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Abstract

We show how to achieve the notion of “multicalibration” from Hébert-Johnson et al. [2018] not just
for means, but also for variances and other higher moments. Informally, it means that we can find
regression functions which, given a data point, can make point predictions not just for the expectation of
its label, but for higher moments of its label distribution as well—and those predictions match the true
distribution quantities when averaged not just over the population as a whole, but also when averaged over
an enormous number of finely defined subgroups. It yields a principled way to estimate the uncertainty of
predictions on many different subgroups—and to diagnose potential sources of unfairness in the predictive
power of features across subgroups. As an application, we show that our moment estimates can be used to
derive marginal prediction intervals that are simultaneously valid as averaged over all of the (sufficiently
large) subgroups for which moment multicalibration has been obtained.
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1 Introduction

Uncertainty estimation is fundamental to prediction and regression. Given a training set of labelled points
D C X x [0,1] consisting of feature vectors x € X and labels y € [0, 1], the standard regression problem
is to find a function & : X — [0,1] that delivers a good point estimate of u(x) = Ely|z]. We also de-
sire the variance of the label distribution E[(y — pu())?|z] as a measure of the inherent uncertainty of a
prediction. Higher central moments would yield even more information about this uncertainty which can
be represented by prediction intervals: An interval [¢(z),u(x)] that with high probability contains y, i.e.,
Pryly € [¢(z),u(z)]|z] > 1 — § for some § € (0,1).

If the data are generated according to a parametric model as in the classic ordinary least squares setting,
one can form confidence regions around the underlying model parameters, and translate these into both
mean and uncertainty estimates about individual predictions. In non-parametric settings it is unclear how
one should reason about uncertainty. We typically observe each feature vector  infrequently, and so we have
essentially no information about the true distribution on y conditional on x. One solution to this problem
is to compute marginal prediction intervals which average over data points x to give guarantees of the form:
Pr, [y € [¢(x),u(x)]] > 1 — 4. This is the approach that is taken in the conformal prediction literature —
see e.g. Shafer and Vovk [2008].

Marginal prediction intervals, unlike prediction intervals, do not condition on z. They offer a promise
not over the randomness of the label conditional on the features, but over an average over data points. To
make the distinction vivid, imagine one is a patient with high blood pressure, and a statistical model asserts
that a certain drug will lower one’s diastolic blood pressure to between 70 and 80 mm Hg. If [70, 80] were a
95% prediction interval conditional on all of one’s observable features, then one could reason that over the
unrealized randomness in the world, there is a 95% chance that one’s new blood pressure will lie in [70, 80].
If [70, 80] is a 95% marginal prediction interval, however, it means that 95% of all patients who take the drug
will see their blood pressure decline to a level contained within the interval. Because the average is taken
over a large, heterogeneous collection of people, the guarantee of the marginal prediction interval offers no
meaningful promise to individuals. For example, it is possible that patients that share one’s demographic
characteristics (e.g. women of Sephardic Jewish descent with a family history of diabetes) will tend to see
their blood pressure elevated by the drug.

This fundamental problem with uncertainty estimation in non-parametric settings is also a problem
for mean estimation: what does it mean that a point prediction 7(z) is an estimate of Ely|z] if we have
no knowledge of the distribution on y conditional on x (because we have observed no samples from this
distribution)? A standard performance measure is calibration [Dawid, 1982], which similarly averages over
data points: a predictor 7 is calibrated (roughly) if E, . [f(z) — y[fi(x) = i] = 0 for all predictions 4: i.e. for
every i, conditioned on z being such that the prediction 7z(x) was (close to) i, the expected outcome y is also
(close to) i. Just as with marginal prediction intervals, guarantees of calibration mean little to individuals,
who differ substantially from the majority of people over whom the average is taken.

Hébert-Johnson et al. [2018] proposed multicalibration as a way to interpolate between the (unattainable)
ideal of being able to correctly predict E[y|z] for each z and offering a guaranteed averaged over the entire data
distribution. The idea is to fix a large, structured set of (possibly overlapping) sub-populations (G € 2%).
A predictor 7 is multicalibrated if, informally, for all predictions ¢ and groups G € G, E(, ,[fi(z) — y|fi(z) =
i, € G] = 0. Thus, 7 is calibrated not just on the overall population, but also simultaneously on many
different finely defined sub-populations that one might care about (e.g. different demographic groups).
Hébert-Johnson et al. [2018] show how to compute an approximately multicalibrated predictor 7 on all
subgroups in G that have substantial probability mass—we provide a high level description of their algorithm,
which we use, below.

The main contribution of this paper is to show how to achieve what can loosely be termed multicalibration
for higher moment estimates. We provide not just estimates i(z) of means (u(z) = Ely|z]), but also
estimates, My (), for higher central moments, (my(z) = E[(y — p(z))¥|z]) such that all of these forecasts are
appropriately multicalibrated in a sense made precise below. This is useful for a number of basic tasks. One
we briefly highlight is that it can help diagnose data iniquities: for example, if the set of collected features is
much less predictive of the target label on certain demographic groups G € G this will necessarily manifest



itself in multicalibrated moment predictions by having higher variance predictions on individual members of
those populations.

As an important application, we show that standard concentration inequalities which could be applied
using the true moments of a distribution to obtain prediction intervals can also be applied using our multicali-
brated moment estimates. Doing so produces intervals [¢(z), u(z)] for each data point that are simultaneously
valid marginal prediction intervals not just overall, but also conditioned on z lying in any of the (sufficiently
large) subgroups over which we are multicalibrated. This allows one to interpret these prediction intervals
as predicting something meaningful not just an average over all people, but — simultaneously — as averages
over all of the people who were given the same prediction, across many finely defined subgroups (like women
of Sephardic Jewish descent with a family history of diabetes). Note that because the groups G € G may
overlap, a single individual can belong to many such groups, and can at her option interpret the prediction
interval as averaging over any of them.

1.1 Overview of Our Approach and Results
1.1.1 Mean Multicalibration and Impediments to Extensions to Higher Moments

We first review the algorithm of Hébert-Johnson et al. [2018], recast in the framework in which we will
conduct our analysis. We here elide some issues such as how we deal with discretization and how calibration
error is parameterized — see Section 2 for the formal model and definitions. Fix a feature space X, labels
Y = [0,1], and an unknown distribution P over X x ). Given are sets G C 2%, corresponding to sub-
populations of interest. The goal is to construct a predictor, @ : X — ), that is multicalibrated, i.e.
calibrated on each group G € G. This means that we want a predictor, i, that is mean-consistent on every
set of the form G(f,7) = {z € G : fi(x) = i} for some i: in other words, for every such set G(f,i) we
want E, )~p[f(r) — yllz € G(f,4)] = 0. We describe the algorithm as if it has direct access to the true
distribution P, and defer for now a description of how to implement the algorithm using a finite sample.

It is helpful to conceive of the task as a zero-sum game between two players: a “(mean) consistency
player”, and an “audit player” who knows the true distribution P. The consistency player chooses a predictor
7, and the audit player, given a predictor, attempts to identify a subset S of A on which the predictor is
not mean consistent.! Given a pair of choices, the corresponding cost (which the consistency player wishes
to minimize and the audit player wishes to maximize) is the absolute value difference between the average
prediction of the consistency player and the average expected label on the subset S identified by the audit
player. The value of this game is 0, since the consistency player can obtain perfect consistency using the
true conditional label distribution fi(z) = E[y|z]. The algorithm of Hébert-Johnson et al. [2018] can be
interpreted as solving this zero sum game by simulating repeated play, using online gradient descent for the
consistency player, and “best response” for an audit player, who stops play if there are no remaining sets
S = G(f, i) witnessing violations of multicalibration. This works because by linearity of expectation, we can
formulate the game so that the consistency player’s utility function is linear in her individual predictions
7i(x). A formal description and proof of correctness can be found in Section 3.1.

There are two—related—impediments to extending this approach to higher moments, i.e., finding pre-
dictors my(z) ~ my(z) = E[(y — E[y|z])¥|x], that are “consistent” with P on many sets. The first of
these is definitional—what do we mean by “consistent” for higher moments? The second is algorithmic—
given a definition, how do we achieve it? Both are impediments because, unlike means, higher moments
are not linear functionals of the distribution. A consequence is that moments for k& > 1 do not com-
bine linearly in the way expectations do. In particular for S = S U Sy where S; and S are disjoint,
El(y — Elylz € S))¥|S] # Pr( € S1|S)E[(y — Elylz € $1))*S1] + Pr(z € Sa|S)E[(y — Elylz € S2))*|Sa]. It
is therefore silly to require that moment predictions iy (x) satisfy the same “average consistency” condi-
tion asked of means: i.e. we cannot demand that the population variance on the subset of the population
on which we predict variance v be v, because this is not a property that the true moments my(x) satisfy.
Consider, for example, a setting in which there are two types of points, ;1 and 2. The true distribution
is uniform over {(z1,0), (z2,1)} (and so in particular the label y is deterministically fixed by the features).

1Here, and in what follows, we adopt the convention that G refers to a group in G, while S refers to any generic subset of X.



We have that for all k > 1, pu(z1) = 0, p(x2) = 1, and my(x0) = my(x1) = 0. Nevertheless, the variance over
the set of points on which the true distribution satisfies my(x) = 0 is 1/4, not 0. We cannot ask that our
“moment calibrated” predictors satisfy properties violated by the true distribution, because we would have
no guarantee of feasibility — and our ultimate goal in multicalibration is to find a set of mean and moment
predictors that are indistinguishable from the true distribution with respect to some class of tests.

1.1.2 Mean Conditioned Moment Multicalibration and Marginal Prediction Intervals

A key observation (Observation 2.1) is that higher moments do linearize over sets that have the same mean: in
other words, if we have S = S;US; for disjoint S; and Ss such that E[y|x € S1] = E[y|z € S], then, it follows
that E[(y — Elylz € S))*[S] = Pr(z € $|9)El(y — Elyle € S1])*[S1] + Pr(z € Sa|SEl(y — Elyl € 52))*|Sa].
An implication of this is that the true distribution does satisfy what we term mean-conditioned moment
multi- calibration. Namely, if for a fixed & > 1 we define for each set G € G and each pair of mean and
k™™ moment values i, the sets: G(u,my,i,j) = {z € G : p(z) = i,my(xr) = j}, then we have both mean
consistency: E[(y — )|z € G(u, my,1,7)] = 0 and moment consistency: E[(y —i)* — j|lz € G(u, mg,i,5)] =0
over these sets. Therefore, we require the same condition to hold for our mean and moment predictors @
and {m,}*_;: namely that simultaneously for every a, that over each of the sets G(f,M,,1i,j), the true
label mean should be i and the true label a-th moment should be j. In other words, if we have a set of
predictors that are mean conditioned moment multicalibrated, then an individual who receives a particular
mean and (e.g.) variance prediction can be assured that amongst all the people who received the same mean
and variance prediction even averaged over any of the possibly large number of sub-groups G of which the
individual is a member, the true mean and variance are faithful to the prediction.

Section 5 demonstrates a key application of mean-conditioned moment-multicalibrated estimators: They
can be used in place of real distributional moments to derive prediction intervals. Given moments of a
random variable X, a standard way to derive concentration inequalities for X is by using the following
inequality for any even moment (for k = 2 this is Cheybychev’s inequality):

E [(X — p(X))"]

PH(IX - pu(X)] > 1] < SE5

If X is the label distribution conditional on features x, this yields the prediction interval:

e (249)" 0+ (=49)"]

In Section 5 we show that if we have a mean-conditioned moment-multicalibrated pair (&, my), we can
replace the true mean and moments in the derivation of this prediction interval, and get marginal prediction
intervals, which are valid not just averaged over all points, but simultaneously as averaged over all point
that received the same prediction within any of the groups within which we are mean-conditioned moment
multicalibrated. In other words, for all G € G and for all 4, j:

e o (542 e (542)”]

1.1.3 Achieving Mean Conditioned Moment Multicalibration

x] >1-4.

T € G(ﬁ,mk,i,j)] >1-6.

What is the difficulty with finding sets of predictors (7, {7, }*_,) such that simultaneously each pair (77,7, )
are mean-conditioned moment multicalibrated? It is that moments do not have the linear structure that
means do. Hence, the zero-sum game formulation we describe for mean-multicalibration cannot be applied
directly. A naive approach (which fails, but which will be a useful sub-routine for us) is to first train a mean-
multicalibrated predictor 7z, and then define “pseudo-moment” labels for each z as My, z(z) = (y — f(x))*.
Since these are constant values, we can then use the algorithm for mean multicalibration to achieve “pseudo-
moment calibration with respect to @’ — i.e. mean consistency on each set G(&, My, ,j) with respect to



our pseudo-moment labels my, ;(x). By itself this doesn’t guarantee any sort of “moment consistency,” but
we show in Section 3.2 that if we can:

1. Find moment predictors 7 that satisfy pseudo-moment calibration with respect to @, and
2. Our mean predictor Tz satisfies mean consistency on every set of the form G(x, Mg, i, j),

then, the pair (&, My ) will satisfy mean-conditioned moment calibration.

