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Quantum simulators are widely seen as one of the most promising near-term applications of quantum

technologies. However, it remains unclear to what extent a noisy device can output reliable results in the

presence of unavoidable imperfections. Here we propose a framework to characterize the performance

of quantum simulators by linking the robustness of measured quantum expectation values to the spectral

properties of the output observable, which in turn can be associated with its macroscopic or microscopic

character. We show that, under general assumptions and on average over all states, imperfect devices

are able to reproduce the dynamics of macroscopic observables accurately, while the relative error in the

expectation value of microscopic observables is much larger on average. We experimentally demonstrate

the universality of these features in a state-of-the-art quantum simulator and show that the predicted behav-

ior is generic for a highly accurate device, without assuming any detailed knowledge about the nature of

the imperfections.
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I. INTRODUCTION

In recent years, powerful quantum information process-
ing devices that outperform their classical counterparts
have become a real prospect. One of the most recognized
potential applications of these technologies, as envisioned
by Feynman [1], is to efficiently simulate properties of
highly correlated quantum systems that are of interest
in condensed matter [2,3], quantum chemistry [4,5], and
high-energy physics [6,7]. Important advances in isolat-
ing and manipulating quantum systems while maintaining
their coherence properties have led to complex quantum
devices composed of several tens of qubits [8–12]. How-
ever, these systems, now routinely referred to as noisy
intermediate scale quantum (NISQ) devices [13], do not
meet the highly demanding requirements of fault tolerant,
error-corrected quantum computers [14]. NISQ processors
are intrinsically imperfect analog machines, subject to a
continuum of errors in control, background fields, and
decoherence. Even as the quality of these devices con-
tinues to improve, it is unknown how such imperfections
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will in general affect the output of these analog quantum
simulators (AQSs), and under which circumstances they
yield a reliable output [15].

In this context, the issue of how imperfections affect
the reliability of quantum processors has been studied in
many different settings [15–17]. Particularly, it has recently
been observed that extracting information about certain
expectation values in noisy devices is a less demanding
task than characterizing the full quantum state. This has
been studied in the context of dynamical quantum sim-
ulators [18–20], qubit readout and tomography [21,22],
and also in terms of algorithm complexity [23]. In this
work we establish a general framework to characterize
the robustness of AQSs by linking the average sensitiv-
ity of expectation values of generic observables to their
spectral properties. We do this by showing that these prop-
erties characterize the average dependence of expectation
values on the quantum state, leading to a quantitative
classification of AQS outputs in terms of macroscopic
(robust) and microscopic (fragile) observables. We rigor-
ously derive this relation for both static and dynamical
models of imperfect quantum simulators. Crucially, we
demonstrate the predictive power of our framework in
a real-world quantum simulator based on quantum con-
trol of atomic spins [20], and show that the imperfec-
tions that naturally affect the device lead to errors whose
behavior is in excellent agreement with our theoretical
findings.
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II. EFFECT OF IMPERFECTIONS IN THE
OUTPUT OF AN AQS

Consider a simulator that prepares a quantum system in
a state of interest |ψ〉 in a d-dimensional Hilbert space.
We define the output of the device as the expectation value
of some observable 〈A〉 = 〈ψ |A|ψ〉. Because of imperfect
operation of the simulator, however, the system is prepared
in a different state |ψsim〉. Our goal is to characterize how
the output of the simulator is affected by these imperfec-
tions, as a function of the choice of output observable A.
For this, we define the simulation error

δ(A) = 〈ψ |A|ψ〉 − 〈ψsim|A|ψsim〉, (1)

and consider the perturbed state to be

|ψsim〉 = N (γ )(|ψ〉 + γ |ψ⊥〉), (2)

where 〈ψ |ψ⊥〉 = 0, N (γ )2 = (1 + γ 2)−1, and γ quanti-
fies the deviation of the simulated state from the ideal
one. In order to assess how the magnitude of the simu-
lation error depends on the measured observable and not
the particular state of the simulator, we consider its aver-
age value over all states |ψ〉. To perform the average, we
consider the Haar measure over random states in Hilbert
space [24,25], which we denote using an overline. Using
standard techniques, in Appendix A we derive the relation

δ(A)2 = 2γ 2N (γ )2

d2 − 1

(
Tr(A2) − 1

d
Tr(A)2

)
. (3)

Similar results can be derived for cases in which the
perturbed state is mixed (see Appendix A). In order to
compare the average error for different observables, it is
convenient to shift the spectrum of A such that its mini-
mum eigenvalue is zero (excluding the trivial case A = I),
which in turn makes A > 0. This leaves the error in Eq. (1)
invariant. Furthermore, in order to characterize the magni-
tude of the error relative to a typical expectation value for
different choices of A (similar in spirit to a signal-to-noise
measure), we consider the average relative error, defined
as

δrel(A)2 = δ(A)2

〈A〉2
. (4)

Since 〈A〉 = (1/d)Tr(A) > 0, after evaluating Eq. (4) we
obtain

δrel(A) =
√

2d2

d2 − 1

(
γ 2

1 + γ 2

)(
Tr(ρ2

A) − 1

d

)
, (5)

where we introduced the operator ρA ≡ A/Tr(A), which is
a positive, unit trace, Hermitian operator. Equation (5) is

our first main result. It says that the degree of robustness
of expectation values to imperfections in the quantum state
is dictated, on average, by η(A) ≡ Tr(ρ2

A), which we refer
to as the purity of the observable A in analogy to the usual
(state) purity.

As depicted in Fig. 1(a), high purity observables are
characterized by having a small, nonextensive set of dom-
inant eigenvalues. As a consequence, their expectation
values are greatly affected even by small deviations in the
corresponding populations. The extreme case corresponds
to projectors onto pure states, i.e., A = |φ〉〈φ|, which have
purity equal to 1, and whose expectation value corresponds
to a single state population. On the other hand, small purity
observables correspond to high-rank operators, which have
an extensive set of eigenvalues close to the mean that
contribute to its expectation value, leading naturally to
robustness to small deviations in eigenstate populations
that tend to average out. The extreme case η(A) = 1/d is
only achieved by A = I, for which the error vanishes triv-
ially. However, many observables of interest show purities
that decrease with system size in a similar way. An exam-
ple of this is given by the collective magnetization in
a system of N spin- 1

2
particles, Sα = 1

2

∑
i σ

(i)
α , where

σ (i)
α denotes the Pauli operator acting on the ith particle

with α = x, y, z. The purity of the collective magnetization
evaluates to

Tr(ρ2
Sα

) = N + 1

N
2−N � 2−N = Tr(ρ2

I
). (6)

This shows that a physical observable like the magnetiza-
tion is characterized by an intrinsic robustness to imperfec-
tions (on average), which is similar to that of the identity
operator for moderately large N .

The definition of observable purity naturally relates to
the notion of typical configurations in statistical mechan-
ics, where observables are taken to be quantities that
roughly take the same value over all phase space (com-
patible with constraints), apart from a small fraction of
configurations deemed atypical [26]. As a consequence,
the value of macroscopic observables is fairly indepen-
dent of the specific microstate of the system [25,27,28]. In
our case, Eq. (5) precisely quantifies robustness of expec-
tation values to deviations in the microstate |ψ〉 of the
system. This allows us to associate low operator purity
with observables that are macroscopic in Hilbert space.
Conversely, high purity observables are associated with
microscopic quantities that vary sharply, as for example
the probability of the system to be in a specific state in an
exponentially large state space.

