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ARTICLE INFO ABSTRACT

Keywords: Nontuberculous mycobacterial (NTM) infections are costly, difficult to treat, and increasing in prevalence. Given

NTM this, there is a desire to understand the potential relationships between NTM in water sources and climate change

Aerosol ) stressors. To address this need, a critical literature review was performed. Connections were made between NTM

\S/\}/I:t::iqi}:l-‘i?;ms fate and transport, climate change, engineering decisions, and societal changes, and uncertainties highlighted.

Opportunistic pathogen Environmental conditions discussed with respect to NTM risk included changing temperature, humidity, salinity,
rainfall, and extreme weather events. NTM risk was then considered under climate/societal scenarios described
by Intergovernmental Panel on Climate Change (IPCC) scientists. Findings indicate that the resilience of NTM
under a variety of environmental conditions (e.g., warm temperatures, eutrophication) may increase their net
prevalence in water environments under climate change, increasing exposure. Water management decisions may
also influence exposure to NTM as water scarcity is expected to result in increased reliance on reclaimed water.
Water managers may control risk of exposure through innovative water treatment processes and equitable water
management decisions, turning towards an integrated One Water approach to reduce and/or mitigate the im-
pacts of de facto reuse. Future research recommendations are provided including studies into potential changes
to NTM fate and transport in uniquely impacted climates (e.g., boreal regions), and investigations into the
relative risk of managed aquifer recharge as compared to no action.

1. Introduction based infections, costing $1.53 billion in direct healthcare costs in the

US in 2014 [23]. Between 1994 and 2014, NTM positive culture rates

1.1. Disease impact

Infections caused by nontuberculous mycobacteria (NTM) have
gained increasing attention over the past several decades in medical and
engineering fields due to their high cost [23], difficult treatment [28],
and increasing prevalence [111]. NTM, otherwise referred to as “atyp-
ical mycobacteria,” “environmental mycobacteria,” or mycobacterial
species other than Mycobacterium tuberculosis and Mycobacterium leprae,
are ubiquitous in water and soil environments and include many
opportunistic pathogens such as those in the Mycobacterium avium
complex (MAC) [46]. Exposures to NTM species by immunocompro-
mised individuals can result in a variety of infection and disease out-
comes including pulmonary disease, as well as extrapulmonary and
disseminated diseases [28,40,153]. Cases of NTM infections and disease
come with a high price tag. A US Centers for Disease Control (US CDC)
study estimated that NTM infections were the costliest primarily water-
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across five US states nearly doubled, increasing from 8.2 to 16 cases per
100,000 persons per year [37]. Due to the increasing instances of disease
[37] and prevalence in drinking water systems [45], M. avium has been
included in all four US Environmental Protection Agency (USEPA)
Drinking Water Contaminant Candidate Lists (CCL-4) (USEPA, 2016).
While concerns about NTM disease typically focus on immunocompro-
mised individuals who comprise a large fraction of patients, researchers
have recently noted that NTM disease prevalence is increasing in
immunocompetent populations, raising the public health concern
around these bacteria [129].

1.2. The nexus of pathogen, climate, and human interactions - A roadmap
to risk analysis

The majority of NTM infections are believed to be acquired through
human-environment interactions, such as by inhalation of infected
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particles and bioaerosols [44]. NTM have been identified in soils
[32,79], household dust [30], freshwater sources [119], public water
supplies [81,147] and in plumbing biofilms in homes using public and
private well water supplies [12,49,58,151,155]. As environmental
bacteria, NTM can be expected to be influenced by changing climatic
conditions. Since the dawn of the industrial revolution, emissions of
greenhouse gases such as carbon dioxide (CO2) and methane (CHy) have
increased, leading to an accelerated increase in average global land and
ocean temperatures at a rate of approximately 0.2 °C per decade [5].
Increases in atmospheric carbon dioxide and global temperatures have
rippling effects [70]. Some of these include increases in humidity,
intense precipitation and drought, changes in sea level, increases in the
frequency and/or intensity of natural disasters, and extended warm
seasons. These changes lead to numerous secondary, or cascading effects
such as increased flooding, saltwater intrusion, mold exposure, and
water and food instability [5]. Coastal regions are particularly affected
by climate change, and in the US, these are many of the same regions (e.
g., Hawaii, Louisiana, California, Florida) with the majority of NTM
infections [2,31,131]. Researchers from the Intergovernmental Panel on
Climate Change (IPCC) suggest that the trajectory of global emissions
[S]and the associated societal and population dynamics [98,114] are
highly likely to influence the magnitude of the abovementioned effects.

As cases of NTM disease continue to climb, global climate change
accelerates, and population dynamics shift, there is an urgent need to
understand how risk of NTM infections might be expected to change in
the coming decades. Literature reviews have been published that syn-
thesize information about NTM epidemiology and ecology
[42,65,96,104,107], and specifically about NTM and natural disasters
[64]. However, there remains a gap in the literature as to how the
combination of changing climates and human dynamics might influence
NTM risk, despite evidence that climate [21,137] and societal [88]
factors can influence NTM disease, and that these factors influence each
other [114]. Therefore, the overarching objective of this review is to
synthesize the wealth of information about NTM, climate, and human
system dynamics to characterize the processes that may influence future
human risk of NTM infections from water and aerosol sources. The
specific goals of this review are to capture the primary interactions
occurring at the interface of several systems, to highlight the gaps in
understanding how the systems function and interact, and to identify
potential scenarios that might lead to different levels of future risk. This
analysis is intended to support future model-based risk analyses of NTM,
as well as to inform decision making by water managers to mitigate
potential risk.

