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ARTICLE INFO ABSTRACT

Keywords: The Ediacaran-Cambrian transition marks one of the most important geobiological revolutions in Earth History,
Ediacaran including multiple waves of evolutionary radiation and successive episodes of apparent mass extinction. Among
Cambrian

the proposed drivers of these events (in particular the extinction of the latest Neoproterozoic ‘Ediacara biota’) is

;C.hn?lofy h the emergence of complex metazoans and their associated behaviors. Many metazoans are thought to have
10stratigra . . . . . . . .

Ecosystefn ;g};neering crucial geobiological impacts on both resource availability and the character of the physical environment —
Evolution ‘ecosystem engineering’ — biological processes best preserved in the geological record as trace fossils. Here, we

Extinction review this model using the trace fossil record of the Ediacaran to Cambrian Nama Group of southern Namibia,
combining previous published accounts with the results of our own field investigations. We produce a revised
ichnostratigraphy for the Nama Group that catalogues new forms, eliminates others, and brings the trace fossil
record of the Nama into much closer alignment with what is known from other Ediacaran sections worldwide.
We provide evidence for a link between sequence stratigraphy, oxygen, and the emergence of more complex
bilaterian behaviors. Lastly, we show that observed patterns of extinction and survival over pulses of Ediacaran
extinction are hard to ally with any one specific source of ecological stress associated with bioturbation, and thus
a biologically-driven extinction of the Ediacara biota, if it occurred, was more likely to have been driven by some
combination of these factors, rather than any single one.
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1. Introduction

The interval spanning the late Ediacaran to early Cambrian
(~571-509 million years ago) marks one of the most important geo-
biological revolutions in Earth History, including major perturbations to
global geochemical cycles, the establishment of the first macroscopic
and eukaryotic ecosystems, the first major turnover of complex
eukaryotic life (the extinction of the enigmatic Ediacara biota), and
arguably, the most dramatic evolutionary radiation of the last billion
years — the Cambrian Explosion (Erwin et al., 2011; Erwin and Tweedt,
2012; Erwin and Valentine, 2013; Mangano and Buatois, 2016, 2017;
Droser et al., 2017; Darroch et al., 2018a; Muscente et al., 2018; Tarhan
etal., 2018; Wood et al., 2019, 2020). The paleontological record of this
interval thus provides evidence of the Precambrian rise of animals, and
is central to understanding both rates and patterns of early metazoan
evolution, and the origins of the modern animal-dominated biosphere.
Recent work on the Ediacaran-Cambrian transition has identified several
distinct bioevents, including one or more pulses of extinction (Amthor
et al., 2003; Laflamme et al., 2013; Darroch et al., 2015, 2018a; Mus-
cente et al.,, 2019), and successive waves of evolutionary radiation
(Wood et al., 2019). The ultimate causes of these events, however, are
still uncertain, with a wide variety of extrinsic (i.e., environmental) and
intrinsic (biological) drivers hypothesized. In this context, understand-
ing rates and patterns of biotic evolution in the latest Neoproterozoic is
crucial.

In terms of extrinsic (i.e., environmental) factors, several recent
studies identify dynamic and global changes in redox conditions as po-
tential drivers of both pulsed extinction and evolutionary radiation in
the latest Neoproterozoic. For example, intervals of ocean anoxia have
been suggested as drivers of late Ediacaran extinction (Kimura and
Watanabe, 2001; Zhang et al., 2018; Tostevin et al., 2019), while pulses
of oxygenation and nutrient supply (or redox fluctuations — see Wood
and Erwin, 2017) have long been thought to be responsible for the
appearance of more complex metazoan behaviors in the late Neo-
proterozoic (McFadden et al., 2008; Johnston et al., 2012; Sahoo et al.,
2016; Wei et al., 2018; Wood et al., 2019, 2020). However, other studies
have suggested that biological factors may have played a crucial role in
driving many of these environmental changes and/or patterns of biotic
turnover (e.g., Butterfield, 2011). The evolution of key traits, such as the
acquisition of the metazoan gut, filter feeding, and the ability to mix the
sediment-water interface may have, for example, been responsible for
oxygenating the Neoproterozoic oceans (Fike et al., 2006; Butterfield,
2011), increasing seawater sulfate concentrations (Canfield and Farqu-
har, 2009), and driving the extinction of the Ediacara biota (an informal
grouping of soft-bodied organisms, likely comprising both stem- and
crown-group animals, as well as extinct groups with no modern repre-
sentatives — see Xiao and Laflamme, 2009; Laflamme et al., 2013; Dar-
roch et al., 2018a; Dunn et al., 2018; although see Budd and Jackson,
2016 for an alternative viewpoint). Central to this model is the role of
early animals as ecosystem engineers (Erwin and Tweedt, 2012; Buatois
et al., 2020). Organisms with complex biological organization and be-
haviors are frequently able to change the habitability of an ecosystem for
themselves and other organisms by regulating resource availability and
modifying the physical environment. Ecosystem engineers are therefore
powerful agents of environmental change that create (or eliminate)
niche space for other organisms, and are an important control on local
and regional diversity (Jones et al., 1994, 1997; Wright et al., 2002;
Hastings et al., 2007).