Finally, we note that sets of observables with differ-
ent purities can be constructed in a variety of ways. One
example (see Appendix E for further analysis) comes from
considering powers of a collective spin operator, say Sx,
whose expectation values can be associated with moments
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Observable purity

(a)

(b)

FIG. 1. (a) Schematic depiction of the observable purity
η(A) = Tr(ρ2

A), where ρ(A) ≡ A/Tr(A), and its connection to the
eigenspectrum of the observable. The spectrum of A is chosen to
be non-negative (see the text). The largest purity (equal to 1) is
attained for projectors onto pure states, while the lowest purity
(equal to d−1) corresponds to the identity operator. Intermediate
cases correspond to various observables of interest (see the main
text for details). (b) Purity for even powers of the collective mag-
netization operator S2k

x with Sx = 1
2

∑N
i=1 σ (i)

x (direction is chosen
arbitrarily).

of a probability distribution. In particular, even powers like
S2k

x have spectra strongly dominated by degenerate eigen-
values corresponding to the stretched states where all spins
are parallel to each other. This is the signature of high
purity, as observed in Fig. 1(b).

III. DYNAMICS OF ERRORS IN ANALOG
QUANTUM SIMULATORS

A. Evolution under weak random perturbations

A standard protocol for quantum simulation involves
engineering a Hamiltonian H , under which an initial state
|ψ0〉 evolves, leading ideally to |ψ(t)〉 = e−iHt|ψ0〉. Here
we analyze this scenario, depicted in Fig. 2(a) and often
referred to as dynamical quantum simulation [8,11,29].
Assuming that |ψ0〉 can be prepared with high accuracy,
then errors will arise in the simulator because of an imper-
fect implementation of H . The nature of such imperfec-
tions can be of various kinds, and they depend on the
particular physical platform [30].

In order to formulate a general model for the impact of
errors in AQSs, we consider that the ideal Hamiltonian
dynamics is slightly perturbed in a random way in each
run of the simulation, thus leading to an imperfect evolu-
tion dictated by a total Hamiltonian H + λV, where λ is a

small dimensionless parameter and V is a random Hermi-
tian operator characterizing the perturbation. Generalizing
Eq. (1), the error in the output of the dynamical simulator
is given by

δ(A, t) = 〈ψ(t)|A|ψ(t)〉 − [〈ψsim(t)|A|ψsim(t)〉]V, (7)

where |ψsim(t)〉 = e−i(H+λV)t|ψ0〉 (here and throughout we
set � = 1) and [·]V denotes the average over the ran-
dom perturbation V. Assuming that the ideal Hamilto-
nian H has a nondegenerate spectrum with eigenstates
{|un〉} and eigenvalues {En}, and critically, considering
Vnn = 〈un|V|un〉 to be uncorrelated random variables, in
Appendix B we derive an expression for the leading-
order contribution to the error using standard perturbation
theory. The result reads

δ(A, t) = [1 − f (t)][〈ψ(t)|A|ψ(t)〉 − Tr(ρψ ,DA)], (8)

where ρψ ,D = ∑
n |bn|2|un〉〈un| is the diagonal ensemble

corresponding to the initial state |ψ0〉 = ∑
n bn|un〉 in the

eigenbasis of the ideal Hamiltonian H [26]. The function
f (t) depends on the particular model for the perturbation,
and in general obeys f (0) = 1 and f (τ ) → 0 for τ = λt �
1. The expression obtained in Eq. (8) shows that, after a
transient time set by the perturbation strength, the simula-
tor error reaches a stationary behavior that depends on the
choice of output observable A. Results similar to Eq. (8)
have been obtained even in the nonperturbative regime in
the context of thermalization [31,32], giving evidence of
the broad validity of the predicted behavior for δ(A, t).

A particular application of Eq. (8) is to evaluate it
for A = ρ(t) = |ψ(t)〉〈ψ(t)|, i.e., the projector onto the
unperturbed state of the system. In this case the simula-
tor error in Eq. (7) equals the infidelity I(t) or one minus
the Loschmidt echo [33,34], which measures how well
the device simulates the ideal quantum state |ψ(t)〉. From
Eq. (8), we get

δ[ρ(t), t] = I(t) = [1 − f (t)](1 − S0), (9)

which describes a monotonic increase of the infidelity up
to a value 1 − S0, where S0 = Tr(ρ2

ψ ,D) is the inverse par-
ticipation ratio (IPR) of the state |ψ0〉 in the basis of H , as
shown originally in Ref. [33].

B. Long-time average error

The evolution of the fidelity described above is in
contrast with the alternative scenario where the output
observable is a time-independent operator A (e.g., the mag-
netization Sx). For this case, the average error given in
Eq. (8) can be thought of as due to deviations from the
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(a)
(b) (c)

(d)

FIG. 2. (a) Schematic of a dynamical quantum simulator subject to errors. A prepared initial state |ψ0〉 is time evolved with a Hamil-
tonian H . Ideally, the resulting state is |ψ(t)〉 = e−iHt|ψ0〉. In a real device, different sources of imperfections corrupt the evolution,
yielding the perturbed state |ψsim(t)〉. (b) Diagram of the experimental device. (c) Energy level diagram corresponding to the hyperfine
ground manifold of cesium, indicating the application of magnetic radio-frequency (rf) and microwave (μW) control fields. (d) Quan-
tum simulation scheme through discrete-time evolution. The unitary maps WSP (state preparation), U(δt) (time evolution), and WM

(mapping to measurement basis) are generated by the combination of static and time-dependent control fields, which are programmed
using quantum optimal control techniques (see the main text for details).

infinite-time average of 〈A〉, since

〈ψ(t)|A|ψ(t)〉 =
∑
mn

Amnb∗
mbne−i(En−Em)t, (10)

where bk = 〈uk|ψ〉, and so

lim
t→∞

1

t

∫ t

0

ds〈ψ(s)|A|ψ(s)〉 =
∑

n

Ann|bn|2 = Tr(ρψ ,DA).

(11)

This implies that, for time independent A, we have
δ(A, t) → 0 on a time average as t → ∞. Because of
this fact, in the following we focus our discussion on the
cumulative error E(A, t) defined as

E(A, t)2 = 1

t

∫ t

0

dt′δ(A, t′)2, (12)

which, recalling the definition of δ(A, t), can be regarded
as the root-mean-square error for the expectation value of
A over time.

