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Plants employ sophisticated mechanisms to control developmental processes and to cope with environ-
mental changes at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) and long noncod-
ing RNAs (lncRNAs), two classes of endogenous noncoding RNAs, are key regulators of gene expression in
plants. Recent studies have identified the interplay between miRNAs and lncRNAs as a novel regulatory
layer of gene expression in plants. On one hand, miRNAs target lncRNAs for the production of phased
small interfering RNAs (phasiRNAs). On the other hand, lncRNAs serve as origin of miRNAs or regulate
the accumulation or activity of miRNAs at transcription and post-transcriptional levels. Theses lncRNA-
miRNA interplays are crucial for plant development, physiology and responses to biotic and abiotic stres-
ses. In this review, we summarize recent advances in the biological roles, interaction mechanisms and
computational predication methods of the interplay between miRNAs and lncRNAs in plants.
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1. Introduction

The expression of genes is often spatiotemporally controlled at
transcriptional and post-transcriptional levels. Transcription fac-
tors and proteins that remodel and modify chromatins play crucial
roles in regulating gene transcription [1,2]. During transcription,
pre-mRNAs are subjected to processing such as capping, splicing
and adenylation, which provide additional regulations of gene
expression. After transcription, the levels and activities of RNAs
can be further controlled through RNA modifications, non-coding
RNAs (ncRNAs) and various protein factors [3-6]. In eukaryotes,
over 90% RNA transcripts do not encode proteins, which are called
ncRNAs [7,8]. Some of these ncRNAs are basal components of
molecular machineries such as ribosome and spliceosome, while
others are important riboregulators of gene expression named reg-
ulatory ncRNAs [6,9,10]. Based on the length, the regulatory
ncRNAs are classified into long ncRNAs (lncRNAs, greater than200
nt) and short ncRNAs, including microRNAs (miRNAs), small inter-
fering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs). These
regulatory RNAs modulate a variety of biological processes from
cell differentiation, organ size and shape determination, to immu-
nity at transcriptional and/or post-transcriptional levels [9,11-13].
Interestingly, the emerging evidence has documented the complex
interplay between lncRNAs and short ncRNAs on gene regulation in
plants and other eukaryotes [14-16].

To date, thousands of ncRNAs have been identified in plants,
such as Arabidopsis [17], rice [18], maize [19], wheat [20], soybean
[21], tomato [22], brassica [23], and sorghum [24]. As the two
important types of ncRNAs, miRNAs and lncRNAs play critical roles
Fig. 1. The biological roles of lncRNAs, miRNAs and their interplay in plant growth and de
(red) and their interactions (blue) regulate plant growth and development such as floret
fruit ripening [33], leaf morphogenesis [34], trichome formation [35,36], stem elongati
nodule formation [43,44]. (b) The representative lncRNAs (green), miRNAs (red) and their
infection [45], bacterial infection [46], virus infection [47], nematode infection [48], dr
nutrient stresses [57-61]. (For interpretation of the references to colour in this figure le
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in plant growth, development, biotic and abiotic stress responses
such as floret development [25,26], male sterility [27,28] , flower
time [29,30], grain yield [31,32], fruit ripening [33], leaf morpho-
genesis [34], trichome formation [35,36], stem elongation
[37,38], cell wall biosynthesis [39,40], tillering [41], root architec-
ture [42], nodule formation [43,44] and responses to fungal infec-
tion [45], bacterial infection [46], virus infection [47], nematode
infection [48], drought [49], cold [50], heat [51], submergence
[52,53], salt [54,55], light [56] and nutrient stresses [57-61]
(Fig. 1). However, the functional significance and action mecha-
nisms of these regulatory RNAs remain to be deciphered, especially
in crops with large and complex genomes. In this mini-review, we
will summarize the current advances in the biological functions
and action modes of miRNAs and lncRNAs with a focus on their
interplays in plants.
2. Biological roles and molecular mechanisms of miRNAs

