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Dynamic Memory Bandwidth Allocation for
Real-Time GPU-Based SoC Platforms

Homa Aghilinasab, Waqar Ali, Heechul Yun, and Rodolfo Pellizzoni

Abstract—Heterogeneous SoC platforms, comprising both gen-
eral purpose CPUs and accelerators such as a GPU, are becoming
increasingly attractive for real-time and mixed-criticality systems
to cope with the computational demand of data parallel appli-
cations. However, contention for access to shared main memory
can lead to significant performance degradation on both CPU
and GPU. Existing work has shown that memory bandwidth
throttling is effective in protecting real-time applications from
memory-intensive, best-effort ones; however, due to the inherent
pessimism involved in worst-case execution time estimation, such
approaches can unduly restrict the bandwidth available to best-
effort applications. In this paper, we propose a novel memory
bandwidth allocation scheme where we dynamically monitor the
progress of a real-time application and increase the bandwidth
share of best-effort ones whenever it is safe to do so. Specifically,
we demonstrate our approach by protecting a real-time GPU ker-
nel from best-effort CPU tasks. Based on profiling information,
we first build a worst case execution time estimation model for the
GPU kernel. Using such model, we then show how to dynamically
recompute on-line the maximum memory budget that can be
allocated to best-effort tasks without exceeding the kernel’s
assigned execution budget. We implement our proposed technique
on NVIDIA embedded SoC and demonstrate its effectiveness on
a variety of GPU and CPU benchmarks.

I. INTRODUCTION

Heterogeneous SoC platforms, comprising both general
purpose CPUs and accelerators such as a GPU, are becom-
ing increasingly attractive for real-time and mixed-criticality
systems as they can offer the computing performance and
efficiency needed to cope with demanding data parallel ap-
plications such as those in vision, artificial intelligence, and
robotics. However, a major challenge is that on a heteroge-
neous SoC, CPU, and GPU share the same main memory sub-
system, which has limited bandwidth. Therefore, contention
for access to the shared main memory can lead to significant
performance degradation for applications on both CPU and
GPU [1].

Memory regulation, where each processing element is as-
signed a maximum allowable memory bandwidth, has been
proven to be effective in mitigating access interference [2]–[4].
Specifically, in this work, we follow the approach taken by [4],
where a real-time GPU program (a kernel) is protected from
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interference generated by Best-Effort (BE) tasks executing on
CPU cores. In details, while the kernel is running, the memory
bandwidth consumed by each best-effort core is regulated so
that it does not exceed a predefined threshold; in turn, this
allows the designer to determine a Worst Case Execution Time
(WCET) for the kernel with limited inflation compared to the
run-alone case. Such worst case execution time can then be
used to guarantee schedulability for real-time applications that
use the GPU. We point out that static analysis of GPU code
is currently infeasible [5], [6], at least for commercial-off-the-
shelf architectures, as manufacturers do not release sufficient
details to build an accurate hardware model. For this reason,
we instead rely on measurement-based WCET estimation,
and we argue that real-time GPU computing is necessarily
restricted to soft, firm or probabilistic systems.

While memory regulation can significantly reduce the maxi-
mum contention, and thus WCET inflation, suffered by a real-
time kernel, its impact on the performance of BE applications
can be significant. For example, our evaluation in Section VII
shows that to limit WCET inflation to 10% for the memory-
intensive kernel histo, we have to reduce the bandwidth of BE
cores to 13% of their maximum throughput. While this severe
constraint is needed to provide a WCET bound for the real-
time kernel, it is important to notice that the contention caused
by BE applications at run-time can sometimes be significantly
less than the worst-case measurable one. In particular, compu-
tationally intensive BE applications might require low memory
throughput and thus cause limited interference; furthermore,
the pattern of memory accesses might be different from
the worst-case one. Hence, by forcing a constant regulation
threshold based on the worst-case interference pattern, we
might unnecessarily reduce the performance of BE tasks.

To address this limitation, in this work, we propose to
adopt a dynamic approach to memory regulation. Specifically,
when a kernel first starts executing, our system enforces
the statically-computed bandwidth threshold limit. We then
monitor the progress of the kernel at run-time: if we determine
that its execution is ahead compared to the worst-case behav-
ior, we can increase the threshold limit by dynamically re-
computing the maximum BE bandwidth that allows the kernel
to still complete within its original WCET; hence, increasing
the performance of BE applications at no cost to real-time
guarantees. In details, the key contributions of this paper are
as follows:
• We propose a methodology to estimate the progress of a

GPU kernel at run-time. Our methodology is based on
the observation that a kernel executes a large number
of threads with the same code; while such code can
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include control instructions, the number of different pro-
gram paths is usually limited. We thus classify groups
of threads into clusters, each with different execution
time profiles; then, at run-time, we count the number
of completed groups for each cluster as a measure of
progress.

• Following the proposed progress mechanism, we intro-
duce a measurement-based WCET approach to estimate
the execution time of a kernel based on its remaining
number of thread groups per cluster, and the bandwidth
threshold for BE cores.

• Using the discussed WCET estimation approach, we then
show how to re-compute the BE bandwidth online while
ensuring that the kernel completes within its original
WCET.

• Finally, we implement and validate our approach on an
NVIDIA Jetson TX-2 board, and test it with benchmarks
from multiple suites [7]–[9].

II. BACKGROUND

In this section, we first review basics on GPU architecture,
and then we introduce the BWLOCK++ memory regulation
scheme [4], which we employ in our work.

A. GPU Execution Model

A GPU is a highly parallel co-processor that performs
operations requested by CPU code. A CPU application makes
use of the GPU through a parallel-programming framework
such as NVIDIA’s CUDA, which offers standard APIs. A
request to GPU typically comprises the following steps: 1)
allocate memory in GPU’s memory region and copy data from
CPU memory to GPU memory; 2) launch the GPU function—
called kernel—to process data in GPU memory; 3) wait for
kernel completion; 4) copy the processed data from GPU
memory region to CPU memory and 5) free the allocated GPU
memory.

A GPU kernel consists of a combination of instruction code
and a group of threads which execute those instructions. In
CUDA terminology, this group of threads is denoted as a
thread block; the number of thread blocks comprising the
kernel and the dimensions of each thread block are specified
by the programmer as part of the kernel’s launch parameters.
At the hardware level, each thread block is processed by a
number of hardware threads which form a warp. In NVIDIA
GPUs, a warp comprises 32 hardware threads—executing in
lock-step—and a number of warps can execute simultaneously
on a streaming-multiprocessor (SM). A GPU consists of one
or more SMs. For example, the integrated GPU in NVIDIA’s
Jetson TX-2 contains two SMs, each of which comprises 128
GPU cores and can thus execute up to 4 warps simultane-
ously. Overall, the GPU contains 256 cores and can execute
instructions of up to 8 warps at any given time.