2. Literature review
2.1. Biological, ecological, and physiological characteristics

To hypothesize how risk of NTM infections might change under
future circumstances, some key characteristics that affect the survival of
NTM must be understood. First, NTM have an outer membrane rich in
lipids and composed of mycolic acids that provide them with an array of
survival-enhancing qualities including hydrophobicity, impermeability,
and slow growth [16]. Because of their hydrophobicity, NTM tend to
form biofilms on surfaces such as pipe walls or soil particles [121], to
which they can also adsorb due to their negative surface charge
[11,18,92]. NTM can survive and replicate within several protozoan
species [130], primarily free-living amoeba in both the trophozoite and
cyst phases [9,22,33,109,133]. Some NTM species can adapt by sharing
genetic information through plasmid-mediated horizontal gene transfers
[95]. Biofilms provide an ideal habitat for NTM to share antibiotic
resistance genes (ARGs) as well as metal resistance genes (MRGs)
[76,90]. NTM also have other adaptive capabilities that aid in survival,
such as the ability to enter a stationary phase of reduced cell activity
under starvation [125] and acid stresses [14]. They are known to survive
typically extreme environments, such as acidic [14], warm [120],

City and Environment Interactions 11 (2021) 100070

oligotrophic [125,159], and microaerobic environments [44,78].

There are currently more than 190 known NTM species [28] that can
be divided into two major groups: slow and rapid growing [57,126]. The
most clinically relevant species vary by region across the globe and have
changed over time [63]. However, several slow and rapid growing
species are currently of widespread clinical interest. Slow growing
commonly pathogenic Mycobacterium species include M. avium,
M. intracellulare, M. kansasii, M. marinum, M. malmoense, and M. xenopi;
and rapid growing species include M. fortuitum, M. abscessus, and
M. chelonae [44]. Another important slow-growing species, M. gordonae,
is ubiquitous in drinking water environments but is less frequently
implicated in disease. These species are generally small (1-3 pm), acid-
fast, tubular cells [56] that exhibit varying degrees of resistance to
treatments in humans and to environmental stresses.

Environmental concentrations of NTM species vary depending on the
location, measurement method, and sample matrix (Table 1). As an
example, both the Finland brook study [69] and the southeastern US
swamp study [79] cultivated mycobacteria from water and found
average values that differed by two orders of magnitude, owing to
different environmental conditions. Moreover, measurements for
abundance of mycobacteria in aerosols are not readily comparable to
those for water or biofilms, even in the same study, due to differences in
measurement units [79]. For these reasons, future investigations that
seek to calculate quantitative risk analyses of NTM should consider the
specific location, source, predicted transmission route, and species of
interest for the exposure assessment. Some researchers have already
attempted a quantitative microbial risk assessment (QMRA) for NTM
species or have investigated dose-response relationships, and future
work may consider building off of those studies [17,26,59,61,115].

2.2. Climate change considerations

2.2.1. Temperature

For NTM in surface water or shallow groundwater environments
[132], warmer temperatures could provide more favorable conditions
given that NTM species survive and grow better in warm waters than in
cold [53,139]. For example, NTM were found to be more prevalent in
southeastern US waters as compared to waters in the northeastern US, an
observation that researchers attributed to the relatively longer period of
time that water in the southeast spends above 15.5 °C and the smaller
time period that it spends below 9.4 °C [53]. Similarly, MAC species
were found in greater abundance in warm water [27], such as surface
water during warm seasons [79]. Correlations were observed between
temperature and mycobacteria detected by qPCR in a coastal lagoon
[71]. During increasingly frequent extreme heat events [5], NTM species
may be uniquely adaptable. Some species (e.g., M. xenopi) have been
shown to survive in extremely warm waters, at temperatures as high as
60 °C [120]. Disease risk for some NTM species can be greater in warmer
or tropical regions [21,31,64,65,110,123]. For example, in Queensland,
Australia, infections by M. abscessus occurred in a hotspot in a tropical
subregion [21]. A 16-year study in Australia also found cyclical associ-
ations between seasonal temperatures and disease, finding decreased
incidence of disease by different NTM species several months (3-6) after
increased temperatures [137].

As home plumbing systems are considered transmission routes, one
might consider how changing temperatures influence NTM in water
once it is treated and within a distribution system. Several studies have
reported seasonal increases in NTM in drinking water distribution sys-
tems during warm times of the year [89,108,136,146] and correlations
between water temperature and mycobacteria abundance [87,113],
suggesting that increased temperature carries potential to increase NTM
abundance in these engineered systems as it provides a more suitable
environment for survival [89]. Considering climate change, Walker
[149] suggests that longer periods of warmer temperatures within
buildings could result in increased regrowth in pipes as building oper-
ators struggle to maintain in-pipe water temperatures below 20 °C. This



S.M. Blanc et al.