The difficulty is that these two requirements are circularly defined. Once we have a fized mean predictor Tz,
we can use a gradient descent procedure to find moment predictors {m, }*_, that are pseudo-calibrated with
respect to . However, we also require our mean predictor to be mean consistent on the sets G(@, Mq, 4,5 ),
which are undefined until we fix our moment predictors {4 }*_,. Section 3.3 resolves the circularity by
using an alternating descent procedure that toggles between updating 77 and {7, }*_,, each aiming for a
mean calibration target that is defined with respect to the other. We prove that this alternating gradient
descent procedure is guaranteed to converge after only a small number of rounds.

Finally, we show in Section 4 how to implement our algorithm using a finite sample from the distribution
and furnish sample complexity bounds, in a way analogous to Hébert-Johnson et al. [2018]. The sample
complexity bounds are logarithmic in the number of groups |G| that we wish to be multicalibrated with
respect to, and polynomial in our desired calibration error parameters and the number of moments k with
which we wish to achieve mean-conditioned moment multicalibrated predictors. In particular, because
dependence on |G| is only logarithmic, we can satisfy mean-conditioned moment-multicalibration on an
exponentially large collection of intersecting sets G from just a polynomial sample of data from the unknown
population distribution. Note, however, that despite our polynomial dependence on k, the natural scale of
the k’th moment decreases exponentially in k&, and so to obtain non-trivial approximation guarantees for
k’th moments with polynomial sample complexity, we should think of taking k£ at most logarithmic in the
relevant parameters of the problem. See Theorem 4.1 and Corollary 4.2 for details. Our running time scales
polynomially with our approximation error parameters, the number of moments k& with which we wish to be
multicalibrated, and the running time of solving learning problems over G (which is at most linear in |G|,
but can be much faster). See Theorems 4.1 and 4.4 for details. In other words, our algorithms are “oracle
efficient” in the sense that if we have a subroutine for solving learning problems over G, then we can use it to
solve mean-conditioned moment-multicalibration problems with at most polynomial overhead. In theory, for
almost every interesting class G, learning over G is hard in the worst case — but oracle efficiency has proven
to be a useful paradigm in the design of learning algorithms (especially in the fairness in machine learning
literature — see e.g. [Agarwal et al., 2018, Kearns et al., 2018, Hébert-Johnson et al., 2018, Kim et al.,
2019]) because in practice we have extremely powerful heuristics for solving complex learning problems.
Moreover, this kind of oracle efficiency is the best running time guarantee that we can hope for, because as
shown by Hébert-Johnson et al. [2018], even mean-multicalibration is as hard as solving arbitrary learning
problems over G in the worst case.

1.2 Additional Related Work

Calibration as a means of evaluating forecasts of expectations dates back to Dawid [1982]. This literature
focuses on a simple online forecasting setting, motivated by weather prediction problems: in a sequence of
rounds, nature chooses the probability of some binary event (e.g. rain), and a forecaster predicts a prob-
ability of that event. Dawid [1982] shows that a Bayesian forecaster will always be subjectively calibrated
(i.e. he will believe himself to be calibrated). Foster and Vohra [1998] show that there exist randomized
forecasters that can asymptotically satisfy calibration against arbitrary sequences of outcomes (this is im-
possible for deterministic forecasters [Oakes, 1985]). These papers focus on the online setting, because simple
calibration is trivial in a batch/distributional setting: simply predicting the mean outcome on every point
satisfies calibration. Within this literature, the most related works are Lehrer [2001] and Sandroni et al.
[2003], which give very general asymptotic results that are able to achieve (mean) multicalibration as a
special case. Lehrer [2001], operating in the sequential online setting, asks for calibration to hold not just on
the entire sequence of realized outcomes, but on countably many infinite sub-sequences (e.g. the set of all



computable subsequences). He proves that there exists an online forecasting algorithm which can asymptot-
ically achieve this. Sandroni et al. [2003] extend this result to subsequences which can be defined in terms
of the forecasters predictions as well. Both of these papers operate in a setting that is general enough to
encode the constraint of mean multicalibration (by encoding the features of datapoints in the “state space”)
even in an online, adversarial setting — albeit not in a computationally or sample efficient way. In contrast,
Hébert-Johnson et al. [2018], who define the notion of mean multicalibration, give an algorithm for achieving
it in a batch distributional setting — in a much more computationally and sample efficient manner than could
have been achieved by applying the machinery of Lehrer [2001], Sandroni et al. [2003]. Recently, Zhao et al.
[2020] gave a notion of “individual level” (mean) calibration, defined over the randomness of the forecaster,
that is valid conditional on individual data points (i.e. without needing to average over a population). They
provide promising empirical results, but the theoretical guarantees of predictors satisfying this notion do
not provide non-trivial information about a data distribution, because (as the authors note) their notion of
individual calibration can be satisfied without observing any data.

Hébert-Johnson et al. [2018] also proposed the notion of “multi-accuracy,” a weaker notion than multi-
calibration which asks for a predictor 7 that satisfies mean consistency on each set G € G, but not on sets
G(@,i). Kim et al. [2019] gave a practical algorithm for achieving multi-accuracy, and a promising set of
experiments suggesting that it could be used to correct for error disparities between different demographic
groups on realistic data sets, without sacrificing overall accuracy. Dwork et al. [2019] propose notions of
fairness and evidence consistency for ranking individuals by their “probability of success” when historical
data only records binary outcomes: they show that their proposed notions are closely related to multicali-
bration of the probability predictions implicitly underlying the rankings. Shabat et al. [2020] prove uniform
convergence bounds for multicalibration error over hypothesis classes of bounded complexity. In our paper,
as in Hébert-Johnson et al. [2018], we learn over hypothesis classes that are only implicitly defined by the
set of groups G, and so we bound generalization error in the same manner that Hébert-Johnson et al. [2018]
do, rather than using uniform convergence arguments.

Conformal prediction is similarly motivated to calibration, but is focused on finding marginal prediction
intervals rather than mean estimates: see e.g. Shafer and Vovk [2008] for an overview of this literature.
Finding marginal prediction intervals on its own (i.e. when prediction intervals only have to be valid on
average over the entire population) is easy in the batch/distributional setting, and so just as with the
calibration literature, the conformal prediction literature is primarily focused on the online setting in which
predictions must be made as points arrive. The most closely related paper related to this literature is
Barber et al. [2019] who also study the batch distributional setting, and also aim to find marginal prediction
intervals which hold not just over the entire population, but on a collection G of more finely defined sub-
populations. Barber et al. [2019] obtain prediction intervals of this sort by using a holdout set method from
conformal prediction: roughly speaking, they compute empirical 1 — § coverage intervals on each set G € G
in the holdout set, and then for an individual z, select the widest such interval amongst all groups G that
contain x, which is a very conservative choice. The algorithm given by Barber et al. [2019] relies on explicit
enumeration of groups G € G over the holdout set.

There are also several papers in the “fairness in machine learning” literature (in addition to Hébert-Johnson et al.
[2018], Kim et al. [2019]), which are similarly motivated by replacing coarse statistical constraints with con-
straints that come closer to offering individual guarantees: see Chouldechova and Roth [2020] for a survey.
Kearns et al. [2018, 2019] propose to learn classifiers which equalize statistical measures of harm like false
positive or negative rates across a very large number of demographic subgroups G € G, and give practical
algorithms for this problem by solving a zero-sum game formulation using techniques from no-regret learning.
Kim et al. [2018] give algorithms for satisfying a notion of metric fairness which similarly enforces constraints
averaged over a large number of subgroups G € G. Rothblum and Yona [2018] define a PAC-like version of
the individual fairness notion of Dwork et al. [2012] and prove generalization bounds showing how to achieve
their notion out of sample on all sufficiently large groups of individuals. Sharifi-Malvajerdi et al. [2019] show
how to equalize statistical measures of harm like false positive rates across individuals — when the rates in
question are defined over the randomness of the problem distribution and the classifier. Joseph et al. [2016,
2018] propose an individual-level notion of “weakly meritocratic fairness” that can be satisfied in bandit



learning settings whenever it is possible to compute confidence or prediction intervals around individual
labels. They analyze the parametric setting, when actual (conditional) prediction and confidence intervals
are possible — but the techniques from our paper could be used for learning in the assumption-free setting
(with a slightly weaker notion of fairness) using marginal prediction intervals.

2 Preliminaries

Let X be the domain of features, Y = [0,1] the label domain, and P the true (unknown) probability
distribution over X x V.2 Let Py refer to the induced marginal distribution on & and define Py, analogously.
Going forward, we refer to the associated random variables with capital letters (e.g. X, Y'), and realizations
with lowercase letters (x, y).

Let G C 2% be a collection of subsets of X, and for each G € G, let xg denote that associated indicator
function, i.e. xg(x) =1 <= z € G. For implementation purposes, we assume that each indicator function
X () can be computed by a polynomially sized circuit.

Definition 2.1. Given the true distribution P, we write

w=Eplyl,
and its kth central moment is:
my, =Ep [(y — p)*].
Given a set S C X, we abuse notation and write

#(S) =Eplyl € S| and mi(S) =Ep [(y— u(S)* |z € §

for the conditional mean and k™ central moment of labels on the distribution conditional on x € S.

We are given n independent draws from X x Y according to distribution P, denoted D = {(zv,ys) }1 ;-
The goal is to predict means and higher moments of Y|X, i.e. to construct functions i : X — [0,1], (we
shall refer to this as a mean predictor) and my : X — [0, 1] (analogously, k*"-moment predictor)—as Y is
the unit interval, means and moments also lie in the unit interval.

To define calibration, we need to reason about all points that receive a particular prediction. For real
valued predictors, this can be a measure zero set. One solution is to to restrict attention to predictors that
are discretized to lie on the grid G,, = {ﬁ, %, ceey %}, for some (large) number m. If one were to
do this, the discretization parameter m would be coupled to the error one could ultimately obtain: since it
may be inevitable to suffer error at least 1/2m if one is restricted to making predictions on a discrete grid.
Alternately, one can define calibration by “bucketing” real valued predictions into m buckets of width %
each. This allows us to treat m (a parameter controlling the fineness of our calibration constraint) as an
orthogonal parameter to our calibration error. To that end, given a set S C X', mean predictor 7, and some
i € [m], define

21 -1 1
S(m,i) = e S |u(x) — < —
miy={ees: o - 22 < L}
to be the set of points in S whose mean predictions fall into the i*" bucket, i.e. [2=t — ;L 221 4 L]
Analogously, define
o 2%—1| 1 2% —1| 1
.M = () — —, m — < —
S(@, Mk, i, 7) {:E €5 [alz) = | < 5 [Tk (@) = =5 —| < Qm}

20ur approach applies for both finite and infinite feature domains. If X is uncountably infinite, define an associated measure
space, and P is a countably additive probability measure on this space. We omit the associated notation since it will have no
use in what follows.

3If X is uncountably infinite, then G is a collection of measurable, computable sets. We abuse notation and write 2% to
denote this.

4Qur algorithm in the end will need to manipulate these indicator functions. We might imagine e.g. that G is the hypothesis
class of some learning algorithm for a binary prediction problem, and that the functions x¢(z) are particular hypotheses from
this class — e.g. linear threshold functions.



to be the set of points in S that receive mean predictions in the i*" bucket and k*® moment predictions in
the j* bucket. Given mean and k™™ moment predictors 7 and 7, and any set S C X we write

(S) =Eplu(z)|xz € S] and mm(S) = Ep [mx(zx)|z € 5],

ie. m(9) is the average mean prediction of T when a’s are drawn according to the true distribution, P,
conditional on x € S, and my(.9) is the analogous quantity for k’th moment predictions.

To be clear, we will maintain the convention for means and higher moments that quantities with bars
refer to predictions (z, M) and unmodified notation (u, my) refer to true (unknown) population values.

Definition 2.2 (Cousistency). Call a mean predictor T (o, €)-mean consistent on a set S if

[ (S) =7 (S) +e

< Px(S)

Similarly, a moment predictor Ty, is called («, €)-moment consistent on a set S if:

hnk(S)——ﬁik(S) + €.