Internally, the GPU contains a hardware scheduler which
decides which warps to execute out of a pool of active
warps. The behavior of the warp scheduler is proprietary and
undisclosed; hence, we do not make any specific assumption
on how warps are selected for execution. The pool of active

warps is formed by selecting threads within a set of active
thread blocks; within each thread block, threads are selected
in increasing ID order. The number of active blocks depends
on the GPU architecture and the resources consumed by each
specific kernel; we will use M to denote the number of active
blocks for a given kernel in the whole GPU (hence, for a
GPU with two SMs, each SM is allocated M/2 blocks).
When a kernel starts, blocks with IDs 0 to M − 1 first
become active; once all warps within a thread block complete
execution, the block finishes and the not-yet started block
with lowest ID becomes active. Hence, from the point of
view of block scheduling, the GPU can be abstracted as a
multiprocessor with M processors using a non-preemptive,
global FIFO scheduling policy.

B. BWLOCK++

In an integrated CPU-GPU platform, CPU and GPU share
the same memory subsystem, which makes bandwidth sen-
sitive GPU kernels susceptible to interference from CPU
applications [3]. BWLOCK++ [4] is a software framework to
protect GPU kernels from CPU-side interference on integrated
CPU-GPU platforms. In BWLOCK++, one CPU core is dedi-
cated to execute GPU using real-time tasks while the rest of the
CPU cores are dedicated to execute best-effort CPU tasks. A
GPU-using real-time task declares an acceptable interference
budget from co-executing best-effort CPU tasks in the form of
total number K of Last-Level Cache (LLC) miss events (and
hence, fetches from main memory) from co-executing tasks
that the subject task can tolerate in an interval of time T , called
a regulation period. The budget K is split equally among
the regulated CPU cores. A kernel level memory throttling
framework [2] then limits the interfering memory traffic from
co-executing CPU applications to the specified threshold value
through periodic regulation using hardware performance mon-
itoring counters. The implementation in [2], [4] uses a value
of T equal to 1-msec. In addition, BWLOCK++ implements a
throttling-aware best-effort CPU scheduling algorithm, called
Throttle Fair Scheduler (TFS), which favors CPU intensive
tasks over memory intensive ones to minimize throttling while
real-time GPU tasks are being executed.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider an integrated CPU-GPU platform, comprising
a GPU and multiple CPU cores, all sharing the same main
memory. One core is used to execute real-time tasks, while
the remaining cores execute best-effort applications with no
real-time constraints. Only real-time tasks can use the GPU,
by invoking the execution of a GPU kernel and suspending on
the real-time core until the kernel completes. We do not make
any assumption on the execution model or scheduling policy
for best-effort applications; i.e., a regulation-aware scheduler
such as TFS can still be used to improve throughput of best-
effort tasks under throttling.

Real-Time Task Model: we assume that the real-time
core executes a set of periodic or sporadic real-time tasks.
Each task τi comprises an alternating sequence of one or
more CPU segments and zero or more GPU segments. Each
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GPU segment comprises the execution of a kernel κi,j , as
well as the required memory copy operations. We assume
that GPU operations are executed non-preemptively; while
kernel preemption can improve the responsiveness of GPU
operations [10], [11], it can also incur overhead in terms of
additional memory operations. We further assume that only
one GPU kernel is executed at a time. While recent work has
shown that co-scheduling multiple kernels can improve GPU
resource utilization [12], [13], it also complicates the issue of
timing analysis. For this reason, we reserve such an extension
to future work. The methodology presented in this work does
not require any further assumption on how real-time tasks are
scheduled; the work in [4] presents a schedulability analysis
for the same task model described above, assuming that tasks
are scheduled according to fixed-priority preemptive policy on
the CPU, and that bounds on the length of each memory copy
operations, each kernel execution and the total amount of CPU
execution are known.

Regulation Model: each kernel κi,j is protected by en-
forcing a maximum budget ratio Q for best-effort cores
through BWLOCK++. Specifically, let BWmax to denote
the maximum cumulative memory throughput that can be
generated by the best-effort cores in number of LLC misses per
second; we will obtain the value of BWmax experimentally
in Section VII. Then, a budget ratio of Q corresponds to a
regulation budget of K = BWmax · T · Q LLC misses per
period T . Note that Q = 0 corresponds to the case where the
kernel runs in isolation (without interference from the CPU),
while Q = 1 corresponds to the case where no regulation
is applied (maximum CPU-caused interference). Our WCET
estimation method in Section IV can compute a bound on the
WCET Gei,j(Q) of κi,j for any given value of Q. For each
kernel κi,j , we define a nominal budget ratio Qi,j , such that
BWLOCK++ uses Q = Qi,j at the start of the kernel. We
expect that the system designer selects the nominal budget
so that the resulting WCET Gei,j(Qi,j) satisfies any required
constraints (e.g., the slowdown of the GPU kernel is within
an acceptable margin and the system is schedulable). The
overarching goal of our approach is to increase the actual
budget ratio Q used at run-time as much as possible, while
guaranteeing that the execution time of the kernel does not
exceed its nominal WCET Gei,j(Qi,j). This guarantees that
schedulability analysis can be based on the nominal WCET
computed off-line.

Platform Assumptions: as we introduced in Section II-A
and further elaborate in Section IV, our approach relies on
analyzing the execution patterns of thread blocks. To extract
detailed timing information, we thus assume that the platform
provides the following three functionalities: 1) a cycle accurate
timer that can be used to count the elapsed time on the GPU
since the beginning of a kernel; 2) a mechanism to determine
the IDs of all co-running thread blocks on the GPU; 3) a way
to synchronize the timers of the GPU and the real-time core.

IV. WCET ESTIMATION

Based on the discussion in Section III, our goal is to esti-
mate an upper bound on the completion time of a kernel based

on the budget ratio Q assigned to BE cores. For simplicity of
notation, in the rest of this section, we shall drop subscripts
and use κ to refer to the kernel under analysis. As mentioned
in the introduction, WCET estimation for GPU kernels is
especially difficult because key architectural details, such as
the way warps are scheduled, GPU caches are managed, etc.,
are both undisclosed and difficult to reverse-engineer. Inspired
by the approach taken in [5], we thus propose to employ a
hybrid approach to WCET analysis: specifically, we assume
that the WCET of each thread block can be estimated through
measurement-based techniques. We then analytically compose
the per-block information to obtain a WCET bound for the
whole kernel.

Hence, let Nκ denote the number of thread blocks for kernel
κ, and ∀i, 1 ≤ i ≤ Nκ, let ei denote the execution time of the
i-th block. Without loss of generality, assume that the kernel
starts at time 0, let j be the index of the block that finishes last
in the kernel, and tj be its starting time. Then by definition,
the execution time of κ is equal to tj + ej . We next note
that since the j-th block is not started until time tj , it follows
that there must always be M other active thread blocks in the
interval [0, tj). Therefore, it must hold: 1

tj ≤

(∑
i=1...Nκ

ei

)
− ej

M
; (1)

and since tj + ej is increasing in ej , we obtain the following
bound on the WCET Ge of the kernel:

Ge =

(∑
i=1...Nκ

ei

)
− emax

M
+ emax, (2)

where emax = maxNκi=1 ei.
It remains to determine how to compute an upper bound to

the execution time of each thread block ei. Given that a kernel
can comprise thousands of blocks, we find that maintaining
per-block WCET information is too cumbersome, especially
for on-line estimation. Instead, we propose to first classify the
thread blocks in each kernel into clusters, where all blocks in
the same cluster have similar execution profiles.

