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Salt marshes constitute an important terrestrial-aquatic interface that remains underrepresented in Earth System
Models due to constraining biophysical controls and spatially limited land cover. One promising approach to
improve representativeness is the application of proximal remote sensing to generate phenological information,
yet we lack detailed knowledge on how proximal sensors and indices perform within these ecosystems. We use
measurements of net ecosystem productivity (NEP) from eddy covariance (EC) and derive ecologically-relevant
phenology parameters (i.e., phenoperiods) to use as carbon phenology benchmarks. These benchmarks are
compared against vegetation indices and spectral bands derived from spaceborne (i.e., MODIS) or common
proximal sensors (i.e., phenocam and spectral reflectance sensors; SRS).

Phenocam derived indices, which exclude infrared wavelengths (i.e., vegetation contrast index; VCI and
greenness chromatic coordinate; GCC), aligned closely with NEP benchmarks and provided best predictions of
carbon sink season length (within 1-6 days of benchmark). Although isolating infrared from vegetation (NIRv)
offered improvements, other indices utilizing infrared bands (i.e., normalized difference vegetation index; NDVI
and enhanced vegetation index; EVI) primarily underestimated season start dates (5-30 days prior to benchmark)
while overestimating season end dates (7—47 days after benchmark). These discrepancies are greatest for indices
derived from MODIS and SRS sensors, which have narrower full width half maximum spectral bandwidths and
sharper orientation angles. The phenocam (VCI and GCC) provides the most accurate phenology parameters
while offering near-infrared (NIR) response which can generate additional information on seasonal changes in
canopy structure and function.

The distinctive characteristics of the salt marsh environment and vegetation properties including standing
dead biomass can introduce interpretation challenges for commonly used vegetation indices (NDVI, EVI).
Incorporating information from proximal sensors utilizing only visible wavelengths (VCI, GCC) or isolating the
near-infrared reflectance of vegetation (NIRv) offers improvements for studying carbon phenology within salt
marshes.

1. Introduction

Remote sensing offers a valuable resource for parameterizing
ecological models and provides a tool for monitoring changes in vege-
tation (i.e., phenology). Phenology provides a means to observe how
changes in spectral reflectance oscillate with plant photosynthesis or
respiration and more holistically, ecosystem carbon exchange (i.e.,
carbon phenology) (Piao et al., 2019; Richardson et al., 2013). There are
increasing efforts to link vegetation reflectance and carbon dynamics at
the ecosystem-scale across EC study sites (Gamon, 2015; Maleki et al.,
2020) and couple this information with global terrestrial carbon models
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(Yuan et al., 2010). Unfortunately, there are limitations for spaceborne
sensing applications within confined areas or limited landcovers (Hel-
man, 2018; Hmimina et al., 2013). In particular, there are challenges for
coastal ecosystems where geographies are bound by unique biophysical
conditions occurring within the aquatic-terrestrial interface (Ward et al.,
2020). The adoption of in situ near-surface remote sensing (i.e., proximal
sensing) which provides complementary information and continuous
validation for spaceborne applications offers important improvements.
Incorporating proximal sensing to observe and track phenological
changes via spectral reflectance may benefit representation of coastal
ecosystems in global carbon models, yet we lack knowledge on which
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proximal sensors and associated vegetation indices perform best within
this specific environment. Consequently, there is a need to test the
performance of common vegetation indices derived from spaceborne
and proximal sensors to track daily carbon phenology and predict phe-
noperiod transition dates.

This study focuses on salt marshes as they are important components
of coastal ecosystems and the carbon cycle (McLeod et al., 2011). Salt
marsh grasses provide high productivity and the unique physical envi-
ronment enables long-term storage of carbon within anoxic sediments
(Barbier et al., 2011; Himes-Cornell et al., 2018; Seyfferth et al., 2020).
Salt marshes also have patchy distributions and occupy less than 1% of
terrestrial land surface (5.5 million ha), which generates challenges for
spaceborne remote sensing (McOwen et al., 2017). Earth System Models
(ESMs) reliant on common spaceborne data streams either omit or
misclassify these environments (Zhu et al., 2016; Forkel et al., 2015;
Meier et al., 2018), and there remains a need for better inclusion of
aquatic interfaces (Vazquez-Lule et al., 2019; Ward et al., 2020). This
lack of proper representation introduces uncertainties in model pro-
jections as ecological processes and drivers are different within
salt-marsh environments due to specialized vegetation characteristics
and biophysical conditions (Forbrich and Giblin, 2015; Weston et al.,
2014).

Although studies have examined phenology using spaceborne data in
salt marshes (Mo et al., 2015; Ghosh and Mishra, 2017), there remains
challenges for properly representing carbon phenology in these eco-
systems. Recent studies have examined phenological spatial heteroge-
neity within marshes using phenocams (O’Connell et al., 2020) and
compared phenology metrics between high and medium resolution
satellites while incorporating phenocam data (Dronova et al., 2021),
albeit the focus was on freshwater marshes. Advancements have also
been made at the continental scale where ecological models have been
coupled with spaceborne data to estimate productivity of coastal wet-
lands (Feagin et al., 2020). We highlight that accurate phenology in-
formation is essential for both interannual comparisons within and
between sites (e.g., differences in phenoperiod transition dates) and for
higher frequency intra-annual monitoring (e.g., assessing tidal effects on
ecosystem productivity). Improving remote sensing applications to
characterize land atmosphere interactions in these ecosystems is also
important for accurate monitoring and determining sequestration po-
tentials to support preservation and restoration initiatives while
providing quantitative information for local carbon markets (Sapkota
and White, 2020; Pham et al., 2019).

Phenology provides a firm framework for studying change in bio-
logical processes affecting ecosystem carbon dynamics. Seasonal acti-
vation of these processes is closely linked to rates of mass and energy
transfer and thus plays a key role in carbon cycle regulation. Linking
spaceborne and proximal sensing information of plant phenology (based
on spectral reflectance indices) with physiological plant processes (i.e.,
photosynthesis) has become a useful application for studying environ-
mental change (Richardson et al., 2013). These advances are driven in
part by increased availability and use of proximal sensors which in-
cludes narrow-band spectral reflectance sensors (SRS) (e.g., NDVI,
photochemical reflectance index; PRI) (Gamon et al., 2015; Garbulsky
et al., 2011) and visible-infrared enabled security cameras (phenocams;
Petach et al., 2014; Richardson et al., 2009; Sonnentag et al., 2012),
which have provided unprecedented information to validate and cali-
brate spaceborne approaches. Proximal sensors provide multi-temporal
information which enables site-level integration with EC measurements
(i.e., technique to measure exchange of mass and energy between the
land surface and atmosphere) (Balzarolo et al., 2016), while com-
plementing satellite measurements (Knox et al., 2017; Yan et al., 2019).
For example, methodologies developed by Gu et al (2009) utilize carbon
exchange data to assign 5 distinct periods to the vegetation growth cycle
based on annual trajectories of plant community carbon dynamics,
giving ecological relevance to phenological stages (i.e., phenoperiods).
Placing spectral and ecosystem carbon exchange information into these
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phenoperiods provides critical information about changes in ecosystem
carbon dynamics in context of seasonal ecological change (Trifunovic
et al., 2020; Vazquez-Lule and Vargas, 2021).

