
Agricultural and Forest Meteorology 307 (2021) 108481

Available online 6 June 2021
0168-1923/© 2021 Elsevier B.V. All rights reserved.

Linking vegetation spectral reflectance with ecosystem carbon phenology in 
a temperate salt marsh 

Andrew C. Hill, Alma Vázquez-Lule, Rodrigo Vargas * 

Department of Plant & Soil Sciences, University of Delaware, 531 South College Ave., 152 Townsend Hall, Newark, DE 19716, USA   

A R T I C L E  I N F O   

Keywords: 
Ecosystem phenology 
Vegetation indices 
Phenocamera 
Near-surface sensing 
Remote sensing, NEP 

A B S T R A C T   

Salt marshes constitute an important terrestrial-aquatic interface that remains underrepresented in Earth System 
Models due to constraining biophysical controls and spatially limited land cover. One promising approach to 
improve representativeness is the application of proximal remote sensing to generate phenological information, 
yet we lack detailed knowledge on how proximal sensors and indices perform within these ecosystems. We use 
measurements of net ecosystem productivity (NEP) from eddy covariance (EC) and derive ecologically-relevant 
phenology parameters (i.e., phenoperiods) to use as carbon phenology benchmarks. These benchmarks are 
compared against vegetation indices and spectral bands derived from spaceborne (i.e., MODIS) or common 
proximal sensors (i.e., phenocam and spectral reflectance sensors; SRS).  

Phenocam derived indices, which exclude infrared wavelengths (i.e., vegetation contrast index; VCI and 
greenness chromatic coordinate; GCC), aligned closely with NEP benchmarks and provided best predictions of 
carbon sink season length (within 1–6 days of benchmark). Although isolating infrared from vegetation (NIRv) 
offered improvements, other indices utilizing infrared bands (i.e., normalized difference vegetation index; NDVI 
and enhanced vegetation index; EVI) primarily underestimated season start dates (5–30 days prior to benchmark) 
while overestimating season end dates (7–47 days after benchmark). These discrepancies are greatest for indices 
derived from MODIS and SRS sensors, which have narrower full width half maximum spectral bandwidths and 
sharper orientation angles. The phenocam (VCI and GCC) provides the most accurate phenology parameters 
while offering near-infrared (NIR) response which can generate additional information on seasonal changes in 
canopy structure and function.  

The distinctive characteristics of the salt marsh environment and vegetation properties including standing 
dead biomass can introduce interpretation challenges for commonly used vegetation indices (NDVI, EVI). 
Incorporating information from proximal sensors utilizing only visible wavelengths (VCI, GCC) or isolating the 
near-infrared reflectance of vegetation (NIRv) offers improvements for studying carbon phenology within salt 
marshes.   

1. Introduction 

Remote sensing offers a valuable resource for parameterizing 
ecological models and provides a tool for monitoring changes in vege
tation (i.e., phenology). Phenology provides a means to observe how 
changes in spectral reflectance oscillate with plant photosynthesis or 
respiration and more holistically, ecosystem carbon exchange (i.e., 
carbon phenology) (Piao et al., 2019; Richardson et al., 2013). There are 
increasing efforts to link vegetation reflectance and carbon dynamics at 
the ecosystem-scale across EC study sites (Gamon, 2015; Maleki et al., 
2020) and couple this information with global terrestrial carbon models 

(Yuan et al., 2010). Unfortunately, there are limitations for spaceborne 
sensing applications within confined areas or limited landcovers (Hel
man, 2018; Hmimina et al., 2013). In particular, there are challenges for 
coastal ecosystems where geographies are bound by unique biophysical 
conditions occurring within the aquatic-terrestrial interface (Ward et al., 
2020). The adoption of in situ near-surface remote sensing (i.e., proximal 
sensing) which provides complementary information and continuous 
validation for spaceborne applications offers important improvements. 
Incorporating proximal sensing to observe and track phenological 
changes via spectral reflectance may benefit representation of coastal 
ecosystems in global carbon models, yet we lack knowledge on which 
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proximal sensors and associated vegetation indices perform best within 
this specific environment. Consequently, there is a need to test the 
performance of common vegetation indices derived from spaceborne 
and proximal sensors to track daily carbon phenology and predict phe
noperiod transition dates. 

This study focuses on salt marshes as they are important components 
of coastal ecosystems and the carbon cycle (McLeod et al., 2011). Salt 
marsh grasses provide high productivity and the unique physical envi
ronment enables long-term storage of carbon within anoxic sediments 
(Barbier et al., 2011; Himes-Cornell et al., 2018; Seyfferth et al., 2020). 
Salt marshes also have patchy distributions and occupy less than 1% of 
terrestrial land surface (5.5 million ha), which generates challenges for 
spaceborne remote sensing (McOwen et al., 2017). Earth System Models 
(ESMs) reliant on common spaceborne data streams either omit or 
misclassify these environments (Zhu et al., 2016; Forkel et al., 2015; 
Meier et al., 2018), and there remains a need for better inclusion of 
aquatic interfaces (Vázquez-Lule et al., 2019; Ward et al., 2020). This 
lack of proper representation introduces uncertainties in model pro
jections as ecological processes and drivers are different within 
salt-marsh environments due to specialized vegetation characteristics 
and biophysical conditions (Forbrich and Giblin, 2015; Weston et al., 
2014). 

Although studies have examined phenology using spaceborne data in 
salt marshes (Mo et al., 2015; Ghosh and Mishra, 2017), there remains 
challenges for properly representing carbon phenology in these eco
systems. Recent studies have examined phenological spatial heteroge
neity within marshes using phenocams (O’Connell et al., 2020) and 
compared phenology metrics between high and medium resolution 
satellites while incorporating phenocam data (Dronova et al., 2021), 
albeit the focus was on freshwater marshes. Advancements have also 
been made at the continental scale where ecological models have been 
coupled with spaceborne data to estimate productivity of coastal wet
lands (Feagin et al., 2020). We highlight that accurate phenology in
formation is essential for both interannual comparisons within and 
between sites (e.g., differences in phenoperiod transition dates) and for 
higher frequency intra-annual monitoring (e.g., assessing tidal effects on 
ecosystem productivity). Improving remote sensing applications to 
characterize land atmosphere interactions in these ecosystems is also 
important for accurate monitoring and determining sequestration po
tentials to support preservation and restoration initiatives while 
providing quantitative information for local carbon markets (Sapkota 
and White, 2020; Pham et al., 2019). 

Phenology provides a firm framework for studying change in bio
logical processes affecting ecosystem carbon dynamics. Seasonal acti
vation of these processes is closely linked to rates of mass and energy 
transfer and thus plays a key role in carbon cycle regulation. Linking 
spaceborne and proximal sensing information of plant phenology (based 
on spectral reflectance indices) with physiological plant processes (i.e., 
photosynthesis) has become a useful application for studying environ
mental change (Richardson et al., 2013). These advances are driven in 
part by increased availability and use of proximal sensors which in
cludes narrow-band spectral reflectance sensors (SRS) (e.g., NDVI, 
photochemical reflectance index; PRI) (Gamon et al., 2015; Garbulsky 
et al., 2011) and visible-infrared enabled security cameras (phenocams; 
Petach et al., 2014; Richardson et al., 2009; Sonnentag et al., 2012), 
which have provided unprecedented information to validate and cali
brate spaceborne approaches. Proximal sensors provide multi-temporal 
information which enables site-level integration with EC measurements 
(i.e., technique to measure exchange of mass and energy between the 
land surface and atmosphere) (Balzarolo et al., 2016), while com
plementing satellite measurements (Knox et al., 2017; Yan et al., 2019). 
For example, methodologies developed by Gu et al (2009) utilize carbon 
exchange data to assign 5 distinct periods to the vegetation growth cycle 
based on annual trajectories of plant community carbon dynamics, 
giving ecological relevance to phenological stages (i.e., phenoperiods). 
Placing spectral and ecosystem carbon exchange information into these 

phenoperiods provides critical information about changes in ecosystem 
carbon dynamics in context of seasonal ecological change (Trifunovic 
et al., 2020; Vázquez-Lule and Vargas, 2021). 