miRNAs are short (20–24 nucleotides in length) ncRNAs. From
interval of 2002 to 2020, 20,388 miRNAs have been annotated in
88 phylogenetically representative plant species [62]. Studies on
some miRNAs show that miRNAs regulate almost every biological
process of plants from the developmental transition to responses
to biotic and abiotic stresses [12,63-66] (Fig. 1). We briefly summa-
rize plant miRNA biogenesis, action and related regulatory mecha-
nisms here, since these aspects of miRNAs have been nicely
reviewed [67-71](Fig. 2). In plants, miRNAs mainly inhibit gene
expression at the post-transcriptional level through directly target-
ing mRNA transcripts for cleavage or translational repression [72].
velopment, biotic and abiotic stress. (a) The representative lncRNAs (green), miRNAs
development [25,26], male sterility [27,28], flower time [29,30], grain yield [31,32],
on [37,38], cell wall biosynthesis [39,40], tillering [41], root architecture [42], and
interactions (blue) are involved in biotic and abiotic stress responses such as fungal
ought [49], cold [50], heat [51], submergence [52,53], salt [54,55] , light [56], and
gend, the reader is referred to the web version of this article.)



Fig. 2. The action models of plant lncRNAs, miRNAs and their interplay in diverse biological processes. (a) LncRNAs interact with histone modification complex to regulate
histone modification [30,159]. (b) LncRNAs are involved in DNA (de)methylation to regulate gene transcription [27,160]. (c) LncRNAs regulate gene transcription by directly
binding to proteins required for promoter activity of target genes [101,102]. (d) LncRNAs interact with alternative splicing factor such as RNA-binding protein to modulate
alternative splicing (AS) patterns [97]. (e) LncRNAs mediate protein relocalizaion from nucleus to cytoplasm [161]. (f) miRNAs cleave PHAS transcripts to generate phasiRNAs
[28,33]. (g) LncRNAs are cleaved by miRNAs leading to lncRNA degradation [109]. (h) MiRNAs cleave mRNAs to impact gene transcription [44,55]. (i) LncRNAs act as eTMs to
inhibit miRNA effect on target mRNAs [42,59].
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MiRNA biogenesis starts with transcription of primary miRNA
transcripts (pri-miRNAs) from miRNA-encoding genes (MIRs)
mainly by the DNA-dependent RNA polymerase II (Pol II) [72].
Pri-miRNAs harbor an imperfect stem-loop where the mature
miRNAs are embedded. Following transcription, pri-miRNAs are
processed into the miRNA/miRNA* duplex in nucleus mainly
by the RNase III enzyme, DICER-LIKE1 (DCL1) [73]. Then the
miRNA/miRNA* duplex is methylated by HUA ENHANCER 1
(HEN1) to improve its stability and then transported out of nucleus
into cytoplasm [74-76]. MiRNA is incorporated into the ARGONAUTE
1 (AGO1) protein complex to form the miRNA-mediated silencing
complex (miRISC) for repressing gene expression [77,78]. To ensure
the efficiency and accuracy of miRNA biogenesis, a plethora of fac-
tors such as chromatin modifiers [79,80], transcriptional factors
[81,82], RNA-associated proteins [83-85], and protein kinases [86]
are employed to regulate the MIR transcription, pri-miRNA process-
ing, RNA stability, and miRNA actions.
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3. Biological roles and molecular mechanisms of lncRNAs