The asymptotic behavior of E(A, t) can be easily
obtained by inserting Eq. (8) into the definition of Eq. (12),
and assuming that the evolution time is large, λt � 1. The
result yields

lim
t→∞ E(A, t)2 =

∑
n�=m

|bn|2|bm|2AnmAmn, (13)

where Anm = 〈un|A|um〉. As was done in the previous
section, in order to extract the dependence of the error
on the output observable, we perform the average of

Eq. (12) over Haar-random initial states and consider the
time-dependent average relative error,

Erel(A, t)2 = E(A, t)2

〈A〉2
, (14)

and denote its asymptotic value for t → ∞ as E∞
rel (A). This

quantity generalizes the average relative error δrel(A) of Eq.
(5) to the dynamical quantum simulation scheme. Using
the techniques discussed in Appendix A, it is straightfor-

ward to show that |bn|2|bm|2 = 1/d(d + 1) for n �= m, and
thus combining Eqs. (13) and (14) leads to the result

E∞
rel (A) =

√
d

d + 1
[Tr(ρ2

A) − Tr(ρ2
AD

)]. (15)

Here ρX = X /Tr(X ) for both operators A and AD =∑
n Ann|un〉〈un|, where Ann = 〈un|A|un〉 (recall that A >

0 by construction). Note that the second term inside
the square root in Eq. (15) depends on the Hamiltonian
through its eigenbasis {|un〉} and can be thought of as the
Hamiltonian-dependent observable purity

Tr(ρ2
AD

) =
∑

n A2
nn

(
∑

n Ann)2
. (16)

Given the resemblance to the IPR S0 = Tr(ρ2
ψD

), we can
regard Eq. (16) as a measure of the spread of A in the
basis of the Hamiltonian. The maximum value of Tr(ρ2

AD
)

is Tr(ρ2
A), which happens only if A and H commute and

are thus diagonal in the same basis. In this regime, the
error given in Eq. (15) vanishes and we need to increase
our expansion to the next order in perturbation theory. Of
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particular interest is when A and H are highly noncommut-
ing, such that A evolves nontrivially under the action of
the Hamiltonian. Then, we can expect Ann ∼ (1/d)Tr(A)

and thus Tr(ρ2
AD

) ∼ 1/d. In this generic scenario we then
expect

E∞
rel (A) 


√
d

d + 1

(
Tr(ρ2

A) − 1

d

)
, (17)

which shows the same dependence on the observable A
as Eq. (5). Equation (15) is the main finding of this
work, demonstrating that the observable purity η(A) =
Tr(ρ2

A) determines the average sensitivity to imperfections
in dynamical quantum simulations.

IV. EXPERIMENTAL QUANTUM SIMULATION
RESULTS

In the previous section we presented a theoretical frame-
work that relates the magnitude of errors in expectation
values with the spectral properties of the corresponding
observables. In the following we show that this frame-
work can predict the behavior of such errors in a real-
world device, even when no detailed information about the
underlying physical imperfections is used in the model. For
the work presented here, we use a small, highly accurate
quantum (SHAQ) simulator whose state-of-the-art fidelity
is critical for the quantitative examination of errors and
their impact, but similar studies can in principle be done
using a wide range of quantum simulators.

On our experimental platform, previously introduced
in Ref. [20], information is encoded in the hyperfine
ground manifold of individual cesium atoms. This space
is spanned by the logical basis {|F , m〉} labeled by hyper-
fine spin quantum numbers F = 3, 4 and −F ≤ m ≤ F ,
comprising a 16-dimensional Hilbert space. Full unitary
controllability over this space is achieved with a combi-
nation of a static magnetic bias field along z, a pair of
phase-modulated radio-frequency magnetic fields along x
and y, and a single phase-modulated microwave magnetic
field. As a result, this simulator is universal and can be pro-
grammed using quantum optimal control (QOC) to access
the dynamics of any Hamiltonian of interest, as in other
quantum processors [12,35]. In our simulation scheme,
schematically depicted in Fig. 2(c), the control fields are
programmed using QOC techniques to generate the uni-
tary transformations that (i) prepare the initial state |ψ0〉,
(ii) drive the desired evolution through discrete-time steps
U(δt) = exp(−iHδt), which are repeated k times to simu-
late time evolution from t = 0 to t = kδt, and (iii) map the
observable positive operator-valued measure (POVM) out-
comes, here one-dimensional orthogonal projectors �a =
|φa〉〈φa|, onto the logical basis states |F , m〉. After this
last step, populations are measured. This provides good
estimates of the probabilities pa = Tr(ρ�a), as well as

the expectation value 〈A〉 = ∑
a paa. Simulations are per-

formed in parallel on approximately 107 atoms, giving
excellent measurement statistics for probability distribu-
tions in any arbitrary basis. Further details about this
quantum simulation platform are given in Appendix C.

Even though our findings are largely independent of
the details of the model Hamiltonian that is being simu-
lated, here we focus on a particular many-body quantum
system, the Lipkin-Meshkov-Glick (LMG) model [36]
(see Appendix H for other cases). The LMG Hamiltonian
describes the dynamics of a system of N spin- 1

2
parti-

cles with Ising-like interactions in a completely connected
graph, and reads

HLMG(s) = −B

2

N∑
i=1

σ (i)
z − 


4N

N∑
i,j =1

σ (i)
x σ (j )

x . (18)

This model has been extensively analyzed in the litera-
ture and is a paradigmatic example of a quantum system
presenting both ground state and excited state phase tran-
sitions in the thermodynamic limit [37,38]. Recalling the
collective spin operators Sα = 1

2

∑
i σ

(i)
α introduced pre-

viously, the LMG Hamiltonian can be written in more
compact form as HLMG = −B Sz − (
/N )S2

x . Because of
conservation of the total spin S2, we can focus on the evo-
lution within the subspace of maximum spin S = N/2,
which is composed of states that are completely symmet-
ric under particle exchange and has dimension N + 1. In
our experimental simulations, we use N = 15 to make
use of the maximum Hilbert space size available with our
platform.

In Fig. 3 we show the evolution of the fidelity and expec-
tation values obtained from quantum simulations (in red)
of the LMG dynamics for B = 1.5
 (paramagnetic) and
B = 0.4
 (ferromagnetic), starting from a spin coherent
state |ψ0〉 = |↓x〉⊗N . In Figs. 3(b) and 3(e) we plot the
experimental infidelity, which reaches roughly 30%–40%
at time 
t = 30, indicating significant deviation from the
ideal quantum evolution. Nonetheless, expectation values
are tracked with high accuracy, as can be seen from sub-
plots (c) and (f) and the corresponding time-dependent
errors in (d) and (g), which are seen to fluctuate over time
(additional cases are presented in Appendix F). This is the
behavior predicted by our theoretical framework.

For comparison, we show results obtained from numeri-
cal simulations of the LMG Hamiltonian, combined with
the theoretical model introduced in the previous section
to include the effect of imperfections in the simulation
(in blue). To obtain this, starting from the initial state
|ψ0〉, the system is evolved with a perturbed Hamiltonian
HLMG(s) + λV, where V is taken as a random real matrix
from the Gaussian orthogonal ensemble (GOE). Results
shown correspond to averages over 50 instances of the
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(a) (d)(b)

(c)

(e)

(f)

FIG. 3. Comparison between experimental quantum simulation results and the proposed model for dynamics of error generation.
Results are shown for the LMG Hamiltonian of Eq. (18) using (a)–(c) B = 1.5
 and (d)–(f) B = 0.4
, and starting from the initial
state |ψ0〉 = |↓x〉⊗N . Plots (a) and (d) show state infidelity as a function of simulated time, where red circles correspond to experimental
results and the continuous blue line to numerical results obtained from the theoretical model; cf. Eq. (9). The only fitting parameter is
the perturbation strength λ, which is obtained by assuming that the perturbation V is a Gaussian random matrix and using the procedure
outlined in Appendix C. Plots (b) and (e) show dynamics of expectation values for experiment (red) and theory (blue). The theoretical
curves are obtained numerically from the model outlined in Sec. III, where the ideal Hamiltonian is perturbed by a random matrix V;
results shown here are averaged over 50 random instances (see the main text for details). Solid gray line is the ideal target evolution
without errors. Plots (c) and (f) show the time-dependent error in the expectation values |δ(A, t)| computed for these cases. Simulated
time has units of 1/
. Experimental data in panel (c) are also shown in Ref. [20].

random perturbation. The only free parameter is the pertur-
bation strength λ, which is chosen to fit the infidelity curve
(details about this procedure are presented in Appendix
C). Once λ is fixed, the model reproduces the main fea-
tures of the expectation value error curves, as can be seen
from Figs. 3(d) and 3(g). Note that this is achieved with-
out any information about the actual physical origin of the
imperfections affecting the experiment, since the model
only assumes that the diagonal matrix elements of the
perturbing Hamiltonian in the basis of the ideal Hamil-
tonian are randomly distributed. The agreement between
the experiment and the theoretical prediction is particu-
larly striking, as the actual perturbations in the laboratory
are expected to have fundamentally different character than
the full random matrix perturbations used in our numerical
simulations.