Our overarching goal is to test the performance of proximal sensors 
to predict phenoperiod dates and track vegetation carbon phenology 
based on net ecosystem productivity (NEP) within a temperate salt 
marsh. Theoretically, NEP represents the net carbon balance integrated 
from all biochemical processes occurring across the ecosystem. We 
compare vegetation reflectance indices and spectral bands derived from 
commonly used proximal sensors (i.e., phenocam, SRS) and spaceborne 
platforms (i.e., MODIS). While vegetation reflectance patterns in 
temperate terrestrial ecosystems usually follows the annual course of net 
carbon exchange (Wu, 2012; Balzarolo et al., 2016), it is unclear if these 
expected relationships are consistent in ecosystems representing the 
terrestrial-aquatic interface (i.e., salt marshes). 

We hypothesize that: (1) all sensors and indices will be able to track 
the annual course of NEP, yet proximal sensors are expected to have 
higher agreement with NEP than NASA’s Moderate Resolution Imaging 
Spectroradiometer- (MODIS) derived indices. Proximal sensors offer 
higher temporal resolution, better representation of the local footprint 
of NEP and have reduced atmospheric interference. This should be 
especially relevant for phenocam images which, depending on specific 
configuration, offers larger viewing fields and integrates a larger canopy 
swath. In many cases MODIS-derived indices correlate relatively well 
with ground-based sensors (St Peter et al., 2018; Filippa et al., 2018), but 
for coastal environments there is higher uncertainty (Feagin et al., 2020; 
O’Connell et al., 2017; Vázquez-Lule et al., 2019). Further, the daily 
time acquisition of proximal sensors should be able to represent more 
pertinent information on marsh biogeochemistry (i.e., salinity and tide 
influences); (2) indices which incorporate an infrared band are expected 
to perform better than indices based solely on visible wavelengths as 
more information is relayed on physiological function in regard to 
canopy structure, water content, pigmentation and photosynthetic ca
pacity (Badgley et al., 2017). Wavelengths not directly absorbed by 
photosynthetic tissues (i.e., near-infrared) can offer greater physiolog
ical detail while responding to changes in plant functional traits 
(Ollinger, 2011). We recognize that uncertainties remain for coastal 
wetlands where exposed sediments, surface water and elevated soil 
moisture may influence spectral reflectance. Generally, while healthy 
vegetation strongly reflects NIR while absorbing RED, soils reflect both 
NIR and RED wavelengths yet wet soils reflect considerably less in both 
bands due to strong absorption by water molecules (Ghulam et al., 2007; 
Foroughi et al., 2020). The current study is novel as it quantifies how 
different proximal sensors, MODIS, vegetation indices and spectral 
bands respond to the unique properties of salt-marsh vegetation and 
how well these reflectance properties align with changes affecting NEP 
in this understudied ecosystem. 

2. Materials and methods 

2.1. Study site 

The study site is the St Jones Reserve (39.09 ̊N, 75.44 ̊W) which is 
part of the Delaware National Estuarine Research Reserve (DNERR) and 
the National Estuarine Research Reserve System (NERRS) supported by 
NOAA (Fig. 1). The site is designated as a native brackish tidal salt 
marsh, influenced hydrologically by both the St. Jones river (average 
salinity, 8.2 ± 1.8 ppt) and ocean waters from the Delaware Bay 
(Capooci et al., 2019). The climate is humid subtropical (Cfa) with an 
annual average air temperature and total annual precipitation of 13.8 ̊C 
and 1117 mm, respectively. 

Vegetation is dominated by Spartina alterniflora L. (saltmarsh cord
grass; recently referred to as Sporobolus alterniflorus; Peterson et al., 
2014) which displays strong seasonal growth cycles. There is approxi
mately 11 km2 of continuous marsh vegetation intermixed with 
meandering tidal channels associated with variable water levels, driven 
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by subordinate tides. Finally, this marsh rarely gets flooded, which 
contrasts from low marshes that get flooded during every high tide. 
Thus, our spectral measurements mostly represent characteristics of 
vegetation as the canopy is never submerged. To further investigate any 
impacts of flooding on proximal sensor data, we flagged daily reflec
tance when the main tidal creek exceeded a threshold of 0.7 m above 
mean sea level during a midday window (11:00–13:00), when reflec
tance data was captured. Exceeding this threshold (0.7 m) results in 
standing water above marsh sediments, yet we did not observe any 
impacts which would significantly influence annual reflectance curves 
(Figs. S1 and S2). The site is part of both the AmeriFlux network (site ID: 
US-StJ) and phenocam networks (site ID: stjones). 

2.2. Eddy covariance measurements 

NEP was measured using the EC technique (Baldocchi, 2003; Aubi
net et al., 2012) with an enclosed path infrared gas analyzer (Li-7200, 
Licor, Lincoln, NE, USA) and 3D sonic anemometer (Gill Windmaster 
Pro, Gill Instruments, Lymingtonm, UK) recording measurements at 10 
Hz. A detailed description of the EC system and data processing is 
available elsewhere (Vázquez-Lule and Vargas, 2021). We selected a 
two-year period spanning 2017–2018 to ensure complete data for both 
flux and reflectance measurements. Briefly, preprocessing and flux 
corrections were performed using EddyPro software (version 7.0.6) and 
included time lag compensation, double coordinate rotation on wind 
components and Reynolds block averaging to arrive at 30 min flux in
tervals of NEP. Additional processing included removal of flagged in
strument QA/QC values, removal of flux outliers falling beyond a range 
of -50 to 50 µmol CO2 m−2 s−1, footprint filtering to the confines of 
marsh vegetation (Fig. 1A) and removal of values associated with low 
turbulence which occurred mainly during nocturnal hours. This resulted 
in removal of 41% and 48% of fluxes for 2017 and 2018, respectively. 
We implemented the footprint model of Kljun et al. (2004) which 
functions similar to the Kormann and Meixner (2001) model that has 
previously been field validated in short canopy grasslands (Arriga et al., 
2017). Gaps were filled with a marginal distribution sampling (MDS) 
moving look-up table utilizing meteorological variables collected on site 
as described in Vazquez-Lule and Vargas (2021). 

2.3. Phenocam measurements 

Canopy level images were taken using a “phenocam” (NetCam 1.3 
megapixel SC IR security camera, StarDot Technologies, Buena Park, CA, 
USA). The phenocam is located on the upper most portion of the EC 
tower, 2.8 m above the canopy and is positioned eastward at an oblique 

orientation capturing a large swath of canopy (Fig. 1B). Since the 
camera acquires an image every 30 min from sunrise to sunset, we 
selected a single daily midday true color image (containing red, green 
and blue visible wavelengths; RGB) and a single midday near infrared 
image (NIR) taken several minutes apart (allowing time for removal of a 
mechanical infrared filter) to reduce effects from variable illumination. 
Exact time of day for midday image acquisition ranged from 12:00 to 
12:15. This collection of daily images was inspected visually for any 
obvious distortions and filtered for occasional hazy or foggy images 
(hazer R package, Seyednasrollah, 2018), which removed 30 (8.2%) and 
42 (11.5%) images for 2017 and 2018, respectively. Phenocam data was 
downloaded from the University of New Hampshire central phenocam 
server (https://phenocam.sr.unh.edu/webcam/) (Seyednasrollah et al., 
2019). 