Among the many proposed geobiological impacts associated with
metazoan evolution, the role of animal ecosystem engineers in driving
the extinction of the Ediacara biota has been a topic of intense debate
(see e.g., Erwin and Tweedt, 2012; Laflamme et al., 2013; Darroch et al.,
2015, 2016, 2018a; Smith et al., 2016; Buatois and Mangano, 2016;
Schiffbauer et al., 2016; Budd and Jensen, 2017; Tarhan et al., 2018;
Muscente et al., 2018, 2019; Wood et al., 2019; Mangano and Buatois,
2020). Certainly, the latest Ediacaran ‘Nama’ interval (~548-539 Ma;
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Waggoner, 2003; Boag et al.,, 2016) is associated with relatively
depauperate and potentially ecologically ‘stressed” communities of soft-
bodied Ediacaran organisms (Darroch et al., 2015, 2018b; Boag et al.,
2016; Muscente et al., 2018), coinciding with an apparent increase in
the diversity of metazoan behaviors (Erwin and Tweedt, 2012; Darroch
et al., 2018a). Although evidence of ecosystem engineering can poten-
tially be recorded in a wide variety of ways in fossils (reviewed in
Marenco and Bottjer, 2007, 2011), they are perhaps most easily recog-
nized in trace fossils and the geological record of bioturbation (Buatois
et al., 2020). Bioturbation is a crucial ecosystem engineering process,
affecting the oxygenation of the water column (Aller, 1982; Erwin and
Tweedt, 2012; Mangano and Buatois, 2014, 2020), pore water redox
chemistry (Canfield and Farquhar, 2009; Tarhan et al., 2015; Zhang
et al., 2017), sediment stability (Rhoads and Young, 1970), and the
cycling of marine nutrients (Mcllroy and Logan, 1999; Laverock et al.,
2011). In this vein, the appearance of metazoan trace fossils in the
Ediacaran and the subsequent increase in ichnodiversity and extent of
substrate reworking have long been recognized as crucial controls on the
character of the marine sediment substrate. Perhaps more importantly,
the expansion of ecosystem engineering behaviors marks a permanent
geobiological step-change in the strength of coupling between the geo-
sphere and biosphere (Seilacher and Pfliiger, 1994; Bottjer et al., 2000;
Seilacher et al., 2005; Mangano and Buatois, 2014, 2017; Butterfield,
2011; Buatois et al., 2020). However, the degree to which burrowing
activity of emerging metazoans could have caused or contributed to
global-scale biotic turnover (and in particular, the extinction of the
Ediacara biota) remains unknown (Darroch et al., 2018a; Cribb et al.,
2019). Compiling a comprehensive account of Ediacaran trace fossil
diversity, alongside analyses of the behaviors they represent and their
roles in engineering the Neoproterozoic marine environment, has thus
become a key cog in our understanding of the rates and patterns of
metazoan evolution, and in evaluating hypothesized biotic drivers of the
Ediacaran-Cambrian transition (Buatois et al., 2020).

Against this backdrop, we review the Ediacaran trace fossil record of
the Nama Group of southern Namibia, which preserves Ediacaran- to
Cambrian-aged fossiliferous sediments in unparalleled lateral extent. We
collate trace fossil summaries for the Nama Group produced by previous
workers, compare this with the results of our own fieldwork and
exploration (comprising 5 separate field seasons undertaken between
2008 and 2019), and compare the stratigraphic ranges of specific ich-
notaxa and their respective behaviors with other Ediacaran-Cambrian
sections worldwide. Lastly, we assess the potential ecosystem engi-
neering impacts of these behaviors, and discuss if and how the emer-
gence of a Cambrian-type evolutionary fauna may have plausibly caused
the first major turnover in macroscopic and eukaryotic life.

1.1. Invertebrate bioturbation as ecosystem engineering

Bioturbating animals act as ecosystem engineers by altering resource
flows and modifying the physical environment (Fig. 1; Jones et al., 1994;
Meysman et al., 2006), and can be divided into two types of sediment
mixing: biomixing and bioirrigation (see also Kristensen et al., 2012).
Biomixing refers to the mixing of solid sediment particles, whereas
bioirrigation refers to the mixing of pore water solutes with the
sediment-water interface and is most effective at introducing oxygen
into the sediment. Interactions between bioturbating benthic meio-/
macrofauna and microbes living in the sediment result in changes to the
biogeochemistry of the sediment and overlying water, particularly by
influencing biogeochemical processes and nutrient cycling. Sediment
mixing and the construction of penetrative burrows modifies the flow of
resources to microbial communities by changing particle and solute
transport. Critically, bioirrigation both shifts redox gradients (Rosen-
berg et al., 2001) and directly controls the availability of redox-sensitive
elements, for example sulfur and iron redox cycling (see e.g., Canfield
and Farquhar, 2009; Tarhan et al., 2015; van de Velde and Meysman,
2016), to microbial communities in the sediment. Bioirrigation flushes
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sediment rheology
(physical change)
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(biotic response)