In order to explore the impact of imperfections on dif-
ferent observables A as a function of their purity η(A),
we study the long-time average cumulative error associ-
ated with the experimental expectation value curves. Here,
evolution times are taken to be about 10 times larger than
those shown in Fig. 3, in order to be closer to the asymp-
totic regime and enable comparison with our theoretical
findings; cf. Eq. (15). To remove the dependence on the
initial state of the system, we obtain results for several dif-
ferent initial states, which we divide into two groups. First,
a set ns = 10 random states sampled uniformly over the
Haar measure, enabling direct comparison with the analyt-
ical result of Eq. (15). Conceptually, however, it could be
argued that these states are not physically relevant for an
AQS [39]. We thus also consider a set of ns = 10 states that
are prepared as (uniformly distributed) random rotations
from the fiducial state |↑x〉⊗N , leading to a set of random
spin coherent states, which are typical initial conditions for
an AQS in the LMG model.

In Fig. 4 we show the cumulative relative error, defined
in Eq. (14), averaged over Haar-random states in (a) and
(b), and over spin coherent states in (c) and (d). Errors
calculated from the experimental quantum simulations are
shown in shades of red in (a) and (c), while those obtained
from numerical simulations based on our random pertur-
bation theoretical model are shown in shades of blue in (b)
and (d). In all cases, we display results for three output
observables: A1 = Sx, A2 = S6

x , and A3 = |mx〉〈mx| (here
mx = 1

2
; other cases shown in Appendix F). These observ-

ables are chosen to have increasing purity, as discussed at
the start of this paper. For both sets of initial states, the
errors generated in the experiment follow essentially the
same behavior as the theoretical prediction.

For short times, when the cumulative errors are small,
the experimental values deviate considerably from the
numerical curves. Most of this difference can be attributed
to state preparation and measurement (SPAM) errors, as
we show in Appendix D. Nevertheless, for longer times,
the relative errors in the expectation values become consis-
tently higher as the purity of the corresponding observable
increases. This confirms the role of the purity as a mea-
sure of sensitivity of expectation values to imperfections
in the state. For Haar-random initial states, the dashed lines
indicate the analytical result of Eq. (15), which is able to
faithfully reproduce the asymptotic values of the cumu-
lative relative error for all cases. In Appendices F and G
we present further experimental and numerical data that
illustrates this behavior. Also, in Appendix H we present
numerical simulations showing that our theoretical frame-
work is generally applicable to other systems, like the
transverse Ising model.

To further demonstrate the role that the observable
purity plays in the buildup of errors, in Fig. 5 we plot the
long-time cumulative relative error computed for several
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(a)

(d)

(b)

(c)

FIG. 4. Cumulative relative error in expectation values, corresponding to: (a),(c) experimental quantum simulation results and (b),(d)
numerical simulations from the theoretical model. Results shown are averages over ten initial states, chosen randomly from (a),(b) the
uniform (Haar) distribution over Hilbert space and (c),(d) the uniform distribution of (separable) spin coherent states. In all cases,
results for three different output observables are portrayed, which are chosen to have increasing purity: A = Sx, S6

x , and |mx〉〈mx| (here

mx = 1
2
, although similar results are obtained for other cases). Dashed lines correspond to the theoretical prediction of the asymptotic

value of the error E∞
rel (A) for Haar-random initial states [cf. Eq. (15)] computed for each A. Note that the same dashed lines are also

included in the spin coherent state plots, as a guide to the eye. Error bars show the standard error of the mean, arising from the
averaging procedure over ns = 10 random initial states. For each initial state, the results corresponding to the theoretical model are
obtained numerically using the same procedure described for the results in Fig. 3. All cases shown correspond to simulation of the
LMG evolution for B = 0.4
. Simulated time has units of 1/
.

choices (approximately ten) of output observable A = S2k
x .

As seen in Fig. 1(b), the purity of these observables
increases monotonically with k. In Fig. 4 we plot the long-
time relative error as a function of the observable purity for
(a) Haar-random initial states and (b) random spin coher-
ent initial states. In both cases, it is evident that the errors
are a monotonic function of the purity, which determines
how well expectation values can be tracked in the pres-
ence of imperfections. Matching between experiment and
theory is also observed, especially for the Haar-random
initial states. In Fig. 5(c) we plot the same data as in (a)
but as a function of a modified purity Tr(ρ2

A) − Tr(ρ2
AD

),
where we have computed the purity of the Hamiltonian-
dependent observable AD from Eq. (15). The resulting
data can then be directly compared with the analytical
prediction of Eq. (15), showing very good agreement.

V. DISCUSSION

In this work we present a framework to characterize the
effect of errors in the output of quantum simulators. Crit-
ically, we introduce the observable purity η(A) as the key
metric that can be used to characterize the average sensi-
tivity of expectation values 〈A〉 to random imperfections.
By performing extensive experimental explorations in a
small-scale universal quantum simulator, we are able to
demonstrate the validity of this framework in a real-world

device, without using any knowledge about the nature of
the imperfections affecting its operation.

Beyond describing the dependence of errors on the out-
put observable, we argue that the presented framework can
be regarded as a tool to predict the expected robustness of
different aspects of quantum simulations. For instance, the
observable purity η(A), which determines the long-time
error [cf. Eq. (15)] is expected to be a known quantity even
in instances where the simulation is classically intractable
(if its spectrum is known, as it is expected for most phys-
ical observables). Conversely, the short-time behavior of
the simulation error is also shown to be properly cap-
tured by the proposed model. Thus, once the perturbation
parameter λ is found experimentally, it becomes possible
to make quantitative predictions about various aspects of
the simulation. For example, one can estimate the time
frame within which the simulation of the selected observ-
able can be trusted to fit within a given error budget. Also,
one can model the trade-off between the native errors of the
device and those that arise from other sources, for instance
actual approximations made in the programming of the
device (such as Trotter errors). Most importantly, this can
be achieved without having to do the hard work of unrav-
eling the actual, physical errors that happen on the specific
hardware.