A midsummer image was used to delineate a region of interest (ROI) 
to set a boundary on visible and infrared digital number (DN) extraction 
using a pixel averaging approach. We selected a spatially inclusive ROI 
which covers large areas of continuous marsh vegetation while 
encompassing the eastern portion of the EC footprint. Since a DN is not 
directly relatable to reflectance measurements we used the relative red 
(red chromatic coordinate; RCC) and back-calculated NIR from total 
scene brightness for single band comparisons. Next, we applied raw data 
filters in consecutive order consisting of a cubic smoothing spline fol
lowed by a max filter which selects values falling within the upper 90th 
percentile over a three-day moving window (Migliavacca et al., 2011; 
Sonnentag et al., 2012). Any short gaps created from removal of unac
ceptable images or filtering steps were filled via linear interpolation. 
Most images that were removed occurred during winter storm events, 
when the spectral response is constant, thus there was minimal impact 
on the trajectory of seasonal reflectance. 

Since the phenocam image sensor operates differently than a tradi
tional spectral reflectance sensor we have applied suggested scaling 
factors to each final phenocam indice or spectral band based on the 
corresponding MODIS index or band (Filippa et al., 2018; Petach et al., 
2014). Scaling was completed year-wise using the same 3 × 3 MODIS 
pixel grid that we used for our spectral comparisons. 

2.4. SRS measurements 

Normalized difference vegetation index (NDVI) spectral reflectance 
sensors (SRS) (Meter Inc, Pullman, WA, USA) were positioned in 2 
separate locations approximately 100 m apart with readings recorded 
every 5 min (Fig. 1B). Although proximal sensor footprints are largely 
determined by viewing angle and orientation, following common 
installation protocols, SRS sensors in our set-up have spatially limited 

Fig. 1. Study site location showing A) eddy 
covariance (EC) flux tower filtered footprint 
(green) and Moderate Resolution Imaging Spec
troradiometer (MODIS) footprint (purple); B) 
zoomed area showing EC tower location and 
proximal sensor viewing angles/footprint estima
tions. Service Layer Credits: Source: Esri, Digital
Globe, GeoEye, Earthstar Geographics, CNES/ 
Airbus DS, USDA, USGS, AeroGRID, IGN, and the 
GIS User Community. (For interpretation of the 
references to color in this figure legend, the reader 
is referred to the web version of this article.)   
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viewing footprints in comparison to the phenocam and EC tower 
(Fig. 1), thus using a mean value from multiple sensors provides a more 
comprehensive ecosystem-scale assessment. Since there is greater noise 
associated with high frequency SRS data due to changes in solar position 
and illumination, we selected readings from a two-hour midday window 
(11:00–13:00) which was used to generate daily averages. We then 
applied data filters described above and filled any short gaps with linear 
interpolation. For RED reflectance we applied a Savitzky–Golay filter to 
reduce noise in the data. 

2.5. Moderate resolution imaging spectroradiometer 

NDVI and enhanced vegetation index (EVI), NIR and RED band data 
from MODIS (MOD13Q1 16 day, 250 m vegetation indices product) was 
downloaded from Oak Ridge National Lab distributed active archive 
center (ORNL DAAC) global subset tool (https://modis.ornl.gov/glob 
alsubset/) for an area of 750 km2 (9 pixels) which encompassed most 
of the EC tower flux footprint while excluding pixels from surrounding 
land cover (Fig. 1A). The MOD13Q1 product pre-processing includes 
atmospheric correction from bi-directional surface reflectance and 
masking from water, clouds and aerosols. For RED reflectance we again 
applied a Savitzky–Golay filter to reduce noise in the data. 

2.6. Meteorological measurements 

A meteorological station located on site near the EC tower collected 
information on air temperature and humidity (HC2-S3, Campbell Sci
entific, Logan, UT) precipitation (TE 525, Tipping Bucket Rain Gauge, 
Campbell Scientific, Logan, UT), and photosynthetically active radiation 
(PAR) (SQ-110, quantum sensor, Apogee, Logan, UT). Air temperature, 
humidity and PAR were measured every 5 s and averaged at 30-min 
intervals. Precipitation was calculated as a daily total. Vapor pressure 
deficit (VPD) was calculated using air temperature and relative humidity 
based on Tetens formula (Murray, 1967). For calculation of daily PAR 
only daytime readings were considered (PAR > 20 µmol m−2 s−1). 

2.7. Vegetation indices 

Indices incorporating solely visible wavelengths derived from phe
nocam included the vegetation contrast index (VCI; Eq. (1)) (Zhang 
et al., 2018) and widely used green chromatic coordinate (GCC; Eq. (2)) 
(Sonnentag et al., 2012). For all listed vegetation indices, general 
spectral band names are listed, for specific bandwidths see Table 1. 

VCI =
GREEN

(RED + BLUE)
(1)  

GCC =
GREEN

(RED + GREEN + BLUE)
(2) 

Phenocam NDVI and EVI were calculated using standardized pro
tocols in phenopix Eqs. (3) and ((4)) (Filippa et al., 2018; Petach et al., 
2014). Since the phenocam is not a traditional reflectance sensor, we list 
estimated spectral wavelengths based on previous comparisons with a 
spectroradiometer (Table 1) (Petach et al., 2014). Phenocam EVI 

constants adapted in phenopix were the same as implemented by MODIS 
(MOD13Q1), i.e., as a modification of NDVI (Liu and Huete, 1995) (G =
2.5, C1 = 6, C2 = 7.5, L = 1). We also used RCC as a proxy for RED, the 
NIR signal and the combined product of NIR and NDVI as another newly 
developed index which isolates NIR reflectance derived solely from 
vegetation (Camera NIRv; Badgley et al., 2017). In the special case of 
RED reflectance, since RED is strongly absorbed by healthy vegetation, 
we needed to invert annual curves to enable proper fitting based on the 
change in decreased reflectance. This resulted in some values being 
negative, so we simply set the minimum value of the inverted curve to 
zero. 

NDVI =
(NIR − RED)

(NIR + RED)
(3)  

EVI = G ×
(NIR − RED)

(NIR + C1 × RED − C2 × BLUE + L)
(4) 

For the SRS sensors, we used NDVI as calculated by the instrument 
(Eq. (3)), EVI2 (Eq. (5)) the standalone RED and NIR signals and the 
combined product of NDVI and NIR to generate SRS NIRv (Gamon et al., 
2015). Since blue is not available for the SRS sensor, we substituted EVI2 
as a comparable alternative (Eq. (5); Jiang et al., 2008). For clarity, we 
will simply refer to EVI2 as EVI in the subsequent text since we are using 
it as a proxy exclusively for SRS sensors. For MODIS we used the pre
pared 16-day vegetation indices product of NDVI and EVI, the stand
alone RED and NIR signals and the combined product of NDVI and NIR 
to generate NIRv. We used the same adjustment method for RED 
reflectance for both SRS sensors and MODIS bands by inverting the 
annual reflectance curve and setting minimum values to zero. 

EVI 2 (EVI proxy) = G ×
(NIR − RED)

NIR + (2.4 × RED) + L
(5)  

2.8. Phenological metrics and data analysis 

We used the phenopix R package for processing daily phenology time 
series of EC, phenocam, SRS and MODIS data (Phenopix R package; 
Filippa et al., 2016). As we aim to make comparisons across several 
phenological datasets we used as much of the same processing steps as 
possible including filtering of raw data, gap filling, curve-fit functions 
and phenoperiod breakpoint algorithms. Annual trajectories were fit 
with a double logistic function and phenoperiod breakpoint detection 
method specifically developed for carbon phenology applications (Gu 
et al., 2009). Uncertainty was estimated by bootstrapping curve fits 500 
times based on random noise in daily data to create an ensemble of 
curves, we report median values and a confidence interval indicating the 
10th and 90th percentiles of the distribution of generated phenoperiod 
transition dates (Filippa et al., 2016). 