City and Environment Interactions 11 (2021) 100070

Table 1
Measurements of mycobacteria across several studies spanning decades, geographics locations, sample types, and measurement methods. Note, this table is not
exhaustive.
Data measured Value Unit Matrix Sample origin Reference
Culture counts (range, average, and standard ~ Range: 0 — 10° CFU/cm? Biofilm DWTP “ and home plumbing, Germany and [121]
deviation) X = 4.06 x 10° France
6 =149 x 10°
Range: 10 — 2200 CFU/L Water Peatland influenced brook, Finland [69]
X =618
c =603
Range: 0 - 4.8 8 10* CFU/L Water Swamps, Southeastern US [791®
X =2.11 x 10*
6 =183 x 10*
Range: 0 - 1.65 CFU/cm?/hr Ejected Swamps, Southeastern US [791°
X =0.82 droplets
c=0.74
Range: 0 - 66.1 CFU/m®/hr Aerosol Swamps, Southeastern US [791°
X =245
c =263
Culture Range 1-50(78) CFU/L (% of Water DWDS ¢, France [82]
51 - 500 (21) samples)
> 500 (1)
Culture Presence/Absence 4/16 (25) P/A (%) Biofilm DWTP “, Spain [24]
46/165 (28) Biofilm Home plumbing, US [43]
5/12 (42) Water SW ¢, Spain [24]
4/55 (7) Water DWTP “, Spain [24]
2/10 (20) Water DWDS ¢, Spain [24]
5/16 (31) Water DW, GW , US [25]
32/89 (36) Water DW, SW ¢, US [25]
41/60 (68) Water DWDS, GW “, France [82]
33/48 (69) Water DWDS ¢, SW ¢, France [82]
30/36 (83) Water DWDS ¢, mixed, France [82]
90/142 (63) Water Chlorinated SW ¢, Czech Republic [143]
45/195 (24) Water Home plumbing, US [43]
qPCR Range: < 4.5 x 10>-2.4 x  copies atpE gene/ Biofilm No disinfectant residual [148] "
10* cm? DWDS ¢, SW 9, US
X: < quantitation
copies atpE gene/ Biofilm Chloraminated DWDS ¢, SW ¢, US [58]
Range: 6.0 x 10 - 4.8 x cm?
10°
X: 9.3 x 10*
copies atpE gene/L Water Chloraminated DWDS ““ mixed, US [58]
Range: < 200 — 7.76 x 10°
Range: 2.0 10° - 1.3 x 107  mycol16' gene Water No disinfectant residual DWDS ¢, mixed, [146] P
copies/L Netherlands
Range: 8.6 10 - 4.4 x 107  mycol6' gene Water SWSS ¢, China 841"t
copies/L
Range: 10% 107 mycol6' Water Chlorinated DWDS point-of-use, mixed, [go1
X =10>78 gene copies/L China
6= 10°72
Range: 6.7 x 10° - 1.9 x copies atpE gene/L Water Lakes, France [119]
10°
X = 2.16 x 10°
# DWTP = drinking water treatment plant.
b

focused on M. avium, M. intracellulare, and M. scrofulaceum.
DWDS = drinking water distribution system.

a

samples from premise plumbing in homes connected to the DWDS.

8

' Evaluated for but did not find M. avium-specific genes in any samples.

has already been observed as an issue in the United Kingdom in the
context of Legionella [149], which is sensitive to disinfectant residual
that degrades at warmer temperatures [122]. However, NTM have been
found to resist or be selected for by disinfection [41,128], so the impact
that disinfectant degradation may have on NTM remains uncertain.
Further, as stated in Section 2.1, NTM can live within amoeba, some of
which (e.g., Vermamoeba) have been found in greater abundance in
drinking water distribution systems during warmer seasons [33], indi-
cating potential for NTM to enhance survival by living within the

DW = drinking water, SW = surface water, GW = groundwater; if SW or GW not listed, information was not available in referenced paper.

mycol6 refers to the Mycobacterium spp. -specific fragment of the 16S rRNA gene.
SWSS = secondary water supply system, which refers to water storage and pressure systems connected to larger buildings, such as rooftop tanks.

amoebas that also prefer warmer conditions.

2.2.2. Humidity

In humid environments, NTM may be more likely to survive and
transport in aerosols that remain suspended for longer periods of time.
With increased temperatures, increases in humidity have been observed
and are projected to continue in already humid regions of the world
[10]. A study by Lin and Marr [86] found increased survival with rela-
tive humidity for bacteria in aerosols, including M. smegmatis. Aerosol
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droplets can resist full evaporation, retaining liquid water for up to an
hour when the relative humidity is higher than 55%. This suggests that if
NTM aerosolize in humid environments, these microorganisms may
have ample time to transport through air in the remaining liquid [86].

2.2.3. Sea level rise

Rising temperatures also have important implications for NTM due
to the secondary effect of sea level rise, influencing salinity gradients in
estuaries and the saltwater/freshwater interface in aquifers [70].
Research suggests that most NTM species appear in greater abundance in
waters with lower salinity [27], and that salinity above 3 g/L can inhibit
replication of most NTM species [53]. In a coastal lagoon study, a
negative correlation between salinity and mycobacteria gene abundance
was one of three factors (along with total nitrogen and dissolved oxygen)
used to build a model to predict measured values with 83% agreement,
suggesting that the negative association is important to understanding
mycobacteria abundance in waters with a salinity gradient [71]. During
storms with winds and heavy precipitation, mixing of saltwater and
freshwater may result in greater aerosol production efficiency [64,105].
As the salinity gradient migrates inland, this could result in more
aerosols forming closer to the land where more people may be exposed
via inhalation. Therefore, although the abundance of NTM species in
mixed saltwater/freshwater zones may be expected to generally
decrease as the salinity gradient migrates inland, the potential for
greater aerosolization efficiency and exposure complicates risk
predictions.