A. Block Clustering

All threads within the same kernel execute the same code;
but due to the presence of control instructions such as branches
and loops, different threads can execute along different code
paths. We find that the following two observations typically
hold for well-coded kernels: 1) the number of paths is small,
as GPU code tends to be more predictable than CPU code.
2) It is highly desirable for threads within the same thread
block to follow the same execution path: when threads in the
same warp execute along different paths, the resulting thread
divergence forces the GPU to execute the warp along all such
paths, incurring a significant performance penalty. For these
reasons, thread blocks can typically be classified into a small
set of clusters.

Our proposed clustering approach works in two steps: 1)
first, we measure the execution time of each thread block by

1Note that our logic is equivalent to the computation of the interference
rectangle in global scheduling analysis, see [14] for example.
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instrumenting the code of the kernel (see Section VI-A for
details) and executing it many times in isolation. This allows
us to construct an Empirical Distribution Function (EDF) of
the execution time of each block. While this process takes time
and requires storing a large amount of data, we stress that the
clustering step is performed off-line. 2) We then cluster thread
blocks together based on their EDFs by repeatedly applying
the two-sample Kolmogorov-Smirnov (K-S) test [15] at a level
α = 0.05.

Let C be the resulting number of clusters, where the i-
th cluster comprises Ni thread blocks. We can then modify
Equation 2 to obtain an analytical WCET bound based on per-
cluster, rather than per-block, execution time values. Specifi-
cally, let e0i be the WCET for blocks of cluster i when executed
in isolation (that is, with BE budget Q = 0), and let e1i be the
WCET when executed under maximum interference (Q = 1).
We then obtain:

Ge(0, {Ni}) =

(∑
i=1...C Ni · e0i

)
− e0max

M
+ e0max, (3)

for the WCET in isolation, and

Ge(1, {Ni}) =

(∑
i=1...C Ni · e1i

)
− e1max

M
+ e1max (4)

for the case Q = 1, where e0max, e
1
max have the obvious

meaning: e0max = maxCi=1 e
0
i , e

1
max = maxCi=1 e

1
i .

Finally, we point out that the problem of extracting the val-
ues of e0i and e1i from the EDF of each cluster is fundamentally
orthogonal to our approach. In our evaluation, we simply set
them to the maximum observed execution time in the cluster.
In Table I, we report the corresponding values for the kernel
of the histo benchmark [7], for which C = 3; the kernel has
been executed one million times with Q = 0 and one million
times with Q = 1 and memory-intensive BE tasks.

An alternative approach, following probabilistic timing anal-
ysis [6] practices, would be to fit the EDF to a test distribution,
and then obtain e0i (respectively, e1i ) as a given percentile of
the distribution, depending on the desired confidence level. To
this end, we decided to again employ the K-S test with level
α = 0.05 for the fit of the execution time of each cluster
to a normal distribution. Results for histo are also reported
in Table I, where we show the obtained mean and standard
deviation of the normal distribution for each cluster and the
goodness of fit, expressed as the ratio of the K-S statistic
and the critical value of the K-S distribution 2. We show the
goodness of fit for other benchmarks in Section VII-B. Since
in our evaluation we picked e0i and e1i based on the maximum
measured times, in the table we also report their corresponding
percentile levels based on the fitted normal distribution. We
acknowledge that higher percentiles would be needed to satisfy
strict certification requirements; however, note that this would
result in higher WCET estimates, which would improve the
performance gain of our dynamic allocation.

2The K-S statistic is the maximum difference between the EDF and the
cumulative distribution function of the fit distribution; note that ratios below
1 indicate that the null hypothesis is not rejected, and hence the distributions
are considered to be equal at the specified level.

Cluster # 1 2 3
worst-case measured e0i 1.70 2.50 3.30
worst-case measured e1i 3.69 6.52 8.83
Q = 0, goodness of fit 0.76 0.61 0.70

Q = 0, mean 1.61 2.3 3.21
Q = 0, std 0.035 0.067 0.039
e0i percentile 99.5% 99.9% 99.0%

Q = 1, goodness of fit 0.46 0.51 0.24
Q = 1, mean 3.44 6.27 8.53
Q = 1, std 0.09 0.099 0.11
e1i percentile 99.7% 99.4% 99.7%

TABLE I: Clustering: hist benchmark. Time values are in us.

B. Memory Interference Estimation

Equations 3 and 4 provide a way to compute the WCET
of the kernel under either no interference (Q = 0) or full
interference (Q = 1). It remains to determine how to bound
the WCET for Q values between 0 and 1. This is significantly
more difficult due to the way regulation works in our system:
namely, BWLOCK++ does not mandate when BE cores can
perform memory accesses during a regulation period, but
only how many they can perform. Hence, without further
assumptions on the interference model, we cannot determine
the worst case memory request pattern. For this reason, we will
provide a WCET estimation under the following interference
hypothesis:

Hypothesis 1: The interference suffered by a kernel for any
value of Q is maximized when the BE cores issue consecutive
requests at the same time and as fast as possible.
We do not claim that Hypothesis 1 holds generally for all
architectures and number of cores. Rather, in Section VII-A
we show through extensive testing that the hypothesis holds for
our hardware platform; and we remark that systematic testing
is accepted as proof of validation for even critical systems by
certification authorities. In general, we believe it is likely that
the hypothesis holds on other platforms as well, since several
previous studies have highlighted that worst-case delays are
generated when hardware request queues saturate [8], [16],
and maximizing concurrent activity of all cores increases the
probability of such occurrence. Finally, in case the hypothesis
does not hold, but a precise model of main memory is
available, we argue that a more complex analysis, along the
lines of [17], [18], could be used to bound the maximum delay
suffered by the kernel.

Under Hypothesis 1, in the worst case interference pattern
the BE cores perform memory accesses at the maximum rate
for Q · T time during each regulation period, and no memory
access for the remaining (1 − Q) · T time. We call memory
time and denote with tmem the total amount of time, over the
entire execution of the kernel, when BE cores perform memory
accesses. We can then bound the WCET of κ as following:
we compute the number of thread blocks for each cluster that
execute during the memory time, and assume that they take e1i
time each to complete; while blocks which execute outside the
memory time take e0i each. Since the number of such blocks
can be fractional, we also assume that the blocks that can
be partially covered by the end of the memory time in each
regulation period (at most M per period) execute for e1i . We
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Algorithm 1: WCET Estimation
Input: Q, {Ni}, {e0i }, {e1i }, sync
Output: Kernel WCET

1 t = Ge(0, {Ni})
2 while 1 do
3 Compute tmem(t, Q, sync) based on Eq. 7
4 Compute Ge(Q, {Ni}, sync) by solving Eq. 8-12

as a Linear Programming (LP) Problem
5 if t == Ge(Q, {Ni}, sync) then
6 return t
7 t = Ge(Q, {Ni}, sync)
8 end

(a) sync = 1

(b) sync = 0

Fig. 1: tmem derivation

use xi to denote the (integer) number of fully-covered blocks,
and yi for the partially covered ones.