Bioturbating animal
(ecosystem engineer)

Fig. 1. Flow-chart illustrating ecosystem engineering processes and effects.
Bioturbation directly impacts resource flows and physical abiotic factors in the
ecosystem (blue arrows), and these changes can affect the bioturbating animal
itself (diagonal green and vertical orange arrows). Some physical changes can
also impact resource flows (horizontal orange arrow). Finally, these changes in
resource flows and the physical environment ultimately cause a biotic response
at the community level (vertical green and diagonal orange arrows), and this
biotic response impacts the bioturbating animal (yellow arrow).

Adapted from Jones et al. (2010).

reduced pore water sulfides out of the sediment and into the water
column where they are oxidized into sulfates, which has been hypoth-
esized to have caused a seven-fold increase in seawater sulfate concen-
trations in the early Paleozoic (Canfield and Farquhar, 2009; although
see Ries et al., 2009). Bioturbation can also increase the availability of
oxidants and organic matter critical for respiration metabolisms, which
is thought to influence microbial diversity and community structure and
may have significant effects on biogeochemical processes and benthic
nutrient cycling (Bertics and Ziebis, 2009). Finally, bioirrigation may
increase the bioavailability of redox-sensitive metals that are required in
key metalloenzymes responsible for catalyzing major biogeochemical
reactions. Many microbes have obligate requirements for metal co-
factors that are insoluble in anoxic sediments and pore waters due to
precipitation as sulfide minerals (Glass et al., 2018). For example, iron
(— pyrite), copper (— chalcopyrite), and molybdenum (- thio-
molybdate) are important cofactors in nitrogen cycle enzymes (Godfrey
and Glass, 2011). Increasing the oxidant content of the sediment,
particularly through bioirrigation, may thus increase the bioavailability
of these metal ion cofactors and influence sedimentary biogeochemical
processes.

Bioturbation modifies the physical environment of the ecosystem by
controlling the sediment rheology or the mechanical properties of the
substrate. Bioturbation, either by biomixing or bioirrigation, decreases
sediment stability by introducing water into the sediment (Rhoads et al.,
1978; de Deckere et al., 2001) or by disrupting sediment-stabilizing
biogenic structures such as microbial mats (Seilacher, 1999; Bottjer
et al., 2000; Mangano and Buatois, 2017). Concordantly, many benthic
organisms are sensitive to alteration of substrate composition or of
interstitial microbial communities (e.g. see Lambshead et al., 2001; Smit
et al., 2008), both of which can strongly influence recruitment and
settling (e.g. Rhoads and Young, 1970; Kirchman et al., 1982; Dahms
et al., 2004). Additionally, by mixing sediment to or at the sediment-
water interface, bioturbation increases the resuspension of sediment
particles, which can have significant effects on the ecology of infaunal
macrofauna (Rhoads and Young, 1970; Fig. 1).

2. Geological setting and stratigraphy

The Nama Group in Namibia occurs in the areas south of Windhoek
and in the Witvlei area east of Windhoek. Only the Nama Group south of
Windhoek is the subject of this trace fossil study, where it records a
>3000 m thick accumulation of sediments deposited in a foreland basin
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on the northwestern margin of the Kalahari Craton during convergence
of the Damara and Gariep deformational belts (Germs, 1983; Germs and
Gresse, 1991; Stanistreet et al., 1991; Saylor et al., 1995). Sediments in
lower parts of the Nama Group were largely sourced from the Kalahari
Craton to the east, and comprise a shallow siliciclastic-carbonate suc-
cession that prograded basinward (Germs, 1972a, 1983; Dibenedetto
and Grotzinger, 2005). Material from the upper Nama Group, in
contrast, was mainly sourced from the Damara and Gariep orogenic belts
to the north and west (Germs, 1983).

The Nama Group south of Windhoek is divided into two Sub-basins —
the Zaris Sub-basin in the north, and the Witputs Sub-basin in the south
(Fig. 2; Germs, 1972a, 1983). The Zaris Sub-basin is separated from the
Witputs Sub-basin by the Osis Arch, which, during deposition of the
Zaris and lower-mid Schwarzrand subgroups at least, represented an
ENE-trending paleo-topographic high and likely a peripheral bulge of
the foreland basin (Germs and Gresse, 1991; Grotzinger and Miller,
2008). Both basins are subdivided into three Subgroups, in ascending
stratigraphic order, the Kuibis, the Schwarzrand, and the Fish River
(Fig. 2). Sediments in both basins can broadly be split into two sedi-
mentary successions — one a siliciclastic-carbonate succession
comprising the Kuibis Subgroup, and the second a (broadly) siliciclastic
succession comprising the Schwarzrand Subgroup (including the
Nomtsas and Vergesig formations). Stratigraphic correlations between
the two basins were established by Germs (1983) and Germs and Gresse
(1991), although the relationship between the Nomtsas and Vergesig
formations in some areas north of the Osis Arch is still uncertain (Germs
et al., 2010).