2.2.4. Precipitation, hydrology, and water quality

Increases in heavy precipitation are projected to lead to increases in
flooding and runoff [5] that can elevate turbidity and nutrient concen-
trations, and decrease oxygen content in receiving waters [70]. Due to
their hydrophobic membranes that enable attachment to particle sur-
faces [11,19], increased turbidity may lead to increased abundance of
NTM in receiving surface waters (Fig. 1). Previous work supports this
positive association between NTM and turbidity [47,71,145]. NTM have
also been associated with various metals, such as nickel, chromium, and
iron, potentially for similar mechanistic reasons [117]. Nickel and
chromium, as examples, are common to urban stormwater runoff [112],

‘«‘

[ )
[ ]
Increased precipitation
intensity (increased
flushing rates, - )
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suggesting potential for NTM concentrations in receiving water to in-
crease with increased runoff carrying metal pollution. However, this
could be complicated by increased flushing rates, which may reduce
concentrations of the abovementioned pollutants, underscoring the
importance of local models and understanding [70]. Additionally, the
increase in nutrients as a result of increased runoff could create eutro-
phic conditions that have previously been correlated with mycobacteria
gene concentrations [71]. This could be because of the capacity of NTM
to survive under anoxic or anaerobic stresses that other organisms
cannot [107], as well as their preference for warm water associated with
eutrophic conditions [70]. Although NTM are often considered oligo-
trophic [41], they can adapt to nearly opposite environmental condi-
tions imposed by increased runoff [71]. This indicates that increased
precipitation intensity resulting in eutrophication may increase NTM in
receiving surface water environments. Combined sewer overflows
(CSOs) are also a concern with respect to increased runoff, as storm-
water and wastewater flow together and carry pathogens directly to
receiving water bodies [106]. Further, periods of intense precipitation
have the potential to create sanitary sewer overflows, resulting in more
concentrated waterbody contamination with pathogens including NTM
[94].

Increases in precipitation intensity also carry the potential for
increased flooding and associated impacts to shallow, unconfined
groundwater [70]. Similar to the discussion above, increased flooding
could result in increased transport of contaminants (e.g., nutrients,
organic matter, metals, microorganisms) that can introduce the con-
taminants to shallow groundwater as the subsurface becomes saturated
[38,80]. Because NTM adhere to surfaces [11,15], there is uncertainty
about how efficiently they may be removed by soils during infiltration.
Flooding could also lead to waterlogging, blocking off air flow between
the atmosphere and subsurface, creating anoxic conditions [39,80] for
which NTM are well suited [44,107]. Alternatively, in other situations,
flooding could introduce oxygenated water into the water table. How-
ever, oxidation of associated nutrients and organic matter could
consume the oxygen nonetheless, again resulting in reduced oxygen
conditions [157]. Flooding of typically unsaturated soils also may
release naturally accumulated salts into aquifers, potentially increasing
salinity [38], a factor that could negatively influence NTM survival [71],

Increased tufbldltv, Where seasonal snow melt
reduced light occurs, reduced or earlier
penetration melt causes low flow

(DO reduced, +) (reduced dilution, +)

‘ ’ ‘ Combined and/or sanitary
sewer overflows bring
microorganismsand

nutrients (+) Y
® Increased nutrients and %6‘
increased temperature, §
eutrophication &
(DO reduced, +) edaafS
®
Coastal areas
Legend experiencing low
s flow, shift in
O NTM cells z hydraulic gradient
@ Soils 0 4, (increasedsalt, -)
? N!etals/ minerals Flooding/soil saturation- contaminants enter lb%,,
‘6’ glln'ogen / Phosphorous aquifer, waterlogging possible (DO reduced, +) @)
a

Note: (+) or (-) = more/less favorable conditions for NTM proliferation

Fig. 1. Simplified conceptual model of hydrological relationships affecting NTM proliferation. Evaporation and groundwater residence time effects, discussed in
Section 2.2.4, are not included in this diagram. Aerosols, not discussed in this section, are also not included.
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as described above.

In regions where precipitation is projected to decrease or flow to be
seasonally reduced, water quality and NTM considerations differ from
those discussed for increasingly wetter conditions. When surface water
flow decreases as a result of drought or reduced snowpack, the volume of
water available to dilute pollutants (e.g., nutrients, organic matter,
microorganisms) [152] introduced to surface water by wastewater de-
creases [70]. Cultivable NTM [74] and biomolecular detection of
mycobacteria genes [6,20] have been observed in wastewater effluents.
Therefore, low flows, exacerbated by potential increases in evapo-
transpiration rates, could allow for increased concentrations of NTM in
water sources simply by way of less dilution of wastewater effluents. In
regions with high rates of de facto water reuse, therefore, this could
degrade source water quality with respect to NTM. In areas with com-
bined sewers, low flow as a result of drought would likely accompany a
decrease in CSOs, decreasing associated microbial loads in connected
water bodies. However, in areas with low flow due to earlier and
reduced snow melt, CSOs may still occur with precipitation events, and
would be met with less water available for dilution, increasing microbial
concentrations [72]. In groundwater, where reduced precipitation and
increased evapotranspiration also decrease flow and lower the water
table, there are changes in the hydraulic gradient where aquifers meet
surface water [80,141]. In coastal areas, this could lead to increased
saltwater intrusion, as has been seen in areas of California [7], expected
to negatively influence the suitability of the habitat for NTM [80]. At the
headwaters, decreased baseflow from cooler groundwater into streams
could result in increased surface water temperature [38], favorable for
NTM [79]. Decreased flow in aquifers could also lead to increased
residence time and, therefore, contact time between subsurface rock and
water, increasing the opportunity for minerals to leach [38]. Minerals
related to rocks such as hematite and goethite were previously associ-
ated with NTM abundance [117]. Therefore, decreased groundwater
flow has the potential to increase or decrease NTM abundance,
depending on whether salinity or mineral concentrations control their
survival and growth.