Algorithm 1 formalizes the corresponding WCET analysis.
Note that the memory time depends on the number of regu-
lation periods that the kernel’s execution spans; while in turn,
the WCET of the kernel depends on the memory time. To
solve such circular dependency, Algorithm 1 iterates over the
WCET t of the kernel, starting from the WCET in isolation
t = Ge(0, {Ni}) (Equation 3). At each step, the algorithm
first uses the value of t to determine the memory time, and
then computes a new estimate for the WCET based on tmem.
The algorithm then set t to be equal to the new WCET bound
and iterates until convergence 3.

We first show how to compute tmem for a time window of
length t 4. The worst case scenario changes whether the kernel
starts at the same time as a regulation period (sync = 1),
or no such assumption can be made (sync = 0). In the
former case, tmem is maximized when the BE cores access
memory as early as possible in all regulation periods, as this
maximizes memory accesses within the time window; this
case is depicted in Figure 1a. In the latter case, tmem is
still maximized when the beginning of the kernel is aligned

3A similar iterative strategy is employed by several other works incorporat-
ing the effects of resource interference in the execution time of tasks, see [19]
for example.

4Note that the derivation is equivalent to computing the workload of a
sporadic task in a problem window under global scheduling [14].

with the start of BE accesses; however, BE accesses in the
first regulation period should happen as late as possible to
maximize memory accesses within the time window. Figure 1b
shows the described case of sync = 0. If we use tinit to denote
the time between the start of the kernel and the beginning of
the first regulation period, and P for the number of regulation
periods that are fully contained in the time window, we have:

tinit = (1− sync) ·Q · T, (5)

P =
⌊ t− tinit

T

⌋
. (6)

We thus obtain the following expression for tmem:

tmem(t, Q, sync) = t if t ≤ tinit;
(1− sync+ P ) ·Q · T+
min(t− tinit − P · T,Q · T ) otherwise,

(7)

where note that t− tinit − P · T denotes the time within the
window in the last regulation period.

Finally, we consider Ge(Q, {Ni}, sync). Based on our
definition of variables xi and yi, we can bound the WCET
of the kernel by solving the following linear problem:

maxGe(Q, {Ni}, sync) = e1max −
e1max

M
+(∑

i=1...C(xi + yi) · e1i + (Ni − xi − yi) · e0i
)

M
(8)(∑

i=1...C xi · e1i
)

M
≤ tmem(t, Q, sync) (9)∑

i=1...C
yi ≤M · (dt/P e+ 1) (10)

∀i = 1...C : xi + yi ≤ Ni (11)
∀i = 1...C : xi ≥ 0, yi ≥ 0 (12)

Note that Equation 9 constrains the variables xi based on
the length of the memory time, while Equation 8 bounds
the WCET in the same way as Equation 2. Variables yi are
constrained to be at most M per regulation period, where the
number of regulation periods that are (partially) overlapping
with a time window of length t is at most dt/P e + 1. To
solve the problem in polynomial time, we overapproximate
the WCET bound by relaxing the variables to be real rather
than integer; the added pessimism is very small as the numbers
of thread blocks Ni is generally quite large.

V. DYNAMIC BUDGET ALLOCATION

We can now introduce our run-time algorithm to dynam-
ically allocate the memory budget ratio Q to BE cores. As
discussed in Section III, let Q be the nominal budget for
kernel under analysis κ. Since the kernel can be invoked at
any point in time, we cannot guarantee that its start time t
coincides with the beginning of a regulation period. Hence,
following the analysis in Section IV-B, we have sync = 0
and we let Ge(Q, {Ni}, 0) be the computed WCET bound for
κ. Then, the real-time requirement that our algorithm satisfies
is to ensure that κ finishes no later than t+Ge(Q, {Ni}, 0).
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Specifically, we employ the following approach. The first
regulation period, which starts before or at the beginning
of the kernel, is assigned the nominal budget Q. For each
successive time treg , corresponding to the beginning of a
regulation period, we perform two steps: 1) first, we determine
the number of remaining thread blocks {Ri} for each cluster.
We instrument the code similarly to Section IV-A to deter-
mine which blocks have finished, and use this information to
determine Ri; details are provided in Section VI-B. 2) Based
on the remaining thread blocks, we determine the maximum
budget Q that can be assigned to the next regulation period
while ensuring that κ completes by t+Ge(Q, {Ni}, 0).

We next discuss the second step. A trivial solution would be
to employ Algorithm 1; since we know that treg corresponds
to the beginning of a regulation period, and the number of not-
yet-completed blocks in each cluster is Ri, it follows that for a
budget Q, the kernel must complete by treg+Ge(Q, {Ri}, 1).
We could thus use binary search to find the maximum Q
such that treg + Ge(Q, {Ri}, 1) ≤ t + Ge(Q, {Ni}, 0), or
equivalently:

max
Q

: Ge(Q, {Ri}, 1) ≤ Ge(Q, {Ni}, 0)− (treg − t), (13)

where t = Ge(Q, {Ni}, 0)−(treg−t) is the remaining time to
complete execution, and note that Ge(Q, {Ni}, 0) is a constant
computed off-line.

However, we next show in Algorithm 2 that it is possible
to directly compute a valid value of Q. At Line 1, the
algorithm first checks whether the kernel can complete within
the remaining time t even under maximum interference for
all blocks, in which case we return Q = 1. Otherwise, the
algorithm solves the following LP problem to determine the
maximum feasible memory time tmemmax :

min tmemmax (14)

t = e1max −
e1max

M
+(∑

i=1...C(xi + yi) · e1i + (Ri − xi − yi) · e0i
)

M
(15)(∑

i=1...C xi · e1i
)

M
≤ tmemmax (16)∑

i=1...C
yi ≤M · (dt/P e+ 1) (17)

∀i = 1...C : xi + yi ≤ Ri (18)
∀i = 1...C : xi ≥ 0, yi ≥ 0 (19)

and then derives the corresponding value of Q. Note that the
problem at Equations 14-19 is the same as Equations 8-12 with
Ni = Ri for each cluster, except that rather than maximizing
the WCET for a given memory time, it minimizes the memory
time for a given WCET. Intuitively, the problem needs to
compute the minimum of tmemmax as this ensures that for any
memory time greater than such value, we can actually derive
an execution time (right hand side of Equation 15) that is
larger than t, and thus unfeasible (note that a higher value of
tmemmax would result in higher feasible values of xi according
to Equation 16, and thus of the execution time).

Algorithm 2: On-line Budget Computation

Input: t, {Ri}, {e0i }, {e1i }, with clusters ordered by
increasing e0i /e

1
i

Output: Budget ratio Q for next regulation period
1 if t ≥ e1max − e1max/M +

(∑
i=1...C Ri · e1i

)
/M then

2 return 1
3 else
4 Compute tmemmax by solving Eq. 14-19 as a Linear

Programming (LP) Problem
5 return Q s.t. tmem(t, Q, 1) = tmemmax by inverting

Equation 7
6 end

Lemma 1: The remaining execution time of kernel κ with
budget ratio Q, where Q is the result of Algorithm 2, cannot
exceed t.

