s) contributing
to the measurement. A simple example of a contributor of
background light is a ceiling light, which could be modelled
as a single point light that directly illuminates the measure-
ment surface. Another example is unmodelled multi-bounce
light that originates from the hidden scene of interest, but
subsequently reflects off of other surfaces before reaching
the measurement wall; in this case, β comprises all points
on the final reflecting surface. The point light response is
given by

ψ(α)i = ((α− ci) · n)/‖α− ci‖32, (4)

where ci is the position the ith camera pixel sees on the
wall and n is the wall normal (‖n‖2 = 1). In order to find a
suitable matrix P, one could consider solving the following
problem:

P̂ = arg min
P

∫
α∈β
‖Pψ(α)‖22 dα

s.t. PA = I,

(5)



where here β is all possible positions from which back-
ground light can originate (i.e., everywhere in space such
that a point light at that position will contribute some
amount of light to the measurement surface). This aims to
ensure that multiplying by P will cancel any background
contribution, and the constraint ensures that the multipli-
cation PA is well conditioned (here taken to the extreme
of perfectly conditioned). Omitting the emittance factor is
equivalent to assuming e(α) = 1 for all α, implying that
cancellation of light from all points in β is equally important.

As is, this problem is intractable. We suggest to discretize
β, resulting in a matrix B whose M columns comprise ψ(α)
evaluated for a number of different values of α spanning the
appropriate spatial extent (more detail on this can be found
in Sec. 3.1):∫

α∈β
‖Pψ(α)‖22 dα ≈

M∑
i

‖Pψ(αi)‖22 = ‖PB‖2F. (6)

This is a reasonable approximation, as we anticipate all
background light to emerge from the far field. This implies
that ψ(α) ≈ ψ(α + ∆) for small enough ‖∆‖2, i.e., the re-
sponse varies very slowly with α and hence any reasonable
ψ(α) will lie in or extremely close to the subspace spanned
by B. The problem could then be solved using an iterative
approach [25], but this is costly. Instead, we can also relax
the constraint:

P̂ = arg min
P

‖PB‖2F + ω‖PA− I‖2F, (7)

where ω ∈ [0,∞) controls the relaxation. Then, we arrive at
a more familiar result:

P̂ = arg min
P

‖PB‖2F + ‖PA− I‖2F =

[
I
0

]
[A,B]†, (8)

where † represents the Moore–Penrose pseudoinverse and
the factor ω has been absorbed into B. This result can be
interpreted as simply calculating the pseudoinverse of A
augmented with additional columns containing prototype
backgrounds, and then discarding the rows that pertain
to an estimate of the background contribution as we are
not concerned with them. Now, using P̂ in place of the
finite differencing matrix in Eq. (2), we see that forming our
solution is as simple as left multiplying by P̂ and ‘denoising’
the result with the proximal operator for total variation:

f̂ = arg min
f

‖P̂Âf − P̂y‖22 + λ‖f‖TV (9)

≈ arg min
f

‖f − P̂y‖22 + λ‖f‖TV (10)

= proxTV,λ(P̂y), (11)

which significantly reduces computation time compared to
the algorithm in [15]. The proximal operator can be solved
efficiently using a variety of methods [28], [29], [30].

This estimation is followed by a final post-repair stage,
in which pixels likely to be incorrect are identified and
replaced with the output of a median filter (per color chan-
nel). To identify potentially incorrect pixels, we calculate
the sample mean of the magnitude of eight neighboring
pixels, and we consider the current pixel to be incorrect if
its magnitude is more than some threshold away from the
neighborhood sample mean. This helps to improve the final
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Fig. 2. Reconstruction procedure. a. Measurement is left-multiplied
by P̂. b. Total variation denoising using the proximal operator. c. Median
filtering.

estimate by reducing the severity of artefacts, especially in
regions of the hidden space which are worst conditioned
for recovery (which can be observed using the Cramér-Rao
bound [27]). The full recovery procedure is summarised
in Algorithms 1 and 2 and in Fig. 2. We note that more
sophisticated methods could be used, such as adaptive
vector median filters [31], but we did not find that the trade-
off between improvement to the reconstruction and increase
in computation time was worthwhile. Similarly, one could
consider total-variation regularization that is not separable
among color channels, however, we found the same trade-
off behaviour. We anticipate that these more sophisticated
techniques may prove more useful at higher reconstruction
resolutions.