LncRNAs are a large family of non-coding RNAs with the length
of more than 200nt. In plants, similar to mRNAs, Pol II-dependent
lncRNA maturation requires capping, splicing and addition of a
ploy-A tail, while Pol IV/V-dependent ones do not [87,88] (Fig. 2).
LncRNAs are divided into three groups, long intergenic ncRNAs
(no overlapping with protein-coding genes), long intronic ncRNAs
(synthesized from intronic region), and natural antisense
transcripts (NATs, synthesized from the opposite strand of the
associated genes) according to their positions relative to protein-
encoding genes in genomes [89]. In the past decades, great efforts
have been made toward to the systematic identification and char-
acterization of lncRNAs. For instance, using a reproducibility-based
bioinformatics strategy, 6480 lncRNAs were identified from 200
transcriptome data sets in Arabidopsis [17]. Wang et al. identified
37,238 NATs, which are associated with 70% annotated mRNAs,
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from Arabidopsis [90]. In cotton, 9240 lncRNAs from 21 tissues
were identified by integrating multi-strategy RNA-seq data with
a pipeline named plant full-length (PULL) [91]. Using the uniform
annotation pipeline, 1,246,372 lncRNAs from 80 plant species have
been collected according to 13,834 RNA-Seq datasets in Plant Long
noncoding RNA Database (PLncDB) V2.0 [92]. Many lncRNAs iden-
tified by the prediction tools (see below) have been found to play
important roles in plant growth and development. For example,
in Arabidopsis, based on the prediction of a pipeline integrating
Swiss-Prot database and CPC software [93,94], the lncRNA MAS,
transcribed from MADS AFFECTING FLOWERING4 (MAF4) locus,
was found to be induced by cold and required for activating
MAF4 transcription by interacting with WDR5A during vernaliza-
tion [95]. Arabidopsis lncRNA T5120 obtained by the prediction
of CPC and CNCI is activated by NLP7, the master nitrate regulatory
transcription factor, and promotes plant growth through regulat-
ing nitrate assimilation [57].

Although a large number of lncRNAs have been identified, their
biological roles and related molecular mechanisms only start to
emerge in plants due to the low expression level compared with
mRNAs or miRNAs. Studies show that lncRNAs regulate gene
expression in both nucleus and cytoplasm via diversified action
modes. In the nucleus, lncRNAs modulate gene expression through
affecting chromatin remodeling, epigenetic modifications and
alternative splicing [96-98] (Fig. 2). For instance, long intronic
ncRNA COLDAIR (COLD ASSISTED INTRONIC NONCODING RNA) con-
trols the transcription of FLOWERING LOCUS C (FLC), which is a
key repressor for flowering time [30]. The nuclear-localized COL-
DAIR is transcribed from a locus within the FLC gene. It physically
interacts with a component of polycomb repressive complex 2
(PRC2), and recruit PRC2 to the FLC locus for epigenetic repression
during vernalization [30]. Interestingly, the antisense strand of FLC
locus encodes another lncRNA named COOLAIR, which interacts
with the RNA-binding protein FLOWERING CONTROL LOCUS A
(FCA) to represses FLC transcription, accompanied with increased
H3K27me3 and decreased H3K36me3 levels in cold condition
[99,100]. The COLDAIR-FLC and COOLAIR-FLC modules represent
one of the important roles of lncRNAs in the link of environmental
signal and plant development. LincRNA ELF18-INDUCED LONG-
NONCODING RNA1 (ELENA1) is induced by the pathogen-
associated molecular pattern (PAMP) [101]. ELENA1 directly inter-
acts with the Mediator subunit 19a (MED19a) and promotes its
enrichment on PATHOGENESIS-RELATED GENE 1 (PR1) promoter to
increase the resistance to bacterial pathogen Pseudomonas ayringae
pv. tomato DC3000 [102,103]. In the cytoplasm, lncRNAs can inhi-
bit protein translation or act as miRNA mimics to inhibit miRNA
activity (Fig. 2). MIKKI is a root-specific retrotransposon lncRNA
in rice [42]. MIKKI binds and acts as miR171 decoy to inhibit its
cleavage on SCARECROW-Like (SCL) mRNAs, leading to the
increased cell elongation in root [42].

Despite of their biological importance, lncRNA biogenesis and
related regulation mechanisms are still less known. Like the major-
ity of MIR genes, lncRNAs are mostly transcribed by RNA Pol II, but
sometimes by Pol III or the plant-specific RNA Pol IV/V [104,105].
In tomato, 187 lncRNAs are directly targeted by MADS-box tran-
scription factor RIPENING INHIBITOR (RIN), which is a key factor
required for tomato fruit ripening [106], suggesting the importance
of transcription regulation in lncRNA biogenesis. In addition,
cyclin-dependent kinase C (CDKC;2), a component of positive tran-
scription elongation factor b (P-TEFb), is also involved in lncRNA
biogenesis [107]. CDKC;2 can promote COOLAIR transcription by
enhancing RNA Pol II Ser2 phosphorylation, thereby regulating
flowering time in Arabidopsis [107]. Interestingly, the biogenesis
of lncRNA and miRNA shares some key components in plants. SER-
RATE, CBP20 and CBP80, which are key components of miRNA bio-
genesis, act as regulators of lncRNA biogenesis and intron splicing
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of some intron-containing lncRNAs [17]. However, DCL1, HYL1 and
AGO1 are not required for lincRNA accumulation [17].
4. The interplay between miRNAs and lncRNAs