Our overarching goal is to test the performance of proximal sensors
to predict phenoperiod dates and track vegetation carbon phenology
based on net ecosystem productivity (NEP) within a temperate salt
marsh. Theoretically, NEP represents the net carbon balance integrated
from all biochemical processes occurring across the ecosystem. We
compare vegetation reflectance indices and spectral bands derived from
commonly used proximal sensors (i.e., phenocam, SRS) and spaceborne
platforms (i.e., MODIS). While vegetation reflectance patterns in
temperate terrestrial ecosystems usually follows the annual course of net
carbon exchange (Wu, 2012; Balzarolo et al., 2016), it is unclear if these
expected relationships are consistent in ecosystems representing the
terrestrial-aquatic interface (i.e., salt marshes).

We hypothesize that: (1) all sensors and indices will be able to track
the annual course of NEP, yet proximal sensors are expected to have
higher agreement with NEP than NASA’s Moderate Resolution Imaging
Spectroradiometer- (MODIS) derived indices. Proximal sensors offer
higher temporal resolution, better representation of the local footprint
of NEP and have reduced atmospheric interference. This should be
especially relevant for phenocam images which, depending on specific
configuration, offers larger viewing fields and integrates a larger canopy
swath. In many cases MODIS-derived indices correlate relatively well
with ground-based sensors (St Peter et al., 2018; Filippa et al., 2018), but
for coastal environments there is higher uncertainty (Feagin et al., 2020;
O’Connell et al., 2017; Vazquez-Lule et al., 2019). Further, the daily
time acquisition of proximal sensors should be able to represent more
pertinent information on marsh biogeochemistry (i.e., salinity and tide
influences); (2) indices which incorporate an infrared band are expected
to perform better than indices based solely on visible wavelengths as
more information is relayed on physiological function in regard to
canopy structure, water content, pigmentation and photosynthetic ca-
pacity (Badgley et al., 2017). Wavelengths not directly absorbed by
photosynthetic tissues (i.e., near-infrared) can offer greater physiolog-
ical detail while responding to changes in plant functional traits
(Ollinger, 2011). We recognize that uncertainties remain for coastal
wetlands where exposed sediments, surface water and elevated soil
moisture may influence spectral reflectance. Generally, while healthy
vegetation strongly reflects NIR while absorbing RED, soils reflect both
NIR and RED wavelengths yet wet soils reflect considerably less in both
bands due to strong absorption by water molecules (Ghulam et al., 2007;
Foroughi et al., 2020). The current study is novel as it quantifies how
different proximal sensors, MODIS, vegetation indices and spectral
bands respond to the unique properties of salt-marsh vegetation and
how well these reflectance properties align with changes affecting NEP
in this understudied ecosystem.

2. Materials and methods
2.1. Study site

The study site is the St Jones Reserve (39.09 N, 75.44 ‘W) which is
part of the Delaware National Estuarine Research Reserve (DNERR) and
the National Estuarine Research Reserve System (NERRS) supported by
NOAA (Fig. 1). The site is designated as a native brackish tidal salt
marsh, influenced hydrologically by both the St. Jones river (average
salinity, 8.2 + 1.8 ppt) and ocean waters from the Delaware Bay
(Capooci et al., 2019). The climate is humid subtropical (Cfa) with an
annual average air temperature and total annual precipitation of 13.8C
and 1117 mm, respectively.

Vegetation is dominated by Spartina alterniflora L. (saltmarsh cord-
grass; recently referred to as Sporobolus alterniflorus; Peterson et al.,
2014) which displays strong seasonal growth cycles. There is approxi-
mately 11 km? of continuous marsh vegetation intermixed with
meandering tidal channels associated with variable water levels, driven
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Fig. 1. Study site location showing A) eddy
covariance (EC) flux tower filtered footprint
(green) and Moderate Resolution Imaging Spec-
troradiometer (MODIS) footprint (purple); B)
zoomed area showing EC tower location and
proximal sensor viewing angles/footprint estima-
tions. Service Layer Credits: Source: Esri, Digital-
Globe, GeoEye, Earthstar Geographics, CNES/
Airbus DS, USDA, USGS, AeroGRID, IGN, and the
GIS User Community. (For interpretation of the
references to color in this figure legend, the reader
is referred to the web version of this article.)
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by subordinate tides. Finally, this marsh rarely gets flooded, which
contrasts from low marshes that get flooded during every high tide.
Thus, our spectral measurements mostly represent characteristics of
vegetation as the canopy is never submerged. To further investigate any
impacts of flooding on proximal sensor data, we flagged daily reflec-
tance when the main tidal creek exceeded a threshold of 0.7 m above
mean sea level during a midday window (11:00-13:00), when reflec-
tance data was captured. Exceeding this threshold (0.7 m) results in
standing water above marsh sediments, yet we did not observe any
impacts which would significantly influence annual reflectance curves
(Figs. S1 and S2). The site is part of both the AmeriFlux network (site ID:
US-StJ) and phenocam networks (site ID: stjones).

2.2. Eddy covariance measurements

NEP was measured using the EC technique (Baldocchi, 2003; Aubi-
net et al., 2012) with an enclosed path infrared gas analyzer (Li-7200,
Licor, Lincoln, NE, USA) and 3D sonic anemometer (Gill Windmaster
Pro, Gill Instruments, Lymingtonm, UK) recording measurements at 10
Hz. A detailed description of the EC system and data processing is
available elsewhere (Vazquez-Lule and Vargas, 2021). We selected a
two-year period spanning 2017-2018 to ensure complete data for both
flux and reflectance measurements. Briefly, preprocessing and flux
corrections were performed using EddyPro software (version 7.0.6) and
included time lag compensation, double coordinate rotation on wind
components and Reynolds block averaging to arrive at 30 min flux in-
tervals of NEP. Additional processing included removal of flagged in-
strument QA/QC values, removal of flux outliers falling beyond a range
of -50 to 50 umol CO, m2s7} footprint filtering to the confines of
marsh vegetation (Fig. 1A) and removal of values associated with low
turbulence which occurred mainly during nocturnal hours. This resulted
in removal of 41% and 48% of fluxes for 2017 and 2018, respectively.
We implemented the footprint model of Kljun et al. (2004) which
functions similar to the Kormann and Meixner (2001) model that has
previously been field validated in short canopy grasslands (Arriga et al.,
2017). Gaps were filled with a marginal distribution sampling (MDS)
moving look-up table utilizing meteorological variables collected on site
as described in Vazquez-Lule and Vargas (2021).

2.3. Phenocam measurements

Canopy level images were taken using a “phenocam” (NetCam 1.3
megapixel SC IR security camera, StarDot Technologies, Buena Park, CA,
USA). The phenocam is located on the upper most portion of the EC
tower, 2.8 m above the canopy and is positioned eastward at an oblique

==== PhenoCam Footprint

orientation capturing a large swath of canopy (Fig. 1B). Since the
camera acquires an image every 30 min from sunrise to sunset, we
selected a single daily midday true color image (containing red, green
and blue visible wavelengths; RGB) and a single midday near infrared
image (NIR) taken several minutes apart (allowing time for removal of a
mechanical infrared filter) to reduce effects from variable illumination.
Exact time of day for midday image acquisition ranged from 12:00 to
12:15. This collection of daily images was inspected visually for any
obvious distortions and filtered for occasional hazy or foggy images
(hazer R package, Seyednasrollah, 2018), which removed 30 (8.2%) and
42 (11.5%) images for 2017 and 2018, respectively. Phenocam data was
downloaded from the University of New Hampshire central phenocam
server (https://phenocam.sr.unh.edu/webcam/) (Seyednasrollah et al.,
2019).