<

= Px(5)
When € = 0, we say T is a-mean consistent and My, is a-moment consistent. Note that (a,€)-mean

consistency implies (a4 €)-mean consistency.

Remark 2.1. Our notion of consistency on a set S corresponds to error that smoothly degrades with the
size (measure) of the set S. This is essential to giving out of sample guarantees. Hébert-Johnson et al.
[2018] handles this slightly differently, by giving uniform guarantees, but only for sets that have measure at
least v. Our approach of giving smoothly parameterized error guarantees for all sets is only stronger (up
to a reparameterization of o < ), and makes the analysis of our algorithms more transparent because it
corresponds more directly to the guarantees they achieve.

The following simple observation will be useful in understanding our approach.

Observation 2.1. Let P be a mizture distribution over m component distributions P, with mizture weights
wp > 0, 2211 wy = 1. Let pg, my, be the mean and k™ moment associated with Py. Then:

my = iwe <i (i) (e — )" mae> :

(=1 a=0

If the mizture variables have the same mean, i.e. pe = pu for all £, then, the above expression reduces to:

m
mg = E WeMi -
{=1

Observation 2.1 highlights the key challenge: unlike means, higher moments combine non-linearly over
mixtures. That is to say, that although 74 (S) is defined to be an average over the values iy (x) for z € S,
my(S) is not an average over the values my(z) for x € S for k¥ > 1. Observation 2.1 also makes clear what
we are trying to exploit in defining mean-conditioned moment calibration: my(S) is an average over the
values my(x) for z € S whenever u(x) is constant over S.

We are now ready to define calibration, which asks for mean and moment consistency on particular sets
defined by the mean and moment predictors themselves:

Definition 2.3 (Calibration). Fiz a set S C X and a true distribution P.
1. A mean predictor T is (o, €)-mean calibrated on a set S if it is (o, €)-mean consistent on every set

S(@,1), i.e. if for each i € [m]:

1 (S, )) =TS, ) < gy + e

Again, if e =0, we say Tt is a-mean calibrated.



2. Predictors (@, my) are (a, 3, €)-mean-conditioned-moment calibrated on a set S if they are («, €)-mean
and (3, €)-moment consistent on every set S(@, My, 1,j), i.e. if for every i,j € [m]:

«
P (S(11, Mk, i )
B

and |my (S(@, Mk, 1,5)) — M (S, me,1,75))| < ———~ te
[, (S(7, Mk, 4, 5)) — Tk (S(7, Mk, 4, 5))] P €

|1 (S (M, 1, 5)) — 1 (S (M, 4, 4)) | < +e,

If e =0, we say (@, M) are (o, B)-mean-conditioned-moment calibrated.

We say that T, my, are (o, €)-multicalibrated and («, B, €)-mean-conditioned-moment multicalibrated with re-
spect to (a collection of sets) G if they are («a,€)-mean calibrated and («, 5, €)-mean conditioned moment
calibrated respectively on every G € G.

Remark 2.2. Observe that by construction, the true feature conditional mean and moment functions
w(x), my(x) are mean-conditioned-moment multicalibrated on every collection of sets G. We can view the goal
of multicalibration as coming up with mean and moment predictors T, My that are almost indistinguishable
from the true distributional means and moments, with respect to a class of consistency checks defined by G.
Note that it is only because we have defined our goal as mean conditioned moment calibration that the true
moments my(x) of the distribution satisfy these consistency conditions, which are defined as expectations.

We highlight the difference between calibration and consistency on a given set S in terms of mean
prediction ; an analogous discussion applies to higher moments. Consistency requires that the prediction
7i(x), averaged over z’s in S according to the conditional distribution, approximately equals the true label
average ((S). It doesn’t impose a similar requirement on subsets of S. Therefore, a predictor consistent on
S will be correct on average for the set S but could be systematically biased for each prediction in S that it
makes.

Calibration on S requires, for every prediction i € [m], that & is consistent on the set S(f, ). That is to
say it ensures consistency on every subset of x’s in .S on which the predictor  makes predictions in some
some fixed bucket i. Exact calibration implies exact consistency, but the reverse is not true.

3 Achieving Mean Conditioned Moment Multicalibration

3.1 Mean Multicalibration

We summarize an algorithm to achieve mean multicalibration. It is a modest extension to the one in
Hébert-Johnson et al. [2018] that accommodates arbitrary distributions over a possibly infinite domain and
arbitrary initializations. We present it in somewhat greater generality than needed for mean-calibration,
because our final algorithm in Section 3.3 needs to achieve mean consistency on more sets than are required
for mean calibration alone.

For intuition, consider the following mini-max problem, which captures a more difficult problem than
mean multicalibration (as there is no restriction at all on the sets S):

Lann e A Px(S) - (B(S) = u(S)) -
xe{-1,1}

We can associate a zero-sum game with this mini-max problem by viewing the minimization player as
a consistency player who must commit to a mean predictor &z, and viewing the maximization player as an
auditor who attempts to identify sets S on which the consistency player fails to be mean consistent. Observe
that the inclusion of the measure term Px(S) in the objective makes the learner’s utility function linear
in her individual predictions fi(z). There is a strategy for the consistency player that would guarantee her
a payoff of 0—or in other words, would guarantee consistency on all possible sets S: she could simply set
7i(x) = E[y|z]. This establishes the value of the game, but of course it requires knowledge of P. Given



only a finite sample of the data, we will be unable to determine E[y|z] for all z, and so this strategy is not
implementable.

One way to solve our problem absent knowledge of the distribution is to allow the consistency player
to play online gradient descent [Zinkevich, 2003] on the set of mean predictors over rounds ¢, and to allow
the auditor to “best respond” at every round, by exhibiting a set S corresponding to a large consistency
violation®. This is guaranteed to converge quickly to an approximate equilibrium of the game: i.e. a mean
predictor satisfying approximate consistency on all sets. If the auditor limits herself to choosing sets S(zi', )
corresponding to mean calibration, then we converge quickly to approximate mean calibration. Here we give a
direct analysis of a general gradient descent procedure of the sort we need, in terms of the sets that the auditor
happens to choose during this interaction. For finite support distributions P, this bound could be derived
directly from the regret bound of online projected gradient descent [Zinkevich, 2003] or from the analysis of
the similar algorithm in Hébert-Johnson et al. [2018]. We reproduce a direct analysis in the Appendix to
match the theorem statement we want for distributions which may have infinite support. (Note that for such
distributions the mean predictor will have to be maintained implicitly). In Algorithm 1, after each gradient
update, we project 7i* back into the set of functions with range [0, 1] using an £ projection. Because squared
{5 distance is linearly separable, it can be accomplished by a simple coordinate-wise operation which we
write as projectyy 1(z) = min(max(z, 0),1).

Algorithm 1: Projected Gradient Descent(n) for ﬁ

Start with an arbitrary initial mean predictor ' : X — [0, 1]
fort=1,...,7 do
Audit player plays some St C X )\t € {—1,1}
441, Jprojecty g (ﬁt(x) — n)\t) if z € S°,
H (.I) - —t .
' (x) otherwise.

Lemma 3.1. For any initial mean predictor it € X — [0,1] and any sequence of (St,\')L_,, Algorithm 1

satisfies:
T 1 T
D APx(S) (7(S") — n(5Y) < 5+ Z

t=1

l\DId

The proof is in the Appendix. A direct consequence of the bound in Lemma 3.1 is that, when interacting
with a consistency player who uses gradient descent with learning rate n = «, an auditor will be able to find
sets that fail to be a-mean consistent for at most 1/a? many rounds.® The following theorem is a direct
consequence of Lemma 3.1 — its short proof is in the Appendix.

Theorem 3.1. SetT == —1andn=a = \/%-H in Algorithm 1. Assume that for every t € [T,
A (THSY) — w(SH) > o
(7(5) = u8") > 5tz
Then, for every S C X, we have
THHS) — u(S)| < =
[7S) ~ 1) < F

In particular, if the auditor selects sets G(fi*, 7) that fail to satisfy approximate mean consistency whenever
they exist, then we quickly converge to a mean-multicalibrated predictor. Either we reach a state in which 1t

5Because the objective function of our game weights the consistency violations fi(S) — u(S) by the measure of the set Px (S),
these violations are linear functions of the individual predictions fi(xz). Thus it suffices to run gradient descent over the space
of individual predictions X, rather than the space of all possible functions 7w : X — [0, 1].

6 A somewhat better bound is achievable by using a non-uniform learning rate that depends on the measure of the sets S
chosen by the auditor; we use a uniform learning rate throughout this paper for clarity.



is approximately mean consistent on every set G(zi*,) before T rounds, in which case we are done, or after
T rounds, the conclusion of Theorem 3.1 implies not only that we are approximately mean-multicalibrated
with respect to G, but that we are approximately mean-consistent on every set.

3.2 Pseudo-Moment Consistency

In this section we make a simple observation: Algorithm 1 from Section 3.1 for achieving mean consistency
and calibration did not depend on any properties of the labels y. It would have worked equally well had
we invented an arbitrary label for each datapoint z, and asked for mean consistency with respect to that
label. Using this observation, we consider a (naive, and incorrect) attempt at achieving calibration for
higher moments — but one that will be a useful subroutine in our final algorithm. Recall that my(S) =
E[(y — u(z))*|x € S]. If we have a mean predictor 7i(z), it is therefore tempting to imagine that each point
x is associated with an alternative label g(z) = my z(x), where:

ik () = E | (v~ (@) o]

We could then use the algorithm from Section 3.1 to construct an predictor iy, that was mean multicalibrated
with respect to these labels. We refer to the property of being mean consistent with respect to the moment-
like labels my z(x) as “pseudo-moment-consistency”:

Definition 3.1 (Pseudo-Moment-Consistency). Fizing a mean predictor Ti, define the k™ pseudo-moment

labels to be my z(z) =E [(y - ﬁ(x))k’x} A moment predictor my, is (8, €)-pseudo-moment-consistent on a
set S, with respect to a mean predictor T if

B

< =
|_,PX(S)+6

Mk (S) — e, m(S)

We simply say B-pseudo-moment consistent if the predictor is (5, 0)-pesudo-moment-consistent.

We can achieve pseudo-moment consistency using the following gradient descent procedure, analogous to
Algorithm 1.

Algorithm 2: Projected Gradient Descent(n) for 7y,

Start with an arbitrary initial pseudo-moment predictor my : X — [0, 1]
fort=1,...,7 do
Audit player plays some R C X, vt € {—1,1}

it (z) = projectyg 1 (M () — ') if x € RY,
k mi. () otherwise.

In particular, we obtain the following theorem, whose proof is deferred to the Appendix.

Theorem 3.2. LetT = % —1andn = \/%H = B in Algorithm 2, and fix any mean predictor fi, which
defines the function my g(x). Assume that for every t € [T,
L (RY) — M (R = =B
e = PX (Rt)
Then, for every R C X, we have
_ . B
R) —mra(R)| <
[ (R) — iy p(R)] < Pl

i.e. My is B-pseudo-moment-consistent on every set R.
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Now, a guarantee of “pseudo-moment-consistency” is really a guarantee of mean consistency with respect
to “moment-like” labels my, ;(z), and does not correspond to moment consistency. This is because moments
my, for k > 1 don’t combine linearly the way means do: recall Observation 2.1. But also recall from
Observation 2.1 that higher moments do happen to combine linearly if we average only over points that
share the same mean.

We take advantage of this to prove the following key lemma: if we achieve pseudo-moment consistency
on all sets G(, Mg, i,j) (for G € G) with respect to a mean predictor & that happens also to be mean-
consistent on all sets G(&, Mg, %, j), then, the pair of predictors is in fact approximately mean-conditioned
moment multicalibrated with respect to G.