Recent studies have identified the interplay between miRNAs
and lncRNAs. Besides serving as targets or origins of miRNAs, some
lncRNAs are able to regulate the biogenesis and function of miRNAs
(Fig. 2). The interactions between miRNAs and lncRNAs play
important roles in regulating various biological process including
development, nutrient abortion, biotic and abiotic stresses
[108,109](Fig. 1).

4.1. LncRNAs are targets of miRNAs to generate phasiRNAs

LncRNA transcripts can be targeted by miRNAs to generate
phased small interfering RNAs (phasiRNAs) [92] (Fig. 2). In pha-
siRNA biogenesis, RNAs including lncRNAs are first typically
cleaved by 22 nt miRNAs. Then the RNA-DEPENDENT RNA POLY-
MERASE6 (RDR6) recruited by AGO1-RISC or AGO7-RISC converts
the 30 fragment into double-stranded RNAs (dsRNAs), which are
further processed by a Dicer protein to generate duplexes of pha-
siRNAs [110-112]. The resulting phasiRNAs are loaded into AGO
proteins and then direct AGOs to find their target transcripts
[113]. In plants, ~15 years ago, a subset of lncRNAs that generate
a class of phasiRNAs named trans-acting siRNAs (tasiRNAs) were
first identified in Arabidopsis [110-112]. These lncRNAs are tar-
geted by miRNAs including miR173, and miR390, respectively, to
produce tasiRNAs [110-112]. Recently, some lncRNAs from repro-
ductive organ were shown to produce reproductive phasiRNAs
[114-117]. The targets for these phasiRNAs are largely unknown.
However, they may regulate reproductive development, given
their enrichment in reproductive tissues.

4.2. LncRNAs regulate pri-miRNA processing

Natural antisense transcripts (NATs) belong to a class of coding
or ncRNAs that are divided into two clades, cis-NATs and trans-
NATs, according to their derived region in genome [90]. Cis-NATs
are transcribed from the opposite DNA strands at the same geno-
mic locus, while trans-NATs originated from separate genomic loci
[118]. Recent studies have revealed the role of cis-NAT in regulat-
ing pri-miRNA processing. cis-NAT398b and cis-NAT398c locate on
the complementary strands to MIR398b and MIR398c, respectively
[119]. Although the RNAs transcribed from these two loci encode
proteins, Core-2/I-branching beta-1,6-N-acetylglucosaminyltrasfer
ase and high-affinity nitrate transporter 2.7, they act as lncRNAs in
the nucleus to impair the stability and processing of pri-miR398b/c
without impacting their transcription [119]. Interestingly, pri-
miR398b/c, but not the mature miR398b/c, directly activates
NAT398b/c transcription in an unknown mechanism. By this feed-
back regulatory loop, plant fine-tunes thermotolerance [119],
implying the complexity of miRNA-lncRNA interplay. cis-NATs
are widely present in plants and often affect the expression level
of the associated sense genes. Bioinformatic analysis has identified
22 cis-NATs that show reverse-complementary to MIR genes in
Brassica [119], implying that the NAT-miRNA regulatory mecha-
nism may be widely present.