The search for a generalized pseudoinverse opens up
many interesting options which could be explored. For
instance, while the use of the Frobenius norm here leads
to a computationally efficient and familiar result, different
norms will result in different, and perhaps interesting, out-
comes. Other terms can be included in Eq. (7), too. For
example, a sparsifying term ‖P‖1 could result in a sparse
pseudoinverse that may speed up subsequent multiplica-
tions by P̂, but we do not explore this option further in this
paper.

3.1 Constructing B

When the sampling used to generate B is of sufficient
breadth and density, the same B matrix can be used in
reconstructions for different scene configurations, as long as
the properties of the surface the camera is pointing at stay
the same (i.e., constant albedo and Lambertian); different
orientations and positions of the relay surface are then
simply changes of the coordinate system.

For the experiments throughout this paper, we construct
B by calculating the measurement due to point lights at
various positions using Eq. (4). We define the center of



Algorithm 1 Proposed Algorithm
Input: A, y, β, λ.
Output: f̂

1: for αi ∈ β do
2: Bi = ψ(αi)
3: end for
4: P̂ =

[
I
0

]
[A,B]†

5: for each color channel do
6: f̄ = proxTV,λ(P̂y)
7: end for
8: return f̂ = post-repair(f̄)

Algorithm 2 Post-repair Algorithm

Input: f̄ ∈ R3×N , threshold κ
Output: f̂

1: f̂ = f̄
2: m = median-filter(f̄) (for separate color channels)
3: for i = [0, 1, ...N − 1] do
4: Calculate neighborhood magnitude mean µ
5: if |‖f̄i‖ − µ| > κ then
6: f̂i = mi

7: end if
8: end for
9: return f̂

the camera’s FOV on the relay surface as (0, 0, 0), and
then evaluate ψ(α) for α on a 3-dimensional grid from
(−3, 1,−3) m to (3, 7, 3) m with 75 cm steps, as depicted in
Fig. 3. This results in B with 512 columns, each sampling
a different light position over a 6 × 6 × 6 m cube. It is
also possible to sum together the response from numerous
point lights over a small area to more accurately sample the
space – but we found that the extra expenditure did not
noticeably effect the results. Similarly, finer discretization
did not significantly improve reconstruction quality but
increased computational effort in forming P̂. Many other
more sophisticated discretization strategies are possible and
are worth exploring – for instance importance sampling the
space to discretize more finely near expected background
light sources (e.g., discretizing the space above the mea-
surement plane more finely due to the expectation of ceiling
lights or sunlight from above). Similarly, discretizing more
finely closer to the measurement plane may improve the
results as the contribution from point lights farther from
the measurement plane vary more slowly with changes in
position.

3.2 Extension to Video Reconstruction
Often, video reconstruction under high ambient lighting
conditions is simplified by taking differences through time
to essentially cancel out any background contributions
which do not vary in time, for example in [17]. However,
reconstructions of this type are only capable of recover-
ing movement within the scene, rather than the whole scene
through time. Given the potential for fast, video-frame-rate
reconstructions using the proposed algorithm, we extend
here the algorithm to make more use of the temporal struc-
ture in video sequences. For the ith frame we denote the
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Fig. 3. Sampling possible background contributions. Each dot rep-
resents a point light that contributes a column to B. Two examples are
shown.

measurement yi. For the first frame, we solve the problem
in Eq. (11). Then, after each subsequent measurement is
acquired, we could solve the following problem:

f̂i = arg min
f

‖P̂Âf−P̂yi‖22+λ‖f‖TV+λ2‖f−fi−1‖1, (12)

where fi−1 is the previous frame’s estimate, and hence con-
tinuity in time is promoted. To simplify this, we can instead
simply stack f and fi−1 into one vector and denoise this
with the 3-dimensional total variation proximal operator,
for which there are fast implementations [32]. Following
this, we can apply the same post-repair algorithm as before.
However, we also include the previous frame in time within
the window (now a 3 × 3 × 2 window); for each pixel in f ,
we now take the median of the neighboring 8 pixels at the
current frame as well as 9 from the previous frame.