Lemma 3.2. Assume T is such that for oll G € G and i,j € [m], T is a-mean consistent on every set
G(@, M, i, 7))

a
Px(G(B, M, 4, 7))
Assume also that My, is B-pseudo-moment-consistent with respect to i on every set G(@, My, 1,7)) for G € G
and i,j € [m]:

(G (M, 7)) — (G (M, 4, 5)) ] <

B
Px(G(m, Mk, 4,5))

|mk(G(ﬁ7 mkaiaj)) - mk,ﬁ(G(ﬁv mkalaj)” S

Then, for every G € G, i,j € [m], we have
B+ ka E
PX(G(ﬁ,mk,l,]) m.

|mk(G(ﬁ7 mkvivj)) - mk(G(ﬁa mkvivj)” <

This implies in particular that (f,My) are (o, 5, €)-mean-conditioned moment multicalibrated with respect
to G, for B = B+ ka and € = %

Proof. Fix G € G and i,j € [m] and let S = G(i, Mk, ,j). Because T is a-mean consistent on S, we have
that:
«

Px(S)

u(S) = (S)] < (1)

We can use this to bound the difference between the true moment my(S) and the pseudo-moment my, ;(.S)
on S. First, note that:

mi(S) = Ep [(y — n(S))*|z € ],
= Ep [[(y — @) + (5(x) — w(S))*|w € 5]
We will make use of the following fact:
Lemma 3.3. For any a,b € [0,1], |a* — b*| < kla — b].
Proof. Observe that:

la¥ — ¥ = < |a — b||k(max(a,b))* | < k|a — b]. O

(a —b) <Zafbk - f)

Finally, we conclude that:

ma(S) = iz (S)] = [Ep [(y = @) + (7(x) = () — (v - @) |z € 5|
< KEp ([a(x) — u(S)lo € 8|
<k (Ep [[i@) () lo € 8]+ [7(S) - u(S)])

11
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The first inequality follows from Lemma 3.3 with a = (y — &(z)) + (B(z) — 1(S)) and b = y — f(x). The
final inequality follows from (1) (mean consistency) together with the fact that f(x) falls within a bucket of
width L for any = € S (recall that by definition, S = G(F, M, ,5)), and so does 7i(S)
Finally, because my, is S-pseudo-moment consistent on S with respect to & we can invoke the triangle
inequality to conclude:
Mk (S) = mi(5)] <

5] 1 «@

< m (ot ) .
Lemma 3.2 reduces the problem of finding mean-conditioned-moment multicalibrated predictors (@, 7y )
to the problem of finding a pair of predictors (@, my) satisfying mean-consistency and pseudo-moment-
consistency on the sets G(f, My, 4, j). It is unclear how to do this, because these conditions have a circular
dependency: pseudo-moment consistency of 7, with respect to 7 is not defined until we have fixed a mean
predictor 17, because the “labels” my, ;(«) with respect to which pseudo-moment consistency is defined depend
on . On the other hand, the sets G(&, My, ,7) on which 77 must satisfy mean consistency are not defined
until we fix the moment predictor my. The next section is devoted to resolving this circularity and finding

predictors satisfying the conditions of Lemma 3.2.

Mk (S) — Mk z(9)] + [z (S) —me(S)],

3.3 Mean-Conditioned Moment Multicalibration

We arrive at the last block upon which our main result rests: an alternating gradient descent procedure
that on any distribution finds a mean multicalibrated predictor 77 together with moment predictors {7, }*_,
such that each pair (%, m,) is approximately mean-conditioned moment multicalibrated on G. We continue,
for clarity’s sake, to assume access to the underlying distribution P, and postpone to Section 4 the details
of implementing this approach with a polynomially sized sample of points. Our strategy is to obtain a set
of predictors that together satisfy the hypotheses of Lemma 3.2: mean consistency and pseudo-moment-
consistency on every set of the form G(&i,M,,4,75)) C G € G, 1 < a <k, and i,j € [m]. We have already
seen in Section 3.1 that for a fized collection of sets, a simple gradient-descent procedure can obtain mean
consistency on each of the sets. Section 3.2 demonstrates that for a fized mean predictor 7z, a similar gradient
descent procedure can obtain pseudo-moment-consistency with respect to 7w on each set G(r, Mg, ¢, 7)). Our
algorithm simply alternates between these two procedures. In rounds ¢, we maintain hypothesis predictors
it {mt}%_,. In alternating rounds, we perform updates of gradient descent using Algorithm 3 to arrive at a
mean predictor 7' that has taken a step towards consistency on sets G (7', /', ', 4, j), and then using the newly
updated mean predictor 7', run Algorithm 4 to obtain moment predictors m, that obtain pseudo-moment-
consistency with respect to 7' on all sets G(i',m",i,5). This is coordinated via a wrapper algorithm,

a?’

Algorithm 5. We prove this alternating procedure terminates after 1/a? — 1 many rounds and outputs
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predictors 77, {7, }¥_, that are jointly mean-conditioned moment-multicalibrated.

Algorithm 3: MeanConsistencyUpdate(f, S, \)

_ project n(z) —aX) ifzxels,
a(x) otherwise.

return @

Algorithm 4: PseudoMomentConsistency(a, 3, T, M, G)

1: define pseudo-moment labels m, z(z) = E[(y — f(x))*|z] for all z
2: while 3R = G(fi, M4, 1, j) for some G € G, i,j € [m] s.t. [Ma(R) — Map(R)| > %(R) do
3: ¥ = sign(mg(R) — fﬁk,ﬁ(R))
b () = projectg 1) (Mo (x) — ByY) ifxe R
Mo () otherwise.

5: return myg

Algorithm 5: AlternatingGradientDescent(c, 3, G)
1: initialize 7' (x) = 0 for all
2: for all 1 < a < k, initialize 7. (z) = 0 for all =
3:t=1
4: while 35* = G(*, i) or St = G(u',m! i, j) for some G € G, i,j € [m], 1 <a <k s.t.
’ﬁt(st) - M(St)‘ > % do
A = sign(7(S*) — u(S"))
71ttt = MeanConsistencyUpdate(zt, St, A!)
fora=2,...,k do
mit!t = PseudoMomentConsistency(a, 8, 7t ', G).
9: t=t+1
10: return (@t, {mt}%_,)

Theorem 3.3. Let T be the final iterate t of Algorithm 5 (i.e. its output is (A, {mL }r_,). Algorithm 5
has the following guarantees:
1. Total Iterations: The algorithm halts. The final iterate T is s.t. T < a—12 — 1. The total number of
gradient descent update operations is at most (% - 1) (1 +(k-1) (% — 1))

2. Mean multicalibration: Output i’ is a-mean multicalibrated with respect to G.
3. Mean Conditioned Moment multicalibration: For every a € {2,...,k}, the pair (W' ,m.) is

(@, B + ac, 2 )-mean-conditioned moment-multicalibrated with respect to G.

Proof. We prove each guarantee in turn.

Total Iterations: Every step ¢ of the while loop in Algorithm 5 performs a gradient descent update using
MeanConsistencyUpdate on a pair (Af, S?) such that:

«

Px(St)

N (' (S) = p(S")) =

By Theorem 3.1, this process can continue for at most T° < % — 1 many iterations. Within each iteration
t of the loop, the algorithm makes one call to PseudoMomentConsistency for each 1 < a < k for a total of
(k — 1) calls per iteration. Each of these calls performs at most % — 1 iterations of gradient descent, by
Theorem 3.2.

13



Mean multicalibration: Suppose for a contradiction that Algorithm 5 terminates at ¢ = T with output
77 which is not mean multicalibrated, i.e. there exists a set S = G(f’,i) for some G € G, i € [m] such
that [ (S) — p(9)| > Fa(g): Lhen, by construction of the while loop in Algorithm 5, T' cannot be the final
iterate of ¢.

Mean Conditioned Moment multicalibration: The While loop in Algorithm 5 will continue as long
as there exists a set S* = G(u',m!,i,7) for some G € G,i,j € [m] such that |[@*(S?) — u(S?*)| > P25
Hence we can conclude that at termination, 7’ is a-mean consistent on every set G(@’,m2 , i, j) for some
G € G,i,j € [m]. Moreover, during the final iteration, for each 1 < a < k, M. was constructed by running
PseudoMomentConsistency(a, 3, 7i* ,m. 1, G). Therefore, by Theorem 3.2 we know that 7. is 3-pseudo-
moment consistent on every set G(fi’,m.,i,j). To see this, note that if PseudoMomentConsistency runs

for % — 1 many rounds, then it is S-pseudo-moment consistent on every set. On the other hand, the only

way it can halt before that many rounds (by construction of the halting condition in its While loop) is if 7.

is B-pseudo-moment consistent on every set G(ul,m. , i, j).

a’®

erefore, i* and {m, }7_, jointly satisfy the conditions of Lemma 3.2. ollows from the Lemma tha
Theref T and {m11*_, jointly satisfy th diti fL 3.2. It follows from the L that
they are mean-conditioned moment-multicalibrated at the desired parameters. O

4 Implementation with Finite Sample and Runtime Guarantees

In Section 3 we analyzed a version of our algorithm as if we had direct access to the true distribution,
P. In particular, in both Algorithm 4 and Algorithm 5, access to P was needed in (only) two places.
First, to identify a set S* such that |@'(S") — pu(S")| > Pr(sy- Second, to identify a set R such that

[q(R) — mau(R)| > %(R). In this section, we show how to perform these operations approximately by
using a small finite sample of points drawn from P, and hence to obtain a finite sample version of our main
result together with sample complexity and running time bounds.

There are two issues at play here: the first issue is purely statistical: how many samples are needed to
execute the two checks needed to implement our algorithm? Our finite sample algorithm will essentially use
a sufficiently large fresh sample of data at every iteration to guarantee uniform convergence of the quantities
to be estimated over all of the sets that must be checked at that iteration. The second issue is computational:
even if we have enough samples so that we can check in-sample quantities as proxies for the distributional
quantities we care about, what is the running time of our algorithm? We are performing gradient descent
in a potentially infinite dimensional space, and so we cannot explicitly maintain the weights 7' (x), M’ ()
for all z. Instead, we maintain these weights implicitly as a weighted linear combination of the indicator
functions for each of the sets S, R, used to perform updates (recall that we have assumed that each set
G € G can be represented by an indicator function computed by a polynomially sized circuit, so we have
concise implicit representations of every set that our algorithm must manipulate). Ostensibly one must
exhaustively enumerate the collection of sets S, R, for which our algorithm must perform some check (in fact
their indicator functions), which takes time that scales with m?-|G|. We first focus on the statistical problem,
showing that the number of samples needed to implement our algorithm is small, and then we observe that
if we have an agnostic learning algorithm for G, we can use it to replace exhaustive enumeration. In both
cases—although the details differ—we handle these issues in largely the same way they were handled by
Hébert-Johnson et al. [2018], so many of the proofs and calculations will be deferred to the Appendix.

Finally, we remark that it is essential that we draw a fresh sample of n data points each time we try
to find a set for consistency violation because £, ¢, as well as the collection of sets S that we are auditing,
are not fixed a priori but change adaptively (i.e. as a function of the data) between rounds. Due to the
adaptive nature of the statistical tests that need to be performed, we cannot simply union bound over these
queries. We remark that we could have applied adaptive data analysis techniques (see e.g. [Dwork et al.,
2015, Bassily et al., 2016, Jung et al., 2020]) to partially re-use the data, which would save a quadratic factor
in the sample complexity (or for finite data domains, an exponential improvement in some of the existing
parameters, at the cost of an additional dependence on log |X'| by using the private multiplicative weights
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algorithm of Hardt and Rothblum [2010]). This idea is applied in Hébert-Johnson et al. [2018]; it applies
here in the same manner; interested readers can refer to Hébert-Johnson et al. [2018].

4.1 Sample Complexity Bounds and a Finite Sample Algorithm via Exhaustive
Group Enumeration

First, recall that pseudo-moment consistency is mean consistency with respect to the artificially created label
myz(x) = (y—7i(x))*. To avoid needless repetition, we focus on achieving mean consistency for an arbitrary
label defined by a label function ¢(z,y) with a predictor £(x). Then, auditing for mean consistency for &
and pseudo-moment consistency for i follows by setting

Uz) =p(z) and ((z,y) =y
U(z) =my(z) and {(z,y) = (y — @(z))"

for mean consistency and pseudo-moment consistency respectively. For economy of notation set,

0S)=Epll(x)lx € S] and £(S)=Ep[l(z,y)|lz < 5],

for all S C X. For any set S C &, given a dataset D, we refer to Dg as the subset of the data where the
corresponding points lie in S (i.e. Dg = {(x,y) € D : x € S}). If dataset Dg has n’ points each drawn
independently from P conditional on = € S, we can appeal to the Chernoff bound (Theorem C.1) to argue
that empirical averages must be close to their expectations.

We can also appeal to the Chernoff bound to argue that when we sample data points from P, the number
of points that fall into some set S (e.g. G(f, Mk, ,7)) scales roughly with nPx(S) (Lemma C.1).

Throughout the execution of our algorithm, we need to audit the current mean and moment estimators for
a-mean consistency violations. This is important, because the analysis of the running time of the algorithm
(e.g. the fact that it converges after at most T' = a—12 — 1 iterations) relies on making a minimum amount
of progress guaranteed by a-mean inconsistency. In the next lemma, we provide a condition that can be
checked using empirical estimates which guarantees a-mean inconsistency (on the true, unknown distribution)
whenever the sample is appropriately close to the distribution; it follows from two applications of a Chernoff
bound that this approximate closeness condition will occur with high probability. We encapsulate this
empirical check in Algorithm 6.