While we have tested our predictions on a specific
quantum information processing platform, we expect our
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(a) (c)

(b)

FIG. 5. (a),(b) Average relative error as a function of purity
of the output observable. In all cases, points correspond to the
long-time value of the cumulative relative error [cf. Eq. (12)]
computed from experimental quantum simulation data (in red)
and numerical simulations from the theoretical model (in blue).
Cases portrayed correspond to (a) Haar-random initial states and
(b) random spin coherent initial states. (c) Same data as in (a)
but plotted against the Hamiltonian-dependent modified purity
Tr(ρ2

A) − Tr(ρ2
AD

), to compare with the theoretical prediction for
the asymptotic error of Eq. (15) (gray dashed line). All data
shown correspond to simulations of the LMG Hamiltonian with
B = 0.4
. Error bars denote the standard error of the mean as in
Fig. 4.

framework to be broadly applicable, as the concept of typ-
icality [25,28] describes intrinsic robustness of expectation
values for a wide range of perturbations. In scenarios with
specific kinds of imperfections, e.g., local decoherence on
a simulator with a local tensor product structure, errors
will also depend on additional properties of the output
observable. For some instances, given specifically chosen
initial states of the simulator, we expect to see deviations
from the universal average behavior set by η(A). Nonethe-
less, we expect that the observable purity is the central
tool to establish the baseline sensitivity of AQS outputs.
More generally, we also anticipate that this framework will
have applications in topics like tomography and sampling
[21,22,40] and relaxation in many-body systems [32].
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APPENDIX A: STATE-AVERAGED SIMULATOR
ERROR

In the case that the simulated state |ψsim〉 is pure, the
simulator error of Eq. (1) can be written as

δ(A) = N (γ )2[γ 2(〈A〉 − 〈A〉⊥) − 2γ Re(〈ψ⊥|A|ψ〉)].
(A1)

We now write the states above as |ψ〉 = U|al〉 and |ψ⊥〉 =
U|am〉, where l �= m and {|ai〉} with i = 1, . . . , d is a refer-
ence basis set (for instance, the basis of eigenstates of A).
Here, U is a random matrix taken from the uniform dis-
tribution over the manifold of d × d unitary matrices, i.e.,
the Haar measure corresponding to the group U(d) [41].
We can then consider quantities like∫

U(d)

δ(A)k dU ≡ δ(A)k, (A2)

which can be computed analytically (for k = 1, 2), decom-
posing the integrand into sums of polynomials in the
elements of U. Using known expressions for these integrals
for up to quartic order [24], which we show in Appendix
E, we can compute

〈A〉 = 1

d
Tr(A), (A3)

〈A〉2 = 1

d2 + d
[Tr(A2) + Tr(A)2], (A4)

〈A〉〈A〉⊥ = 1

d2 − 1

(
Tr(A)2 − 1

d
Tr(A2)

)
, (A5)

|〈ψ |A|ψ⊥〉|2 = 1

d2 − 1

(
Tr(A2) − 1

d
Tr(A)2

)
. (A6)

Inserting these results into Eq. (A1) we obtain δ(A) = 0

and the expression for δ(A)2 in Eq. (3). Furthermore, these
allow us to easily generalize our findings to mixed states,
i.e., |ψsim〉 → ρsim. For one simple noise model,

ρsim = (1 − γ )|ψ〉〈ψ | + γ

d
I, (A7)

which has been discussed recently in the context of near-
term quantum information processing devices [12], we
obtain δ(A) = 〈A〉 − Tr(ρsimA), which evaluates to δ(A) =
γ (〈A〉 − 〈A〉). Using Eqs. (A3)–(A6), it is straightforward
to derive the average relative error for this model

δrel(A) =
√

d

d + 1
γ 2

(
Tr(ρ2

A) − 1

d

)
, (A8)

which depends on the purity in the same way as Eq. (5).
A very similar result can be derived for the alternative
model ρsim = (1 − γ )|ψ〉〈ψ | + γ |ψ⊥〉〈ψ⊥|.

APPENDIX B: PERTURBATION MODEL FOR
DYNAMICAL QUANTUM SIMULATORS

The time-dependent simulator error given by Eq. (7) can
be written in terms of the quantum state averaged over the
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perturbation,

[|ψsim(t)〉〈ψsim(t)|]V ≡ [ρsim(t)]V = [U′(t)ρ0U′†(t)]V,
(B1)

where U′(t) = e−i(H+λV)t and ρ0 = |ψ0〉〈ψ0|. Using time-
independent perturbation theory to expand the eigenvalues
and eigenvectors of H ′ = H + λV in powers of λ, we
obtain

U′(t) = UV(t) + O(λ), (B2)

where UV(t) is a unitary matrix given by

UV(t) =
∑

k

e−i(Ek+λVkk)t|uk〉〈uk|. (B3)

Note that the zeroth-order contribution depends on the
perturbation through its diagonal elements Vkk. This is
because λ cannot be neglected in the argument of the expo-
nential since the time t could in principle be of order λ−1

[33]. Thus, the leading-order contribution to the perturbed
state is

[ρsim(t)]V = [UV(t)ρ0UV(t)†]V + O(λ). (B4)

From Eqs. (B3) and (B4), it can be seen that the effect of
the perturbation is condensed on the quantity

f (τ ) = [e−i(Vll−Vmm)λt]V =
∣∣∣∣
∫

pV(x)e−iτx dv

∣∣∣∣
2

= |g(τ )|2,

(B5)

where l �= m, and we have defined τ ≡ λt and introduced
pV(x), which is the probability density function associ-
ated with the perturbation matrix elements Vkk. A crucial
assumption here is that the diagonal matrix elements Vkk

can be considered statistically independent. The integral
inside the absolute value in Eq. (B5) is the characteris-
tic function g(τ ) of the probability distribution [42], which
has the properties g(0) = 1 and |g(τ )| ≤ 1 [43]. Further-
more, for all probability distributions of interest, f (τ ) will
be a function that goes to 0 as τ → ∞. As an example, if
V is taken to be a random matrix from the GOE then we
have g(τ ) = e−τ2/2 [44].

After defining f (τ ), for the perturbed state, we obtain

[ρsim(t)]V = ρψ ,D + f (τ )[ρ(t) − ρψ ,D], (B6)

from which the result in Eq. (8) immediately follows.

APPENDIX C: SIMULATION ON A QUANTUM
PROCESSOR

1. Quantum control

As described in the main text, our SHAQ simulator is
based on the spin degrees of freedom of an individual 133Cs

atom in the electronic ground state. The atom is driven by
a combination of static and time varying magnetic fields,
rendering it fully controllable in a 16-dimensional Hilbert
space. Control is achieved with a combination of a static
magnetic bias field along z, a pair of phase-modulated
rf magnetic fields along x and y, and a single phase-
modulated microwave magnetic field. The rf fields are
tuned to the Larmor precession frequency in the bias field,
and the microwave field is tuned to the transition between
the |3, 3〉 and |4, 4〉 states. Phase-modulation waveforms
that implement a desired transformation U ∈ SU(16) are
found using either conventional optimal control, or a vari-
ant optimized for an AQS that searches for co-optimal con-
trol fields and system-simulator maps using an approach
called eigenvalue-only (EVO) control [20]. The two proto-
cols generate (nonunique) control waveforms consisting of
150 and 20 discrete phase steps, respectively, correspond-
ing to waveform durations of 600 and 80 μs, with typical
fidelities F = 0.985 and F = 0.995 as estimated by ran-
domized benchmarking. EVO control is used exclusively
for the unitary time steps that make up an AQS, while con-
ventional control is used to generate unitary maps for state
preparation and measurement.