2.2.5. Natural disasters

With tropical cyclones, there is potential for increased aerosolization
of NTM as freshwater, saltwater, and soils mix, as well as for transport of
the bioaerosols with cyclone winds [64]. According to the IPCC, it is
likely that the average tropical cyclone wind speed and precipitation
will increase in coming decades [50]. Thus, as wind intensity of cyclones
is projected to increase with climate change [50], so too might NTM
exposure through bioaerosols. A recent study of climatic factors and
NTM disease found associations that supported this idea. Associations
between heavy rainfall and disease differed in direction between humid,
tropical storm environments and arid environments: risk in humid en-
vironments increased and risk in arid environments decreased, both
with several months lag time [137]. The researchers suggested that this
may be because the humid environments were subject to tropical storms
with strong winds capable of transporting aerosolized NTM far dis-
tances. The abundance of aerosolized NTM as a result of rainfall impact
may further be related to factors such as raindrop velocity, soil type, and
surface temperature [75]. In addition, Honda et al. [64] suggested that
the relationship between NTM and amoeba may further contribute to
infection risk post-disaster, as NTM within amoeba may better survive
when displaced from originating water sources by cyclones. Previous
investigations of spatial clusters of NTM disease have found hotspots in
regions with frequent disasters, such as in Florida, Hawaii, and Louisi-
ana, suggesting that increased exposure to extreme events may relate to
risk [2]. Additional details on the potential relationships between NTM
and natural disasters can be found in a review by Honda et al. [64].
These authors also acknowledge that, to fully assess risk in this context,
additional factors such as changes in host susceptibility with trauma and
food/water insecurity need to be considered and better understood as
NTM are primarily opportunistic pathogens and may find more suitable

City and Environment Interactions 11 (2021) 100070

hosts during disaster periods [64].
2.3. Changes in engineering and water management practices

Meeting water demands while adapting to challenges including
reduced snowpack, unpredictable rainfall, and saltwater intrusion, as
well as potential increased water requirements for energy production,
will require flexibility and creativity [7]. Adaptations to these stresses,
as with any water management changes, will influence the prevalence
and abundance of contaminants, including NTM. Control of NTM in this
section focuses on mitigation of opportunistic pathogenic NTM species
to reduce exposure and subsequent infection. However, it should be
noted that some evidence exists suggesting that early exposure to
pathogenic NTM may have positive effects on allergy and asthma
development [100]. Some practical adaptation choices to address the
challenges of water scarcity and water quality are discussed in this
section as specifically related to NTM risk.

2.3.1. Managing water scarcity with reclaimed water

As water resources become more stressed and water reclamation
trends continue upward [54], there are several considerations to reduce
the risk of exposure to NTM. Water reclamation or reuse includes
wastewater reuse, as well as reclamation of stormwater for uses such as
washing, irrigating, cooling, toilet flushing, or even drinking [55].
Wastewater reuse today occurs both intentionally through extensive
treatment and redistribution [6,13] and non-intentionally (de facto
reuse) by way of poor sanitation[68]and low flow rivers that accept
wastewater effluents while feeding drinking water influents [115].

To reduce NTM in reclaimed wastewater, several studies suggest that
some current practices may be insufficient [6,73]. For example, treat-
ment including biological reactors, microfiltration, and chlorination
selected for mycobacteria in wastewater effluents [20]. In another study,
when conventional treatments, membrane bioreactors (MBR), and
disinfection reduced NTM at the wastewater treatment plant, they
regrew to densities 10 times those of fecal indicators along the redis-
tribution system, similar to behavior in potable water systems [74].
Based on existing knowledge about the resistance of NTM to disinfection
and tendencies for regrowth [41,85,102,151,154], these observations
are not surprising. In contrast, studies suggest that a treatment train
including conventional treatments in addition to reverse osmosis (RO)
may be effective at removing NTM, other pathogens, and even ARGs that
contribute to their virulence [13,62,127]. This could be because RO
exploits the negative charge of NTM [92] to exclude the cells [156].
Challenges to this type of treatment, however, do exist. The high cost,
energy intensity, production of RO concentrates, and potential for
dangerous disinfection byproducts formed by advanced oxidation pro-
cesses (AOPs) that typically follow RO are all practical concerns [118].
These challenges could be overcome by implementation of alternative
treatments, such as nanofiltration, that similarly take advantage of
NTMs’ negative charge to exclude them from finished water, but with
less drawbacks in terms of energy usage and cost [156]. Disinfection by
UV rather than chemical disinfectants could also be employed, though
the effectiveness of UV varies by NTM species [83]. Further, Falkinham
[41] highlights that this may result in mutations that require investi-
gation. Temperature management could also be considered to control
NTM. However, while treating with heat above 53 °C has been found to
control MAC species, other species (e.g., M. xenopi), and MAC in other
experiments [120], have been found to resist temperatures above that
[97].