NEP derived from EC measurements was used as a benchmark for 
defining phenoperiod transitions based on site carbon phenology. We 
used this benchmark to compare indices and spectral bands generated 
from phenocam and reflectance sensors. Following conventions estab
lished by Gu et al. (2009), there are 5 distinct phases of seasonal vege
tation productivity (i.e., pre, recovery, stable, senescence and 
termination phases) marked by ecologically meaningful transitional 
phase changes. These periods consist of upturn day (UD), stabilization 
day (SD), downturn day (DD) and recession day (RD), which are similar 
to traditional phenological change terminologies (e.g., green-up, 
maturity, senescence and dormancy) (Filippa et al., 2016; Gu et al., 
2009). After entering the spring recovery phase, rates of carbon 
sequestration quickly increase reaching a steady state maximum at the 
stabilization day. Maximum rates are maintained over the stable period 
before initiation of a rate decrease on the downturn day. As rates of net 
productivity continue to decrease, the system transitions back to a net 
carbon source marking the recession day and onset of the dormancy 
period. Additional information was calculated including overall length 

Table 1 
Spectral bandwidth ranges for phenocam*, SRS sensors and MODIS.  

EM value Phenocam (nm) SRS (nm) MODIS (nm) 

Blue 430–515 – 459–479 
Green 510–570 – 545–565 
Red 575–710 645–655 620–670 
NIR 800–815 805–815 841–876  

* Bandwidths listed for phenocam were estimated from spectroradiometer 
comparisons (Petach et al., 2014).  
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of the carbon sink season, as the timing between recession and upturn 
days (Gu et al., 2009) and maximum increasing (recovery/green-up) and 
decreasing (senescence) rates of spring and fall transitional change 
(Filippa et al., 2016). 

To gain insight on which sensors and VI’s are best able to track daily 
changes in carbon phenology, ordinary least squares (OLS) linear 
models were assembled for each NEP-VI relationship. Models were 
assembled using combined data from both study years and assessed 
using 5-fold cross validation with R2 and root mean square error (RMSE) 
metrics. We also completed simple regression models individually for 
each year to assess the degree of interannual variation in the NEP-VI 
relationships. In addition, proximal sensor indices and spectral bands 
were compared to corresponding MODIS indices and bands. All data 
preparation, preprocessing and analysis was completed using R open- 
source software version 3.6.1 (R Core Team 2019). 

3. Results 

3.1. Net ecosystem productivity benchmarks and climate 

Daily mean NEP was statistically similar between years (p=0.567, t- 
test using daily data) with overall means of 0.53 ± 1.58 and 0.45 ± 2.00 
µmol CO2 m−2 s−1, for 2017 and 2018 (± sd). Daily daytime mean NEP, 
the benchmark to define site carbon phenology, was also statistically 
similar (p=0.797) with overall means of 2.85 ± 4.15 and 2.93 ± 4.84 
µmol CO2 m−2 s−1 for 2017 and 2018 (Fig. 2). The annual sum of NEP 
was 199.2 ± 5.7 and 170.3 ± 5.9 g C m−2 yr−1 for 2017 and 2018. 

On a monthly basis, daily rates were also statistically similar, espe
cially during summer and fall months, with only December, January and 
March showing significant differences (p<0.01). In 2018, the upturn 
day, which marks start of carbon sink season (i.e., NEP > 0), was 
reached 10 days later while stabilization was reached earlier (DOY 150, 
2018 vs. DOY 159, 2017), resulting in a shorter recovery period (46 days 
vs. 27 days for 2017 and 2018). Despite differences in early season 
phenology the stable period was similar between years (77 days vs. 80 
days for 2017 and 2018), yet 2018 had higher peak values and downturn 
day arrived 6 days later and persisted longer with dormancy onset 10 
days later, extending the senescence period (72 days vs. 88 days for 2017 
and 2018). The curve shapes of daytime NEP were different, yet in both 
years there was faster recovery rates in spring and slowed rates of 
senescence in fall (Fig. 2). 

Meteorological data showed differences between years (Fig. 3, 
Table S1), especially during late winter and spring of 2018 where 
greater winter chill was followed by suppressed springtime tempera
tures. The cumulative late winter-early spring (months of JFMA) tem
perature was 11.2 ◦C cooler during 2018 compared to 2017. Mean 
annual precipitation totals were comparable between years (28 mm and 
34 mm for 2017 and 2018) yet when considering monthly totals, simi
larities rarely coincided between years. Differences were greatest during 

fall and winter months of 2018 when the site received twice as much 
precipitation compared to the same period in 2017. 

3.2. Phenoperiods and transition dates 

Comparing phenoperiod dates generated from proximal sensors and 
MODIS with carbon phenology dates derived from site NEP (Fig. 4), the 
prediction of upturn day was best captured by VCI and GCC (1–3 days 
ahead of benchmark, 2017 and 3–4 days behind benchmark, 2018) and 
NDVI (7 days ahead, 2017 and 5 days behind, 2018) from the phenocam 
and NIRv from SRS sensors (1 day ahead, 2017 and 2 days behind, 
2018). Other NIR containing phenocam indices were variable (EVI, 
NIRv), yet of these, NIRv had the best interannual consistency (5–12 
days ahead). SRS NDVI consistently underpredicted the upturn day (5- 
21 days behind) while EVI offered some improvements (1–13 days 
behind). Primary indices from MODIS consistently underpredicted this 
key transition date with the most discrepancy, approximately 6–30 days 
prior to actual onset of the carbon sink season. While NIR reflectance 
was more variable, RED tended to underpredict for proximal sensors 

Fig. 2. Annual trajectories of daily daytime mean 
NEP for A) 2017 and B) 2018 with key phenology 
metrics of upturn day (UD) (blue), stabilization 
day (SD) (green), downturn day (DD) (purple), 
recession day (RD) (red) and length of carbon sink 
(LCS) (orange). Grey points represent filtered daily 
daytime NEP and solid black line is the median 
value of 500 curve fit ensembles. (For interpreta
tion of the references to color in this figure legend, 
the reader is referred to the web version of this 
article.)   

Fig. 3. Daily mean meteorological data for: A) air temperature (black), B) 
precipitation (blue), C) vapor pressure deficit (red) with 5 day rolling mean 
(black), D) daytime photosynthetically active radiation (PAR) (orange) with 5 
day rolling mean (black). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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(13–27 days behind for phenocam, 100–121 days behind for SRS). 
Phenocam indices consistently overpredicted onset of stabilization 

(17–33 days ahead) while SRS indices generally performed better (1 day 
behind to 10 days ahead). MODIS indices also overpredicted stable 
period onset (11–27 days ahead). NDVI and EVI were the best pre
forming indices for all sensors, predicting within 17–21 days for phe
nocam, 1–10 days for SRS and 11–19 days for MODIS. There was a 
tendency for NIR to overpredict across sensors yet RED was more vari
able with smaller overpredictions from phenocam (5–23 days ahead), 
yet large underpredictions from SRS (30–37 days behind) and MODIS 
(28–40 days ahead). 

The downturn of maximum net productivity from tower NEP showed 
only a 6-day interannual difference and primary phenocam indices 
predicted within a similar annual window (DOY 220–230), with these 
dates always occurring prior to the rate decrease in net productivity 
(6–18 days behind, 2017 and 6–14 days behind, 2018). SRS sensors were 
more variable as was MODIS, especially for EVI and NIRv where there 
was inconstancy in date directionality (underpredictions in 2017, 
overpredictions in 2018) while NDVI consistently overpredicted (9–44 
days ahead for SRS and 8–13 days ahead for MODIS). NIR across sensors 
generated a date range similar to other indices and this was also true of 
RED for phenocam, but for SRS and MODIS RED tended to overpredict. 