A midsummer image was used to delineate a region of interest (ROI)
to set a boundary on visible and infrared digital number (DN) extraction
using a pixel averaging approach. We selected a spatially inclusive ROI
which covers large areas of continuous marsh vegetation while
encompassing the eastern portion of the EC footprint. Since a DN is not
directly relatable to reflectance measurements we used the relative red
(red chromatic coordinate; RCC) and back-calculated NIR from total
scene brightness for single band comparisons. Next, we applied raw data
filters in consecutive order consisting of a cubic smoothing spline fol-
lowed by a max filter which selects values falling within the upper 90th
percentile over a three-day moving window (Migliavacca et al., 2011;
Sonnentag et al., 2012). Any short gaps created from removal of unac-
ceptable images or filtering steps were filled via linear interpolation.
Most images that were removed occurred during winter storm events,
when the spectral response is constant, thus there was minimal impact
on the trajectory of seasonal reflectance.

Since the phenocam image sensor operates differently than a tradi-
tional spectral reflectance sensor we have applied suggested scaling
factors to each final phenocam indice or spectral band based on the
corresponding MODIS index or band (Filippa et al., 2018; Petach et al.,
2014). Scaling was completed year-wise using the same 3 x 3 MODIS
pixel grid that we used for our spectral comparisons.

2.4. SRS measurements

Normalized difference vegetation index (NDVI) spectral reflectance
sensors (SRS) (Meter Inc, Pullman, WA, USA) were positioned in 2
separate locations approximately 100 m apart with readings recorded
every 5 min (Fig. 1B). Although proximal sensor footprints are largely
determined by viewing angle and orientation, following common
installation protocols, SRS sensors in our set-up have spatially limited
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viewing footprints in comparison to the phenocam and EC tower
(Fig. 1), thus using a mean value from multiple sensors provides a more
comprehensive ecosystem-scale assessment. Since there is greater noise
associated with high frequency SRS data due to changes in solar position
and illumination, we selected readings from a two-hour midday window
(11:00-13:00) which was used to generate daily averages. We then
applied data filters described above and filled any short gaps with linear
interpolation. For RED reflectance we applied a Savitzky—Golay filter to
reduce noise in the data.

2.5. Moderate resolution imaging spectroradiometer

NDVI and enhanced vegetation index (EVI), NIR and RED band data
from MODIS (MOD13Q1 16 day, 250 m vegetation indices product) was
downloaded from Oak Ridge National Lab distributed active archive
center (ORNL DAAC) global subset tool (https://modis.ornl.gov/glob
alsubset/) for an area of 750 km? (9 pixels) which encompassed most
of the EC tower flux footprint while excluding pixels from surrounding
land cover (Fig. 1A). The MOD13Q1 product pre-processing includes
atmospheric correction from bi-directional surface reflectance and
masking from water, clouds and aerosols. For RED reflectance we again
applied a Savitzky—Golay filter to reduce noise in the data.

2.6. Meteorological measurements

A meteorological station located on site near the EC tower collected
information on air temperature and humidity (HC2-S3, Campbell Sci-
entific, Logan, UT) precipitation (TE 525, Tipping Bucket Rain Gauge,
Campbell Scientific, Logan, UT), and photosynthetically active radiation
(PAR) (SQ-110, quantum sensor, Apogee, Logan, UT). Air temperature,
humidity and PAR were measured every 5 s and averaged at 30-min
intervals. Precipitation was calculated as a daily total. Vapor pressure
deficit (VPD) was calculated using air temperature and relative humidity
based on Tetens formula (Murray, 1967). For calculation of daily PAR
only daytime readings were considered (PAR > 20 umol m~2s™1).

2.7. Vegetation indices

Indices incorporating solely visible wavelengths derived from phe-
nocam included the vegetation contrast index (VCL Eq. (1)) (Zhang
et al., 2018) and widely used green chromatic coordinate (GCC; Eq. (2))
(Sonnentag et al., 2012). For all listed vegetation indices, general
spectral band names are listed, for specific bandwidths see Table 1.

ver —  GREEN )
(RED + BLUE)
Gee - GREEN @
(RED + GREEN + BLUE)

Phenocam NDVI and EVI were calculated using standardized pro-
tocols in phenopix Egs. (3) and ((4)) (Filippa et al., 2018; Petach et al.,
2014). Since the phenocam is not a traditional reflectance sensor, we list
estimated spectral wavelengths based on previous comparisons with a
spectroradiometer (Table 1) (Petach et al., 2014). Phenocam EVI

Table 1

Spectral bandwidth ranges for phenocam*, SRS sensors and MODIS.
EM value Phenocam (nm) SRS (nm) MODIS (nm)
Blue 430-515 - 459-479
Green 510-570 - 545-565
Red 575-710 645-655 620-670
NIR 800-815 805-815 841-876

" Bandwidths listed for phenocam were estimated from spectroradiometer
comparisons (Petach et al., 2014).
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constants adapted in phenopix were the same as implemented by MODIS
(MOD13Q1), i.e., as a modification of NDVI (Liu and Huete, 1995) (G =
2.5,C1 =6,C2=7.5,L =1). We also used RCC as a proxy for RED, the
NIR signal and the combined product of NIR and NDVI as another newly
developed index which isolates NIR reflectance derived solely from
vegetation (Camera NIRv; Badgley et al., 2017). In the special case of
RED reflectance, since RED is strongly absorbed by healthy vegetation,
we needed to invert annual curves to enable proper fitting based on the
change in decreased reflectance. This resulted in some values being
negative, so we simply set the minimum value of the inverted curve to
zero.

NDVI = M 3)
(NIR + RED)
NIR — RED
EVI = G x ( ) ()]

(NIR + C1 x RED — C2 x BLUE + L)

For the SRS sensors, we used NDVI as calculated by the instrument
(Eq. (3)), EVI2 (Eq. (5)) the standalone RED and NIR signals and the
combined product of NDVI and NIR to generate SRS NIRv (Gamon et al.,
2015). Since blue is not available for the SRS sensor, we substituted EVI2
as a comparable alternative (Eq. (5); Jiang et al., 2008). For clarity, we
will simply refer to EVI2 as EVI in the subsequent text since we are using
it as a proxy exclusively for SRS sensors. For MODIS we used the pre-
pared 16-day vegetation indices product of NDVI and EVI, the stand-
alone RED and NIR signals and the combined product of NDVI and NIR
to generate NIRv. We used the same adjustment method for RED
reflectance for both SRS sensors and MODIS bands by inverting the
annual reflectance curve and setting minimum values to zero.