Proof: Since e1max − e1max/M +
(∑

i=1...C Ri · e1i
)
/M

is an upper bound to the remaining execution time of κ under
full interference, if the equation at Line 1 of the algorithm
holds, then κ completes within t time no matter the value of
Q; hence, we can set Q = 1. Therefore, in the rest of the
proof assume:

t < e1max − e1max/M +
( ∑
i=1...C

Ri · e1i
)
/M. (20)

Furthermore, by correctness of the WCET estimation in Al-
gorithm 1, it must also hold:

t ≥ e1max − e1max/M +
( ∑
i=1...C

Ri · e0i
)
/M, (21)

that is, the remaining time cannot be smaller than the worst
case execution time under no interference.

We now show that the LP problem at Equations 14-19 can
be solved. Specifically, we show that there is at least one
valid assignment to variables xi, yi and tmemmax that satisfies
all constraints. Note that substituting xi + yi with Ri in the
right hand side of Equation 15 yields the right hand side of
Equation 20, while substituting with 0 yields the right hand
side of Equation 21. Hence, we can find a variable assignment
with 0 ≤ xi + yi ≤ Ri for all i that satisfies Equation 15.
By setting yi = 0, the assignment is guranteed to satisfy
Equations 17-19. Furthermore, for a sufficiently high value
of tmemmax , the assignment must also satisfy Equation 16. In
summary, all constraints are satisfied, hence such assignment
is valid (albeit not optimal). Since a solution exists, let us
use ̂tmemmax to denote the optimal value of tmemmax computed by
solving the LP problem.

Next, let us use function f(tmem) to denote the value of the
objective function Ge(Q, {Ni}, sync) computed by solving
the LP problem at Equations 8-12 for a given value of tmem

in Equation 9, with Ni = Ri. Since increasing tmem relaxes
the problem, f must be non-decreasing; furthermore because
the problem is linear, f must be continuous (more specifically,
it is piecewise linear). Now since ̂tmemmax is the minimum of the
problem at Equations 14-19, it follows that for tmemmax < ̂tmemmax ,
for all valid assignments of variables xi and yi according to
Equations 16-19, the right hand side of Equation 15 must be
strictly less than t. Since the same constraints are used in
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Equations 9-12, and the right hand side of Equation 15 is the
same as Equation 8, this means that for tmem < ̂tmemmax , it
must hold f(tmem) < t. Similarly, for tmemmax = ̂tmemmax , there is
a valid assignments of variables xi and yi such that the right
hand side of Equation 15 is equal to t; this means that for
tmem = ̂tmemmax , it must hold f(tmem) ≥ t. From continuity of
f , we then obtain f( ̂tmemmax ) = t: and since function f computes
an upper bound to the execution time of the kernel, it follows
that for a memory time ̂tmemmax , the kernel will complete within
t time units.

To complete the proof, it suffices to show that we can
compute a valid value of Q in the range [0, 1] based on̂tmemmax . To this end, note that function tmem(t, Q, 1) is non-
decreasing and piecewise linear in Q, with tmem(t, 0, 1) = 0
and tmem(t, 1, 1) = t. Now note that since xi ≥ 0, it must
hold ̂tmemmax ≥ 0; and since the left hand side of Equation 16
is strictly smaller than the right hand side of Equation 15,
it must hold ̂tmemmax < t. Hence, we can find Q by solving
tmem(t, Q, 1) = ̂tmemmax .

A. Improved Allocation

It is interesting to note that the strategy presented in
Algorithm 2, which we call the FAIR allocation, consists
in splitting the memory time fairly among all remaining
regulation periods, i.e., as if the same value of Q was assigned
to all future periods. However, remember that the algorithm
is executed again at the beginning of each period; hence, if
the kernel accumulates more slack while executing during the
next period, running FAIR again will result in a higher value
of Q. In practice, as we show in Section VII-C, this means
that under FAIR, the budget assignment increases over time. A
more aggressive allocation could instead compute the worst-
case finish time of the kernel by increasing only the budget
of the next period, while assuming that all other periods are
kept to the nominal budget Q; such GREEDY allocation then
results in higher budget values for the first regulation periods
of the kernel execution.

Under GREEDY, the budget for the next regulation period
is computed by first determining the maximum memory time
during the next period: this is equal to tmemmax , as computed at
Line 4 of Algorithm 2, minus the memory time of all other
periods under nominal budget, which is max

(
0, tmem(Q, t−

T, 1)
)
. Since the memory time in a single regulation period is

by definition equal to Q · T , we then obtain:

Q = min
(
1,
(
tmemmax −max(0, tmem(Q, t−T, 1))

)
/T
)
, (22)

which replaces Line 5 in Algorithm 2. Finally, as we will show
in Section VII-C, a downside of the GREEDY allocation is that
the budget ratio Q can change widely between successive reg-
ulation periods, possibly leading to a rather unfair bandwidth
allocation for co-running BE applications. We thus propose
a third allocation scheme, which we call SMOOTH, which
modifies the GREEDY allocation by applying a simple filter
of the form:

Qn = max
(
min

(
QG, a ·QG+(1− a) ·Qn−1

)
, QF

)
, (23)

Algorithm 3: Measure Block Execution Time

1 if threadId.x == 0 then
2 clk = getclock( )
3 if blockId.x > M then
4 read co-running thread block IDs in IDlist
5 find i such that TimeAr[i].ID is not in IDlist
6 Duration = clk - TimerAr[i].clk
7 Write Duration to main memory array
8 else
9 i = blockId.x

10 TimeAr[i].ID = blockId.x
11 TimeAr[i].clk = clk

where Qn−1, Qn are the budgets selected for the previous and
current regulation period, respectively, while QG and QF are
the budgets computed by GREEDY and FAIR for the current
period. Note that the max term ensures that the budget selected
by the filter is never lower than the FAIR one. Based on our
evaluation, we experimentally set a value a = 0.3 for the
smoothing parameter.

VI. IMPLEMENTATION

In this section, we first illustrate how to instrument the
kernel code to measure the execution time of thread blocks,
and then we explain how we implement the dynamic budget
computation.

A. Kernel Instrumentation

As we explained in Section IV-A, our goal is to measure
the execution time of each thread block. As discussed in
Section II, whenever a block finishes, another block is assigned
to the GPU for execution immediately; hence, the finish time
of the terminated block is the start time of the newly assigned
block. The execution time of the terminated block is then
computed as the difference between finish and start time.

Algorithm 3 shows the pseudo-code of our implementation.
We allocate two data structures. An array of size Nκ in main
memory is used by the GPU to store the computed execution
time of each thread block; after the kernel finishes executing,
we read the array content from the CPU and use it as input to
the clustering process. TimeAr is an array of size M allocated
in GPU memory; each element of the array is a structure
comprising the ID and the start time of an active thread block.
Based on Line 1, the instrumentation code is executed by the
first thread of each block; since threads in each block are
selected in order, this guarantees that the thread execution
coincides with the start time of the block. The thread reads the
current clock time at Line 2, as well as the list of co-running
thread blocks at Line 4; in CUDA, this information is exported
by the %ctaid register. The list of co-running blocks is then
matched based on IDs to the content of TimeAr to determine
which thread block has finished (note this is done only after
the first M blocks have started), and the execution time of the
finished block is computed (Lines 5-7). Finally, the ID and
start time of the new block is saved in TimeAr.