3.3 Analysis of Relaxed Solution

In order for the equality in Eq. (10) to hold, we require
that PA ≈ I, which is not explicitly guaranteed when
solving the relaxed problem in Eq. (7) for general A and
B. However, the relaxed problem has the attractive quality
that the solution has a simple and familiar closed form. In
essence, we wish to find a matrix P such that PA = I and
B ∈ Null(P). This implies that the closer to orthogonal the
subspaces spanned by A and B are, the better the solution
to the relaxed problem will be. Empirical evidence arises
from the reasonable success of the use of the finite difference
matrix, D. This matrix is justified by the authors of [15] as
approximately cancelling any slowly varying background
contribution from outside of the computational FOV. This
can also be interpreted as any background contribution
being close to lying in the null space of D. Similarly, the
discontinuities in the differences due to the penumbrae
punctuating the light from the hidden scene then ensures
that A does not lie close to Null(D).

This can be explored quantitatively by calculating the
angle between the subspaces spanned by A and B [33]. This
will differ depending on the exact imaging situation, but for
the setup depicted in Fig. 1, we calculate this angle to be
89.989 degrees. This is very close to orthogonal, hence we
anticipate the solution to Eq. (7) to be acceptable. Indeed,
we find that P̂ is an acceptable pseudoinverse (P̂A ≈ I),
and that the average percentage of residual background
100
M

∑M
i=1 ‖P̂Bi‖2/‖Bi‖2 is less than 5 × 10−13, implying



that P̂ also successfully cancels out the background exam-
ples in B.

From a statistical point of view, P̂A ≈ I implies that
the reconstruction is approximately unbiased (in the ab-
sence of ambient light). The conventional Moore–Penrose
pseudoinverse minimizes the variance of the reconstruc-
tion under a white Gaussian noise model. Comparing the
Cramér-Rao bounds (CRBs) for estimating f using only
A (conventional pseudoinverse) or [A,B] (as proposed
here) quantifies any increased sensitivity to additive noise
caused by the suppression of background. The CRBs for
the ith hidden scene pixel in each case are the ith diag-
onal elements of (ATA)−1 and ([A,B]T[A,B])−1. Indeed,
we find that for the scenario in Fig. 1, the CRBs are
nearly identical; the ratio of the CRBs totaled over all the
pixels, (

∑N
i=1(ATA)−1)i,i) / (

∑N
i=1([A,B]T[A,B])−1)i,i), is

1.0001.

4 EXPERIMENTAL RESULTS

4.1 Tolerating Background

To see the relationship between reconstruction quality and
SBR using the proposed method and the method from [15],
we perform an experiment. Firstly, eight photographs of a
white, reasonably Lambertian poster board were collected
under various lighting conditions (outside in sunlight, in-
side in sunlight, and inside under room lighting at various
orientations), to sample a variety of realistic ambient light-
ing conditions. Additionally, this data set was augmented
by flipping each image about each axis, resulting in 32
background examples. One test measurement per back-
ground example was generated by adding a scalar multiple
of each of the collected ambient light measurements to
the experimental data1 from [15] without ambient light, to
achieve a desired SBR. The augmented data is normalized to
simulate a fixed total acquisition time, and white Gaussian
noise was added to the measurement to maintain a realistic
signal-to-noise ratio of 60 dB, similar to that of the original
experimental data [15]. This has the effect of pushing the
signal components closer to the noise floor as the SBR de-
creases. Fig. 4 shows the mean-squared errors (MSEs) of the
reconstructions using both algorithms. We also show results
of a second experiment of this type where the background
measurements were collected in particularly adversarial
environments (outside with snow, and inside with stained
glass windows) in Fig. 5.