(NIR — RED)

EVI 2 (EVI e
(VI proxy) = G X Gir (2.4 % RED) 7 L

)

2.8. Phenological metrics and data analysis

We used the phenopix R package for processing daily phenology time
series of EC, phenocam, SRS and MODIS data (Phenopix R package;
Filippa et al., 2016). As we aim to make comparisons across several
phenological datasets we used as much of the same processing steps as
possible including filtering of raw data, gap filling, curve-fit functions
and phenoperiod breakpoint algorithms. Annual trajectories were fit
with a double logistic function and phenoperiod breakpoint detection
method specifically developed for carbon phenology applications (Gu
et al., 2009). Uncertainty was estimated by bootstrapping curve fits 500
times based on random noise in daily data to create an ensemble of
curves, we report median values and a confidence interval indicating the
10th and 90th percentiles of the distribution of generated phenoperiod
transition dates (Filippa et al., 2016).

NEP derived from EC measurements was used as a benchmark for
defining phenoperiod transitions based on site carbon phenology. We
used this benchmark to compare indices and spectral bands generated
from phenocam and reflectance sensors. Following conventions estab-
lished by Gu et al. (2009), there are 5 distinct phases of seasonal vege-
tation productivity (i.e., pre, recovery, stable, senescence and
termination phases) marked by ecologically meaningful transitional
phase changes. These periods consist of upturn day (UD), stabilization
day (SD), downturn day (DD) and recession day (RD), which are similar
to traditional phenological change terminologies (e.g., green-up,
maturity, senescence and dormancy) (Filippa et al., 2016; Gu et al.,
2009). After entering the spring recovery phase, rates of carbon
sequestration quickly increase reaching a steady state maximum at the
stabilization day. Maximum rates are maintained over the stable period
before initiation of a rate decrease on the downturn day. As rates of net
productivity continue to decrease, the system transitions back to a net
carbon source marking the recession day and onset of the dormancy
period. Additional information was calculated including overall length
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of the carbon sink season, as the timing between recession and upturn
days (Gu et al., 2009) and maximum increasing (recovery/green-up) and
decreasing (senescence) rates of spring and fall transitional change
(Filippa et al., 2016).

To gain insight on which sensors and VI’s are best able to track daily
changes in carbon phenology, ordinary least squares (OLS) linear
models were assembled for each NEP-VI relationship. Models were
assembled using combined data from both study years and assessed
using 5-fold cross validation with R? and root mean square error (RMSE)
metrics. We also completed simple regression models individually for
each year to assess the degree of interannual variation in the NEP-VI
relationships. In addition, proximal sensor indices and spectral bands
were compared to corresponding MODIS indices and bands. All data
preparation, preprocessing and analysis was completed using R open-
source software version 3.6.1 (R Core Team 2019).

3. Results
3.1. Net ecosystem productivity benchmarks and climate

Daily mean NEP was statistically similar between years (p=0.567, t-
test using daily data) with overall means of 0.53 + 1.58 and 0.45 + 2.00
umol CO, m 2 s’l, for 2017 and 2018 (+£ sd). Daily daytime mean NEP,
the benchmark to define site carbon phenology, was also statistically
similar (p=0.797) with overall means of 2.85 + 4.15 and 2.93 + 4.84
umol CO, m 25! for 2017 and 2018 (Fig. 2). The annual sum of NEP
was 199.2 + 5.7 and 170.3 + 5.9 g Cm™2 yr ! for 2017 and 2018.

On a monthly basis, daily rates were also statistically similar, espe-
cially during summer and fall months, with only December, January and
March showing significant differences (p<0.01). In 2018, the upturn
day, which marks start of carbon sink season (i.e., NEP > 0), was
reached 10 days later while stabilization was reached earlier (DOY 150,
2018 vs. DOY 159, 2017), resulting in a shorter recovery period (46 days
vs. 27 days for 2017 and 2018). Despite differences in early season
phenology the stable period was similar between years (77 days vs. 80
days for 2017 and 2018), yet 2018 had higher peak values and downturn
day arrived 6 days later and persisted longer with dormancy onset 10
days later, extending the senescence period (72 days vs. 88 days for 2017
and 2018). The curve shapes of daytime NEP were different, yet in both
years there was faster recovery rates in spring and slowed rates of
senescence in fall (Fig. 2).

Meteorological data showed differences between years (Fig. 3,
Table S1), especially during late winter and spring of 2018 where
greater winter chill was followed by suppressed springtime tempera-
tures. The cumulative late winter-early spring (months of JFMA) tem-
perature was 11.2 °C cooler during 2018 compared to 2017. Mean
annual precipitation totals were comparable between years (28 mm and
34 mm for 2017 and 2018) yet when considering monthly totals, simi-
larities rarely coincided between years. Differences were greatest during
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fall and winter months of 2018 when the site received twice as much
precipitation compared to the same period in 2017.

3.2. Phenoperiods and transition dates

Comparing phenoperiod dates generated from proximal sensors and
MODIS with carbon phenology dates derived from site NEP (Fig. 4), the
prediction of upturn day was best captured by VCI and GCC (1-3 days
ahead of benchmark, 2017 and 3-4 days behind benchmark, 2018) and
NDVI (7 days ahead, 2017 and 5 days behind, 2018) from the phenocam
and NIRv from SRS sensors (1 day ahead, 2017 and 2 days behind,
2018). Other NIR containing phenocam indices were variable (EVI,
NIRv), yet of these, NIRv had the best interannual consistency (5-12
days ahead). SRS NDVI consistently underpredicted the upturn day (5-
21 days behind) while EVI offered some improvements (1-13 days
behind). Primary indices from MODIS consistently underpredicted this
key transition date with the most discrepancy, approximately 6-30 days
prior to actual onset of the carbon sink season. While NIR reflectance
was more variable, RED tended to underpredict for proximal sensors
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(13-27 days behind for phenocam, 100-121 days behind for SRS).

Phenocam indices consistently overpredicted onset of stabilization
(17-33 days ahead) while SRS indices generally performed better (1 day
behind to 10 days ahead). MODIS indices also overpredicted stable
period onset (11-27 days ahead). NDVI and EVI were the best pre-
forming indices for all sensors, predicting within 17-21 days for phe-
nocam, 1-10 days for SRS and 11-19 days for MODIS. There was a
tendency for NIR to overpredict across sensors yet RED was more vari-
able with smaller overpredictions from phenocam (5-23 days ahead),
yet large underpredictions from SRS (30-37 days behind) and MODIS
(28-40 days ahead).

The downturn of maximum net productivity from tower NEP showed
only a 6-day interannual difference and primary phenocam indices
predicted within a similar annual window (DOY 220-230), with these
dates always occurring prior to the rate decrease in net productivity
(6-18 days behind, 2017 and 6-14 days behind, 2018). SRS sensors were
more variable as was MODIS, especially for EVI and NIRv where there
was inconstancy in date directionality (underpredictions in 2017,
overpredictions in 2018) while NDVI consistently overpredicted (9-44
days ahead for SRS and 8-13 days ahead for MODIS). NIR across sensors
generated a date range similar to other indices and this was also true of
RED for phenocam, but for SRS and MODIS RED tended to overpredict.