In the Witputs Sub-basin, the Nomtsas Formation cuts down through
the Ediacaran-aged Spitskop and Feldschuhhorn members (commonly
forming valley-fill profiles) of the Urusis Formation (Germs, 1972a,
1983; Saylor et al., 1995; Saylor and Grotzinger, 1996; Saylor, 2003;
Wilson et al., 2012), and is recognized as Cambrian based on abundant
Treptichnus pedum, as well as ages derived from U-Pb zircon grains in
tuffs that have recently been re-dated, and which yield an age of 538.58
+ 0.19 Ma (Linnemann et al., 2019). Ash beds from the underlying
Spitskop Member also have been re-dated yielding updated ages be-
tween 540.095 + 0.099 Ma and 538.99 + 0.21 Ma (Linnemann et al.,
2019). The Spitskop Member preserves soft-bodied Ediacara biota —
below and above these dated ash horizons — and, thus, much of this unit
has been interpreted to be latest Ediacaran in age (Grotzinger et al.,
1995; Narbonne et al., 2012). The Ediacaran-Cambrian boundary in the
Witputs Sub-basin was traditionally placed at the erosive unconformity
where the Nomtsas Formation cuts down into the Spitskop Member
(Germs, 1972a; Germs, 1983; Saylor et al., 1995; Saylor, 2003).
Recently, Linnemann et al. (2019) have placed the boundary near the
top of the Spitskop Member at Farm Swartpunt. This stratigraphic
placement relies on the identification of a specimen compared with
T. pedum together with Streptichnus narbonnei, an ichnotaxon of similar
complexity to T. pedum (Jensen and Runnegar, 2005). However, the
presence of the skeletonized Ediacaran index taxa Cloudina and Nama-
calathus in the overlying carbonates at the top of the Spitskop Member at
Farm Swartpunt argues for positioning the boundary upwards in the
succession. Based on the most recent dates from Linnemann et al.
(2019), the Ediacaran-Cambrian boundary in Namibia would then be
placed at 539-538 Ma, if the boundary is located (as it has historically
been thought) at the unconformity between the Spitskop Member and
the Nomtsas Formation.

In the Zaris Sub-basin, a precise stratigraphic location of the
Ediacaran-Cambrian boundary has not been determined; an ash bed
from the Hoogland Member (Kuibis Subgroup) in the vicinity of Zebra
River Farm yields a revised U-Pb zircon age of 547.32 + 0.65 Ma
(Grotzinger et al., 1995; Schmitz, 2012), but no other Ediacaran or
Cambrian radiometric ages exist in this Sub-basin. The overlying Fish
River Subgroup contains T. pedum and has been identified as definitively
Cambrian (Germs, 1972a, 1983; Geyer, 2005). Moreover, the presence
of the tubular taxon Shaanxilithes and Aspidella in the upper
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Schwarzrand Subgroup (Darroch et al., 2016; although see section on
‘Pseudofossils and problematica’ for discussion of Shaanxilithes in the
Nama) suggest that the Ediacaran-Cambrian boundary may occur at the
contact between the Urusis and Nomtsas formations (i.e., similar to its
interpreted position in the Witputs).

2.1. Paleoenvironments

The Nama Group records a wide variety of paleoenvironments,
ranging from fluvial and marginal marine to shallow marine wave- and
tide-dominated siliciclastic and carbonate settings (Germs, 1972a, 1983;
Saylor et al., 1995, 1998; Saylor, 2003; Dibenedetto and Grotzinger,
2005; Grotzinger and Miller, 2008; Maloney et al., 2020), including
extensive stromatolitic and/or thrombolitic reef tracts. Broadly, the
Kuibis, Schwarzrand, and Fish River subgroups consist of fluvial, deltaic,
and shallow-marine conglomerate, sandstone, and siltstone formed
during lowstand and highstands, and shallow-marine sandstone, silt-
stone, shale and limestone formed during transgressions (Germs, 1983;
Saylor et al., 1995; Saylor, 2003; Grotzinger and Miller, 2008). North of
the Osis Arch, proximal sandstone and limestone in the east deepen
northwestwards into platform carbonate and shale, whereas south of the
Osis arch, the changing thickness of units suggests a deepening
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westward (Grotzinger and Miller, 2008). Structures interpreted as
glacial grooves and pavements are potential evidence for a glaciogenic
event that occurred during deposition of the basal Vingerbreek Member
(Schwarzrand Subgroup — Germs, 1972a, 1995; Germs and Gaucher,
2012), with a second such event also suggested to have taken place
during deposition of the upper Schwarzrand (Germs, 1972a, 1995).
However, these interpretations have been questioned by Saylor et al.
(1995, 1998) and Grotzinger and Miller (2008).