Even if treatments successfully reduce NTM concentrations in
reclaimed water at the treatment plant, potential for regrowth along
redistribution systems remains a concern. One reason for this is thought
to be availability of nutrients in reclaimed water. Although NTM are
often considered to be oligotrophic [41] and studies have shown that
assimilable organic carbon (AOC) may not be a limiting nutrient for all
NTM [89,159], others suggest that severely limiting AOC (<10 pg/L)
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may inhibit growth of the most clinically relevant and likely to be
regulated MAC species [97,146]. Studies of reclaimed water treated
conventionally and with MBR have found relatively high AOC concen-
trations (range 45-3200 pg/L, median 450 pg/L), suggesting that
additional processes would need to be undertaken to drastically lower
the concentrations [152]. Chemical disinfectants increase AOC con-
centrations [91,152]. Thus, controlling microbial growth by engineering
low nutrient conditions rather than by using disinfectants, as is done in
the Netherlands [146], would likely reduce AOC throughout redistri-
bution [52].

Reducing corrosion in the redistribution system may also reduce the
likelihood of NTM proliferation by controlling the surface area available
for attachment and preventing additional nutrients from entering the
system [97]. Corrosion control could also reduce the virulence of the
surviving NTM by limiting horizontal gene transfer of ARGs and MRGs
[76,90,103]. However, corrosion control mechanisms should be
thoughtfully considered because research has also shown that phos-
phates, often used for corrosion control, may aid the growth of NTM in
distribution system biofilms [48,51,159]. Another challenge that is
particularly relevant when considering reclaimed water distribution in
the context of climate change is maintaining a cool temperature to limit
growth activity of NTM in biofilms [51]. While this remains a challenge,
potential solutions such as providing a minimum pipe to subsurface
depth or distance from electric cables, or providing shade or vegetation
cover above distribution pipes can be investigated for efficacy and
practicality [3]. Considering the finding that temperature is a more
important factor than nutrient levels in controlling M. avium growth
[139], a practical temperature control approach could be high-impact if
achieved.

In addition to using reclaimed wastewater, rainwater reclamation is
another strategy to make use of finite water resources in areas facing
unreliable water supply. This can be done through rainwater catchment
systems, such as roof-harvested rainwater systems that direct rainwater
from a building’s roof into a barrel, tank, or collection channel for uses
including washing, toilet flushing, showering, irrigating, or drinking
[59]. The water quality of roof-harvested rainwater has been investi-
gated for risk of exposure to opportunistic pathogens, including NTM.
Some studies have found NTM species, including M. avium and
M. intracellulare, frequently in roof-harvested rainwater [59,60], while
others in different locations found them seldom or did not find them at
all [4,158]. A comprehensive QMRA for MAC species in roof-harvested
rainwater resulted in the conclusion that use of roof-harvested rainwater
can be low risk if used for car and clothing washing, or toilet flushing,
but that it should not be used for drinking, irrigating, or showering [59].
Importantly, the QMRA suggested that the cumulative risk reflective of
solely relying on roof-harvested rainwater was higher than acceptable
(10~%), suggesting that risk of infection could increase if no other water
sources were available [59]. Thus, as water resources become more
scarce in some regions, water managers may consider ways to ensure
that residents do not rely solely on untreated roof-harvested rainwater,
as is already the case in 13.6% of households in Queensland, Australia

[1].

2.3.2. Reclaimed water storage/artificial aquifer recharge

There is much uncertainty around the potential for proliferation of
NTM as aresult of managed artificial recharge. Some researchers suggest
that storing reclaimed water in a high quality aquifer can improve water
quality through natural microbial processes [34,36], while others sug-
gest that introducing reclaimed water into a clean aquifer may result in
unintended consequences, such as distribution of ARGs [62]. While
Harb et al. [62] suggest that the original groundwater microbiome
dictates the final recharged aquifer microbiome, they also report evi-
dence of wastewater influence by way of ARGs, highlighting un-
certainties in the extent of wastewater influence. This could be cause for
concern about potential acquisition of ARGs because NTM are capable of
horizontal gene transfer [95]. However, both NTM and ARGs have been
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identified in aquifers without the influence of managed artificial
recharge [82,93,144], and some of the water treatments described in
Section 2.3.1 may reduce the likelihood of additional ARGs and NTM
entering aquifers. In contrast, unmanaged artificial aquifer recharge via
disposal of wastewater or stormwater into aquifers without water
quality considerations could have negative effects in terms of NTM and
other pathogens [36]. For this reason, intentional water reclamation and
recharge is a preferred option from a water quality and water quantity
standpoint as it provides control and conserves water [35]. When
considering intentional infiltration of stormwater through wetlands,
research has indicated that high temperatures and nutrient levels can
result in NTM presence in the connected aquifer [71,138]. Thus, Jacobs
et al. [71] suggest that steps taken to reduce eutrophication in wetlands
may also benefit the water quality of aquifers below, which could
potentially reduce NTM prevalence.

2.4. Related societal dynamics

Changing societal dynamics feed into climate change, influence
water management decisions, and affect host exposure and susceptibil-
ity to opportunistic infections. Political will and associated policies that
curb climate change by shifting energy and industrial practices will in-
fluence the magnitude of the abovementioned climate challenges [98].
Increases in population density and urbanization trends already influ-
ence air and water temperatures via the urban heat island effect [116].
For example, in Minnesota urbanization increased shallow groundwater
temperatures by 3 °C compared to temperatures in agricultural areas
[132]. This increased temperature could provide a more supportive
environment for NTM survival and growth [120] and is driven in large
part by the presence of heat trapping land cover, such as pavements
[132]. Moving forward, urbanization and associated impervious land
cover combined with increased wastewater loads (associated with
increased population density) may also impact water quality through
increased nutrients (e.g., nitrogen and phosphorous) from runoff and
wastewater, potentially resulting in eutrophication [67]. Implementa-
tion of stormwater best management practices (BMPs), such as rain
gardens and bioswales, could offset increases in runoff, but the impact to
eutrophication, and ultimately to NTM concentrations, would be
complicated by the reduction in flow available for nutrient dilution
[124]. Urbanization, often concentrated in coastal and riverine areas,
also exposes more people and their water sources to floods and natural
disasters [70], both of which may lead to greater exposure to environ-
mental pathogens, including NTM [64]. Population density, a proxy for
urbanization, has been associated with NTM disease prevalence in
several studies [88,101,137].