Note that this scheme cannot measure the execution time for
the M thread blocks of the kernel that finish last, since no new
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block will start after their termination. Hence, we only use data
for Nκ−M blocks to perform the clustering. After clustering,
we then rerun the kernel with a modified instrumentation,
where we estimate the execution time of each of the last M
thread blocks as the difference between the start time of the
last and first thread in the block. While such measurement
is much less precise than what obtained by Algorithm 3, we
found it sufficient to classify each thread block in one of the
previously obtained clusters.

B. On-line Budget Computation

Because of the nuances involved in making necessary
CUDA library calls from a Linux kernel module, we do not
implement our on-line budget computation algorithm at the
OS kernel level. Instead, we implement it in a user-level high
priority real-time process which runs concurrently to the GPU
kernels on the real-time CPU core. At the kernel level, we
use BWLOCK++ Linux kernel module [20] to enforce the
computed budget values for regulating the memory bandwidth
of best-effort CPU cores. For this purpose, we implement a
shared-memory based communication mechanism between the
kernel module and the user-space budget-computation process.
Concretely, for each regulation period, the user-space process
calculates a new budget value which is then written to a
predefined shared-memory area. The kernel module reads the
budget value from the shared-memory and enforces it in the
current regulation interval. Note that the budget-computation
process takes some time to perform the required computation
and pass the information to BWLOCK++; for this reason, we
synchronize it to start computation a fixed amount of time
before the start of each regulation period of BWLOCK++.
We note that the resulting budget computation is still safe
albeit more pessimistic: the extra time might cause us to miss
some completed thread blocks, but this would lead to higher
values of {Ri} and hence a higher WCET estimate and a lower
computed Q. However, due to the pessimism, it is theoretically
possible to compute a value of Q that is less than the nominal
budget Q, in which case we can still safely set Q = Q.

Similarly to Section VI-A, we allocate a data structure in
main memory that can be accessed by both the GPU and the
user-level process. We instrument the kernel code so that it
writes the current clock value at the beginning of the first
thread block, which we take as the starting time t of the kernel
itself; note that on our platform, the GPU and CPU share the
same clock timer, so there is no need for timer synchronization
and the budget-computation process can directly use the value
passed by the GPU to compute the elapsed time treg−t for the
kernel. Each successive thread block writes to main memory
the IDlist of concurrent blocks, which is used by the budget-
computation process to determine the remaining blocks {Ri}.

To efficiently compute {Ri}, we use the concept of a cluster
interval [i, j], that is, a sequence of thread blocks where all
blocks with IDs in [i, j] belong to the same cluster. The budget-
computation process is provided with a table, computed off-
line, where each line, corresponding to a cluster interval,
stores the initial ID for the interval, as well as the number of
remaining blocks in all successive intervals. At run-time, the

Algorithm 4: Approximated tmemmax Computation

Input: t, {Ri}, {e0i }, {e1i }, eymax, with clusters ordered
by increasing wi = e1i /(e

1
i − e0i )

Output: Maximum feasible memory time tmemmax

1 ∀zi, i = 1...C : zi = 0
2 for j = 1...C do
3 zj = Rj · (e1j − e0j )/M
4 if

∑
i=1...C zi ≥

t− e1max +
e1max

M −

(∑
i=1...C

Ri·e0i

)
+eymax

M then
5 zj = t− e1max +

e1max

M −(∑
i=1...C

Ri·e0i

)
+eymax

M −
∑
i=1...C,i 6=j zi

6 break
7 end
8 return

(∑
i=1...C zi · wi

)
process then matches the IDlist written by the most recently
started thread block with the interval table to determine the
number of not-yet-completed thread blocks for each cluster;
note this is possible because blocks are activated in ID order,
hence, if block ID i is executing, then we know that all blocks
with ID less than i must either be executing (hence in IDlist)
or have finished.

Finally, we discuss how to efficiently implement the budget
computation in Algorithm 2. The algorithm requires us to
solve a LP problem; while the complexity of the problem is
polynomial in the number of clusters, we would prefer linear
complexity for on-line implementation. Hence, we next discuss
how we can simplify the problem by adopting an overapprox-
imation of the WCET. Specifically, instead of solving the LP
problem at Equations 14-19, we solve the following modified
problem:

min tmemmax (24)

t = e1max −
e1max

M
+(∑

i=1...C xi · e1i + (Ri − xi) · e0i
)
+ eymax

M
(25)(∑

i=1...C xi · e1i
)

M
≤ tmemmax (26)

∀i = 1...C : xi ≤ Ri (27)
∀i = 1...C : xi ≥ 0 (28)

where:

eymax =M · (dt/P e+ 1) · max
i=1...C

(e1i − e0i ). (29)

Note that since the sum of the yi variables is constrained by
M · (dt/P e + 1) in Equation 17, the computed eymax upper
bounds the contribution of the variables (that is, (

∑
i=1...C yi ·

e1i −yi ·e0i )) in Equation 15. Therefore, to satisfy Equation 25,
the LP problem at Equations 24-28 will yield a lower value
of the xi variables, and thus of tmemmax and Q, compared to
Equations 14-19. Hence, the obtained Q is safe.

The key benefit of such approximation is that we can solve
the new LP problem in a greedy manner. Define zi = xi ·(e1i −
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e0i )/M and wi = e1i /(e
1
i − e0i ); then the problem is rewritten

as:

min tmemmax (30)∑
i=1...C

zi = t− e1max +
e1max

M
−(∑

i=1...C Ri · e0i
)
+ eymax

M
(31)( ∑

i=1...C
zi · wi

)
≤ tmemmax (32)

∀i = 1...C : 0 ≤ zi ≤ Ri · (e1i − e0i )/M (33)

Note that here, we are minimizing the weighted sum of the zi
variables, under the constraint that the sum of the variables
is equal to a constant. Hence, the optimal solution should
increase the value of zi for clusters with smaller weights before
clusters with higher weights, resulting in Algorithm 4. The
algorithm first sets all zi to zero. Then, it iterates over all
zj in order of the lowest weight wj to the highest, and at
each step it attempts to set zj to its highest possible value
(based on Equation 33) of Rj · (e1j − e0j )/M . If the resulting
sum of zi exceeds the right hand side of Equation 31, then
zj is recomputed so that Equation 31 holds, and the iteration
terminates. Finally, tmemmax is computed based on Equation 32.