2. Experimental implementation

Our experiment begins with a sample of approximately
107 laser cooled Cs atoms released from a magneto-optical
trap-optical molasses into free fall. Optical pumping and
state selective purification is used to prepare greater than
99% of these atoms in the logical basis state |χ0〉 = |3, 3〉.
An AQS sequence begins with a map WSP to the desired
input state, |χ0〉 → |ψ0〉 = ∑

F ,m CF ,m|F , m〉. This is fol-
lowed by k identical time steps U of duration δt to simulate
time evolution from t = 0 to t = kδt. Finally, to mea-
sure a desired observable A = ∑

a a|φa〉〈φa|, we apply a
unitary map WM = ∑

a |(F , m)a〉〈φa|, and determine the
population of the states |(F , m)a〉 with a Stern-Gerlach
measurement. The latter is implemented by imposing a
magnetic field gradient on the falling atoms and measuring
the state-dependent arrival times at a resonant probe beam
located below the preparation volume. Fitting the time-
dependent fluorescence from atoms falling through the
probe gives an accurate measure of the populations in the
logical basis states |F , m〉, and these in turn provide good
estimates of the probabilities pa = Tr(ρ�a) for the POVM
outcomes �a = |φa〉〈φa|, and the expectation value 〈A〉 =∑

a apa. Measurement statistics contribute negligibly due
to the large number of simulations running in parallel on
millions of atoms; instead the accuracy is dominated by
errors in the readout map, probe power fluctuations, and
electronic noise. Measuring the projector |χk〉〈χk|, where
|χk〉 is the state predicted in the absence of errors, gives
an estimate of the fidelity of the AQS. Averaged over a
sample of random states, the SPAM error on this estimate
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is approximately 1%. For a detailed evaluation of SPAM
errors, see Appendix D. For additional information about
the operation and performance of our SHAQ simulator, see
Ref. [20].

3. Estimating the perturbation strength λ

When V is a random matrix taken from the GOE, we can
use the explicit form for f (t) with Eq. (9) to get

δ(ρ(t), t) = I(t) = (1 − e−τ2
)(1 − S0). (C1)

In this case, the growth in infidelity of the model directly
depends on the perturbation strength λ, as τ = λt and S0

is fixed by the choice of initial state. This gives us a way
to fix λ based on the decay of the state-level fidelity in
the experiment, which shares the same form to leading
order [45]. We use the ability to perform arbitrary uni-
tary transformations to map the state |ψ(t)〉 to a logical
basis state. The resulting measurement is of the observ-
able A = |ψ(t)〉〈ψ(t)|, from which we can calculate the
infidelity. We then fit the data to minimize the residual
between the data and Eq. (C1) to find the λ that most
closely matches the growth in experimental infidelity. Typ-
ical fit values are around λ ≈ 0.01, suggesting the amount
of perturbation from the ideal is small.

APPENDIX D: ANALYSIS OF STATE
PREPARATION AND MEASUREMENT ERRORS

When running an analog quantum simulation on a phys-
ical device, errors are introduced through imperfections
in the evolution (simulation errors) and through imper-
fect state preparation and measurement (SPAM errors).
The theoretical model developed in the main text con-
siders only simulation errors, whereas our experiment is
subject to both simulation and SPAM errors. In this section
we examine SPAM errors and the role they play in our
experiment.

While SPAM errors cannot be eliminated, their impor-
tance can be evaluated by comparing experiments with and
without simulation errors. To see how, consider that an
experimental quantum simulation has three parts: (i) prepa-
ration of a chosen input state, (ii) an iterative sequence of k
time steps, and (iii) an orthogonal measurement at the end.
Thus, starting from a given input state, we can calculate
the output state resulting from an ideal simulation, forego
part (ii) and instead prepare this state directly, and proceed
with the measurement. The resulting error is then a good
measure for the SPAM error in a k-step simulation.

Fundamentally, the output of a quantum simulator is
a probability distribution over measurement outcomes. In
this case it is appropriate to use the total variation distance
DV as a metric for error. For two probability distributions

Haar random Spin coherent(a) (b)
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FIG. 6. Mean variation distance to the exact probability distri-
butions calculated over sets of ns = 10 (a) Haar-random and (b)
random spin coherent initial states. Squares indicate distances for
the experimental quantum simulation. Circles indicate distances
for experimentally obtained SPAM errors. Triangles indicate dis-
tances for the theoretical simulations. All error bars represent the
standard error of the mean. The black dashed line is a numer-
ically calculated mean distance of the mixed state population
distribution from 104 Haar-random states.

P : {pn} and Q : {qn}, the variation distance is given by

DV = 1

2

d∑
n=1

|pn − qn|, (D1)

where d = 16 is the dimension of the Hilbert space. In
Fig. 6 we show the total variation distance between the
probability distributions calculated for an ideal simulation
and those of the experiment (which include SPAM and
simulation errors), SPAM error only, and the predictions of
our theory (only affected by simulation errors) as a func-
tion of simulated time. As in Fig. 3, results are averaged
over ns = 10 initial states. We see that at short times, vari-
ation distances for the experiment are almost entirely due
to SPAM errors, in the cases of Haar-random as well as
spin coherent initial states. At late times, simulations with
Haar-random initial states saturate the total error in both
the experiment and the theory, irrespective of the presence
or absence of SPAM errors, suggesting that the two types
of error become uncorrelated as simulation errors accrue.
For simulations with spin coherent initial states, the errors
also approach saturation, but experiment and theory do not
appear to converge within the time simulated.

These behaviors are also manifest in the cumulative rel-
ative errors of the observables examined in the main text,
namely A = Sx, A = S6

x , and A = |mx = 1
2
〉〈mx = 1

2
|, and

can be seen in Fig. 7. It is important to note that both the
mean variation distances and the observable relative errors
are calculated using the same probability distributions, and
that the two are therefore likely to correlate. Furthermore,
one can expect the observable error to depend on observ-
able purity in roughly the same way, regardless of whether
the underlying cause is simulation or spam error. Both
trends are clearly supported by the data.
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FIG. 7. Cumulative relative error over sets of ns = 10 Haar-random (a)–(c) and spin coherent (d)–(f) initial states. Squares indicate
deviations for the experimental quantum simulation. Circles indicate results for experimentally estimated SPAM errors. Triangles
indicate errors for the theoretical-numerical simulations. All error bars represent the standard error of the mean. The black dashed lines
are the theoretical predictions for the asymptotic value of the error Erel(A,∞) for Haar-random initial states; cf. Eq. (15).

APPENDIX E: OBSERVABLE PURITY ANALYSIS

1. Average and variance analysis

In this section we analyze particular aspects of the
simulator error δ(A), defined in Eq. (1), when evaluated
for Haar-random states. Formally, we are interested in
quantities like

∫
U(d)

δ(A)k dU ≡ δ(A)k. (E1)

It is easy to see that Eq. (E1) can be decomposed into linear
combinations involving the kth-order moments of the Haar
distribution [24,46]

Pk =
∫

U(d)

Ui1j1 · · · Uikjk U∗
i′1j ′

1
· · · U∗

i′kj ′
k

dU. (E2)

In order to derive Eqs. (2)–(3) and (10) we have used the
expressions for k = 1 and k = 2, which are relatively easy

to obtain in closed form and read [47]

P1 = 1

d
δi1i′1δj1j ′

1
, (E3)

P2 = 1

d2 − 1
(δi1i′1δi2i′2δj1j ′

1
δj2j ′

2
+ δi1i′2δi2i′1δj1j ′

2
δj2j ′

1
) (E4)

− 1

d(d2 − 1)
(δi1i′1δi2i′2δj1j ′

2
δj2j ′

1
+ δi1i′2δi2i′1δj1j ′

1
δj2j ′

2
).