Sequence stratigraphic work by Saylor et al. (1995, 1998) recognized
seven depositional sequences in the Kuibis and Schwarzrand subgroups
separated by unconformities (or correlative conformities), with relative
sea level controlled broadly by the tectonic evolution of the basin, with
equivocal evidence for glaciogenic sea level rise and fall (Grotzinger and
Miller, 2008). Mixed microbial-metazoan reefs are well developed in the
Omkyk Member (Zaris Sub-basin) and towards the top of the Huns
Member (Witputs Sub-basin), and exhibit a variety of biostrome, patch
reef, and pinnacle geometries (Saylor et al., 1995, 1998; Grotzinger
et al., 2000, 2005).

3. Body fossils

Although this review is focused on trace fossils, a brief summary of

Fig. 3. a-f) Soft bodied Ediacara biota from the
Witputs Sub-basin: a-b) Swartpuntia germsi (Farm
Swartpunt); c¢) Pteridinium simplex (Farm Swartpunt);
d-e) In-situ accumulations of Ernietta plateauensis
(Farms Hansburg and Kuibis); f) Rangea schei-
derhoehni (Farm Hansburg). g-k) Aspidella holdfasts
from the Zaris Sub-basin; note the large size and tight
clustering of holdfast structures in k) (Farms Nudaus
and Kamkas). Body fossils in a—c) and i-k) preserved
on bed tops, with Ernietta in d-e exposed on bed
bases. Rangea in f) found in float. Filled scale bars 1
cm.



S.A.F. Darroch et al.

the body fossils found in the same succession helps to provide context for
the broader ecosystem present in the Nama Group, and is crucial to
assessing the character and tempo of the Ediacaran-Cambrian transition.
The Nama Group preserves a typical late Ediacaran (‘Nama’-type)
assemblage of soft-bodied Ediacara biota (see Laflamme et al., 2013;
Boag et al., 2016; Muscente et al., 2018), alongside calcifying meta-
zoans, a collection of organic-walled (or weakly mineralized) tube-like
organisms, and possible algae (also reviewed in Germs, 1995; Pick-
ford, 1995; and Grotzinger and Miller, 2008) (Fig. 3).

Ediacara biota are distributed throughout the Ediacaran portions of
the Nama Group, and overwhelmingly belong to either the Rangeo-
morpha or Erniettomorpha (Fig. 3a—f). Some of the oldest historical
reports of Ediacaran macrofossils from anywhere in the world come
from Namibia; Giirich (1929, 1930a, 1930b, 1933) first described
several forms, including the iconic Rangea and Pteridinium. In addition to
his extensive work on Ernietta, Pflug (1966, 1970a,b, 1972a,b) was
instrumental in describing many of the Namibian fronds (i.e. the “Pet-
alonamae” sensu stricto); and much of this descriptive terminology is still
in use to this day (e.g. Laflamme and Narbonne, 2008). Body fossils are
perhaps best known from the well-documented assemblages preserved
on Farms Aar, Swartpunt, and Hansburg (see e.g., Grotzinger et al.,
1995; Narbonne et al., 1997; Bouougri et al., 2011; Elliott et al., 2011;
Vickers-Rich et al., 2013; Meyer et al., 2014; Darroch et al., 2015;
Ivantsov et al., 2016; Gibson et al., 2019), but are widely distributed
throughout the Witputs Sub-basin. Ediacara biota are much rarer in the
Zaris Sub-basin, although Darroch et al. (2016) did report large Aspidella
holdfasts from several localities high in the Schwarzrand Subgroup
(Nudaus Formation) in the vicinity of Zebra River, and subsequent
exploration has recovered additional well-preserved specimens
(Fig. 3g-k). Rangeomorph taxa in the Witputs include exquisitely pre-
served Rangea (Vickers-Rich et al., 2013), and Darroch et al. (2015)
figured possible Bradgatia from near the top of the Spitskop Member on
Farm Swartpunt. Erniettomorph taxa include Pteridinium, Ernietta,
Nasepia, and the frondose taxon Swartpuntia. Bouougri et al. (2011)
identified dense accumulations of Ernietta on Farm Hansburg as
belonging to the Kanies Member (Dabis Formation), and thus the oldest
Ediacaran fossils found in the Nama Basin. However, more recent che-
mostratigraphic work by Maloney et al. (2020) has established these
horizons as belonging to the younger Kliphoek Member, and thus
broadly equivalent with the fossil-bearing horizons at Farm Aar (Hall
et al., 2013). The youngest Ediacara biota in the Nama were described
by Grotzinger et al. (1995) and Narbonne et al. (1997) from siliciclastic
horizons high in the Spitskop Member at Farm Swartpunt; these fossils
are bracketed by well-dated volcanic ash horizons (Grotzinger et al.,
1995; Linnemann et al., 2019), and are established as existing ~1 Myr
prior to the Ediacaran-Cambrian boundary (Narbonne et al., 1997,
2012; Darroch et al., 2015).