VII. EVALUATION

We use NVIDIA’s Jetson TX-2 as our evaluation platform.
The Jetson TX-2 board contains a heterogeneous multicore
CPU cluster (4 Cortex A-57 + 2 Denver cores) and an
integrated GPU. On the software side, we use NVIDIA’s
default Linux kernel (v4.4.38) and patch it with the changes
required for memory bandwidth throttling of best-effort tasks
through BWLOCK++ kernel module. As per our system model
in Section III, we designate 3 Cortex-A57 cores as BE cores
and one as the real-time CPU core; the real-time CPU core
is not regulated whereas we use BWLOCK++ to regulate
the LLC miss events (L2_DCACHE_REFILL in Cortex-A57
TRM [21]) of best-effort CPU cores. Please note that we
only use the Cortex cores and disable the Denver cores in all
our experiments because the latter lack support of necessary
performance monitoring counters required by the memory
throttling framework of BWLOCK++. Similarly to [4], we
use the Parboil suite [7] as GPU benchmarks. Table II details
benchmarks’ characteristics which will be discussed through-
out this section. Note that each benchmark invokes the same
kernel multiple times, possibly with a different input set size;
hence, the block clusters remain the same, but the number of
thread blocks per cluster and the number of cluster intervals
change based on the data size. Due to space limitations
and since we expect different invocation of the same kernel
to behave similarly, we report results for the first kernel
invocation in each benchmark.

We employ bandwidth benchmark from IsolBench suite [8]
as our synthetic memory-intensive CPU application. The band-
width benchmark linearly accesses a 1-D array of configurable
size and the sequential write pattern of this benchmark is
known to cause worst-case interference on several multicore
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Fig. 2: Analytical WCET vs Measured WCET for histo

platforms [22]. In our case, we configure bandwidth bench-
mark to generate LLC misses; thus creating memory level
interference. We also use this benchmark to determine the
BWmax value for our TX-2 platform. For this purpose, we run
three instances of bandwidth benchmark on the 3 Cortex-A57
cores. Our measurement shows that the maximum cumulative
memory bandwidth of the three bandwidth benchmarks is∼3.9
GB/s. In terms of LLC misses, this corresponds to ∼60,000
events per regulation interval of 1-msec. Divided over 3 best-
effort CPU cores, this is equal to 20,000 LLC misses in each
regulation interval which corresponds to Q = 1 i.e., maximum
possible interference from each best-effort core.

A. Testing the Interference Hypothesis

We validated Hypothesis 1 through extensive testing. Specif-
ically, we synchronized the execution of three copies of the
synthetic bandwidth benchmark running on the three BE cores,
and modified the benchmark code to randomly vary: 1) the
offsets, relative to the beginning of the regulation period, at
which each BE core starts execution; 2) the ratio of read and
write operations; 3) the time separation between LLC misses,
controlled by inserting a variable number of NOP instructions
between reads or writes. We then executed each kernel for
several hours and recorded its worst case execution time. In
all cases, we found that the WCET is maximized for a 100%
write ratio with no NOP added and equal offsets for all cores,
which matches the hypothesis.

B. Clustering And WCET Estimation

Table II shows the number of thread blocks per benchmark,
as well as the clustering results, in terms of number of clusters,
intervals (see Section VI-B), and the worst goodness of fit
(i.e., the maximum ratio) over all clusters of each benchmark.
The numbers of both clusters and intervals is small for all
benchmarks, leading to small memory space overhead for the
data structures in Section VI, and low run-time for the on-line
algorithm. Per-cluster results are available in Section IV-A for
histo, and in online appendix [23] for the other benchmarks.
All collected measurement data and instrumentation code are
available at [24].

To estimate the tightness of the hybrid WCET bounds,
we run the following experiment: we first run each ker-
nel one million time for varying values of Q, without any
instrumentation and together with the synthetic bandwidth
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Benchmark memory-bound compute-bound
histo sad bfs spmv stencil lbm cutcp mri q mri gridding tpacf sgemm

Number of thread blocks 37,627 59,136 82,318 31,624 31,952 63,627 7,446 19,975 21,587 28,191 15,775
Number of clusters 3 6 6 3 4 5 3 3 4 5 4

Goodness of fit 0.76 0.45 0.53 0.68 0.86 0.66 0.51 0.62 0.47 0.79 0.69
Cluster intervals 14 21 29 17 19 25 10 12 15 22 20

WCET overestim. at Q = 0 (%) 5.26 10.04 0.58 6.04 5.49 2.05 4.51 4.23 1.68 2.23 3.31
WCET overestim. at Q = 1 (%) 30.20 36.75 12.77 10.09 7.52 34.56 7.22 8.54 4.93 5.60 7.59

Nominal budget (%) 13 11 15.5 26 25.5 21 100 100 100 100 100
Adjusted nominal budget (%) 12.22 10.22 14.78 25.22 24.78 20.22 100 100 100 100 100

TABLE II: Benchmark Characterization
Benchmark histo sad bfs spmv stencil lbm

FAIR 61% 88% 46% 129% 115% 95%
GREEDY 57% 76% 44% 127% 113% 93%
SMOOTH 62% 92% 47% 131% 116% 97%

TABLE III: Improvement over NOMINAL in Number of
Memory Requests Issued by Synthetic BE Tasks

Benchmark histo sad bfs spmv stencil lbm
Improvement over NOMINAL in Number of Memory Requests by BE Tasks

FAIR, 462.libquantum 106% 193% 78% 167% 143% 121%
GREEDY, 462.libquantum 104% 187% 74% 166% 142% 119%
SMOOTH, 462.libquantum 108% 195% 79% 169% 145% 123%

FAIR, 403.gcc 35% 41% 23% 35% 26% 29%
GREEDY, 403.gcc 34% 38% 21% 38% 22% 25%
SMOOTH, 403.gcc 37% 42% 24% 40% 27% 29%

FAIR, 458.sjeng 13% 12% 7% 0% 0% 3%
GREEDY, 458.sjeng 11% 11% 6% 0% 0% 4%
SMOOTH, 458.sjeng 13% 13% 8% 0% 0% 6%
FAIR, Q mean (%) 39.37 47.65 34.30 72.31 67.86 58.60

GREEDY, Q mean (%) 38.94 47.54 33.96 72.30 67.76 58.18
SMOOTH, Q mean (%) 39.58 47.87 34.79 72.45 68.63 59.34

FAIR, Q std (%) 12.89 20.00 9.67 21.24 20.67 14.78
GREEDY, Q std (%) 20.77 14.04 9.69 14.01 10.78 11.26
SMOOTH, Q std (%) 8.71 8.72 3.62 13.65 10.01 7.10

TABLE IV: Performance Results, SPEC BE Tasks

benchmark, and determine its worst-case measured execution
time. To reduce variability, we further force the kernel to
start synchronously with the regulation period, i.e. sync = 1.
We then compare such measured WCET with the analytical
WCET obtained through Algorithm 1, and report in Table II
the overestimation ratio at both Q = 0 and Q = 1 for
all benchmarks; while Figure 2 shows the detailed WCET
plots for the histo benchmark as a function of Q. We point
out that the overestimation is due to three factors: 1) the
measured execution does not represent the real worst-case,
as the bandwidth benchmark performs all memory requests at
the beginning of each regulation period; hence, it might fail
to align memory requests with the most interference-sensitive
thread blocks. 2) Our clustering approach leads to some
overapproximation of the real WCET of each thread block.
3) Finally, the instrumentation adds some timing overhead;
however, this is small, at most 1.5% for the tested benchmarks
(measured by running each benchmarks in isolation with and
without instrumentation

C. Dynamic Budget Allocation

Finally, we evaluate the three dynamic budget allocation
schemes in Section V against the NOMINAL allocation, where
the same nominal budget is used for all regulation periods of
a given kernel. To determine the nominal budget Q for each
kernel κ in a uniform manner, we decided to use the following
procedure: we pick the maximum Q such that the slowdown(
Ge(Q, {Ni}, 0) − Ge(0, {Ni})

)
/Ge(0, {Ni}) for κ is equal

to 10%. The obtained values are listed in Table II. We note that
the benchmarks in Parboil can be divided in two categories:
the first 6 benchmarks are memory-bound, and show nominal
budgets below 30%. The other 5 benchmarks are compute-
bound, and are assigned the maximal nominal budget of 100%
(in fact, the slowdown of all such benchmarks is below 5%
for Q = 1). Therefore, we conclude that dynamic allocation
is not useful for compute-bound applications, and proceed to
provide results for the memory-bound benchmarks only.