The prediction of the recession day was best captured by MODIS
NIRv (2 days behind to 1 day ahead). Followed by phenocam visible
wavelength indices (6 days behind to 2 days ahead), SRS NIRv (3 days
behind to 6 days ahead), and phenocam NIRv (11 days behind to 6 days
ahead). Other indices which incorporate NIR wavelengths over-
estimated season end dates, with phenocam NDVI and EVI ahead 37-47
days, SRS NDVI and EVI ahead 9-19 days and MODIS NDVI and EVI
ahead 7-46 days. As with the upturn day, NIR was variable across
sensors tending towards underprediction in 2017 and overprediction in

2018, yet RED generated considerable overpredictions for both SRS
(40-47 days ahead) and MODIS (47-50 days ahead).

3.3. Length of carbon sink season and transitional rates of phenological
change

Although season start and end dates were different between years,
overall length of the carbon sink period was identical (195 days). Since
LCS is defined by upturn and recession days, sensors and indices which
best predict these dates in relation to tower NEP will have the best LCS
estimates, but this is also the case for indices which have consistent
offsets between season start and end dates (i.e., predict right for the
wrong reason). The best and most consistent LCS season estimates due to
correct UD and RD prediction were generated from phenocam visible
wavelength indices which fell within 1-6 days for 2017 and 0-3 days for
2018 (Fig. 5).

This was closely followed by NIRv from SRS sensors and MODIS
(more variable) which fell 4-7 and 4-28 days ahead of the actual carbon
sink length, respectively. However, NIRv from phenocam differed by
overpredicting season start dates and good agreement in 2017 (within 1
day) was due to consistent overprediction offsets which did not occur for
2018 where RD was underpredicted (within 11 days). Other primary
indices considerably overpredicted LCS season with estimates ranging
from 14 to 66 days ahead of tower NEP benchmarks. Largest over-
predictions in this category were from MODIS NDVI (66 and 55 days
ahead for 2017 and 2018). Similar to phenoperiod date predictions, NIR
caused variable LCS estimates (underpredictions in 2017 and over-
predictions in 2018) while SRS and MODIS RED caused the largest
overpredictions (48-168 days ahead).

We also examined sensors and indices for ability to capture
maximum rate increases at which the system becomes a net carbon sink
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Fig. 5. Length of carbon sink season for A) 2017 and B) 2018. Solid vertical
black line is length of net carbon sink season determined from NEP (195 days
for both 2017 and 2018). VCI (blue), GCC (green), NDVI (red), EVI (orange),
NIR (grey), RED (pink) and NIRv (purple). Error bars represent the 10th and
90th percentiles from curve fit bootstrapping. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)

during recovery and conversely, the maximum rate of decreasing net
carbon sink during senescence (Fig. 6). Reported rates are unitless as we
scaled and standardized all indices for ease of comparison across sensors
with different output ranges. Rates of increasing carbon sink observed
from tower NEP occurred nearly 2 times faster during 2018 (0.096)
compared to 2017 (0.054) yet rates of decrease were similar (-0.035 and
-0.027 for 2017 and 2018). There was relatively tight grouping, indi-
cating that all sensors and indices were able to capture similar rates of
spring and fall phenological change. Rates of increase in spring tended to
be underestimated by sensors and indices but the magnitude of sepa-
ration was greater during 2018. Indices from the SRS sensor (NDVI, EVI,
NIRv) tended to capture rates of increase most similar to NEP. Rates of
decrease were more variable between years with most indices
decreasing slower than tower NEP in 2017 and faster in 2018.

3.4. Tracking net ecosystem productivity

All vegetation indices were able to track annual changes in NEP, yet
curve architecture and magnitudes did not always coincide with the
course of NEP (Fig. 7).

The greatest signal noise was generated by NIR and RED wavelengths
from phenocam and SRS sensors. The least noise was generated from
phenocam GCC and NIRv, and SRS NDVI and NIRv, the latter coincides
with reduced spectral bandwidths (i.e., larger bandwidths create more
signal noise). During dormancy periods we expect that curves should
become constant from reduced spectral response, yet there was some
degree of signal carry over into dormancy for primary indices which
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utilize RED and NIR bands, although this was not as obvious for SRS
Sensors.

Results from combined year ordinary least squares (OLS) regression
modeling shows that nearly all sensors and associated primary vegeta-
tion indices strongly correlate with site NEP (R? = 0.81-0.93) (Fig. 8,
Table 2). Best fits were from phenocam visible wavelength indices (R2 =
0.92-0.93) while the next best clustering consisted of phenocam NDVI
(R? = 0.89), SRS EVI (R? = 0.89), MODIS NDVI and EVI (R? = 0.87 to
0.90) and SRS and MODIS NIRv (R2 = 0.88). This was followed by
phenocam EVI and NIRv (R? = 0.81-0.83) and SRS NDVI (R* = 0.84).
Fits with least agreement were produced by NIR (R? = 0.69-0.81) and
RED bands (R?> = 0.37-0.73) although NIR still had arguably strong
correlations with NEP.

In fall, NEP values were typically lower at a specified VI value than
the corresponding VI value in spring where NEP was higher. This sep-
aration in spring-fall NEP-VI values was most apparent for phenocam
indices, especially NDVI and EVI, yet most sensors and indices displayed
some degree of disparity between spring and fall values. Looking at in-
dividual year regressions, this was consistent between years (see year-
wise models, Figs. S3 and S4). The pattern was less obvious with 16-
day MODIS data.

We also compared indices from proximal sensors with corresponding
MODIS indices (Fig. 9), to gain insight on how reflectance is related at
different spatial domains and to inspect relationships between proximal
sensors and MODIS. The comparison of RED and NIR components was
very similar between proximal sensors and MODIS with moderately
strong relationships with NIR and a much weaker relation with RED.
Primary indices had strong agreement with phenocam NDVI yet there
were clear differences between proximal sensors with phenocam NDVI
and SRS EVI and NIRv preforming best.

4. Discussion

This study tests common proximal sensors and MODIS-derived
indices to predict phenoperiod transition dates and monitor ecosystem
carbon phenology within a salt marsh. We postulated all sensors and
indices have the ability to track changes in NEP, but proximal sensors
should perform better by offering higher temporal resolution and
greater footprint representation of the ecosystem, while minimizing
atmospheric interference or issues with mixed pixels. Our hypothesis
was supported for tracking and generally supported for phenoperiod
date predictions. As postulated, phenocam tracking and phenology
metrics closely aligned with tower NEP as the vegetation footprint is
larger and more inclusive compared to spatially limited SRS measure-
ments. We expected indices which incorporate infrared wavelengths to
perform better as information is relayed on factors which affect plant
physiological function and metabolism, yet this was not the case. Our
results highlight that salt-marsh vegetation poses several challenges
when dealing with commonly applied vegetation indices (NDVI, EVI),
especially for season start and end dates. These findings provide insights
to improve our understanding of carbon phenology and vegetation
reflectance dynamics in underrepresented salt-marsh ecosystems while
providing sensor and vegetation-indices recommendations with com-
parisons across spatial scales.