Algorithm 6: Auditor(¢, 7, o, &, {(zs, y5) }J—;)

/- ’ 2
if 0 > 0 and | 337, lay) — & 5 fan )| — 2¢/ 53 = —S— then
n/7 n g

n 2n
A= sign(& Yo, Uas) — 5 Sy £(xb, b))
Output YES, A (A Consistency Violation has been found)
else
Output No

Definition 4.1. Fiz any set S C X. Given a set of n data points D and its associated Dg = {(xp, yb)}{)il,
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we say that D is approzimately close to P with respect to (S, ¢, 1), if the following inequalities hold true:

n' >0
/ n 2

" _ 7%(5)‘ </ (20)
n’ n(2

2T ~119) <\ g (2b)
n’ n 2

LN )~ 105) < 2 (20
b=1

Lemma 4.1. Fiz any set S C X. If dataset D is approzimately close to P with respect to (S, 4, 1), then we
have

Auditor(£,7,a, Dg) = (YES,\) = [0(S) — €(S)| > PL(S) and  \ = sign(Z(S) — £(S))
x

Lemma 4.1 implies that when we find an empirical consistency violation using Algorithm 6, it is indeed a
real a-consistency violation with respect to the true distribution, allowing us to make progress — this guar-
antees that our algorithm will not run for too many iterations. But we need a converse condition, in order to
make sure that we don’t halt too early: we must show that if there are no empirical a’-consistency violations
for some o’ > «, then there are also no a-consistency violations with respect to the true distribution. This
is what we do in Lemma 4.2. Observe, that without loss of generality, we can restrict attention to sets such
that Px(S) > a because any estimator in the range [0, 1] is trivially a-mean consistent on every set with
measure < Q.

Lemma 4.2. Fix any set S C X such that Px(S) > «. Assume n is sufficiently large such that 24/ % <o
If D is approzimately close to P with respect to (S, £, F), we have

/

’Z(S) - K(S)‘ > %(S) = Auditor({,?,a, Dg) = YES,

-2
where o' = o+ 4 %ln(%)+<a—2 %) (2 %)

The Auditor subroutine above performs a consistency check on a single set. We now use it to audit for
mean consistency and pseudo-moment consistency across a collection of sets.

Algorithm 7: Consistency Auditor(?, £, o, §, D, S)
for S €S do
if |Dg| > 0 and Auditor(¢, 7, a, 6, Dg) = YES, A then
return S, A
return NULL

Corollary 4.1. Fiz (,¢, o, 6, and a collection of sets S. Given a set of n points D drawn i.i.d. from P
where a > 2 IHQ(E), ConsistencyAuditor(fi, o, D, S) has the following guarantee with probability 1 — 36|S]
over the randomness of D:

1. If ConsistencyAuditor does output some set S and A, then

7(5) - ¢(5)] >

P(S) and X = sign(£(S) — £(5)).
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2. If ConsistencyAuditor outputs NULL, then for all S € S,

!

3

—2

Thus, to detect a set S with a-mean consistency violation in line 4 of Algorithm 5, we can leverage
Algorithm 7 by drawing a fresh sample of size n and setting ¢(z) = 7i(x),4(z,y) = y, and S = {G(f,1) :
G € G,i € Im} U{G(@, Ma,i,7) : G € G,4,j € [m],a € {2,...,k}}. Likewise, for every a € {2,...,k},
to detect a set S with S-pseudo-moment consistency violation in line 2 of Algorithm 4, we can leverage
Algorithm 7 by drawing a fresh sample of size n and setting ((x) = mg(x), {(z,y) = (y — f(z))*, and
S ={G@,mMa,1,7) : G € G,i,j € [m]}. We write out the pseudocode of this process below.

Algorithm 8: PseudoMomentConsistencyFinite(a, 8, §, t, Ma, 7, G)

D = {(wp, yp) }poy ~ P"

S ={G(,Ma,1,7) : G €G,i,j € [m]}
l(x) = e(z)

U(z,y) = (y — Alx))* _

R, ¢ = ConsistencyAuditor(¢, ¢, 8,4, D, S)
while R,y # NULL do

() = | Profectio (Ta(@) —B¢) iz € R

M, () otherwise.

D = {(zp,y) }py ~P"
S ={G(f,Mq,1,j) : G € G,i,j € [m]}

U(z) =T (x) _
R, = ConsistencyAuditor(¢, ¢, 8,9, D, S)
return my

Algorithm 9: AlternatingGradientDescentFinite(w, 3,0, n,G)

initialize 7' (z) = 0 for all =

for all 1 < a < k, initialize T (x) = 0 for all z

-1
7 (2) = Bi(z)
é(xa y) =Y

D' = {(zp,yp)}jy ~ P"
St={G@"i):GeG,iem]}U{GE, m,i,j):Ge€G,ije€[mac{2... k}}
St = ConsistencyAuditor(Zt, l,,8,D,8)
while S*, A\t 4 NULL do
7i' ! = MeanConsistencyUpdate(zt, St, A!)
fora=2,...,k do
mitl = PseudoMomentConsistencyFinite(a, 3, 6, ', Mm%, n, G).
zt: t+1
t(x) =Tq(x)
D' = {(zv, yp) by ~ P
St={G@",i):GegG,ic[m]}U{GE' m.,i,j):Ge€G,ije[m],aec{2,....k}}
St = ConsistencyAuditor(Zt, ¢, a, 8, Dt S?)
veturn (7, (714 }5_y)

Theorem 4.1. Let T be the final iterate of Algorithm 9. If 24/ m;f) < a and 2 1n2(5) < B, we have the
following guarantees:
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1. Total Iterations: With probability 1 — 35|G|Qq ((m?* +m) +m2Qg) over the randomness of our
samples, the final iterate T is s.t. T < % — 1 and the total number of gradient descent update
operations will be at most @), where

Qazé—l,QﬂZ(lﬁ—l) (%—1)762:%(”@6)'

In particular, the algorithm uses at most nQ samples from P.

2. Mean multicalibration: With probability 1 — 35(m? 4+ m)|G|, output i’ is o/ -mean multicalibrated
with respect to G where
-2
2 2 2
n (s In (% In(%
o =a+4 i) 4 -9 M 2 M
2n 2n 2n

3. Mean Conditioned Moment multicalibration: With probability 1 — 36|G|(km? + m), for any

a€{2,..., kY, pair (L, ML) is (&, ac! + 3, <)-mean-conditioned-moment calibrated where
-2
In (2 In (2 In(2
o =a+4 _?;gjlz +la-2 _?;gjlz 2 _HEJZZ
2n 2n 2n
-2
2 In (2 In(2
BI:ﬁ+4 n(§)+ 6_2 n(&) 2 n(5)
2n 2n 2n

The following corollary derives the sample complexity of our algorithm, implied by Theorem 4.1, for a
target set of parameters. Observe that the sample complexity is polynomial in k,m,1/a,1/8,1/¢,log(1/4),
and log |G|

Corollary 4.2. Fizx target parameters o, 8',8 and € > 0 such that ¢ < o' and ¢ < §'. Define

g 6/G|km? 5 5 o In(22) o In(22)
(a’—e)2(6/—6)2, max(3|G|(km2 +m),Q)" 2(0/_6)2’ o 2(/3'—5)27
6+% /) \6+3% 6+2 6+3
Then, AlternatingGradientDescentFinite(c, 8,9,n,G) where
In(2Q@
a=2 al g 6,0 = —o -
2Ng 2ng
m(22)  m(%®)  2m(2) 2n(2)
n = max Na, ng, ,
In(%) In(%) a2 B2

has the following guarantees with probability 1 — ¢’ :
1. The total number of gradient descent updates will be at most Q, where Q) is as defined in Theorem 4.1.

2. al is o -mean-calibrated.

3. For every a € {2,...,k}, (", mL) is (a/,ad/ + B, L )-mean-conditioned-moment calibrated.

Finally, we state the running time of the algorithm in the following Theorem.
Theorem 4.2. With probability 1 — 35|G|Qa ((m? +m) + m2Qg), the running time of Algorithm 9 is
0 (Q|G|m*n) = O (kmmz") where Qq,Qp, and Q are as defined in Theorem 4.1.

232
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4.2 Oracle Efficient Implementation

In Section 4.1 we analyzed an algorithm that had favorable sample-complexity bounds, but was computation-
ally expensive when G was large: although it ran for only a small number of iterations, each iteration required
a complete enumeration of every set in G. In this section, we show how to replace this expensive step with
a call to an algorithm which can solve learning problems over G, if one is available. Because the remaining
portion of the algorithm is computationally efficient — even if G is very large — this yields what is sometimes
known as an “oracle efficient algorithm”. Similar reductions have been given in Hébert-Johnson et al. [2018],
Kearns et al. [2018], Kim et al. [2019].

Definition 4.2. For some p € [0,1] and non-increasing function p : N — [0, 1], A is a (p, p)-agnostic learning
oracle for hypothesis class H C 2% with respect to a label function r(z,y) € [—1,1], if for any distribution
P, given n random samples from P, it outputs f : X — {0,1} such that with probability 1 — p(n),

Eyy~plf(x) - r(2,y)] + p = sup Eq y)~plh(@) - (2, y)].
heH

We write 7(n) to denote the running time of the oracle A when n data points are used, which we assume
is at least Q(n).

Remark 4.1. A more common definition of an agnostic learning oracle would use hypotheses with range
{—1,1} rather than {0,1}. But this definition will be more convenient for us, and is equivalent (up to a
constant factor in the parameters) via a linear transformation.

We will use a learning algorithm for any class H such that G C H to replace the set enumeration steps
of our algorithm. In particular, to find a set of the form G(f,4) on which our existing predictor 7 fails to
be mean consistent, we run our learning algorithm on the subset of our sample that intersects with X' (%, i),
labelled with the positive and negative residuals of our predictor — i.e. on the labels r}(z,y) = fi(z) — y
and rp = y — fi(xz). Similarly, to find a set of the form G(f,4,1,7), we run our learning algorithm on
the sets X (@, M, %, 7) labeled with both the positive and negative residuals. Finding sets on which we fail
to be moment pseudo-consistent with respect to 7z is similar. All in all, this requires O(k - m?) runs of our
learning algorithm per gradient descent step, replacing the complete enumeration of the collection of sets
G. We make this process more precise in Algorithm 11 and state the guarantees in Theorem 4.3. We also
include the pseudocode for the correspondingly updated AlternatingGradientDescentFinite using Algorithm
11 as the auditing subroutine in the appendix — see Algorithm 13.

Algorithm 10: LearningOracleConsistency Auditor(, £, o, 6, D, R, A)
lz) —l(z,y) ifreR
+<x,y>={ @ty

d D= (e, n
e 0 otherwise r={(zo,rg(z,y)) =

rR<x,y>—{“$’y)‘“$’ Trel d Dy = (g,

0 otherwise
Xs+ = A(D}J%a H)
Xs- = A(DéaH)
return (S*,S57)

Algorithm 11: LearningOracleConsistency AuditorWrapper (4, £, o, §, D, Dhek R A)
V={}
for Re R do
if |Dg| > 0 then
S*, S~ = LearningOracleConsistency Auditor(Z, £, o, §, D, DMk R A)
V=VU{(STNR),(S"NR)}
return ConsistencyAuditor(¢, £, a, Dk V)
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First we observe that the objective of the agnostic learning oracle on the sets we run it on corresponds
directly to the (positive and negative) violation of mean consistency on these sets, weighted by the measure
of the sets.

Lemma 4.3. For each R € R and any xs:
E(g,xs(z) - rE(x, y)] =Px(RNS) (Z(R NS)—¢(RN S))
Ewpxs(@) - rR(2,9)] = Px(RNS) (((RNS) —E(RNS))

Using this, we can show that our learning oracle based consistency auditor has comparable guarantees
to the consistency auditor that operated via set enumeration:

Theorem 4.3. Assume n is sufficiently large such that o > 2\/%. Algorithm 11 has the following

guarantees:

1. If it returns some S and X\, then with probability 1 — 36|R| over the randomness of D"k,
_ e
£S) —£(9)| > .
() — 405 > 55

2. If it returns NULL, then with probability 1 — |R|(36 + 2p(n)) over the randomness of D and D¢k,

for all xs € H and R € R,

_ o' +p
RNS)—4(RNS)| < —r——
(RN S)—(ROS) < Fom b,

where o is as defined in Corollary 4.1.