Increased temperature and population may also increase energy and
water demands [5]. Water requirements for energy and food production
(e.g., biofuel crop production) may further stress water resources
affected by droughts and rainfall unpredictability, requiring more water
reclamation and storage [5,7]. With proper water management (i.e.,
conservation, ‘One Water’ integrated cooperative management among
stakeholders) and treatment processes, increased reliance on reclama-
tion and artificial aquifer recharge could result in minimal changes or
improvements in NTM exposure risk [59,127]. In the absence of
comprehensive management and treatment, increased NTM exposure
from reclaimed or unmanaged aquifer recharge is also possible [6,74].

The impacts of climate and societal change also influence individuals
and their risk to opportunistic infections. With increased exposure to
extreme weather events, individuals experience trauma and food/water
insecurity that stress their immune systems, increasing susceptibility to
opportunistic infections including those by NTM [64]. Disaster events
also may lead to mold and associated mycobacteria growth, potentially
increasing exposure to NTM [140]. Individual immune response also
declines with age, suggesting that as the global population ages,
vulnerability to opportunistic NTM infections will increase [41,111].
Access to equitable healthcare and education also influence infection
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outcomes by enabling or preventing access to adequate treatment
[88,111].

2.5. Potential scenarios for consideration

To synthesize the information discussed thus far, scenarios are pro-
vided that characterize potential outcomes of NTM risk in the context of
the detailed shared socioeconomic pathways (SSPs) developed by IPCC
scientists [98,114]. Fig. 2 shows the system dynamics involved that can
be applied to any of the SSPs, following the direct (green) and inverse
(red) relationships. These scenarios represent merely a few of the
infinite potential pathways and outcomes of future change. They are a
result of assumptions combined with quantitative information. It is
worth noting that all SSP scenarios result in an emissions pathway
higher than RCP 4.5, a radiative forcing level that was previously
considered ‘middle of the road’ [70]. Three out of five scenarios are
described in Table 2 below. The most sustainable future is described by
SSP1 and is characterized by a swift transition to clean energy, low
resource demand, and globally cooperative nations that enable adap-
tation and mitigation of climate change [99,114]. Under this scenario,
the worst impacts of climate change are avoided, and global cooperation
supports efforts to improve health and wellbeing, ultimately implying
reduced risk of NTM and other opportunistic infections. SSP2 and SSP3
provide less optimistic futures for the environment and for NTM, mainly

Collaborative

[ Urbanization [ Urban heat
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due to an inability to manage finite water resources and innovate or
distribute management solutions equitably.

2.6. Uncertainties and recommendations for future work

As with any projections and scenario analyses, there are many un-
certainties involved in the scenarios described and in their interpreta-
tion with respect to NTM. Uncertainties involved in modeling due to
stochasticity and gaps in knowledge impact climate change projections
as well as predictions of NTM abundance under different conditions.
Uncertainties also exist with respect to the choices that humans will
make as well as the ultimate effect of those choices. For example, in
SSP1, innovation is key and there are uncertainties as to how successful
innovative efforts may be at tackling challenges including energy effi-
ciency and water quality/quantity. There are uncertainties about how
social behaviors and interactions with the environment (e.g., time spent
outside) will change in the future, which may also influence vulnera-
bility and relative risk. Although robust modeling efforts by IPCC sci-
entists attempt to delineate the extent of uncertainties, there will always
be potential surprises given the large number of interacting factors
involved in all climate and SSP projections.

To close some of the remaining knowledge gaps, several future
research recommendations are provided in Table 3. For example, study
is warranted of potential relationships between thawing permafrost over
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Table 3
Research recommendations.

Table 2
SSPs considered with respect to NTM. Descriptions for the SSPs were obtained
from O’Neill et al. [99] and Riahi et al. [114] and represent a few of many

Topic Suggested research Related
potential pathways and outcomes. Interpretations for NTM are an extension of references, if
the literature review and discussion in the previous sections. applicable