Furthermore, we compare the efficacy of the proposed
method to the algorithm from [15] by reconstructing a
hidden image from experimental data in the presence
of ambient light. In the Supplementary Material of [15],
an experiment was included where reconstructions were
formed of a hidden image for decreasing SBR, achieved
by slowly increasing the ambient light level in the room.
In this experiment, depicted in Fig. 1, a hidden image was
displayed on a 0.305 m × 0.404 m computer monitor that
was approximately 1 m from the visible relay wall. Between
the hidden monitor and the relay was a chair model which
occludes some light paths. In Fig. 6, we show the resulting

1. Available at: https://github.com/Computational-Periscopy/
Ordinary-Camera

Fig. 4. a. A plot of reconstruction MSE against SBR. Experimental
background measurements (32 in total, 1 used per trial) were added to a
background-free experimental measurement, to achieve a fixed SBR. b.
An example of the generated measurements followed by reconstructions
using the method in [15] and the proposed method using the optimized
preconditioner P̂, respectively.

a Scenario
b Background c Measurement d Reconstruction

Fig. 5. a Scenario in which background was measured (see white poster-
board). Top: Stained glass windows. Bottom: Direct sunlight and snow
reflections. b Background measurement (scaled from 0-1 for display
only). c Composite measurement (SBR = 0.25). d Reconstruction.



reconstructions using the proposed algorithm compared
with the original results from [15], and show the compu-
tation time for each method (excluding the time taken to
generate the light transport matrix A, which is common to
each method). This matrix is computed column-by-column,
calculating the light contribution (including shadows cast
by the chair-shaped object) from each scene pixel one-by-
one using available code1.

4.2 Video Recovery
Inspired by the speed of the proposed algorithm, we now
aim to recover a sequence of images, or video, in the hidden
area using the procedure outlined in Sec. 3.2. To do so, we
simulate the measurement due to each frame of the video
by left multiplying the vectorized ground truth frames by
our transport model A (for the scene configuration depicted
in Fig. 1). We then augment this measurement with one
of the experimentally measured backgrounds to achieve
an SBR of 0.5, and finally we add white Gaussian noise
to achieve a signal-to-noise ratio of 60 dB, which is fairly
typical of the experimental measurements. The first frame is
recovered with the algorithm proposed for still images, and
the subsequent frames are recovered using the proposed
video approach. The results of this are shown in Fig. 7.

5 DISCUSSION

5.1 Tolerating Background
We see from the experimental reconstruction results in Fig. 6
that the algorithm from [15] begins to struggle to form
acceptable reconstructions at SBR lower than 4. However,
our proposed method suffers minimal degradation even
down to SBR of 0.95, and performs similarly at higher SBR.
Furthermore, the proposed algorithm does not require the
costly projected gradient descent algorithm with a poorly
conditioned A as in [15]. Hence, the computation time is
improved by a factor of ∼80× when averaged over the
four reconstructions. If the post-processing time taken to
form P̂ is discounted (as it is only needs to be calculated
once for a particular scenario), the computation time for one
reconstruction is reduced by a factor of 3125× (0.024 s vs.
75 s), which approaches video frame rates (around 40 fps). In
Fig. 4(a), we see that the reconstruction from the proposed
algorithm is not significantly affected by the background
level, performing similarly at SBRs down to as low as 0.2.
As can be seen in the example measurements (Fig. 4(b)), this
is a realistic SBR that one may expect to see in a variety
of scenarios – with only faint penumbrae present in the
measurement.

To better analyse the effect of left-multiplying by P̂,
we show in Fig. 8 a comparison of a measurement with
SBR of 0.25, the same measurement but background-free,
and AP̂y. We see that AP̂y appears markedly similar
to the background-free measurement, which suggests the
P̂ operator is successfully cancelling out the background
contribution whilst retaining the information important to
forming a reconstruction, i.e., the penumbrae. In Fig. 9 we
compare two reconstructions to highlight the importance of
the background model. The first uses the procedure as out-
lined in Fig. 1, and the second follows the same procedure

TABLE 1
Time taken in seconds to form reconstructions of different resolutions
using the method in Saunders et al. [15] and the proposed method.