The prediction of the recession day was best captured by MODIS 
NIRv (2 days behind to 1 day ahead). Followed by phenocam visible 
wavelength indices (6 days behind to 2 days ahead), SRS NIRv (3 days 
behind to 6 days ahead), and phenocam NIRv (11 days behind to 6 days 
ahead). Other indices which incorporate NIR wavelengths over
estimated season end dates, with phenocam NDVI and EVI ahead 37–47 
days, SRS NDVI and EVI ahead 9–19 days and MODIS NDVI and EVI 
ahead 7–46 days. As with the upturn day, NIR was variable across 
sensors tending towards underprediction in 2017 and overprediction in 

2018, yet RED generated considerable overpredictions for both SRS 
(40–47 days ahead) and MODIS (47–50 days ahead). 

3.3. Length of carbon sink season and transitional rates of phenological 
change 

Although season start and end dates were different between years, 
overall length of the carbon sink period was identical (195 days). Since 
LCS is defined by upturn and recession days, sensors and indices which 
best predict these dates in relation to tower NEP will have the best LCS 
estimates, but this is also the case for indices which have consistent 
offsets between season start and end dates (i.e., predict right for the 
wrong reason). The best and most consistent LCS season estimates due to 
correct UD and RD prediction were generated from phenocam visible 
wavelength indices which fell within 1–6 days for 2017 and 0–3 days for 
2018 (Fig. 5). 

This was closely followed by NIRv from SRS sensors and MODIS 
(more variable) which fell 4–7 and 4–28 days ahead of the actual carbon 
sink length, respectively. However, NIRv from phenocam differed by 
overpredicting season start dates and good agreement in 2017 (within 1 
day) was due to consistent overprediction offsets which did not occur for 
2018 where RD was underpredicted (within 11 days). Other primary 
indices considerably overpredicted LCS season with estimates ranging 
from 14 to 66 days ahead of tower NEP benchmarks. Largest over
predictions in this category were from MODIS NDVI (66 and 55 days 
ahead for 2017 and 2018). Similar to phenoperiod date predictions, NIR 
caused variable LCS estimates (underpredictions in 2017 and over
predictions in 2018) while SRS and MODIS RED caused the largest 
overpredictions (48–168 days ahead). 

We also examined sensors and indices for ability to capture 
maximum rate increases at which the system becomes a net carbon sink 

Fig. 4. Phenoperiod transition date comparisons for 
A) 2017 and B) 2018 between phenocam (P) (cir
cle), SRS sensors (S) (square), MODIS (M) (triangle) 
and NEP benchmarks (vertical black lines). Numbers 
indicate days deviation from the median value of 
NEP benchmarks. UD (upturn day), SD (stabilization 
day), DD (downturn day) and RD (recession day). 
VCI (blue), GCC (green), NDVI (red), EVI (orange), 
NIR (grey), RED (pink) and NIRv (purple). Error 
bars and width of vertical grey bars represent the 
10th and 90th percentiles from curve fit boot
strapping. (For interpretation of the references to 
color in this figure legend, the reader is referred to 
the web version of this article.)   
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during recovery and conversely, the maximum rate of decreasing net 
carbon sink during senescence (Fig. 6). Reported rates are unitless as we 
scaled and standardized all indices for ease of comparison across sensors 
with different output ranges. Rates of increasing carbon sink observed 
from tower NEP occurred nearly 2 times faster during 2018 (0.096) 
compared to 2017 (0.054) yet rates of decrease were similar (-0.035 and 
-0.027 for 2017 and 2018). There was relatively tight grouping, indi
cating that all sensors and indices were able to capture similar rates of 
spring and fall phenological change. Rates of increase in spring tended to 
be underestimated by sensors and indices but the magnitude of sepa
ration was greater during 2018. Indices from the SRS sensor (NDVI, EVI, 
NIRv) tended to capture rates of increase most similar to NEP. Rates of 
decrease were more variable between years with most indices 
decreasing slower than tower NEP in 2017 and faster in 2018. 

3.4. Tracking net ecosystem productivity 

All vegetation indices were able to track annual changes in NEP, yet 
curve architecture and magnitudes did not always coincide with the 
course of NEP (Fig. 7). 

The greatest signal noise was generated by NIR and RED wavelengths 
from phenocam and SRS sensors. The least noise was generated from 
phenocam GCC and NIRv, and SRS NDVI and NIRv, the latter coincides 
with reduced spectral bandwidths (i.e., larger bandwidths create more 
signal noise). During dormancy periods we expect that curves should 
become constant from reduced spectral response, yet there was some 
degree of signal carry over into dormancy for primary indices which 

utilize RED and NIR bands, although this was not as obvious for SRS 
sensors. 

Results from combined year ordinary least squares (OLS) regression 
modeling shows that nearly all sensors and associated primary vegeta
tion indices strongly correlate with site NEP (R2 = 0.81-0.93) (Fig. 8, 
Table 2). Best fits were from phenocam visible wavelength indices (R2 =

0.92–0.93) while the next best clustering consisted of phenocam NDVI 
(R2 = 0.89), SRS EVI (R2 = 0.89), MODIS NDVI and EVI (R2 = 0.87 to 
0.90) and SRS and MODIS NIRv (R2 = 0.88). This was followed by 
phenocam EVI and NIRv (R2 = 0.81–0.83) and SRS NDVI (R2 = 0.84). 
Fits with least agreement were produced by NIR (R2 = 0.69–0.81) and 
RED bands (R2 = 0.37–0.73) although NIR still had arguably strong 
correlations with NEP. 

In fall, NEP values were typically lower at a specified VI value than 
the corresponding VI value in spring where NEP was higher. This sep
aration in spring-fall NEP-VI values was most apparent for phenocam 
indices, especially NDVI and EVI, yet most sensors and indices displayed 
some degree of disparity between spring and fall values. Looking at in
dividual year regressions, this was consistent between years (see year- 
wise models, Figs. S3 and S4). The pattern was less obvious with 16- 
day MODIS data. 

We also compared indices from proximal sensors with corresponding 
MODIS indices (Fig. 9), to gain insight on how reflectance is related at 
different spatial domains and to inspect relationships between proximal 
sensors and MODIS. The comparison of RED and NIR components was 
very similar between proximal sensors and MODIS with moderately 
strong relationships with NIR and a much weaker relation with RED. 
Primary indices had strong agreement with phenocam NDVI yet there 
were clear differences between proximal sensors with phenocam NDVI 
and SRS EVI and NIRv preforming best. 

4. Discussion 

This study tests common proximal sensors and MODIS-derived 
indices to predict phenoperiod transition dates and monitor ecosystem 
carbon phenology within a salt marsh. We postulated all sensors and 
indices have the ability to track changes in NEP, but proximal sensors 
should perform better by offering higher temporal resolution and 
greater footprint representation of the ecosystem, while minimizing 
atmospheric interference or issues with mixed pixels. Our hypothesis 
was supported for tracking and generally supported for phenoperiod 
date predictions. As postulated, phenocam tracking and phenology 
metrics closely aligned with tower NEP as the vegetation footprint is 
larger and more inclusive compared to spatially limited SRS measure
ments. We expected indices which incorporate infrared wavelengths to 
perform better as information is relayed on factors which affect plant 
physiological function and metabolism, yet this was not the case. Our 
results highlight that salt-marsh vegetation poses several challenges 
when dealing with commonly applied vegetation indices (NDVI, EVI), 
especially for season start and end dates. These findings provide insights 
to improve our understanding of carbon phenology and vegetation 
reflectance dynamics in underrepresented salt-marsh ecosystems while 
providing sensor and vegetation-indices recommendations with com
parisons across spatial scales. 