Observe that when G C H and R = {X (@, M4, 4,7) : 4, € [m]}, then, the collection of intersections
RN S over all xg € H and R € R contains {G(,Mq,%,5) : G € G,i,j € [m]}. The same observation
applies when R = {X(@r,4) : i € [m]} U{X (&, TMq,1,7) : i,5 € [m]} — the collection of intersections includes
{G(m,i): Ge€G,ie[m]}U{X(,Ma,i,j):G€EG,i,je [m]}.

We now present the guarantees of a version of AlternatingGradientDescent that uses Algorithm 11 as the
auditor. Its pseudo-code can be found as Algorithm 13 in the appendix. We elide the proof as it is almost
identical to that of Theorem 3.3 and Theorem 4.1.

Theorem 4.4. Assume G C H. Let T be the final iterate of Algorithm 13. If 2 % <a,?2 % < B,
and G C H, we have the following guarantees:

1. Total Iterations: With probability 1—30Q, ((m2 +m)+ m2Q/3) over the randomness of our samples,
the final iterate T is such that T < é — 1 and the total number of gradient descent update operations
will be at most Q, where Qq,Qp, and Q are all as defined in Theorem 4.1.

In particular, the algorithm uses at most O(nQ) samples from P.

2. Mean multicalibration: With probability 1 — (m? +m)(35 + 2p(n)), output A is o -mean multical-
ibrated with respect to G where o' = o' + p and o' is as defined in Theorem 4.1.

3. Mean Conditioned Moment multicalibration: With probability 1 — (km? + m) (38 + 2p(n)), for
any a € {2,...,k}, pair (g",mL) is (&’ ,aa” + B, L)-mean-conditioned-moment calibrated where
B"=p"+p and B’ is as defined in Theorem j.1.

Finally, we state the running time of Algorithm 13.

Theorem 4.5. With probability at least 1 —36Qq ((m? +m) + m?Qg), the running time of Algorithm 13 is
bounded by O(Qm?>7(n)), where Q is the total number of gradient descent operations as defined in Theorem

41
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5 Marginal Prediction Intervals

We now present an application of our results. Given subgroups of interest G, we have shown how to to
construct a multicalibrated mean predictor 7 and moment predictors (77,)¥_, that are simultaneously mean-
conditioned moment-multicalibrated. A key question is whether we can use mean-conditioned moment
multicalibrated predictors in applications in which we would use real distributional moments, were they
available.

In this section, we show that the answer is yes in an important application. Mean-conditioned moment
multicalibrated predictors can be used in tail bounds just as real moments could be to compute prediction
intervals. Where real moments would yield prediction intervals conditioned on an individual vector of features
x, mean-conditioned moment-multicalibrated predictors when used in the same computations yield marginal
prediction intervals that are simultaneously valid for every sufficiently large subgroup. In particular, given
a coverage failure probability § and a group size v we show how to construct just from mean and moment
predictions, for every x € X, an interval I(z,~y) such that for every G € G and for every pair of predictions
i, such that G(77,q,14,j) has mass at least v we have: Pr, [y € I(x,v)|r € G(fI,Ta,4,7)] > 1 4.

Recall the following tail inequality (a simple consequence of Markov’s inequality: when k = 2, it is known
as Chebyshev’s inequality):

Lemma 5.1. Let X be a random variable with mean . Then for even k, t > 0:

E[(X — )]

PrllX — pf 2 1] <

Suppose we knew the real moments my(z) of the distribution on y conditional on features x: A direct
application of the above lemma would allow us to conclude that for any even moment k:

y & lu(:v) - (m’}(m))i () + (ka(x)>ﬂ x] <.

Bounds of this form are simple, but also strong: there is always an integer moment k£ such that the
above bound is at least as tight as a generalized Chernoff bound” [Philips and Nelson, 1995], and only
the first £ < O(log(1/6)) moments are necessary to match Chernoff bounds at coverage probability 1 — ¢
[Schmidt et al., 1995].

If we had ezactly mean-conditioned moment-calibrated predictors (i, my) for some k even, over a set of
groups GG, we would obtain exactly the same bound using these predictors as a marginal prediction interval:
i.e. we would obtain for every G € G, and every i, j:

o e - (22" e (82) ]

This is because mean-conditioned moment-multicalibrated predictors actually do provide real distribu-
tional moments, over the selection of a random point within any set G(@,myg,i,j). Of course we only
have approximately mean-conditioned-moment multicalibrated predictors. Given (¢, 3, €)-mean-conditioned-
moment multicalibrated predictors (&, My ), k even, with respect to some collection of groups G, we can endow
our predictions with (marginal) prediction intervals that have coverage probability 1 — § as follows. The
width of our prediction interval for a point x will be:

1
a 1 (mk(:v)—i-e—i—ﬁ—i—%)k

Pr

T e G(ﬁvmkviv‘j)‘| <.

A'y,k(x):;‘Fﬁ‘i‘E—F 5

Our prediction interval for x will be centered at its predicted mean, and is defined as follows:

Ly k() = [A(x) = Ay (), () + Ay k(2)]-

"Chernoff’s bound is Pr[X > ¢] < infg>¢ Mx (0)e™%, where Mx () is the moment generating function for X
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These are valid marginal prediction intervals as averaged over any set of the form G(, My, 4, j) that has
measure larger than «. Note that all of the approximation terms «, 3, €, 1/m are terms that we can drive to
zero at polynomial cost in running time and sample complexity.

Theorem 5.1. Assume that i, My, is (a, 3, €)-mean-conditioned moment multicalibrated with respect to G,
with k even. Then for any group G € G and any set G(fi, My, i,j) such that Px|G (@, Mk, i,7)] > v, we have:

Ply € Ly k(x)|x € G(, my, 1, )] < 0
Proof. To see this note that:

Ply & Iy x(z)|z € G(7, Mk, i, 5)

«@ 1

]
mk(x)-l—%—i—e-i-g)E
5

| (G, ik 1, 1)) + & + N
<P ||y — (G, my,1,5))| > — +e+ < 5 e z € G([L, My, 1,7)

S @
¥
<P |ly — (G (@, Mg, i, 5)) (

1

u,mw,J)))

UAS G(ﬁa mkalaj)‘|

<d

Here, the first inequality follows frorn the fact that all € G(f,m™yg,i,j) are (by definition) such
that |m(z) — L] < ﬁ and [mi(z) — L] < 55, and hence |f(z) — @(G(F, My, 4,5))| < L+ and [mx(z) —
mi(G (I, Mg, 1,5)))| < =. The second 1nequahty follows from the definition of («, §)-mean conditioned mo-
ment multicalibration and the fact that P[G(m,mk,4,5)] > ~. Finally, once we have replaced our mean
and moment estimates with the true mean and moment of G(i, Ty, 1, ), the final inequality follows as an
application of Lemma 5.1.

O

This theorem shows how—given («, 8, €) mean-conditioned moment-multicalibrated predictors [, mx—
we can construct prediction intervals for any set G(fz,my,4,j) with probability larger than ~.® However,
we have more information available to us: We have mean conditioned moment-calibrated predictors for all
moments 2 thru k, (M,)*_,. A straightforward valid solution is to pick some even moment a s.t. 1 < a < k,
and then construct prediction intervals as above. We could optimize our choice of a so as to minimize e.g.
the expected width of the prediction intervals over a random choice of . But this leads to the question of
whether we can do better by using more than one moment estimator at a time. In Appendix D we show that
this problem reduces to the venerable submodular-cost set-cover problem. Known approximation guarantees
for this problem are relatively weak in this context (scaling with log |X'|, which will typically be linear in the
dimension of the data). We leave the question of how to optimally use multiple mean-conditioned moment
multicalibrated predictors—taking advantage of multiple moments simultaneously—to future research.
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8We showed this just for even moments k — but a version of Lemma 5.1 also holds for k odd, i.e. for any r.v. X with mean

1, any number k, and any ¢t > 0, we have Pr[| X — pu| > ¢] < M We can use this to construct valid confidence intervals
using “absolute Central moments” of any degree, even or odd. Note also that our algorithms and analysis apply identically if
the goal was to provide mean-conditioned, multicalibrated predictors of absolute central moments (i.e. the analog of Definition
2.3 but where instead of m(-), we calibrate our predictor to the analogous absolute central moment).
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A Details and Proofs from Section 3.1

Lemma 3.1. For any initial mean predictor i* € X — [0,1] and any sequence of (St,\')L_,, Algorithm 1

satisfies:
T

Proof. Because ut“( ) = it (x) for x ¢ S, we can lower bound the “progress” made towards p at each
round t € [T] as

& 1
D APx(S") (A(S") () < 5+

t=1

l\Dld
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Ep (7' (x) — p(x))® — (@™ (z) — p(x))?]

= Px(S)Ep [(7'(z) — p(x))® — (B (x) — p(x))?|z € 57

> Pa(SHEp [(7'(x) — p(2))* — (B () — nA" — p(x))*|2 € 57

= Px(S)Ep [(7' (z) — p(x))® — ((@" () — w(x))? = 29\ (7' (x) — p(x)) + (A)?) |= € S*]
= Px(S)Ep 20\ (7' () — p(x))|z € ST] — Pa(SH)(nA")?

= 2n\"Pa(S) (E'(S*) — u(S*)) — Pa(S")(n\")

The inequality would be an equality if we did not project 7it into the range [0, 1]. Performing the projection
only decreases its o distance to p, which yields the inequality. Rearranging terms and observing that
(AH)? =1 yields

_ 1 _ _ P (S
NP(SY) (7(8") — ($) < 5B [(1(0) = )P = (14 ) = ua)?] + T2
Therefore we have that
T
> APx(SY) (E'(SY) — n(Ssh)
t=1
T 1 ¢ 2 —t+1 2 nPX(St)
<> o (@ (2) = n(@))* = (@7 (@) = p(@)’] + —5—
t=1
1 17 a
=g @)~ @) = @) = (@)"] 5 3P
T
Ln
TR
as desired. The last inequality follows because 7i*(x), u(z), and % +1(z) all fall in [0, 1]. O
Theorem 3.1. SetT = % —landn=a= \/Tliﬂ in Algorithm 1. Assume that for every t € [T,
A (THSY) — w(SH) > o
(7(5) = u8") > 5tz
Then, for every S C X, we have
‘—T-i—l )‘ <«
~ Px(5)

Proof. Fix any set S C X and imagine extending the sequence by setting ST*! = S and setting AT+ =
sign(7i 71(S) — u(9)). By Lemma 3.1, we would then have:

T+1 T+1

1
Do NP(S) (B(8") = i(8") < 5o+ 5 D PalS")
t=1 t=1
1 nT+1)
SotT o
<VvT+1 (substituting n = \/Tl——|—1>
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We can then peel off the last term in the sum correspondlng to ST+1 = S to obtain:

’—T-i-l )’ < \/ﬁ _ Z )\t'PX St —t(St) (St))
<VT+1—-aT (by assumption)
. 1
=a (s1nceT:$—1)
which completes the proof. O

B Details and Proofs from Section 3.2

For intuition, we can think of the pseudo-moment calibration algorithm as playing the following zero sum
game using projected online gradient descent against an adversary who plays best responses. Recall that &
is a fixed quantity so that myz is well defined.

min max  ¢Px(R) F(R) — e u(R).

mr  RCX

pe{—1,1}

Lemma B.1. For any arbitrary mj, : X — [0,1] and any sequence of (R',¥*)E |, we have that

T
> Y'Pa(R') (M (R) — mka(R) 2_ g Z
=1

))? = ([ (@) — ()| € RY]

? — (mj,(z) = y' — M g(2))?|e € R']
? = ((my(x) = g o (2))? = 209" (M) (2) — Mg (@) + (')?) |2 € R
=2 P (R')Ep [mk( ) = T e(w)) v € R'] — Pa(R') (')?

Here the inequality comes from the fact that projection can only make the ¢35 norm smaller. Rearranging
terms and observing that (¢%)? = 1 yields

t t =t =~ t — ~ 2 (—t+l ~ 2 nPx(R')
U Px(R)Ep [, (z) — M p(w)le € R'] < —EP (M (@) = Mra(2))? = (@ (@) = Ma(@:))?] + —5—.