4.1. Net productivity carbon phenology and interannual variation

Carbon phenology metrics defined by NEP integrates multiple
ecological processes occurring across the landscape (Fatichi et al.,
2019). We highlight that challenges exist in partitioning NEP into GPP
and respiration within salt-marsh ecosystems as tidal flow, salinity and
lateral transport of carbon can influence land-atmosphere mass ex-
change dynamics (Knox et al., 2018; Huang et al., 2019; Moffett et al.,
2010, Trifunovic et al., 2020), and alter Q10 relationships (Wei et al.,
2020). In this study, we focused on NEP measurements which provide a
direct assessment of carbon phenology in an ecosystem with unique
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biophysical controls without inserting confounded or biased informa-
tion from a modelling approach for partitioning NEP. Our methodology
is supported by several studies that have used measurements of net
carbon exchange to track annual changes in carbon phenology (Garrity
et al., 2011; Balzarolo et al., 2016; Zhao et al., 2020; Dronova et al.,
2021). This method is also useful for applications aimed at reducing
greenhouse gas emissions and monitoring to support carbon market and
trading programs (Baldocchi et al., 2020) or assessing vegetation dy-
namics following marsh restorations (Negandhi et al., 2019; Tang et al.,
2018).

Timing and duration of recovery and senescence periods varied be-
tween years, yet season length and interannual NEP totals were similar.
This indicates that duration of carbon sink season as determined by UD
and RD dates exerts more influence on annual budgets than approximate
length of phenological periods, albeit transition dates of midseason
metrics and rates of phenological change do exert influence in deter-
mining UD and RD dates (Gu et al., 2009). The onset of the 2018 re-
covery period was delayed 10 days compared with 2017 which likely
stemmed from heighted winter chill that carried over to substantially
reduce springtime temperatures. Severity of winter chill has been
identified as a primary driver affecting greening onset in salt marshes
and the date of this key transition exerts the most influence on subse-
quent photoperiods and overall growing season length (O’ Connell et al.,
2020). This may also explain why the recovery phase ended sooner,
greatly reducing the length of the greening period (27 days in 2018 vs.
46 days in 2017). While the stable period was similar in length, the
senescence period in 2018 spanned 16 days longer and extended 10 days
later into the year. The exact mechanisms for these differences are
beyond the scope of this paper, yet in 2018 during late fall early winter
(OND months) we observed both greater precipitation (4.5 mm, 2018 vs.
1.9 mm, 2017) and lower tidal stream salinity (5.0 ppt, 2018 vs. 11.1
ppt, 2017). Previous studies have reported that changes in salinity are
associated with fluctuations in greenhouse gas emissions in this salt
marsh (Capooci et al., 2019; Seyfferth et al., 2020). Furthermore, we
postulate these events played a role extending the senescence period as

precipitation can influence temporal variations in greenness (Zhu et al.,
2019) and salinity levels over 12 ppt have been shown to decrease rates
of productivity in S. alterniflora (Courtney et al., 2016). Climate factors
play an important role in determining length and transitional dates of
phenoperiods, yet within the salt marsh there appears some degree of
resiliency to interannual weather patterns as there was only a 28.9 umol
m~2 yr! difference between annual NEP totals.

4.2. Phenocam carbon phenology transition dates

Indices from the same sensor with spectral similarities had consistent
phenoperiod prediction trends such as phenocam VCI and GCC visible
wavelength indices or NDVI and EVI. Sometimes this was true across
sensors such as NDVI from SRS and MODIS, but this was not always the
case as different sensors utilize unique bandwidths and have different
center points of electromagnetic reflectance (Table 1) (Huang et al.,
2019; Dian et al., 2016).

Phenocam visible wavelength indices consistently performed best at
detecting key season start and end dates. Other phenocam indices had
larger discrepancies and consistently overestimated dormancy onset.
This indicates a disconnection between both RED and NIR reflectance
and fluxes which we attribute in-part to above-ground aerenchyma that
directly bridges the soil-atmosphere interface, providing an abiotic
mechanism which exerts influence on ecosystem scale fluxes. In some
species such as S. alterniflora, ambient air is pulled through petioles and
culms via pressure driven through-flow, thus increasing intercellular air
spaces in aboveground tissues (Colmer and Flowers, 2008; Sorrell and
Brix, 2013). This air space and resulting ratios of exposed mesophyll
cells can strongly influence NIR reflectance (Slaton et al., 2001, Wool-
ley, 1971). Based on evidence of plant mediated transport of methane in
S. alterniflora (Tong et al., 2012), and seasonal peaks observed during
fall months (Cao et al., 2020), a maximization of aerenchyma likely
occurs later in the season which coincides with a period of maximal
reflectance interference in NIR containing indices. Development of
aerenchyma tissue exhibits a strong degree of plasticity in response to
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Fig. 7. Annual trajectories of daily vegetation indices and NEP. Phenocam: A)
vegetation contract index (VCI), B) green chromatic coordinate (GCC), C)
normalized difference vegetation index (NDVI), D) enhanced vegetation index
(EVD), E) near-infrared (NIR), F) near-infrared of vegetation (NIRv), G) red
chromatic coordinate (RCC). SRS: H) NDVI, I) EVI, J) NIR, K) NIRv, L) RED.
MODIS (16-day): M) NDVI, N) EVI, O) NIR, P) NIRv, Q) RED. NEP: R) mean
daytime NEP. Dashed lines represent best fit curves generated in phenopix.
Vertical colored lines are NEP phenoperiod benchmark dates of upturn day
(blue), stabilization day (green), downturn day (purple) and recession day
(red). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 8. NEP-VI relationships using daily data from A) phenocam, B) SRS and C)
MODIS 16-day MOD13Q1 for combined years (2017-2018). Color coding
represents phenoperiods as determined by sensor and vegetation index specific
breakpoint results, blue = recovery period (green-up), green = stable period
(maturity), purple = senescence period (senescence) and red/orange = dormant
period/pre-season dormant period (dormancy). Solid black lines are linear fit
and dashed lines are exponential fit, only shown for SRS NDVI (R? = 0.89) and
MODIS NDVI (R? = 0.90). All models were significant (p<0.001). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

flooding and hypoxic soil conditions (Maricle and Lee, 2002). In much of
the same way that soil temperature variations cause spatial variations in
phenology (O’Connell et al., 2020), we postulate that site specific
elevation gradients and hydrology may also play a role in heterogeneity
of altered end of season reflectance signals via an uneven distribution of
above ground aerenchyma across the landscape.

High percentages of standing dead biomass and exposed sediments
containing organic matter also contribute to end of season discrepancies
and these effects transfer over into the recovery period. It has been
established that dead biomass and exposed soils can cause discrepancies
in reflectance indices (Taddeo et al., 2019; Xu et al., 2014), while
decoupling NEP-VI relationships (Rocha et al., 2008), and efforts at
disentangling this interference has proved difficult (Ren and Zhou,
2019). Results from Knox et al. (2017) support our findings on the su-
perior performance of visible wavelength indices in marsh environments
where phenocam GCC performed better than NDVI in parametrizing a
light use efficiency model to estimate productivity which was attributed
to dead biomass. Similar effects have been confirmed from grasslands
and deciduous forests where the trajectory of daily NDVI lags behind
GCC as the latter is responsive to color changes and NDVI is sensitive to
changes in leaf area (Filippa et al., 2018). Further, salt marsh sediments
have persistently elevated soil moisture which can influence reflectance
measurements when exposed. During spring (especially) and fall, when



A.C. Hill et al.