Besides cis-NATs, some ncRNAs form dsRNA structures similar
to that of pri-miRNAs to hijack the DCL1 complex, and thereby
inhibit miRNA biogenesis. For instance, the transcripts derived
from the short-interspersed elements (SINEs) can form a structure
similar to pri-miRNAs, which in turn decoy HYL1 from pri-miRNA
processing [120]. Another example is intron lariat RNAs, the
byproducts derived from pre-mRNA splicing, which binds the
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DCL1 complex and prevents pri-miRNA processing as the molecu-
lar sponge in Arabidopsis [121]. In addition, lncRNAs may impair
microprocessor recognition and processing activity by forming
lncRNA-miRNA precursor dimer. Actually, in human cells, some
lncRNAs have been found to directly bind to miRNA precursors
and block their processing to miRNAs by DICER complex
[122,123]. However, this kind of miRNA processing-related
lncRNAs has not been reported in plants to date.

4.3. LncRNAs act as target mimics of miRNAs

Target mimicry is one of the most important mechanisms of
miRNA-lncRNA interplay, by which lncRNAs harboring endogenous
target mimic (eTM) sites sequester miRNAs by sequence comple-
mentarity to inhibit their effects on target mRNA. Target mimicry
is also described as miRNA decoy, miRNA sponge or competing
endogenous RNA (ceRNA) in animals [124]. Arabidopsis IPS1
(INDUCED BY PHOSPHATE STARVATION 1) is the first identified
lncRNA which pairs with miR399 [59]. Both IPS1 and miR399 are
induced by Phosphate (Pi) deficiency. In contrast to the cleavage
effect of target mRNA by miRNA, miR399-IPS1 pairing contains a
bulge which prevents miR399-mediated IPS1 cleavage, and simul-
taneously cripples miR399-mediated PHO2 degradation [59]. In
maize, a novel lncRNA target of miR399, PILNCR1, is also required
for low Pi tolerance [125], suggesting the lncRNA-miR399-PHO2
regulatory module may be a widely mechanism in plant response
to Pi deficiency.

Moreover, lncRNA39026 binds miR168a and inhibits its func-
tion, which in turn improves tomato resistance to Phytophthora
infestans [126]. These results suggest that lncRNAs may modulate
various biological processes via hijacking miRNAs. Wu et al. devel-
oped a computational method and identified 36 and 189 potential
eTMs in Arabidopsis and rice, respectively [34]. Since then, addi-
tional lncRNAs that potentially decoy miRNAs have been identified
in maize [127], cassava[128], tomato [47,129,130], and melon
[131]. However, the functional significance of these lncRNA-
miRNA interactions still needs to be further analyzed.

4.4. LncRNAs inhibit miRNA expression

Some nuclear-localized lncRNAs regulate gene transcription
through mediating chromatin modification. They serve as a bridge
between transcription factors and chromatin [30,132,133]. Recent
evidences show that the transcription ofMIRs can also be regulated
by lncRNAs in plants. Tomato Sl-miR482a functions as a negative
regulator in immunity against Phytophthora infestans by
repressing the expression of NBS-LRR genes [109]. Interestingly,
Sl-lncRNA15492 locates in the reverse strand of Sl-MIR482a and
inhibits its transcription [109].
5. Methods to predict the interaction between lncRNAs and
miRNAs

Despite the importance of the interplay between lncRNAs and
miRNAs, a large portion of lncRNA-miRNA interactions remains
to be identified. We summarize the available tools used to identify
plant lncRNA-miRNA interactions here.