The Nama Group is also well known for preserving the Ediacaran
biomineralizing organisms Cloudina, Namacalathus, and Namapoikia
(Wood, 2011). Cloudina, first described by Germs (1972c), is a genus
within the broader family Cloudinidae (Hahn and Pflug, 1985), which
comprises a variety of enigmatic metazoans that possessed calcified and
organic-walled tubes constructed by a nested funnel-in-funnel configu-
ration, the hallmark of the informal “cloudinomorph” form-grouping
(Selly et al., 2019). Due to its high preservation potential and near-
global distribution, Cloudina is currently accepted as a late Ediacaran
index taxon (Xiao et al, 2016). Cloudina is widely distributed
throughout carbonate units in the Nama Group; in the Witputs Sub-
basin, its first occurrence is generally agreed to be in the Mara Mem-
ber, and it is present throughout the stratigraphic succession all the way
up into the highest Spitskop carbonates preserved on Farm Swartpunt. In
the Zaris Sub-basin, Cloudina is distributed throughout the middle- to
upper Omkyk and Hoogland members, and is an important frame-
building component of extensive microbial reef complexes preserved in
the upper Omkyk (Penny et al., 2014; Wood and Curtis, 2014, although
also see Mehra and Maloof, 2018). Namacalathus is another enigmatic
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and calcifying metazoan commonly found associated with Cloudina, and
was first described by Grotzinger et al. (2000) based on digital re-
constructions and extensive serial sectioning. Although Grotzinger et al.
(2000) tentatively proposed a cnidarian affinity for this organism, more
recent work by Zhuravlev et al. (2015) has suggested that Namacalathus
is more likely a lophophorate, on the basis of skeleton ultrastructure.
Like Cloudina, Namacalathus is widely distributed throughout carbonate
units in the Nama Group (although its FAD in the Witputs Sub-basin is
still unknown), and is present in the uppermost Spitskop carbonates at
Farm Swartpunt. Lastly, Namapoikia is a meter-scale calcifying meta-
zoan first described by Wood et al. (2002), commonly found encrusting
synsedimentary fissures in microbial reefs of the Omkyk Member.
Namapoikia was interpreted by Wood and Penny (2018) as a poriferan,
although recent work by Mehra et al. (2020) suggested that Namapoikia
may in fact be microbial in origin.

In terms of non-calcified metazoans, Germs (1972b) was among the
first to note the presence of unmineralized tube-like fossils in the Nasep
Quartzite, which he identified as Archaeichnium. Although originally
described by Haughton (1960) as an archaeocyathid, Archaeichnium was
re-described as a possible trace fossil by Glaessner (1963), and then
again as a body fossil by Glaessner (1978). New material of this fossil
collected by our group from horizons in the Nasep-Huns transition
(Fig. 4) reveals that Archaeichnium is annulated, has a tapered profile,
and commonly exhibits current alignment on the base of beds preserving
evidence for transport. The ranges of size and morphologies among non-
calcified tubular fossils from the Nama (both Buchholzbrunnichnus from
the Kliphoek Member [Germs, 1973] and Gyrichnites from the Vinger-
breek Member [Zessin, 2010] possess characteristics suggestive of
tubular metazoans) suggest that numerous taxa may be represented.

Lastly, the Nama Group preserves a distinctive assemblage of acri-
tarchs typical of the Neoproterozoic (Germs et al., 1986), as well as
carbonaceous ribbon-like fossils from the Vingerbreek and Feldschuh-
horn members, the latter of which were assigned to Vendotaenia by
Cohen et al. (2009). Interpretation of these carbonaceous tubes has been
varied, commonly as algae (e.g., Gnilovskaya, 1983), but also as the
sheaths of sulfur-oxidizing bacteria (Vidal, 1989). Cohen et al. (2009)
noted that their carbonaceous fossils recovered from the Vingerbreek
Member possess transverse annulations, suggestive of metazoans.