4.1. Net productivity carbon phenology and interannual variation 

Carbon phenology metrics defined by NEP integrates multiple 
ecological processes occurring across the landscape (Fatichi et al., 
2019). We highlight that challenges exist in partitioning NEP into GPP 
and respiration within salt-marsh ecosystems as tidal flow, salinity and 
lateral transport of carbon can influence land-atmosphere mass ex
change dynamics (Knox et al., 2018; Huang et al., 2019; Moffett et al., 
2010, Trifunovic et al., 2020), and alter Q10 relationships (Wei et al., 
2020). In this study, we focused on NEP measurements which provide a 
direct assessment of carbon phenology in an ecosystem with unique 

Fig. 5. Length of carbon sink season for A) 2017 and B) 2018. Solid vertical 
black line is length of net carbon sink season determined from NEP (195 days 
for both 2017 and 2018). VCI (blue), GCC (green), NDVI (red), EVI (orange), 
NIR (grey), RED (pink) and NIRv (purple). Error bars represent the 10th and 
90th percentiles from curve fit bootstrapping. (For interpretation of the refer
ences to color in this figure legend, the reader is referred to the web version of 
this article.) 

A.C. Hill et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 307 (2021) 108481

8

biophysical controls without inserting confounded or biased informa
tion from a modelling approach for partitioning NEP. Our methodology 
is supported by several studies that have used measurements of net 
carbon exchange to track annual changes in carbon phenology (Garrity 
et al., 2011; Balzarolo et al., 2016; Zhao et al., 2020; Dronova et al., 
2021). This method is also useful for applications aimed at reducing 
greenhouse gas emissions and monitoring to support carbon market and 
trading programs (Baldocchi et al., 2020) or assessing vegetation dy
namics following marsh restorations (Negandhi et al., 2019; Tang et al., 
2018). 

Timing and duration of recovery and senescence periods varied be
tween years, yet season length and interannual NEP totals were similar. 
This indicates that duration of carbon sink season as determined by UD 
and RD dates exerts more influence on annual budgets than approximate 
length of phenological periods, albeit transition dates of midseason 
metrics and rates of phenological change do exert influence in deter
mining UD and RD dates (Gu et al., 2009). The onset of the 2018 re
covery period was delayed 10 days compared with 2017 which likely 
stemmed from heighted winter chill that carried over to substantially 
reduce springtime temperatures. Severity of winter chill has been 
identified as a primary driver affecting greening onset in salt marshes 
and the date of this key transition exerts the most influence on subse
quent photoperiods and overall growing season length (O’Connell et al., 
2020). This may also explain why the recovery phase ended sooner, 
greatly reducing the length of the greening period (27 days in 2018 vs. 
46 days in 2017). While the stable period was similar in length, the 
senescence period in 2018 spanned 16 days longer and extended 10 days 
later into the year. The exact mechanisms for these differences are 
beyond the scope of this paper, yet in 2018 during late fall early winter 
(OND months) we observed both greater precipitation (4.5 mm, 2018 vs. 
1.9 mm, 2017) and lower tidal stream salinity (5.0 ppt, 2018 vs. 11.1 
ppt, 2017). Previous studies have reported that changes in salinity are 
associated with fluctuations in greenhouse gas emissions in this salt 
marsh (Capooci et al., 2019; Seyfferth et al., 2020). Furthermore, we 
postulate these events played a role extending the senescence period as 

precipitation can influence temporal variations in greenness (Zhu et al., 
2019) and salinity levels over 12 ppt have been shown to decrease rates 
of productivity in S. alterniflora (Courtney et al., 2016). Climate factors 
play an important role in determining length and transitional dates of 
phenoperiods, yet within the salt marsh there appears some degree of 
resiliency to interannual weather patterns as there was only a 28.9 umol 
m−2 yr−1 difference between annual NEP totals. 

4.2. Phenocam carbon phenology transition dates 

Indices from the same sensor with spectral similarities had consistent 
phenoperiod prediction trends such as phenocam VCI and GCC visible 
wavelength indices or NDVI and EVI. Sometimes this was true across 
sensors such as NDVI from SRS and MODIS, but this was not always the 
case as different sensors utilize unique bandwidths and have different 
center points of electromagnetic reflectance (Table 1) (Huang et al., 
2019; Dian et al., 2016). 

Phenocam visible wavelength indices consistently performed best at 
detecting key season start and end dates. Other phenocam indices had 
larger discrepancies and consistently overestimated dormancy onset. 
This indicates a disconnection between both RED and NIR reflectance 
and fluxes which we attribute in-part to above-ground aerenchyma that 
directly bridges the soil-atmosphere interface, providing an abiotic 
mechanism which exerts influence on ecosystem scale fluxes. In some 
species such as S. alterniflora, ambient air is pulled through petioles and 
culms via pressure driven through-flow, thus increasing intercellular air 
spaces in aboveground tissues (Colmer and Flowers, 2008; Sorrell and 
Brix, 2013). This air space and resulting ratios of exposed mesophyll 
cells can strongly influence NIR reflectance (Slaton et al., 2001, Wool
ley, 1971). Based on evidence of plant mediated transport of methane in 
S. alterniflora (Tong et al., 2012), and seasonal peaks observed during 
fall months (Cao et al., 2020), a maximization of aerenchyma likely 
occurs later in the season which coincides with a period of maximal 
reflectance interference in NIR containing indices. Development of 
aerenchyma tissue exhibits a strong degree of plasticity in response to 

Fig. 6. Normalized rates of phenological 
change for A) recovery phase 2017, B) senes
cence phase 2017, C) recovery phase 2018, D) 
senescence phase 2018. Vertical black lines 
represent rates of change in NEP. VCI (blue), 
GCC (green), NDVI (red), EVI (orange), NIR 
(grey), RED (pink) and NIRv (purple). Circle 
(phenocam), square (SRS) and triangle 
(MODIS). Error bars and width of vertical grey 
bars represent the 10th and 90th percentiles of 
curve slopes from curve fit bootstrapping. (For 
interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.)   
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flooding and hypoxic soil conditions (Maricle and Lee, 2002). In much of 
the same way that soil temperature variations cause spatial variations in 
phenology (O’Connell et al., 2020), we postulate that site specific 
elevation gradients and hydrology may also play a role in heterogeneity 
of altered end of season reflectance signals via an uneven distribution of 
above ground aerenchyma across the landscape. 

High percentages of standing dead biomass and exposed sediments 
containing organic matter also contribute to end of season discrepancies 
and these effects transfer over into the recovery period. It has been 
established that dead biomass and exposed soils can cause discrepancies 
in reflectance indices (Taddeo et al., 2019; Xu et al., 2014), while 
decoupling NEP-VI relationships (Rocha et al., 2008), and efforts at 
disentangling this interference has proved difficult (Ren and Zhou, 
2019). Results from Knox et al. (2017) support our findings on the su
perior performance of visible wavelength indices in marsh environments 
where phenocam GCC performed better than NDVI in parametrizing a 
light use efficiency model to estimate productivity which was attributed 
to dead biomass. Similar effects have been confirmed from grasslands 
and deciduous forests where the trajectory of daily NDVI lags behind 
GCC as the latter is responsive to color changes and NDVI is sensitive to 
changes in leaf area (Filippa et al., 2018). Further, salt marsh sediments 
have persistently elevated soil moisture which can influence reflectance 
measurements when exposed. During spring (especially) and fall, when 