Scenario  Description Potential implications for NTM Climate-related data e Effect of thawing permafrost over e [69,77,142]
SSP1 Cooperative governance, Cooperation reduces de facto reuse collection peatlands iAH bm.:eal regions on NTM
sustainable development, by embracing a One Water concentrations in connected
urbanization, equity, healthcare approach, reducing pathogen freshwater.
and education access, lower exposure. Innovation and equity * Relationships betwee'n C'limate . * [70]
population, clean energy, bring improved water treatment and change and water quality in developing
innovation for environmental reclamation practices to more parts of the world.
technologies, sharp cut in people, reducing NTM exposure. * Effects of climate. change, land use, * [70]
resource demand. Temperatures continue to rise, and water abstractl(‘)n (‘)n g.roundwater
Low mitigation and adaptation supporting NTM in most natural hyd.rology and quality in diverse
challenges environments, except for those with reglons. X
Radiative forcing ~ 5 W/m? increased salinity. Heightened focus * Impact of climate d,‘anfa’e on e')(P osure * [75,86,137]
on wellbeing and equity reduces routes (NTM aerosolization efficiency
vulnerability and adverse infection and transport)
outcomes during disaster times. NTM fate and o NTM in connected water and air
SSp2 No major changes from status Lack of major innovation and transport environments over extended time
quo, slow movements towards persistent inequality suggest that periods and diverse environmental
sustainable development, improved water treatment and conditions.
innovation proceeds slowly management strategies fail to reach o Improved NTM measurement e [12]
without major breakthroughs, all populations, allowing de facto techniques for species-level and
resource demand reduces reuse and existing inadequate viability analyses in a variety of
slowly, inequality persists, treatment options to persist in environments.
urbanization remains at pace practice. Pressure on water o Relationships between: NTM, soils,
and does not accelerate. resources continues, resulting in temperature, nutrients, metals,
Medium challenges to greater reliance on reclaimed water, salinity, and oxygen (in natural and
mitigation and adaptation but without new management engineered systems)
Radiative forcing ~ 6.5 W/m? practices, potentially exposing more o Effects of evapotranspiration on NTM e [2]
people to NTM. Continuing transport through air
urbanization trends allow greater o Changes in UV irradiation and effects o [8,29]
impervious cover and increase on NTM survival
urban heat island effect,
exacerbating eutrophication and Water conservation o Safety of reclaimed water/engineered e [6,35,73]
flood challenges in highly populated recharge with respect to pathogens
areas, potentially exposing more (NTM)
people to NTM in affected water o Comparative risk analysis of water
sources and flood water. conservation practices vs. no action
SSP3 Regional rivalries, resurgent Climate change accelerates with a Reclaimed water o Effects of UV disinfection on NTM o [41]
nationalism, focus on national high level of radiative forcing, treatment/ control
security at the expense of exacerbating warming, humidity, distribution o Use of alternative corrosion ® [66,76]
environmental issues, inequality ~ evapotranspiration, sea level rise, inhibitors to prevent biofilm growth.
persists, technological natural disaster intensity and/or o Use of pipe protection for o [3]
investments decline, population frequency, extreme precipitation temperature control (e.g., shade,
grows in developing countries and drought, and all of the minimum clearance distances).
and stabilizes in industrial, associated effects on water scarcity o Practicality of disseminating
urbanization and economic and NTM. Nationalism prevents advanced water treatment systems
growth stabilize. cooperative water management, around the globe.
High challenges to mitigation stressing water resources and e Development of innovative,
and adaptation increasing reliance on inadequately accessible water treatment solutions.
Radiative forcing ~ 7.2 W/m2 treated reclaimed water. o Potential effects on proliferation of e [150]
Inequalities prevent increases in other pathogens of concern as a result
education and access to healthcare, of NTM treatment methods.
increasing vulnerability, and
resulting in worse outcomes for Modeling e Models to determine critical limits of

those exposed to NTM.

controlling factors for NTM fate and
transport.

e Models to translate gene
concentrations into viable NTM cell

peatlands in boreal regions [142] and NTM concentrations in connected
freshwater systems. Previous reports have associated NTM abundance
with peatland drainage areas [69] and the organic acids found in peat
[77], but no conclusive evidence exists regarding how permafrost thaw
might affect that dynamic or human populations downstream. As
another example, future work is recommended about the relationships
between evapotranspiration and NTM transport through air to under-
stand why evapotranspiration is related to disease risk in some regions
[2]. Understanding the mechanisms behind NTM survival and transport
in aerosols in arid climates where rates of evapotranspiration are pro-
jected to increase would inform the potential for changes in risk.
Collaborations between patients, medical professionals, environ-
mental microbiologists, engineers, and climatologists may facilitate a
more complete understanding of likely transmission routes, exposure

counts.

levels, and dose-response parameters necessary for QMRA. A public
health reporting requirement for NTM infections does not exist in most
of the world, and if implemented, would enhance the understanding of
these relationships by providing more data on the prevalence of NTM
infections. Consistent reporting would also inform potential relation-
ships between disease incidence and public health interventions or cli-
matic events, would facilitate better cost analyses, and would aid in
evaluating changes in epidemiology [134,135].
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3. Conclusions

e Climate change may lead to a net increase in NTM exposure from
water sources due to their adaptability to environmental conditions
imposed by warming temperatures as well as their ability to be easily
aerosolized. Infection risk may also increase due to their opportu-
nistic nature that may benefit from an increasingly stressed
population.

Engineering solutions exist, such as reverse osmosis and nano-
filtration, that could reduce exposure to NTM from reclaimed water
sources. Potential solutions must be evaluated in the context of the
whole microbiome, given that NTM control may lead to increased
proliferation of other pathogens. More research is also needed to
understand regrowth during distribution of reclaimed water and
potential solutions, as well as the practicality of making these solu-
tions accessible worldwide.

Equitable and sustainable socioeconomic choices may provide an
opportunity for water managers to collaboratively manage water
resources through One Water practices and innovation that reduce
contamination by unmanaged wastewater, reducing risk of infection
by pathogens including NTM.

More field data is needed to understand impacts of climate change on
water quality broadly, and to specifically understand NTM fate and
transport as a function of environmental factors, as well as relevant
exposure routes.

Collaborative studies that merge knowledge across fields of expertise
would support better understanding of relative risk of infection by
pathogens including NTM in a complex global change landscape.
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