4. Trace fossils
4.1. Previous work

The first account of trace fossils in the Nama Group was produced by
Germs (1972b), who reported a suite of ichnotaxa indicating a late
Precambrian to Cambrian age. Additional trace fossil taxa (including
several newly described forms) were subsequently reported by Germs
(1973), Crimes and Germs (1982), and (more recently) Geyer and
Uchman (1995), Jensen et al. (2000), Jensen and Runnegar (2005),
Geyer (2005), Bouougri and Porada (2007), Macdonald et al. (2014),
Darroch et al. (2016), and Buatois et al. (2018) (see also summaries in
Germs, 1983, 1995; Pickford, 1995; Grotzinger and Miller, 2008 and
Germs et al., 2010). Trace fossils from the younger, Cambrian-aged Fish
River Subgroup were recorded by Geyer (2005). Combined, these
studies have substantially improved our knowledge of late Ediacaran-
Cambrian trace fossil diversity, and have helped to produce a tenta-
tive ichnostratigraphy for the Ediacaran portions of the Nama Group.
However, the identification of several ichnotaxa representing complex
behaviors and (potentially) high ecosystem engineering impacts have
placed the Nama Group at odds with many other Ediacaran sections
worldwide. For example, Germs (1972b) reported Skolithos from as low
as the Kliphoek Member (Kuibis Subgroup) and thus in the oldest fossil-
bearing units in Namibia, which is a trace fossil otherwise thought to
appear post-Fortunian (e.g., Mangano and Buatois, 2014, 2017). Geyer
and Uchman (1995) subsequently reported two forms of Skolithos from
Ediacaran portions of the Nama Group, this time from the Nasep and
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Huns members. Likewise, Crimes and Germs (1982) reported Dip-
locraterion from the Vingerbreek Member; Diplocraterion is a relatively
deep-tier U-shaped dwelling burrow with significant bioirrigation po-
tential, and, like Skolithos, is generally thought to appear in Cambrian
Stage 2 (Mangano and Buatois, 2014). Crimes and Germs (1982) also
documented specimens assigned to Nereites and a possible occurrence of
Chondrites, both typical Phanerozoic ichnogenera. Lastly, Macdonald
et al. (2014) reported large structures that were assigned to Zoophycos
from the Upper Omkyk Member tens of meters below ash beds dated at
~548 Ma (Grotzinger et al., 1995); Zoophycos represents intense
exploitation of the sediment subsurface, recording a behavior not
thought to appear elsewhere until the Cambrian (Jensen, 1997).

There have been, however, a number of critiques levied at the pub-
lished ichnological record of the Nama Group. Crimes and Fedonkin
(1996) reinterpreted many of the Ediacaran Skolithos from Namibia as
body fossils. Jensen (2003) and Jensen et al. (2006) also deemed many
of these trace fossils (and Ediacaran Skolithos in particular) ‘doubtful’
and ‘problematic’, suggesting that many occurrences may actually be
the basal attachment of a body fossil, or the vertical portions of Plano-
lites-type traces (Jensen et al., 2006; see also Jensen and Runnegar,
2005). Similar doubts were raised in more recent revisions (Mangano
and Buatois, 2014; Buatois and Mangano, 2016). Despite this, many of
these early trace fossil identifications are still typically included in
paleontological summaries of the Nama Group (see, for example, Germs,
1995; Grotzinger and Miller, 2008; Bowyer et al., 2020). A careful re-
examination of the Ediacaran trace fossil record of the Nama Group is
thus crucial to establishing whether the Nama Group is genuinely
unique in context of evolving metazoan ecology, behaviors, and body
plans. This evaluation is essential to properly assess the level of
complexity in the behaviors represented in the ichnologic record and the
nature and extent of ecosystem engineering during the terminal Edia-
caran. Wherever possible, the sites and Farms mentioned in these older
studies were visited, and fresh material collected. In essence, we treat
this historical compilation of trace fossil occurrences as a hypothesis to
be tested with new field data. A brief summary of localities, along with
outcrop styles and ichnotaxa recorded by our group is given in Table 1.

4.2. Diversity, disparity, and distribution of ichnotaxa

In order to capture the main innovations in terms of animal-substrate
interactions, we have framed this section in terms of ichnodisparity
categories. Accordingly, we list below the different ichnotaxa following
previously defined categories of architectural design (Buatois et al.,
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Fig. 4. Tubular and annulated body fossils from the
Nasep-Huns transition (Canyon Roadhouse and Farm
Arimas), illustrating a range of morphologies. Note
tapered profiles in panels a and f, regular annulations
in panels c-e, and potential funnel-in-funnel structure
in panel c (similar to that described for Cloudina),
hinting at the presence of multiple tubular taxa in
these horizons. All slabs recovered from float, with
fossils typically preserved on bed undersides. Filled
scale bars 1 cm; open scale bars 5 mm.

2017).