Agricultural and Forest Meteorology 307 (2021) 108481

Table 2
Combined year OLS linear model output summaries for phenocam, SRS sensors and MODIS using daily data. Note: all fits were significant (p<0.001).
Sensor VI Variables Estimate SE t-value RMSE R?
Phenocam VCI Intercept —21.36 0.29 —74.58 1.40 0.92
Slope 47.98 0.54 89.13
GCC Intercept —36.59 0.42 —87.93 1.25 0.93
Slope 117.40 1.20 97.57
NDVI Intercept —-11.29 0.20 —56.05 1.49 0.89
Slope 29.86 0.38 77.99
EVI Intercept —6.57 0.20 32.83 2.12 0.81
Slope 38.91 0.70 55.92
NIR Intercept -12.12 0.40 -30.12 2.78 0.69
Slope 76.94 1.89 40.67
NIRv Intercept —4.22 0.15 —28.01 1.80 0.83
Slope 70.23 1.16 60.40
RED Intercept —6.82 0.26 —26.72 2.46 0.73
Slope 476.27 10.72 44.43
SRS NDVI Intercept —4.04 0.14 —28.62 1.97 0.85
Slope 20.50 0.32 63.37
EVI Intercept —1.55 0.09 -17.21 1.57 0.89
Slope 88.24 1.14 77.58
NIR Intercept —7.38 0.24 —30.28 2.33 0.76
Slope 217.81 4.46 48.81
NIRv Intercept -1.31 0.09 -14.15 1.72 0.88
Slope 211.91 2.89 73.40
RED Intercept -1.87 0.30 —6.109 4.00 0.37
Slope 336.64 16.24 20.73
NDVI Intercept —9.22 0.75 —12.22 1.14 0.87
Slope 25.70 1.45 17.73
EVI Intercept —5.15 0.47 —10.90 0.80 0.90
Slope 33.39 1.63 20.39
NIR Intercept -9.05 0.93 —9.705 1.37 0.81
MODIS Slope 61.71 4.37 14.122
NIRv Intercept -3.20 0.42 —7.609 0.79 0.88
Slope 60.73 3.23 18.811
RED Intercept —6.24 1.56 —3.998 3.39 0.47
Slope 209.98 32.09 6.544
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Fig. 9. Proximal sensor comparison with 16 day MODIS data. Color coding represents vegetation indices and reflectance bands, red = NDVI, orange = EVI, purple =
EVI2, grey = NIR and pink = RED. Solid black lines are linear fit. All models were significant (p<0.001), RED models (p<0.01). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

vegetation is inactive, yet sediments are thawed, there is likely larger
mismatch in reflectance/absorbance expectations as antecedent mois-
ture strongly absorbs both RED and NIR wavelengths. While visible
wavelengths indices (VCI, GCC) provide a measure of canopy greenness,
this may not be consistently related with leaf chlorophyll concentration

10

at higher midseason LAI’s (Keenan et al., 2014), however it is plausible
that shorter canopies which exhibit lower leaf area while lacking woody
stems have higher coupling of greenness-pigment relationships. Thus,
greenness may infer functionality better within the salt marsh while also
providing an estimate of the annual window in which vegetation is
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biochemically active and participating in gas exchange.

All phenocam indices overestimated starting dates of stabilization
while underestimating onset of senescence yet there was considerable
precision for these midseason metrics. For stable period onset, this was
indicative that phenocam observed changes in both greenness levels and
canopy structure that were occurring beyond when peak ecosystem net
productivity rates were achieved. Maximum rates of increasing ampli-
tude were lower in most indices, further supporting that maximum NEP
is achived before vegetation reflectance becomes stable. Another pos-
sibility is that ecosystem respiration ramps up during the midseason
period driven by soil temperature or increased root exudates and sub-
strate availability of soil organic carbon (SOC; Hu et al., 2020; Trifu-
novic et al., 2020), effectively masking any further productivity increase
as vegetation reaches maturity. Correspondingly, for senescence onset,
phenocam observed both pigmentation and canopy structural changes
occurring before the steady decline in net productivity. One possibility
for this discrepancy is degradation within upper canopy leaves while
subcanopy vegetation continues at near stable period productivity rates.
Although recognized as an issue in forested systems (Ahl et al., 2006), it
suggests that even when dealing with a relatively short canopy, more
information could be required about subcanopy conditions. It is
important to recognize that NEP measured with the EC technique
essentially integrates all components of the canopy and misses potential
lateral fluxes of carbon (Trifunovic et al., 2020), while spectral sensors
focus primarily on top of canopy reflectance information (Dechant et al.,
2020).

During midseason periods, greenness (proxy for chlorophyll
pigmentation and photosynthetic capacity) and structural changes are
more in sync as observed by phenocam. In regard to NEP, this is reflected
as a midseason plateau in most ecosystems where daily rates of NEP hold
steady (i.e., stable period) (Gu et al., 2009). Midseason phenology dates
derived from phenocam visible wavelength indices and infrared bands
showed similarities between years, within 13 and 9 days for 2017 and
2018 stabilization dates and within 12 and 6 days for 2017 and 2018
downturn dates, respectively. This indicates that during the stable
period of sustained maximum net productivity the canopy likely tends to
optimize structure for functionality and just as equally, optimizes
functionality from structure. This is especially the case in highly clonal
stands where individual and canopy optimization goals are more aligned
(Anten, 2004). These findings are supported by the Monsi-Saeki theory
which states plant canopies will tend towards an optimal structure (LAL
leaf angle, density) to maximize photosynthetic efficiency and in stands
with little or no interspecific competition, such as a salt marsh, the op-
timum structure-function relationship is more attainable (Hirose, 2005).

4.3. SRS and MODIS carbon phenology transition dates

Primary indices from SRS sensors (NDVI) and MODIS-derived indices
(NDVI and EVI) underpredict start and overpredict end of carbon sink
season while midseason metrics are inconsistent. This results in over-
predictions of carbon sink season length. We emphasize that a combi-
nation of ecosystem specific factors (e.g., aerenchyma, exposed
sediments, elevated soil moisture, dead vegetation) likely introduce
discrepancies with indices incorporating infrared reflectance. MODIS-
derived indices had larger offsets compared to SRS sensors which is
likely the combined result of vastly different viewing footprints (250km
vs. ~9m), temporal resolution (16-day vs daily), spectral bandwidth
differences (SRS sensors have narrower bandwidth; Table 1) and
orientation angles. Phenological information extracted from MODIS
MOD13Q1 product requires interpolation which can fail to accurately
capture periods of rapid change (Rankine et al., 2017). SRS sensors
showed improvements, but results were inconsistent due to increased
reflectance scattering in infrared bandwidths. At our site, SRS sensors
are positioned with a larger downward angle from the horizontal, thus
there is potential for greater interference from sediment and water
backgrounds (especially under flooded conditions). While SRS NIRv
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provided improvement as it was designed to minimize non-vegetation
infrared signals, lingering infrared reflectance in late 2018 caused dis-
crepancies. Midseason metrics were characterized by inconsistencies in
both sensors although patterns were evident. Mainly under prediction of
stabilization and over prediction of downturn which was the opposite
trend of phenocam. The shift was greater for downturn indicating end of
season discrepancies were beginning to develop earlier than phenocam.
This may indicate that changes in reflectance spurred by intermixed
living and dead vegetation occurs more rapidly with sharper sensor
angles within the relatively narrow bandwidths of SRS and MODIS while
phenocam response was more mediated by larger viewing fields, oblique
orientation and wider spectral bandwidths. Although MODIS products
are commonplace in parameterizing earth system models, other less
utilized satellite products could prove better and should be considered in
future studies (i.e., Landsat and Sentinel products; Kowalski et al.,
2020).