Fig. 7. Annual trajectories of daily vegetation indices and NEP. Phenocam: A) 
vegetation contract index (VCI), B) green chromatic coordinate (GCC), C) 
normalized difference vegetation index (NDVI), D) enhanced vegetation index 
(EVI), E) near-infrared (NIR), F) near-infrared of vegetation (NIRv), G) red 
chromatic coordinate (RCC). SRS: H) NDVI, I) EVI, J) NIR, K) NIRv, L) RED. 
MODIS (16-day): M) NDVI, N) EVI, O) NIR, P) NIRv, Q) RED. NEP: R) mean 
daytime NEP. Dashed lines represent best fit curves generated in phenopix. 
Vertical colored lines are NEP phenoperiod benchmark dates of upturn day 
(blue), stabilization day (green), downturn day (purple) and recession day 
(red). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 8. NEP-VI relationships using daily data from A) phenocam, B) SRS and C) 
MODIS 16-day MOD13Q1 for combined years (2017–2018). Color coding 
represents phenoperiods as determined by sensor and vegetation index specific 
breakpoint results, blue = recovery period (green-up), green = stable period 
(maturity), purple = senescence period (senescence) and red/orange = dormant 
period/pre-season dormant period (dormancy). Solid black lines are linear fit 
and dashed lines are exponential fit, only shown for SRS NDVI (R2 = 0.89) and 
MODIS NDVI (R2 = 0.90). All models were significant (p<0.001). (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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vegetation is inactive, yet sediments are thawed, there is likely larger 
mismatch in reflectance/absorbance expectations as antecedent mois
ture strongly absorbs both RED and NIR wavelengths. While visible 
wavelengths indices (VCI, GCC) provide a measure of canopy greenness, 
this may not be consistently related with leaf chlorophyll concentration 

at higher midseason LAI’s (Keenan et al., 2014), however it is plausible 
that shorter canopies which exhibit lower leaf area while lacking woody 
stems have higher coupling of greenness-pigment relationships. Thus, 
greenness may infer functionality better within the salt marsh while also 
providing an estimate of the annual window in which vegetation is 

Table 2 
Combined year OLS linear model output summaries for phenocam, SRS sensors and MODIS using daily data. Note: all fits were significant (p<0.001).  

Sensor VI Variables Estimate SE t-value RMSE R2 

Phenocam VCI Intercept −21.36 0.29 −74.58 1.40 0.92 
Slope 47.98 0.54 89.13 

GCC Intercept −36.59 0.42 −87.93 1.25 0.93 
Slope 117.40 1.20 97.57 

NDVI Intercept −11.29 0.20 −56.05 1.49 0.89 
Slope 29.86 0.38 77.99 

EVI Intercept −6.57 0.20 32.83 2.12 0.81 
Slope 38.91 0.70 55.92 

NIR Intercept −12.12 0.40 −30.12 2.78 0.69 
Slope 76.94 1.89 40.67 

NIRv Intercept −4.22 0.15 −28.01 1.80 0.83 
Slope 70.23 1.16 60.40  

RED Intercept −6.82 0.26 −26.72 2.46 0.73  
Slope 476.27 10.72 44.43 

SRS NDVI Intercept −4.04 0.14 −28.62 1.97 0.85 
Slope 20.50 0.32 63.37 

EVI Intercept −1.55 0.09 −17.21 1.57 0.89 
Slope 88.24 1.14 77.58 

NIR Intercept −7.38 0.24 −30.28 2.33 0.76 
Slope 217.81 4.46 48.81 

NIRv Intercept −1.31 0.09 −14.15 1.72 0.88 
Slope 211.91 2.89 73.40  

RED Intercept −1.87 0.30 −6.109 4.00 0.37 
Slope 336.64 16.24 20.73  

NDVI Intercept −9.22 0.75 −12.22 1.14 0.87 
Slope 25.70 1.45 17.73 

EVI Intercept −5.15 0.47 −10.90 0.80 0.90 
Slope 33.39 1.63 20.39  

NIR Intercept −9.05 0.93 −9.705 1.37 0.81 
MODIS Slope 61.71 4.37 14.122  

NIRv Intercept −3.20 0.42 −7.609 0.79 0.88  
Slope 60.73 3.23 18.811  

RED Intercept −6.24 1.56 −3.998 3.39 0.47  
Slope 209.98 32.09 6.544  

Fig. 9. Proximal sensor comparison with 16 day MODIS data. Color coding represents vegetation indices and reflectance bands, red = NDVI, orange = EVI, purple =
EVI2, grey = NIR and pink = RED. Solid black lines are linear fit. All models were significant (p<0.001), RED models (p<0.01). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 
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biochemically active and participating in gas exchange. 
All phenocam indices overestimated starting dates of stabilization 

while underestimating onset of senescence yet there was considerable 
precision for these midseason metrics. For stable period onset, this was 
indicative that phenocam observed changes in both greenness levels and 
canopy structure that were occurring beyond when peak ecosystem net 
productivity rates were achieved. Maximum rates of increasing ampli
tude were lower in most indices, further supporting that maximum NEP 
is achived before vegetation reflectance becomes stable. Another pos
sibility is that ecosystem respiration ramps up during the midseason 
period driven by soil temperature or increased root exudates and sub
strate availability of soil organic carbon (SOC; Hu et al., 2020; Trifu
novic et al., 2020), effectively masking any further productivity increase 
as vegetation reaches maturity. Correspondingly, for senescence onset, 
phenocam observed both pigmentation and canopy structural changes 
occurring before the steady decline in net productivity. One possibility 
for this discrepancy is degradation within upper canopy leaves while 
subcanopy vegetation continues at near stable period productivity rates. 
Although recognized as an issue in forested systems (Ahl et al., 2006), it 
suggests that even when dealing with a relatively short canopy, more 
information could be required about subcanopy conditions. It is 
important to recognize that NEP measured with the EC technique 
essentially integrates all components of the canopy and misses potential 
lateral fluxes of carbon (Trifunovic et al., 2020), while spectral sensors 
focus primarily on top of canopy reflectance information (Dechant et al., 
2020). 

During midseason periods, greenness (proxy for chlorophyll 
pigmentation and photosynthetic capacity) and structural changes are 
more in sync as observed by phenocam. In regard to NEP, this is reflected 
as a midseason plateau in most ecosystems where daily rates of NEP hold 
steady (i.e., stable period) (Gu et al., 2009). Midseason phenology dates 
derived from phenocam visible wavelength indices and infrared bands 
showed similarities between years, within 13 and 9 days for 2017 and 
2018 stabilization dates and within 12 and 6 days for 2017 and 2018 
downturn dates, respectively. This indicates that during the stable 
period of sustained maximum net productivity the canopy likely tends to 
optimize structure for functionality and just as equally, optimizes 
functionality from structure. This is especially the case in highly clonal 
stands where individual and canopy optimization goals are more aligned 
(Anten, 2004). These findings are supported by the Monsi–Saeki theory 
which states plant canopies will tend towards an optimal structure (LAI, 
leaf angle, density) to maximize photosynthetic efficiency and in stands 
with little or no interspecific competition, such as a salt marsh, the op
timum structure-function relationship is more attainable (Hirose, 2005). 

4.3. SRS and MODIS carbon phenology transition dates 

Primary indices from SRS sensors (NDVI) and MODIS-derived indices 
(NDVI and EVI) underpredict start and overpredict end of carbon sink 
season while midseason metrics are inconsistent. This results in over
predictions of carbon sink season length. We emphasize that a combi
nation of ecosystem specific factors (e.g., aerenchyma, exposed 
sediments, elevated soil moisture, dead vegetation) likely introduce 
discrepancies with indices incorporating infrared reflectance. MODIS- 
derived indices had larger offsets compared to SRS sensors which is 
likely the combined result of vastly different viewing footprints (250km 
vs. ~9m), temporal resolution (16-day vs daily), spectral bandwidth 
differences (SRS sensors have narrower bandwidth; Table 1) and 
orientation angles. Phenological information extracted from MODIS 
MOD13Q1 product requires interpolation which can fail to accurately 
capture periods of rapid change (Rankine et al., 2017). SRS sensors 
showed improvements, but results were inconsistent due to increased 
reflectance scattering in infrared bandwidths. At our site, SRS sensors 
are positioned with a larger downward angle from the horizontal, thus 
there is potential for greater interference from sediment and water 
backgrounds (especially under flooded conditions). While SRS NIRv 

provided improvement as it was designed to minimize non-vegetation 
infrared signals, lingering infrared reflectance in late 2018 caused dis
crepancies. Midseason metrics were characterized by inconsistencies in 
both sensors although patterns were evident. Mainly under prediction of 
stabilization and over prediction of downturn which was the opposite 
trend of phenocam. The shift was greater for downturn indicating end of 
season discrepancies were beginning to develop earlier than phenocam. 
This may indicate that changes in reflectance spurred by intermixed 
living and dead vegetation occurs more rapidly with sharper sensor 
angles within the relatively narrow bandwidths of SRS and MODIS while 
phenocam response was more mediated by larger viewing fields, oblique 
orientation and wider spectral bandwidths. Although MODIS products 
are commonplace in parameterizing earth system models, other less 
utilized satellite products could prove better and should be considered in 
future studies (i.e., Landsat and Sentinel products; Kowalski et al., 
2020). 