(E5)

These calculations lead to the main result for the average
relative error,

δrel(A)2 ≡ δ(A)2

〈A〉2
= 2d2

d2 − 1

(
γ 2

1 + γ 2

)(
Tr(ρ2

A) − 1

d

)
;

(E6)

cf. Eq. (3). To numerically illustrate this result, we consider
observables corresponding to a system of N spin- 1

2
parti-

cles, like the collective magnetization Sz. Restricted to the
symmetric subspace, the Hilbert space dimension for this
case is d = N + 1. Then, we evaluate the relative error in
the expectation value of different observables for a set of
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(a) (b)

FIG. 8. (a) Average value of the relative error δrel(A)2 cal-
culated numerically over 2000 random states |ψ〉 and |ψsim〉 =
N (γ )(|ψ〉 + γ |ψ⊥〉). States |ψ〉 and |ψ⊥〉 are drawn randomly
from the Haar distribution, and here we take γ = 0.2. Results
are shown for four different observables, showing higher aver-
age relative errors as the observable purity is increased. Solid
lines denote the analytical result of Eq. (E6). (b) Numerically
calculated standard deviation of the quantity δrel(A)2, showing
the magnitude of fluctuations around the mean shown in (a). The

dashed lines represent 1.5 × δ(A)2 to illustrate the similarity of
scaling between the standard deviation and the average value,
particularly for a large system size.

2000 Haar-random states (with corresponding random per-
turbations). The numerically computed average is shown
in Fig. 8(a), together with the analytical result of Eq. (E6).
The set of observables is chosen as Sα

z , with α even except
for α = 1. From this plot we can see a monotonic behavior
resembling d−1 for large N and the expected increasing rel-
ative error as the higher the power (and, hence, the purity)
of Sz is considered (recall Fig. 1).

An important part of this analysis is to assess how
big the deviations are from the Haar-average value, as a

function of the observable. For this, we need to consider
the variance of δ(A)2, i.e.,

�[δ(A)2]2 ≡ δ(A)4 − δ(A)2
2
. (E7)

Note that the explicit calculation of δ(A)4 involves fourth-
order moments of the Haar distribution; cf. Eq. (E2). Since
it is tricky to obtain closed expressions for these, we rely
on full numerical analysis. Results are shown in Fig. 8(b),
where we show �[δrel(A)2] . We observe that higher purity
observables, for which the average relative error is higher,
also have higher fluctuations, and conversely low purity
observables, which have small average relative errors,
have smaller fluctuations. In all cases, we observe that
fluctuations decay with system size, suggesting that the
average behavior of δ(A) is also typical for random states.
Notably, the dependence of �[δrel(A)2] on both the observ-
able A and the system size N resembles very closely that of
the average value. This implies that the ratio between the
size of the fluctuations and the magnitude of the relative
error is roughly the same for all cases.

2. Purity of many-body observables

Here we analyze the concept of observable purity in
the context of a many-body system. For concreteness,
we consider systems of N spin- 1

2
particles. An important

observation is that all operators of the form

A′
(i1,i2,...,ik) ≡ A′

�i = σ (i1)
z σ (i2)

z · · · σ (ik)
z , (E8)

where i1 �= i2 �= . . . �= ik and k ≤ N denotes the number
of sites the operator acts nontrivially on, have exactly the

(c)(a)

(d)(b)

LMG, B = 1.5L LMG, B = 0.4L

FIG. 9. Comparison between experimental quantum simulation results and the proposed model for dynamics of error generation
(additional data corresponding to Fig. 3). In all cases, red circles correspond to experimental results and blue circles to numerical
results obtained from the theoretical model, where the imperfection strength λ is the only fitting parameter. Plots (a) and (c) show
dynamics of the expectation value of Sy for experiment and theory. The solid gray line is the ideal target evolution without errors. Plots
(b) and (d) show the time-dependent error in the expectation values δ(Sy , t) computed for these cases. Data in panel (c) are also shown
in Ref. [20].
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same spectrum. This can be easily seen by the fact that their
eigenvalues are −1 and 1, and that Tr(A′

�i) = 0. This neces-
sarily implies that half of the eigenvalues are −1 while the
other half are 1. Defining A�i = A′

�i + 1 (to make the opera-
tor positive), we can easily calculate the observable purity.
Independently of k, all these operators display the same
purity, i.e.,

if ρ�i = A�i
Tr(A�i)

⇒ Tr(ρ2
�i ) = 2

d
= 2−(N−1). (E9)

As a consequence, the purity is not related to the local char-
acter of the observable. However, as stated in the main text,
there is an association between macroscopicity and purity.
For many-body systems, this can be revealed in the follow-
ing way. Consider a partition of an N -particle system into
Sk (having k particles) and SN−k (including the remainder).
We can define the observable

O(k) = |φk〉〈φk| ⊗ IN−k, (E10)

where |φk〉 is a pure state of Sk and IN−k denotes the
identity operator acting on SN−k. The purity for this

observable is

Tr(ρ2
O) = 2k−N . (E11)

From this expression we observe that, when k ∼ N , the
observable value sharply depends on the microstate of the
system and Tr(ρ2

O) ∼ 1. On the other hand, when k � N ,
we associate it with a macroscopic observable and indeed
we have Tr(ρ2

O) ∼ 2−N .

APPENDIX F: ADDITIONAL EXPERIMENTAL
RESULTS

In this section we present additional experimental data
that complement the results shown in the main text. In
Fig. 9 we show the evolution of 〈Sy〉 obtained from
experimental simulations of the LMG dynamics for param-
eter values B = 1.5
 and B = 0.4
. The initial state for
both cases is |ψ0〉 = |↑x〉⊗N . In Figs. 9(b) and 9(d) we plot
the error, i.e., the difference between the simulated and the
ideal outputs, for both experimental data and numerical
results obtained from the theoretical model. As mentioned
in the main text, we observe that the model reproduces the
main features of the error dynamics.

In Fig. 10 we show additional data corresponding to
Fig. 4. In particular, we plot the average relative error

(b)(a)

(d)(c)

FIG. 10. Cumulative average relative error in expectation values, corresponding to: (a)–(c) experimental quantum simulation results
and (b)–(d) numerical simulations from our proposed theoretical model. The shown data complement Fig. 4. Results shown are
averages over ten initial states, chosen randomly from (a),(b) the uniform (Haar) distribution over Hilbert space and (c),(d) the uniform
distribution of spin coherent states. In all cases, the output observable is a projector Pm onto a basis state of Sx. Dashed lines correspond
to the theoretical prediction for the asymptotic value of the error E(A, ∞) (for Haar-random initial states). All data shown correspond
to simulation of the LMG evolution for B = 0.4
.
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(b)(a)

(d)(c)

FIG. 11. Cumulative average relative error in expectation values, calculated from numerical simulations of the LMG dynamics with
different values of system size N = 2S. All cases show results for three observables chosen to have increasing purity Sα , S4

α , and S10
α .

In (a)–(d), different cases are shown to illustrate the generic behavior of the relative error. (a) Initial states are Haar random, s = 0.4,
α = x. (b) Initial states are random Dicke states (i.e., eigenstates of Sz), B = 0.25
, α = z. (c) Initial states are random spin coherent
states, B = 0.11
, α = z. (d) Initial states are random spin coherent states, B = 2.3
, α = x. For case (a), the dashed line corresponds
to the analytical prediction for the long-time value; cf. Eq. (10). For (b)–(d), such prediction is not available, so we plot as a dotted line
the numerically computed average of the single-instance analytical results, Eq. (13) in the main text. In all cases, results correspond
to averages over 50 initial states (shaded regions indicate standard errors). Each evolution, in turn, is obtained by averaging over 50
random perturbations, and the perturbation strength is set to λ = 0.025 in all cases.