4.4. Daily net productivity tracking using spectral reflectance

All sensors and vegetation indices tracked daily NEP with moder-
ately strong correlations but visible wavelength indices and NDVI from
phenocam provided best fits. This resulted from tight coupling between
spring and fall time VI-NEP relationships. Other indices which included
an infrared band had higher degrees of separation which generated a
seasonal hysteresis pattern where springtime reflectance values were
associated with higher NEP compared to fall. Although the overall fit for
phenocam NDVI was high (R? = 0.87) it was not devoid of this spring-
fall mismatch. The description of this phenomenon is lacking in salt-
marsh literature yet has been documented for relationships between
NDVI and fraction of absorbed PAR in grassland (Flanagan et al., 2015;
Wang et al., 2020), cropland (Gitelson et al., 2014; Peng et al., 2017),
and deciduous broadleaf forests (Muraoka et al., 2013). This is likely a
plausible phenomenon generated by physiological declines in efficiency
of photosynthetic machinery and CO5 harvesting enzymes during fall
months, resultant from photooxidation effects accumulated over the
growing season (Liu et al., 2019). This assertion is supported by
considerably lower light saturation levels (~1000 umols) compared to
typical C4 plants (Kathilankal et al., 2011), where vegetation is sub-
jected to saturating levels for most of the growth cycle which increases
photosystem stress and places demand on non-photochemical quench-
ing processes. Thus, phenocam NDVI appears to give more detail in
context of seasonality while providing linear fits comparable to visible
wavelength indices.

It was evident that some VI-NEP relationships, mainly NDVI from
SRS and MODIS, appear to follow an exponential fit. While imple-
menting this provided slight improvements (R? = 0.85 linear vs. R? =
0.89 exponential for SRS NDVI) (R2 = 0.87 linear vs R? = 0.90 expo-
nential for MODIS NDVI), the responses were identical for phenocam
(R? = 0.90). This could indicate tendency for saturation at higher
reflectance values with SRS and MODIS which use narrower red full
width half maximum bandwidths (10 and 50 nm, respectively)
compared to phenocam (135 nm). We highlight that phenocam is the
only sensor with spectral overlap which extends into infrared and red
edge spectral regions (680-750nm) (Horler et al., 1983), whereas SRS
sensors have relatively limited bandwidths (Gamon et al., 2015) and
MODIS was engineered to very specific wavelengths to prevent atmo-
spheric interference issues. This broadband capability allows phenocam
NDVI to incorporate physiological information on chlorophyll content
while relaying information on LAI and canopy structure (Brown et al.,
2016; Rossi et al., 2019). This could explain why phenocam NDVI
tracked daily NEP similar to visible wavelength indices yet generated
large discrepancies by overestimating season end dates. Results of this
study show that specific sensors and vegetation indices may be suited to
different spatiotemporal applications such as subcanopy phenology
profiles, species specific reflectance, delineating and parsing key regions
of interest within an ecosystem and whole ecosystem coverage, but
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within a salt marsh environment where soils and vegetation possesses
unique physical properties, the phenocam offers a wide range of these
applications while providing accurate daily tracking and phenoperiod
predictions.

4.5. Proximal sensors vs MODIS

Differences between spatial domains showed disconnections with
RED and NIR reflectance while primary indices had better agreement.
Aside from spectral bandwidth discrepancies (mostly phenocam) there
are two main differences between proximal and MODIS data: 1) viewing
angle and acquisition interval; and 2) EC footprint-to-target-area
mismatch. While longer acquisition intervals likely contributes to
challenges of generating accurate phenology parameters it should be
less problematic for general tracking. Our results suggest added effects
from viewing angle discrepancies as the oblique view provided by
proximal sensors (especially phenocam) captures canopy reflectance at
an apparent higher vegetation density from increased stand overlap than
does the nadir view provided by MODIS (Ryu et al., 2014). In this re-
gard, MODIS will inherently have greater interference from exposed
sediments and open water features. This should be especially relevant
for dominate short form Spartina vegetation located on marsh platforms
which is characterized by low leaf area and pronounced upright growth
to minimize saturating levels of PAR. Finally, there is bias as a conse-
quence of potential EC footprint-to-target-area mismatch (Chu et al.,
2021). Our study site has high representativeness for a MODIS pixel of
250m but (as in most EC towers) this representativeness is reduced for
target areas beyond 500 m. The combination of viewing angle, acqui-
sition interval and footprint-to-target-area mismatch may explain larger
offsets from MODIS predictions.

5. Conclusions

Our assessment of phenocam, SRS sensors and MODIS revealed that
while daily tracking was excellent across sensors, the most widely used
and accepted indices such as NDVI and EVI suffered discrepancies dur-
ing start and end of season dates which resulted in overpredictions of
season length. These over predictions were greatest from MODIS-
derived indices and narrowband SRS sensors which introduced diver-
gence in the flux-reflectance relationship, thus affecting accuracy for
carbon modeling applications. Our results provide support for pheno-
cam as the preferred method in terms of accuracy, available features,
sampling footprint and versatility for a salt marsh where there is both
interpretation and scaling challenges. Given the heterogeneities of the
salt marsh, phenocam allows for consideration of a larger viewing
footprint which integrates more of the processes observed by the flux
tower. Available spectral channels and bandwidths allows for formula-
tion of numerous indices that can provide insight into different aspects
of ecosystem phenology including structural and functional changes
with the added benefit of providing true color human viewable images.
This feature can be leveraged to monitor site conditions while offering a
friendly and familiar medium for citizen science opportunities and ed-
ucation. Additional benefits include support from the phenocam
network on site-specific camera model selection, configuration, imple-
mentation and free long-term image data archiving.

While MODIS-derived indices have obvious advantages with respect
to global coverage, serious limitations arise when dealing with an
ecosystem that is spatially limited and confined to coastal interfaces. The
impetus for global coverage cannot evade the need for remote sensing
linkages, thus we need further studies which attempt to disentangle
discrepancies introduced from standing dead biomass during dormancy
and the mix of dead and living vegetation during spring and (especially)
fall transitional periods. We need to look more closely at special con-
ditions such as how changes in above ground aerenchyma tissues com-
mon to wetland/salt marsh vegetation affects the spectral response, how
gradients in elevation and sediment moisture (as drivers of aerenchyma
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development and canopy structure) may affect heterogeneity of altered
reflectance signals and how residual salts on leaf surfaces can modify
reflectance. It will be equally important to incorporate longer timeseries
to help test consistencies between sensors and indices and across other
salt marshes. Ultimately, our ability to accurately characterize pheno-
logical cycles within the salt-marsh environment will help to improve
modeling efforts as physiological parameters are not static, but rather
dynamic in response to the interplay of annual climatic conditions,
biophysical factors and site ecology. Phenology provides an effective
method for tracking daily changes in ecosystem carbon exchange while
enabling the binning of time periods to derive more dynamic modeling
parameters.
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