Plugging this inequality back into the regret, we get

= Zl/)tpx(Rt)Ep [m;(x) — ﬁlkﬁﬁ(I”iE S Rt]

3 t
< ; <%E7> (L (x) — g () — (WS (2) — T (2))?] + 7777;(2(R )>
T
- 2_1" (Z Ep [(mk () — i ul@)? — (7 T () — 7 m)ﬂ) + 33 PalR)
reX 2
1 e )
< 5+ 2 Pr(B)
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as desired. The last inequality follows because s (z), Mgz (), and 7m; T (x) all fall in [0, 1]. O

Theorem 3.2. Let T = é —1andn = \/T1—+1 = [ in Algorithm 2, and fix any mean predictor [, which
defines the function my, z(x). Assume that for every t € [T,

—t (ot ~ t B
’mk(R ) — myg (R )‘ z Pr(RE)’
Then, for every R C X, we have
_ . B
R) — a2(R)| < .
i (R) — i (B)] <
i.e. My s B-pseudo-moment-consistent on every set R.
Proof. Set RT*! = R. From Lemma B.1, we get
T+1 1 T+1
D0 Pa(RY) (M (RY) — n(R) < 5o +5 > Pa(RY) < VTH1
t=1 t=1

— PX(RT+1) |m£+1(RT+1) _ ﬁlkyﬁ(RT+l)| S /T+ _ ﬂT — ﬁ

C Details and Proofs from Section 4

Theorem C.1 (Chernoff Bound). Fiz distribution P and some function f(x,y) € [0,1]. Let {(zv,ys)}p—;
be n points sampled i.i.d. from P. Then, we have for any § € [0,1],

1 In(%)
Pr — Ty, —E(zu)~ x, > 0L | < 6.
T nbz:;f( b, %) — Eqy)~p[f(z,9)] o,
Lemma C.1. For any set S C X,
P 1211:]1( € S) — Px(S)| > @) |
D~¥>n n e~ a X 2n | —
Proof. We apply a Chernoff bound (Theorem C.1) with f(x,y) = L(z € S). Observe that E[f(x,y)] =
'Px(S). O
Lemma 4.1. Fiz any set S C X. If dataset D is approzimately close to P with respect to (S,£,£), then we
have
Auditor(¢,{,a, Dg) = (YES,\) = [€(S) —£(9)| > 7 OES) and X\ = sign(€(S) — £(S))
X

Proof. To see this, observe that

|6(S) — £(9)|

1 77,/ _ 77,/ ln(z)
> sz(ivb) — = U@y y)| — 2 5 >
b=1 b=1
@
>
n _ /(3
n 2n
S _ @
~ Px(5)
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Here, the first inequality follows from the (2b) and (2¢), the second from the condition of Algorithm 6, and
the last inequality follows from (2a).

Finally, if & Zglzl Uzp) > & Z;il £(xp,yp), then

1 & In(2)
- Zg(xbvyb) + 2n6,

b=1 b=1

> 0(S).

The same argument applies when %Zl:il lUxp) < %Zl:il O(zy,yp). Therefore, sign(- ZZ/:l U(xp) —
w7 b1 L@y, yp)) = sign(€(S) — £(9)).
o

Lemma 4.2. Fix any set S C X such that Px(S) > a. Assume n is sufficiently large such that 2 % <o

>
If D is approzimately close to P with respect to (S, 0, £), we have

/

-2
where o/ = a+44/51n(2) + (a—2\/1n2(§)> (2\/%).

Proof. The pre-condition implies that

= Auditor({,{,a, Dg) = YES,

1 - 1 & In(2)
ﬁZf(%b)——IZf(xb,yb) -2 2TL6/
b=1 b=1
_ In(2)
> [US) - 4| -4/ 55
s oy [mG)
~ Px(9) 2n!
ln(%) >
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—2
In(2 In(2
v ortyEud s (a-2y/B5D)  (/50)

Px(S) Px(S)
N a+4 %m(%) )
Pr(S) — 2¢/ )
a 4 %ln(%)
Z 2 + 2
Pr(S) -2/ 52 Pr(9) — /52
In(2
> a — +4 n(3) — Ve e[0,1]:x <z
Pa(9) —2y/ 52\ 20(Pa(8) — /52
2
> “ — 4 h;(i) by (2a)
n(2 n
Pa(S) — 2/ 750
« ln(%)
> by (2
- n’ ln(%) 2n/ Y( a)
n 2n

Inequality (3) comes from Lemma C.2, where we plug in = Px(S), ¢ = a + 4,/ In(3) and € =
In(%)
2/ ). O

Lemma C.2. ForanyO0<e<a<z<land0<c<1,

Ctaar . _c

Proof. Because

it is sufficient to show that

> .
z (a—€)? T x—c¢
Because f(z) = £ is convex, it’s easy to see that:

fle=e+ef(x—e) < f(z)

C ce

IN

x—e (x—e¢)?

Now, because e < a <z and 0 < ¢ < 1, we have

C € . 0

x—e (a—e¢)?

<

8o

Corollary 4.1. Fiz (¢, o6, and a collection of sets S. Given a set of n points D drawn i.i.d. from P
where a > 2 IHQ(E), ConsistencyAuditor(fi, o, D, S) has the following guarantee with probability 1 — 36|S]
over the randomness of D:
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1. If ConsistencyAuditor does output some set S and X\, then

7(S) - ¢(5)| > %(5) and X = sign(2(S) — £(S)).
2. If ConsistencyAuditor outputs NULL, then for all S € S,
— o
0S) —£(9)| € =——,
[45) - 49)] < 5o

-2
= E o) /).

Proof. For each set S € S, we write Dg = {(z7,y;)},2, to denote the points from D that fall in S.
First, by union bounding the failure probabilities of Lemma C.1overevery S € S, we have with probability
1- 6|S|7
In(3)
2n
We apply the Chernoff bound again for every set S where ny > 0 and take the union bound to argue
that with probability at least 1 — 2|S|d, for all such sets S where n’y > 0,

i
s —PX(S)‘ >

n

1 g - In(%)
= - <

n{g b:1€(xb) é(S) = 2”:9
IR In(2)
= - <

n{g — é(xb » Yb ) K(S) — 2n{9

Observe that despite the fact that ny is not fixed before we draw the sample, we can still apply a Chernoft
bound here because for every realized value of n', the distribution, conditional on the value of ny, of points
(x,y) such that (x,y) € S remains a product distribution, with individual such points distributed as P|z € S.
Now, we go through each scenario:

1. ConsistencyAuditor outputs some set S and A: In this case, S would have been returned only
if n'y > 0 due to the if condition in Algorithm 6. Therefore, D must be approximately close to P with
respect to (5,4, ¢). By Lemma 4.2, we have

«

and A\ = sign(¢(S) — £(9))

2. ConsistencyAuditor outputs NULL: For any set S, Px(S) < « directly implies that

o o

Pr(S) ~ Pa(9)

Therefore, we focus only on sets S where Px(S) > a. For these sets, we have n’y > 0 because

nS>73X lln \/ln% ln%

2
1n2(3)' Therefore, for every set S where Px(S) > «, we must have that D must

as we assumed o > 2

be approximately close to P with respect to (5,7, ¢). Thus, by applying Lemma 4.2 to these sets S,

we have ,
«

Px(S)’

2(5) — €(5)| <
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-2

O

Theorem 4.1. Let T be the final iterate of Algorithm 9. If 24/ m;f) < a and 2 % < B, we have the
following guarantees:

1. Total Iterations: With probability 1 — 35|G|Qa ((m? +m) +m>Qg) over the randomness of our

samples, the final iterate T is s.t. T < % — 1 and the total number of gradient descent update

operations will be at most QQ, where
1
B2

In particular, the algorithm uses at most nQ samples from P.

Qa_%—l,Qg_(k—1)< —1)7Q—Qa(1+Qﬁ)'

2. Mean multicalibration: With probability 1 — 35(m? 4+ m)|G|, output i’ is o -mean multicalibrated

with respect to G where
—2
2 In (2 In(2
o —asay B oy mE ) (/2B
2n 2n 2n

3. Mean Conditioned Moment multicalibration: With probability 1 — 36|G|(km? + m), for any

a€{2,....k}, pair (", mL) is (a/,ad/ + B, L )-mean-conditioned-moment calibrated where
-2

2 In (2 In(2

o =a+4 M +la-2 M 2 M
2n 2n 2n
2 o\ 2
2 In(2 In(2

Bl:ﬁ+4 n(6)+ 6_2 n(é) 2 n(é)
2n 2n 2n

Proof. We prove each guarantee in turn.

Total Iterations: As argued in Theorem 3.3, if the auditor can successfully find a set S on which there is
a-mean inconsistency and S-pseudo-moment inconsistency respectively in AlternatingGradientDescentFinite
(Algorithm 9) and PseudoMomentConsistencyFinite (Algorithm 8), Theorem 3.1 guarantees that 7" will be
at most % — 1 and Theorem 3.2 guarantees that the total number of gradient descent operations in each
PseudoMomentconsistencyFinite will be at most = — 1. Then, because in each iteration of AlternatingGra-
dientDescentFinite, there are k — 1 calls to PseudoMomentconsistencyFinite, the total number of number of
gradient descent operations will be at most Q@ = Qa(1 + Q) where Qo = -z — 1 and Q = (k — 1)([%2 —1).

Therefore, it is sufficient for us to show that there is a-mean inconsistency and S-pseudo-moment in-
consistency on every S* and R returned by ConsistencyAuditor (Algorithm 7) for AlternatingGradientDes-
centFinite and PseudoMomentconsistencyFinite respectively.

For AlternatingGradientDescentFinite, because we set Zt(ac) =7'(z), {(z,y) =y, and S' = {G(w,i) : G €
G,i € m|}U{G(,Mq,%,5) : G€G,i,j € m],a€{2,...,k}}, Corollary 4.1 guarantees that with probability
1 — 35|G|(m? + m), @' is a-mean inconsistent on S* with n ! = sign(m*(S?) — p(S?)) as desired. Because
T is at most Qq, by a union bound, fi* is a-mean-inconsistent on S* for every ¢ € [T] with probability
1 —38|G|(m? + m)Qa.

Likewise, for PseudoMomentconsistencyFinite, we set £(z) = m(z), {(z,y) = (y — f(x))?, and S =
{G(E,Ma,i,7) : G € G,i,j € [m],a € {2,...,k}}. Hence, by union bounding over every a € {2,...,k},
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Corollary 4.1 promises us that with probability 1 — 35|G|m?Q.Qps, M, is B-pseudo-moment inconsistent
on R throughout every iteration of PseudoMomentConsistencyFinite for every a € {2,...,k} and ¢ =
sign(mq(S) — maz(S) as desired. Note that there are a total of Qg calls to ConsistencyAuditor from each
PseudoMomentConsistencyFinite, which is invoked a total of (), many times.

Mean Multi-Calibration: Our algorithm halts only if ConsistencyAuditor doesn’t find S in Alternating-
GradientDescentFinite. Corollary 4.1 promises us that with probability 1 — 35(m? + m)|G|, i’ must be
o’-mean-consistent on every set S € ST. Because S includes {G (7' ,i) : G € G,i € [m]}, it must be that "
is o/-mean multi-calibrated with respect to G.

Mean Conditioned Moment Multi-Calibration: In the last round 7', consider each m. for a €
{2,...,k}. PseudoMomentConsistencyFinite returns 7. only if ConsistencyAuditor doesn’t return any R.
Corollary 4.1 guarantees us that with probability 1—35m?2|G|, m. must be ’-pseudo-moment-consistent. Be-
cause Ji' is a/-mean consistent and . is pseudo-moment-consistent on {G (7, M, 1, 7) : G € G,4,5 € [m],a €
{2,...,k}}, Lemma 3.2 tells us that (7", mZ) must be (a/,aa + ', £ )-mean-conditioned-moment multical-
ibrated. By union bounding over each a € {2,...,k} the total failure probability is 1 — 36|G|(km? +m). O

Corollary 4.2. Fizx target parameters o, 5',8" and € > 0 such that e < o' and ¢ < §'. Define

g— __Oglkm? 5 5 o In(22) o In(22)
(a’75)2(6’—6)2, max(3|G|(km2 +m),Q)" 2(a/,é)2’ @ 2(,@,_6)2’
6+ 6+% 6+% 6+ 3
Then, AlternatingGradientDescentFinite(c, 8,9,n,G) where
In(2Q
a=2 —n( 5 ) €, 8= —_—
2Ng 2ng
m(22)  m(®)  2mn(2) 2In(2)
n = max Na, nga, ,
1n(%) ln(%) a? 32

has the following guarantees with probability 1 — §':
1. The total number of gradient descent updates will be at most Q, where Q is as defined in Theorem 4.1.
2. al is o -mean-calibrated.
3. For every a € {2,...,k}, (", m.) is (a/,ad/ + B/, L )-mean-conditioned-moment calibrated.