4.4. Daily net productivity tracking using spectral reflectance 

All sensors and vegetation indices tracked daily NEP with moder
ately strong correlations but visible wavelength indices and NDVI from 
phenocam provided best fits. This resulted from tight coupling between 
spring and fall time VI-NEP relationships. Other indices which included 
an infrared band had higher degrees of separation which generated a 
seasonal hysteresis pattern where springtime reflectance values were 
associated with higher NEP compared to fall. Although the overall fit for 
phenocam NDVI was high (R2 = 0.87) it was not devoid of this spring- 
fall mismatch. The description of this phenomenon is lacking in salt- 
marsh literature yet has been documented for relationships between 
NDVI and fraction of absorbed PAR in grassland (Flanagan et al., 2015; 
Wang et al., 2020), cropland (Gitelson et al., 2014; Peng et al., 2017), 
and deciduous broadleaf forests (Muraoka et al., 2013). This is likely a 
plausible phenomenon generated by physiological declines in efficiency 
of photosynthetic machinery and CO2 harvesting enzymes during fall 
months, resultant from photooxidation effects accumulated over the 
growing season (Liu et al., 2019). This assertion is supported by 
considerably lower light saturation levels (~1000 µmols) compared to 
typical C4 plants (Kathilankal et al., 2011), where vegetation is sub
jected to saturating levels for most of the growth cycle which increases 
photosystem stress and places demand on non-photochemical quench
ing processes. Thus, phenocam NDVI appears to give more detail in 
context of seasonality while providing linear fits comparable to visible 
wavelength indices. 

It was evident that some VI-NEP relationships, mainly NDVI from 
SRS and MODIS, appear to follow an exponential fit. While imple
menting this provided slight improvements (R2 = 0.85 linear vs. R2 =

0.89 exponential for SRS NDVI) (R2 = 0.87 linear vs R2 = 0.90 expo
nential for MODIS NDVI), the responses were identical for phenocam 
(R2 = 0.90). This could indicate tendency for saturation at higher 
reflectance values with SRS and MODIS which use narrower red full 
width half maximum bandwidths (10 and 50 nm, respectively) 
compared to phenocam (135 nm). We highlight that phenocam is the 
only sensor with spectral overlap which extends into infrared and red 
edge spectral regions (680–750nm) (Horler et al., 1983), whereas SRS 
sensors have relatively limited bandwidths (Gamon et al., 2015) and 
MODIS was engineered to very specific wavelengths to prevent atmo
spheric interference issues. This broadband capability allows phenocam 
NDVI to incorporate physiological information on chlorophyll content 
while relaying information on LAI and canopy structure (Brown et al., 
2016; Rossi et al., 2019). This could explain why phenocam NDVI 
tracked daily NEP similar to visible wavelength indices yet generated 
large discrepancies by overestimating season end dates. Results of this 
study show that specific sensors and vegetation indices may be suited to 
different spatiotemporal applications such as subcanopy phenology 
profiles, species specific reflectance, delineating and parsing key regions 
of interest within an ecosystem and whole ecosystem coverage, but 
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within a salt marsh environment where soils and vegetation possesses 
unique physical properties, the phenocam offers a wide range of these 
applications while providing accurate daily tracking and phenoperiod 
predictions. 

4.5. Proximal sensors vs MODIS 

Differences between spatial domains showed disconnections with 
RED and NIR reflectance while primary indices had better agreement. 
Aside from spectral bandwidth discrepancies (mostly phenocam) there 
are two main differences between proximal and MODIS data: 1) viewing 
angle and acquisition interval; and 2) EC footprint-to-target-area 
mismatch. While longer acquisition intervals likely contributes to 
challenges of generating accurate phenology parameters it should be 
less problematic for general tracking. Our results suggest added effects 
from viewing angle discrepancies as the oblique view provided by 
proximal sensors (especially phenocam) captures canopy reflectance at 
an apparent higher vegetation density from increased stand overlap than 
does the nadir view provided by MODIS (Ryu et al., 2014). In this re
gard, MODIS will inherently have greater interference from exposed 
sediments and open water features. This should be especially relevant 
for dominate short form Spartina vegetation located on marsh platforms 
which is characterized by low leaf area and pronounced upright growth 
to minimize saturating levels of PAR. Finally, there is bias as a conse
quence of potential EC footprint-to-target-area mismatch (Chu et al., 
2021). Our study site has high representativeness for a MODIS pixel of 
250m but (as in most EC towers) this representativeness is reduced for 
target areas beyond 500 m. The combination of viewing angle, acqui
sition interval and footprint-to-target-area mismatch may explain larger 
offsets from MODIS predictions. 

5. Conclusions 

Our assessment of phenocam, SRS sensors and MODIS revealed that 
while daily tracking was excellent across sensors, the most widely used 
and accepted indices such as NDVI and EVI suffered discrepancies dur
ing start and end of season dates which resulted in overpredictions of 
season length. These over predictions were greatest from MODIS- 
derived indices and narrowband SRS sensors which introduced diver
gence in the flux-reflectance relationship, thus affecting accuracy for 
carbon modeling applications. Our results provide support for pheno
cam as the preferred method in terms of accuracy, available features, 
sampling footprint and versatility for a salt marsh where there is both 
interpretation and scaling challenges. Given the heterogeneities of the 
salt marsh, phenocam allows for consideration of a larger viewing 
footprint which integrates more of the processes observed by the flux 
tower. Available spectral channels and bandwidths allows for formula
tion of numerous indices that can provide insight into different aspects 
of ecosystem phenology including structural and functional changes 
with the added benefit of providing true color human viewable images. 
This feature can be leveraged to monitor site conditions while offering a 
friendly and familiar medium for citizen science opportunities and ed
ucation. Additional benefits include support from the phenocam 
network on site-specific camera model selection, configuration, imple
mentation and free long-term image data archiving. 

While MODIS-derived indices have obvious advantages with respect 
to global coverage, serious limitations arise when dealing with an 
ecosystem that is spatially limited and confined to coastal interfaces. The 
impetus for global coverage cannot evade the need for remote sensing 
linkages, thus we need further studies which attempt to disentangle 
discrepancies introduced from standing dead biomass during dormancy 
and the mix of dead and living vegetation during spring and (especially) 
fall transitional periods. We need to look more closely at special con
ditions such as how changes in above ground aerenchyma tissues com
mon to wetland/salt marsh vegetation affects the spectral response, how 
gradients in elevation and sediment moisture (as drivers of aerenchyma 

development and canopy structure) may affect heterogeneity of altered 
reflectance signals and how residual salts on leaf surfaces can modify 
reflectance. It will be equally important to incorporate longer timeseries 
to help test consistencies between sensors and indices and across other 
salt marshes. Ultimately, our ability to accurately characterize pheno
logical cycles within the salt-marsh environment will help to improve 
modeling efforts as physiological parameters are not static, but rather 
dynamic in response to the interplay of annual climatic conditions, 
biophysical factors and site ecology. Phenology provides an effective 
method for tracking daily changes in ecosystem carbon exchange while 
enabling the binning of time periods to derive more dynamic modeling 
parameters. 
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