Under NOMINAL, the kernel is run without instrumentation
and no extra CPU process. For FAIR, GREEDY and SMOOTH,
as discussed in Section VI we need to instrument each kernel,
and run a user-level CPU process to perform the on-line budget
computation. We experimentally determined that the process
can cause at most 470 LLC misses during each regulation
period; since these misses cause extra interference to the GPU,
we have to adjust the budget assigned to BE cores for the
dynamic schemes by subtracting such LLC amount for every
regulation period. This leads to a lower adjusted nominal
budget for the first regulation period of each kernel, see
Table II. As for the execution time of the budget-computation
process, we measured a worst-case time of 10us to compute
{Ri}, and 10us to execute Algorithm 2. Also accounting
for the time to communicate with the BWLOCK++ kernel
module, we configured the process to start 50us before the
beginning of each regulation period.

Figure 3 provides graphs for all benchmarks, where the BE
cores execute the synthetic bandwidth benchmark. Specifically,
we report results in terms of assigned budget ratio Q for each
allocation scheme and regulation period over a single run of
each kernel. Note that the graphs for the 4 allocation schemes
always finish at the same time, meaning that each kernel
executes for a constant number of regulation periods. For the
same scenario, Table III shows the performance improvement
for each dynamic scheme, in terms of memory requests issued
by the BE cores during the execution of the kernel, averaged
over a million runs and normalized based on NOMINAL.
As we can see, the performance improvement of the three
schemes is similar, but they behave very differently in terms
of budget allocation over time, with SMOOTH achieving
by far the most uniform distribution. We also note that the
performance improvement is significant, ranging from 44% to
131% based on Table III, which is surprising since we use
memory-intensive BE benchmarks; this is both due to WCET
overestimation, and because the benchmarks fail to cause the
actual worst case, especially with sync = 0 in this scenario.

Finally, we repeat the same experiments while running
a benchmark from the SPEC2006 suite [9] on each BE
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Fig. 3: Budget Distribution over Time

core. We selected three benchmarks with different memory
intensiveness [2]: 462.libquantum (high), 403.gcc (medium),
and 458.sjeng (low). Table IV represents the results in terms
of performance improvement over NOMINAL for each SPEC
benchmark, as well as mean and standard deviation of the as-
signed budget ratio Q over all regulation periods. We find that
for 462.libquantum, the performance improvement is higher
compared to the synthetic benchmarks; this is because the
other two benchmarks stress the memory less, thus resulting in
less interference and more slack for the GPU kernel. The three
dynamic allocation schemes again perform similarly, with the
exception of the standard deviation, which is significantly
smaller for SMOOTH.

VIII. RELATED WORK

Due to increased interest in GPU for accelerating parallel
real-time applications, many real-time scheduling frameworks
for GPU have been proposed in recent years. Since our
focus is on memory management, we restrict our attention to
work on mitigating resource interference. In [13], the authors
show how to partition GPU memory resources, including
cache and main memory, to enforce strong isolation between
concurrent kernels. However, the approach is highly platform-
specific, requiring a great deal of reverse engineering, it is
focused on discreet GPUs rather than integrated CPU-GPU
SoCs, and does not protect the GPU from CPU interference.
SiGAMMA [1] introduced a method to protect real-time CPU
tasks from GPU tasks. Their method preempts the GPU kernel
by employing a spinning GPU kernel with high-priority to
protect critical real-time CPU applications. A compiler-based
technique to make GPU code PREM-compliant is introduced

in [25]. Under PREM [26], each task has distinct computation
and memory phases. The approach in [3], [25] ensures that
the CPU does not perform memory accesses during the GPU
memory phases, therefore eliminating memory contention by
construction. However, it needs significant code restructuring,
and can suffer significant overhead from the required fine-
grained CPU-GPU synchronization. The most closely related
work, as discussed in Section II, is BWLOCK++ [4], which
we employ to throttle best-effort cores.

Due to its complexity, WCET analysis for GPU kernels has
received less attention compared to CPU analysis. A static
analysis approach is introduced in [27], but it assumes a
specific behavior of the warp scheduler that is not respected by
commercial systems. The approach in [28] also employs static
analysis, but with more relaxed assumptions. However, it can
not handle cache stalls, and thus cannot be used in our context.
A robust measurement-based probabilistic timing analysis is
introduced in [6]. Similar to our approach, WCET estimation
is based on collecting a trace of independent measurements.
However, the approach in [6] is applied at the level of the
whole kernel, and thus cannot be used to estimate run-time
progress. Finally, a hybrid analysis approach is introduced
in [5]. Here, the authors collect measurement traces at the level
of individual warps, and then analytically compose the traces
to derive the WCET of the whole kernel. Our approach also
uses a hybrid analysis, but we apply it at the coarser level of
thread blocks, since we find that analyzing traces at the warp
level induces too much overhead for run-time implementation.

Run-time slack reclamation for GPU kernels has previously
been investigated in Merlot [29]. However, there are three
fundamental differences compared to our approach. First, run-
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time progress estimation is based on dividing the kernel
into a sequence of intervals, whose granularity is too large
for our memory regulation framework. Second, it requires
hardware modifications to the GPU, while our solution is
compatible with commercial hardware, albeit it relies on code
instrumentation. Third, the accumulated slack is used to save
energy by slowing down the GPU, rather than improving the
performance of BE cores.

IX. CONCLUSION AND FUTURE WORK

Bounding interference effects is essential for the certifi-
cation of multicore real-time systems. Bandwidth throttling
is an effective mechanism to protect real-time application
from main memory interference, but it can lead to significant
performance penalties for best-effort applications. To mitigate
such performance impact, in this paper we have proposed
a dynamic throttling scheme which adjusts the bandwidth
budget assigned to best effort cores by exploiting the slack
accumulated by a real-time GPU kernel. In particular, we
have shown how to use the number of completed thread
blocks to estimate the progress of the kernel. Our scheme
significantly increases the throughput of memory-intensive,
best-effort applications, up to 195% in our evaluation.

As future work, we would like to extend our approach
to cover not only GPU segments, but also memory copies
and CPU segments. In particular, we believe that hybrid CPU
analysis [30], [31] can be adapted to estimate CPU progress
in a way compatible with our framework. We also plan to
relax the presented system model to allow more general
configurations, in particular, allowing other real-time tasks to
run concurrently to the GPU kernel on one or more cores.
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