Erel(Pm, t) evaluated for observables that are projectors
onto pure states, Pm = |mx〉〈mx| for m = − 15

2
, − 7

2
, 7

2
, 15

2
.

Note that the case mx = 1
2

is shown in the main text.
Results are presented for Haar-random initial states in
(a)–(b) and for random spin coherent states in (c)–(d). It
can be seen from the figure that all these cases display
a similar behavior and reach values that are compara-
ble in magnitude, and considerably larger than the lower
purity observables shown in Fig. 4. This behavior agrees
with the fact that all the observables Pm have the same
purity (equal to 1), and thus their expectation values should
display, on average, the same degree of sensitivity to
imperfections.

APPENDIX G: ADDITIONAL NUMERICAL
RESULTS

In this section we present additional numerical results
regarding the dynamics of the average relative error
Erel(A, t), defined in Eq. (9). These results illustrate the
generic dependence of this quantity on the observable
purity, irrespective of the particular observable, model,
and system size we consider. In Fig. 11 we plot Erel(A, t)
for several choices of Hamiltonian, observable, and type
of initial states. All cases are shown for three values
of particle numbers N = 2S = 15, 45, 80. We show cases
corresponding to both the paramagnetic (B > 
) and fer-
romagnetic (B < 
) phases, and we use different sets of
initial states like Haar-random states (HRSs), spin coherent

states (SCSs), or Dicke states (DSs). In all cases shown, the
long-time cumulative error becomes larger as the observ-
able purity increases. We also observe good agreement
between the numerical results (which are exact) and the
analytical predictions for the long-time averages. Among
all these cases, some differences are seen. For instance, the
deviations from the mean are larger for the SCS and DS
with respect to the HRS. This behavior can be expected
from the lack of structure of the HRS, which is prone
to lead to self-averaging of the expectation value errors.
For the SCS and s in the paramagnetic phase, we observe
that the timescale in which saturation is achieved increases
greatly, as can be seen in case (d). We attribute this behav-
ior to the combination of an integrable model with a
very regular energy spectrum, and the choice of highly
structured initial states.

APPENDIX H: APPLICATION TO OTHER TYPES
OF PERTURBATIONS AND SYSTEMS

Throughout this work, we have analyzed the role of the
observable purity in determining the average sensitivity
of expectation values to deviations in the quantum state.
As argued in the main text, we expect the core of our
results to hold generically, irrespective of the details of
the Hamiltonian and the perturbation. In this section we
present a numerical analysis showing the applicability of
some of our results to another paradigmatic many-body
system, the transverse Ising model (TIM) [48]. The TIM
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(b)(a) TFIM, perturbation GOE TFIM, perturbation Vs

FIG. 12. Cumulative average relative error in expectation val-
ues, calculated from numerical simulations of the transverse
Ising model with N = 6 particles and h/J = 0.33. All cases
show results for four observables Ai defined in Eq. (H5), whose
purities satisfy η(A1) = η(A2) < η(A3) < η(A4). (a) Random
perturbation Hamiltonian V is drawn for the GOE ensemble, as
done in all previous numerical results for the LMG model. (b)
Random perturbation Hamiltonian V is taken from the model in
Eq. (H6). Dashed lines show the numerically computed average
of the single-instance analytical results, Eq. (13) in the main text.
In can be readily observed that the overall behavior between both
types of perturbation is very similar. The number of initial states
here is ns = 20. Each evolution, in turn, is obtained by averaging
over 50 random perturbations, and the perturbation strength is set
to λ = 0.025 in all cases.

describes the dynamics of N spin- 1
2

particles arranged in a
one-dimensional chain with nearest-neighbor interactions,
and its Hamiltonian reads

HI = −h

2

N∑
i=1

σ (i)
x − J

4

N−1∑
i=1

σ (i)
z σ (i+1)

z . (H1)

In Fig. 12(a) we show plots of the cumulative relative error,
averaged over ns = 20 Haar-random initial states and cor-
responding to the following choices of observables (for
N = 6):

A1 = σ (3)
y , (H2)

A2 = σ (3)
y ⊗ σ (4)

y , (H3)

A3 = |↑ · · · ↑〉〈↑ · · · ↑|N−1 ⊗ IN , (H4)

A4 = |↑ · · · ↑〉〈↑ · · · ↑|. (H5)

Following the discussion in Appendix E, the purities of
these operators satisfy η(A1) = η(A2) < η(A3) < η(A4).
As can be seen from the figure, the obtained results follow
the same behavior as was observed for the LMG model,
where the average relative error is higher for higher purity
observables.

The numerical simulations leading to Fig. 12(a) use as a
model for the random perturbation matrix V a full Gaussian
random matrix ensemble (the GOE). This same choice is
used for all the LMG numerical calculations shown in this
work. However, the TIM has a natural notion of spatial

(b)(a) TFIM, perturbation GOE TFIM, perturbation Vs

FIG. 13. Cumulative average relative error in expectation val-
ues, calculated from numerical simulations of the transverse
Ising model with N = 8 particles and h = 0. All cases show
results for four observables Bi defined in Eq. (H10). These are
all Pauli observables (albeit of different weights), and so have
the same observable purity. (a) Random perturbation Hamilto-
nian V is drawn for the GOE ensemble. (b) Random perturbation
Hamiltonian V is taken from the model in Eq. (H6). Results are
shown for a particular initial state, |ψ0〉 = |↑ · · · ↑〉x. The evolu-
tion is obtained by averaging over 50 random perturbations, and
the perturbation strength is set to λ = 0.025 in all cases.

locality, which the LMG model lacks. It is thus instructive
to also analyze for this system the effects of imperfections
arising from fluctuating local fields. For instance, consider
the perturbation Hamiltonian

Vs = 1

2

N∑
j =1

vj σ
(j )
x , (H6)

where we take the local fields to be normally distributed
vj = N (0, 1). In Fig. 12(b) we show results corresponding
to the perturbation being of the form in Eq. (H6). As can
be observed from comparison with (a), results are qualita-
tively similar, and the observable purity still plays a major
role in determining the average relative error. We recall
that the structure of the whole matrix V does not enter the
first-order perturbation theory calculation that is described
in the main text, and so it is not surprising that even a struc-
tured random matrix leads to qualitatively similar results
(see also Ref. [32] and the references therein).

Finally, we point out that we expect noise channels with
tensor product structure to determine differences in the
sensitivity of same purity observables, particularly Pauli
operators of different weights. Such differences are not
prominent in the data shown in Fig. 12, as they are washed
out by the initial Haar-random configurations. However,
they are likely to appear for other types of initial states
(such as Dicke or spin coherent states, which are separa-
ble) and/or for short times. We demonstrate this point in
Fig. 13 where we show the cumulative error in expecta-
tion values for a initial separable state |ψ0〉 = |↑ · · · ↑〉x

as a function of time. The observables considered here are
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(for N = 8)

B1 = σ (4)
x , (H7)

B2 = σ (4)
x ⊗ σ (5)

x , (H8)

B3 = σ (3)
x ⊗ σ (4)

x ⊗ σ (5)
x , (H9)

B4 = σ (3)
x ⊗ σ (4)

x ⊗ σ (5)
x ⊗ σ (6)

x , (H10)

which all have the same purity as discussed previously.
In case (a) we show the errors arising for the GOE per-
turbation model, for which no substantial differences are
observed between these observables. On the other hand,
with the local noise model shown in (b) we observe higher
cumulative errors as the weight of the Pauli observable
increases.
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