Forming P̂ is only performed once for a particular scene configuration.

Resolution Saunders et al. [15] Proposed method
Forming P̂ Reconstruction

36 × 29 68.755 4.621 0.019
54 × 43 145.099 19.357 0.042
72 × 58 198.789 59.484 0.082
90 × 72 262.255 157.473 0.131

but in place of P̂ uses an inverse of A formed by retaining
only the top 40% singular vectors, to help regularize the
solution. The data is augmented with a background mea-
sured in the presence of stained glass windows, as in Fig. 5,
with SBR of 0.5. Without using the proposed inverse, the
reconstruction fails.

In Fig. 10 we show the P calculated given the scenario
used in all of the presented results. Interestingly, we see
structure that is reminiscent of the finite differencing matrix
employed in previous work [15].

5.2 Computational Complexity

In Table 1, the time taken to form reconstructions of various
resolutions using either the method from [15] or the pro-
posed method is shown. The proposed method performs
significantly faster, especially when one considers forming
multiple reconstructions in the same scene configuration
(e.g. a video), as the matrix P̂ need only be constructed
once for a particular scenario. At higher reconstruction
resolution, the time to form P̂ increases quite significantly.
At much higher resolutions, it may be computationally in-
feasible to calculate the pseudoinverse directly, and instead
iterative methods may be required instead. The actual image
reconstruction, however, is still extremely fast compared to
the method from [15]. At high reconstruction resolutions,
simply storing P̂ in memory may also be challenging.
This could be a situation where aiming to learn a sparse
pseudoinverse could be of interest, in order to reduce the
storage requirements. Literature on generalized pseudoin-
verses details how this can be achieved [26].

5.3 Video Reconstruction

In Fig. 7 we demonstrate the use of the video recovery
procedure outlined in Sec. 3.2 on simulated measurements.
Despite high background levels (SBR = 0.5) and higher reso-
lution (55×40 pixels) we are able to form the reconstructions
at a rate of 16 frames per second. We see that later frames are
recovered with superior MSE than the first two frames. This
is due to the extra regularization we are able to use in the
video recovery: the first frame is recovered with the still-
image algorithm, and the second and subsequent frames
improve with temporal regularization, with the influence
of the (lower quality) first frame diminishing. This can
be thought of as a short ‘burn in’ period in which the
reconstructions improve before reaching a steady state.
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Fig. 6. Reconstruction results with decreasing SBR. In the top show, we show state-of-the-art experimental results from the Supplementary
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Fig. 7. Simulated video reconstruction results at SBR = 0.5. The first row shows the measurement. The second row shows the ground truth
video frames. The bottom row shows the recovered 55×40 pixel video frames, at a rate of 16 frames per second. The mean square error (MSE) of
each reconstruction is listed beneath.

Fig. 8. Measurement compared to background-free measurement and AP̂y. a. Measurement y. b. The background contribution to the
measurement. c. Measurement without background contribution. d. The result of AP̂y. e. The result of pseudoinverse with differencing,
A(DA)†Dy.



Fig. 9. Comparing inverses. a. Proposed, background cancelling in-
verse. b. Truncated SVD inverse. Both reconstructions using experimen-
tal data augmented with stained glass background in Fig. 5.

6 CONCLUSION

We have proposed a new algorithm that enables passive
non-line-of-sight imaging using a photograph from an or-
dinary digital camera in high ambient light scenarios. The
proposed algorithm significantly improves upon previous
results in terms of both tolerance to background light levels
and also reconstruction speed. Further investigation into
improved post-repair algorithms could improve the recon-
structions further.

Exploring the use of generalized pseudoinverses in
NLOS imaging is an intriguing avenue with many possi-
bilities, especially in the context of improving robustness
to background contributions and in reducing reconstruction
time. Doing so overcomes a major hurdle in making passive
NLOS practical, without making sacrifices such as imaging
only objects in motion, requiring pre-calibrated background
measurements, or requiring lengthy offline recovery proce-
dures. We hope this may inspire similar improvements to
other NLOS imaging modalities and further exploration of
the application of variations of generalized pseudoinverses.
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