Proof. Note that by construction, we have

In(

—~
S oo
S~—
S |

a>2 and (£ >2 )
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Therefore, in Theorem 4.1, the level of mean calibration for 7’ will be

—2

— 0
In(22) In (—
=2 o 4
2n4 et 2ng
(%) (o 2
= 6+ —
2N, ( + e2> +
= Oé/

2Q
where the first inequality follows because n > IES( 2 )) ne and the last equality from the definition of ng.
5

Applying the same analysis, we can show that we satisfy pseudo-moment-consistency at level 3. There-
fore, for any a € {2,...,k}, (a*,mL) satisfy (o/,ac/ + 3, -2 )-mean-conditioned-moment multicalibration.

The failure probabilities for mean muticalibration and that of mean-conditioned-moment multicalibration
are both less than &, as 36(m? + m)|G| < 38|G|(km? +m) < § and 35|G|(km? +m) < &'.

The failure probability for termination is

30|G| <$ - 1> <(m2 +m) +m*(k— 1) (% — 1))

1 2km?2
< 390 (@> 2hm”

62
9 1
— 6/G|km?6 - S S
n(2&€ nﬁ
=) (e
1
< km2f . ———
< BlGtkm™ g
2Nq 2ng
1
< 24|g|km25 o — )
In(%2))
1 In(22)  In(%
— 24|G|km25 — n(5)2 a5
2Q o’ —e '—e€
IH(T)) 2(6+%) 2(6+§)
1
< 6/G|km?s TN
6+%) (6-1-:2)
=Qs
< ¢
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Theorem 4.2. With probability 1 — 36|G|Qq ((m? +m) +m2Qg), the running time of Algorithm 9 is
0] (Q|Q|m2n) =0 (nggjn) where Qq,Qp, and Q are as defined in Theorem 4.1.

Proof. Theorem 4.1 tells us that except with probability 1 — 35|G|Qq ((m? +m) + m*Qg), the algorithm
will halt after at most Q many gradient descent updates. For each gradient descent update, it must have
been that Algorithm 7 was invoked with either S = {G(1,%) : G € G,i € [m]} U{G(lr,Tq,%,j) : G € G,i,j €
ml,a € {2,...,k}} or S = {G(f,Ma,1,7) : G € G,i,j € [m],a €{2,...,k}}. Note that Algorithm 7 needs
to iterate through each set S in S, whose size is at most O(|G|m?) in either case. And processing each set S
through Algorithm 6 requires finding the average of at most O(n) elements twice. Therefore, the algorithm
will take time O (Q|G|m?n) with probability 1 — 35|G|Qa ((m? + m) + m*Qs) Q. O

Algorithm 12: PseudoMomentConsistency WithOracle(a, 8, d, i, Ta, n, G)
D = {(@y,y5) }p—y ~ P"
Dchcck ~ P
S = {X(f1,Ma,1,j) 4,5 € [m]}
U(z) =Ma(z)
U(z,y) = (y — A(x))* _
R, = LearningOracleConsistency AuditorWrapper(Z, £, 3, 5, D, Dbk S A)
while R,¢ # NULL do
7 () = projectg 1 (Mg (x) — ByY) fxe R
M, (x) otherwise.
D= {(zp, y) gy ~P"
S ={X(@@, Ma,i,5) : 4,5 € [m]}
U(z) =Maq(x)
D = {(xp, yp)}pey ~ P"
Dcheck ~ P
R, = LearningOracleConsistency AuditorWrapper(Z, £, 3, 6, D, Dbk S| A)

return my

Lemma 4.3. For each R € R and any xs:
E(yxs(@) - i (z,9)] = Px(RNS) (((RNS) — (RN S))

E@ylxs(@) - rp(z,y)] = Px(RNS) (((RNS) — (RN S))

Proof.
E (o [xs(@) ()] =Y Pla,y)xs@)rk(z,v)
Y
= Y Pyl - y)
z,y:x€S,tER
=Px(RNS) (((RNS)—LRNS))
The same argument applies for rj, as well. O

2
Theorem 4.3. Assume n is sufficiently large such that o > 2\/%. Algorithm 11 has the following
quarantees:

1. If it returns some S and X\, then with probability 1 — 36|R| over the randomness of D"k,

- «
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Algorithm 13: AlternatingGradientDescentWithOracle(w, 8,9, n,G, A)
initialize 77 (z) = 0 for all =
for all 1 < a < k, initialize m. () = 0 for all x
t =
—t _
() = n(x)

Dchcckt ~ Pn
St = {X(,i) : i € [m]} U{X @, i,5) i, € [m],a € {2,...,k}}
St = LearningOracleConsiStencyAuditorWrapper(zt, 0, 8,8, Dt, Deheck St A)
while S*, Xt £ NULL do

71ttt = MeanConsistencyUpdate(zt, St, A!)

fora=2,...,k do

mit! = PseudoMomentConsistencyFinite(a, 3, 6, 7' 1, m! , n, G).

t=t+1

7 (2) = ()

Dt ~ P7

Dcheckt ~ P7

St={x@',i):i € [m|]yu{X@, mt,i,j):i,5€[m],ae€{2,....k}}

St = LearningOracleConsistencyAuditorWrapper(Zt, ¢, 8,5, Dt, Deheck’ gt A)
return (7", {m},}5_,)

2. If it returns NULL, then with probability 1 — |R|(36 + 2p(n)) over the randomness of D and D¢k,
for all xs € H and R € R,
_ o +p

|( ) ( )|_'Px(RﬁS)7
where CY/ S as deﬂned m COT'OHU/)"y 41

Proof. With probability at least 1 — 3|R|d (since |R| > [V]), Corollary 4.1 gives us the following guarantees:
1. If S, A is returned, then

}Z(S) — K(S)’ > Pr(9) and A\ = sign(Z(S) —£(9)).
2. If NULL is returned, then for all V € V,
V) =4V :
< 4

Whenever the distributional closeness conditions of Definition 4.1 hold (which occur with the same 1—3|R|§

success probability of Corollary 4.1), and « > 2 ln;f), it must be that if |[Dr| = 0 then Py (R) < a. And

for any such R we have that Py (RN S’) < « for any other set S’, which implies that we trivially satisfy
(o 4 p)-mean consistency for RN S’. More precisely, if Px(R) < «, then

sup [((RNS)—((RAS) <1< — 2 o _9Fp
o 1 S SRS S Pr(RN S

We can therefore restrict our attention to those R € R that satisfy |[Dg| > 0, since we only have a non-
trivial statement to prove for sets R with Px(R) > a. Using Lemma 4.3 and the definition of an agnostic
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learning oracle, we know that for each V' = RN S*, with probability 1 — p(n),

Px(RNST) ((RNST) —L(RNST)) +p
= E(%U) [XS+ (I) : TE ({E, y)] +p

> sup IE(ac,y) [XS’ (x) : ’f‘; (LL', y)]
Xg' €EH

= sup Px(RNS) ({(RNS")—¢RNS)) (5)

Xs’/ EH
The same argument applies for V"= RN S™, and we obtain

Px(RNST)(((RNST)—L(RNS™)) +p=> sup Px(RNS)(((RNS)—ERNS")). (6)

Xg' EH

Combining (4), (5), and (6), we get that with probability 1 — 2|R|p(n),

_ /+p
sup [{(RNS)—U(RNS)| < =P _

O

Theorem 4.5. With probability at least 1 —36Q ((m2 +m)+ m2Q/3), the running time of Algorithm 13 is
bounded by O(Qm?>7(n)), where Q is the total number of gradient descent operations as defined in Theorem

4.1,

Proof. The running time of Algorithm 11 is O(m?7(n)), as we always call it with |R| = O(m?) and we
assumed 7(n) = Q(n), meaning the running time of the learning oracle dominates the calculations in the
empirical check. And Theorem 4.4 gives that with probability 1 — 36Q4 ((m? +m) +m?Q), there will be
at most @) gradient descent operations. Because the number of gradient descent operations is equal to the
number of subroutine calls to Algorithm 11, the overall running time is O(Qm?27(n)). O

D A Submodular Set-Cover Formulation

We can define the following problem. Theorem 5.1 shows us that for every even a, and every G € G,
i,j € [m], Iy,q(x) forms a valid marginal prediction interval for every set G(f, ™, %, j) with probability at
least v under Py. Can we construct tighter prediction intervals using all L%J moments?

We make the following simplifying assumptions in this section:

1. X is a set with finite cardinality.

2. Py is known exactly (note that we do not assume we know the distribution on labels y, which preserves
the core motivation of the problem).

3. For every x € X, there exists G € G, a even s.t. 1 < a <k, and ¢,j € [m] such that x € G(Iz, M, i, j)
and Py (G(@t,Ma,i,5)) > v (otherwise there is no way to give a valid marginal prediction interval for
such an z).

Let us define the set of all relevant sets as
S ={G(@,Mqy,1,7) : VG € G,i,j € Im],1 < a<k,aeven s.t. Px(G(,Ma,%,5)) > 8}

With each set S € S, we associate the width Ag(+) in the obvious way.
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Given any &’ C S we say that &’ covers X if Vo € X, 35 € 8’ s.t. # € S. Given any S’ C S that covers
X, we can construct valid marginal prediction intervals for all z € X:

A ’ = A
s(@) = max As(e),

Is/(z) = [a(x) — As/(2), 7i(x) + Asi (2)].

To see that this will result in a valid prediction interval, observe that for any = € X, it is covered by some
S € §'. By definition of §’, S = G(f, M4, 1, j) for some a even, i, j € [m], G € G. Note that I, o(z) C Is/(z)
by construction of Is/(-). Therefore Theorem 5.1 ensures that these prediction intervals are valid for any
S € &, and indeed, therefore valid for any group G € G.

A natural optimization problem is to find a subset S’ that covers X" so as to minimize the expected width
of the marginal prediction intervals that can be produced in this way, i.e. solves (exactly or approximately)

win Eepy [As ()]
s.t. S’ covers X.

We can rewrite the problem in the following way. Let A be a 0 — 1 matrix of dimension |X| x |S|. The
columns correspond to sets S € S and the rows to elements z € X. If A,g = 1 this means that element
x € X is contained in set S € S. Associated with each column S there is a function Ag. Recall that Py (z)
denotes the probability of x.

We can denote any subset of S’ C S by a 0/1 vector w € {0,1}/S such that wg = 1if S € S’. We can
therefore recast the optimization problem:

reX

s.t. zp — Ag(x)Azsws >0 Ve e X
ZAszszl Ve e X.
Ses

For any subset S’ C Slet f,,(S) = maxges As(x)Azs. Notice f,(S’) is a non-decreasing and submodular
function of §’. Let f(S') = >, Px(x)fz(S’), clearly f(-) is non-decreasing and submodular. Similarly, for
any &’ C S let w be the associated 0/1 vector and define g(S') = {z : > gc5 Azsws > 1}|. Again g(-) is a
non-decreasing and submodular function of &’. Observe that can write our problem as:

. /
min f(S),
s.t. g(8) > |x|.

Therefore our problem is the submodular cost submodular cover problem.

We can now hope to apply known results to solve it. For example, Wan et al. [2010] show that the greedy
solution (to iteratively add the set with the smallest average width) is approximately optimal. In particular,
their Theorem 2.1 guarantees that the greedy solution provides a %H-approximate to our optimization
problem where H is the ¢*!-harmonic number, ¢ = max{|S| : S € S}, and k is the number of moments we
have access to.

Unfortunately in this context, these guarantees are unsatisfactory: the approximation grows with the
number of moments k we have access to, and with log | X|, which will typically be linear in the data dimension.
Note that Wan et al. [2010] study general submodular objective functions and does not exploit the specific
structure of the objective function here. We leave the question of whether guarantees can be offered for this
problem to future research. Another natural question is how to approximate this optimization when Py is
not known, i.e. we only have a finite sample from P.

37



	1 Introduction
	1.1 Overview of Our Approach and Results
	1.1.1 Mean Multicalibration and Impediments to Extensions to Higher Moments
	1.1.2 Mean Conditioned Moment Multicalibration and Marginal Prediction Intervals
	1.1.3 Achieving Mean Conditioned Moment Multicalibration

	1.2 Additional Related Work

	2 Preliminaries
	3 Achieving Mean Conditioned Moment Multicalibration
	3.1 Mean Multicalibration
	3.2 Pseudo-Moment Consistency
	3.3 Mean-Conditioned Moment Multicalibration

	4 Implementation with Finite Sample and Runtime Guarantees
	4.1 Sample Complexity Bounds and a Finite Sample Algorithm via Exhaustive Group Enumeration
	4.2 Oracle Efficient Implementation

	5 Marginal Prediction Intervals
	A Details and Proofs from Section 3.1
	B Details and Proofs from Section 3.2
	C Details and Proofs from Section 4
	D A Submodular Set-Cover Formulation