The prediction of lncRNA-miRNA interactions begins with the
identification of miRNAs and lncRNAs. The miRNAs can be identi-
fied from the database such as miRBase [134], PmiREN [62],
pmiRKB [135] and PMRD [136], while lncRNAs can be obtained
from the lncRNA database such as NONCODE [137], lncRNAdb
[138], GreeNC [139], PNRD [140], and PlncDB [92]. Once miRNAs
and/or lncRNAs are identified, their interactions can be predicted
with additional bioinformatic tools, such as TargetFinder [141],
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TAPIR [142], psRobot [143], spongeScan [144], and PeTMbase
[145]. Among these tools, TargetFinder, TAPIR and PmliPred
require users to supply miRNA and potential target sequences.
After sequence loading, these tools use various methods to find
miRNA-target interactions. TargetFinder utilizes a FASTA local
sequence alignment program to identify miRNA targets in plants
by source code [140]. It should be noted that the FASTA program
allows quick identification of targets but cannot find the RNA-
miRNA duplexes having a lot of bulges and/or mismatches. Thus,
it is less efficient in identifying lncRNA eTMs. In contrast, TAPIR
uses both FASTA program and the precise RNAhybrid algorithm
to identify miRNA targets [142]. The RNAhybrid algorithm finds
the alignment between miRNA and lncRNA sequences that has
the minimum free energy, which allows to predict less perfect
match targets including lncRNA eTMs [142]. Indeed, using TAPIR,
two lncRNA eTMs were identified to act in JA/MeJA biosynthesis
in Oolong Tea [146], while 40 lncRNA eTMs of 15 miRNAs were
predicted to be involved in early somatic embryogenesis in Dimo-
carpus longan Lour. [147]. Using python code, PmliPred is specially
designed for predicting miRNA-lncRNA interactions in plants based
on hybrid model and fuzzy decision [148]. In addition to the tools
requiring user-prepared libraries, other ones perform prediction
via the database-stored libraries. For instance, SpongeScan predicts
miRNA response elements (MREs) within lncRNA eTMs, based on
sequence complementary with preloaded miRNA library [144].
By cross-species conservation filter, Tarhunter identifies eTMs in
13 plant species [149]. Another tool called PsRobot discovers small
RNAs with stem-loop precursors (e.g. miRNA) and their target tran-
scripts via a Smith-Waterman algorithm up to 26 plant species
[143]. A set of lncRNA eTMs identified by PsRobot have been
shown to function in responses to tomato yellow leaf curl virus
[47]. Based on the predefined scoring schema, PsRNATarget ana-
lyzes the complementary match between miRNAs and their target
RNAs by evaluating target site accessibility [150]. Using PsRNATar-
get, Lnc_973 and lnc_253 have been found to serve as eTMs of ghr-
miR399 and ghr-156e in cotton, respectively, to regulate salt stress
response [151]. Using PsRobot and PsRNATarget, twelve lncRNAs
were predicted to function as eTMs involved in Sneb821-induced
tomato resistance to M. incognita [48].

Precision and recall rate are two important parameters to eval-
uate accuracy and sensitivity of the prediction results [152]. A
comparation of prediction tools found that Targetfinder has a bet-
ter efficiency in predicting miRNA targets in Arabidopsis, while
PsRNATarget and TAPIR-hybrid perform well in non-Arabidopsis
species [152]. The combination of different tools enhances the pre-
cision, but may reduce the sensitivity of prediction reducing the
numbers of positive predictions [152,153]. For the precise and sen-
sitive prediction, the algorithm of tools, multiple source of
sequence and the co-expression miRNAs need to be taken into con-
sideration [154]. Taken together, with the above tools and data-
base, more lncRNA-miRNA interactions will be identified, which
shall provide insight into the cross-talk among ncRNAs in various
biological process.
6. Future perspectives

MiRNAs and lncRNAs play essential roles in regulating various
biological processes. The interplay between miRNAs and lncRNAs
not only provides additional layers of gene express, but also con-
tributes to the complexity of biological systems. Technologies
based on eTMs such as target MIMICs and short tandem target
MIMICs have also been developed to study gene function and to
improve agricultural traits such as grain yield and quality, resis-
tance to environmental stresses [59,155-158]. However, studies
on the interplay between miRNAs and lncRNAs are still in the
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infant stage. Identification of the potential miRNA-lncRNA interac-
tion in various plant species and in various physiological and
developmental conditions is still a huge task. Moreover, among
identified miRNA-lncRNA interactions, only a few have been ana-
lyzed in terms of biological significance. The detailed functional
mechanisms for these interactions are still unclear. It will also be
interesting to know if these miRNA-lncRNA interactions, related
functions and mechanisms are conserved among different plant
species. In addition, how various interplays between miRNAs and
lncRNAs themselves are modulated at physiological and/or spa-
tiotemporal levels and integrated into gene regulatory network
are still largely unknown. Despite of these challenges, studies on
the interplay between miRNAs and lncRNAs will be a rich source
for exciting new discoveries, lead to a better understanding of gene
regulation network and provide intellectual basis for improving
important agricultural traits.
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