4.2.1. Vertical plug-shaped burrows

We include in this category occurrences of simple, vertically oriented
plug-shaped burrows, such as Bergaueria (Prantl, 1945) and Conichnus
(Mannil, 1966). Plug-shaped burrows are thought to represent a range of
different behaviors by coelenterate-grade organisms occupying a
(broadly) sessile life habit attached to, or partially buried in, the sedi-
ment substrate (e.g., Pemberton et al., 1988; Mata et al., 2012; Desai and
Saklani, 2015). Bergaueria is defined as a hemispherical to shallow cy-
lindrical, vertical structure with a rounded base, smooth, unlined or
lined burrow walls and structureless infill commonly preserved in pos-
itive hyporelief (Alpert, 1973; Pemberton et al., 1988; Lima and Netto,
2012). Conichnus differs from Bergaueria in comprising a conical and
downward-tapering, vertical structure, commonly exhibiting nested
funnel-in-funnel laminae oriented convex downward, and locally pos-
sessing a thin lining marking the discontinuity between infill and the
adjacent surrounding sediment, being typically preserved in full relief
(Frey and Howard, 1981; Pemberton et al., 1988; Mata et al., 2012;
Desai and Saklani, 2015). Mata et al. (2012) interpreted plug-shaped
ichnotaxa as representing a continuum of behaviors belonging to
actinian cnidarians, ranging from resting traces (Bergaueria), dwelling
burrows (Dolopichnus), and escape structures (Conichnus) (see also
Shinn, 1968; Alpert, 1973; Seilacher, 2007). However, Dolopichnus is
now considered a junior synonym of Laevicyclus (Knaust, 2015). In
addition, the emerging picture of the ethologic significance of the
different ichnotaxa regarded as plug-shaped burrows is far more com-
plex. For example, although escape behavior has been observed in some
specimens of Conichnus (Desai and Saklani, 2015), dwelling and main-
tenance of equilibrium is involved in many others (e.g. Frey and
Howard, 1981; Pemberton et al., 1988; Savrda, 2003; Desai and Saklani,
2015). The same can be said of Bergaueria; most of its ichnospecies are
unlined and have been interpreted as resting traces, but lined ones are
regarded as dwelling burrows (Pemberton et al., 1988). The ichnospe-
cies B. sucta which, in contrast to the other Bergaueria ichnospecies,
records evidence for lateral movement, has been originally described
from the Cambrian (Seilacher, 1990). However, this ichnospecies has
been subsequently recorded in Ediacaran units (Narbonne and Aitken,
1990; Seilacher et al., 2005; Menon et al., 2013; Buatois and Mangano,
2016). Further work on this ichnospecies is needed in order to confirm
the Ediacaran occurrences. To complicate things further, distinction of
plug-shaped burrows, in particular Bergaueria, from body fossils is
commonly not straightforward in the case of Ediacaran specimens
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Table 1
List of studied localities with brief descriptions of outcrop style and recorded
ichnotaxa.

No.  Farm/site Outcrop style Ichnotaxa
1 Farm Canyon None found
Driedoornvlatke
2 Farm Berghoek Low exposures Plug-shaped burrows,
and scree slopes Helminthopsis/Helminthoidichnites
3 Farm Haruchas Low exposures, Plug-shaped burrows,
scree slopes and Helminthopsis/Helminthoidichnites,
riverbeds under-mat mining trace fossils,
Archaeonassa
4 Farm Neuras Cuesta Plug-shaped burrows,
Helminthopsis/Helminthoidichnites
5 Farm Canyon Arched structures
Hauchabfontein
6 Farm Canyon None found
Donkergange
7 Zebra River Canyon Rare plug-shaped burrows
8 Farm Nudaus Low exposures Under-mat mining trace fossils
and scree slopes
9 Farm Kamkas Low exposures Plug-shaped burrows

and scree slopes
Low exposures
and scree slopes
Low exposures,
scree slopes and
riverbeds

Low exposures,
scree slopes and
riverbeds

Low exposures
and scree slopes

10 Farm Urusis Rare Archaeonassa

11 Farm Zuurburg Plug-shaped burrows

12 Farm Hansburg Plug-shaped burrows, arched

structures

13 Farm Weltevrede Plug-shaped burrows

14 Farm Plateau edge Plug-shaped burrows,
Tsachanabis Helminthopsis/Helminthoidichnites
15 Farm Aar Low exposures, None found
scree slopes and
plateau edge
16 Farm Grens Cuesta None found
17 Farm Swartpunt Cuesta Plug-shaped burrows,
Helminthopsis/Helminthoidichnites,
Streptichnus, Treptichnids, Form A
(meiofaunal burrows), Form B
(meiofaunal networks)
18 Farm Arimas Cuesta Plug-shaped burrows,
Helminthopsis/Helminthoidichnites,
Archaeonassa, Torrowangea,
Gordia, Treptichnids, Form A
(meiofaunal burrows)
19 Farm Canyon Plug-shaped burrows,
Sontaagsbrunn Helminthopsis/Helminthoidichnites,
Treptichnus pedum
20 Koelkrans (Fish Canyon Plug-shaped burrows,
River) Helminthopsis/Helminthoidichnites,
Parapsammichnites
21 Canyon Cuesta Plug-shaped burrows,
Roadhouse Helminthopsis/Helminthoidichnites,

Archaeonassa, Torrowangea,
Gordia, Treptichnids, Form A
(meiofaunal burrows)

The stratigraphic thicknesses of exposures differ substantially between recorded
outcrops, ranging from 3-30 m (low exposures, scree slopes and riverbeds),
through 50-60 m (plateau edges), to 100+ m (canyons and cuestas). The vast
majority of the recorded stratigraphy in the Nama Group is preserved in excel-
lent vertical and lateral extent — especially in the Fish and Zebra River Canyons —
with the exception of the middle Schwarzrand Subgroup in the Zaris Subbasin,
where vertical relief is rarer.

(Jensen, 2003; Jensen et al., 2006; Buatois and Mangano, 2016). The
association of Aspidella fossils with sedimentological fabrics consistent
with equilibrium traces in the Fermeuse Formation of eastern
Newfoundland (Menon et al., 2013) illustrates this potential confusion.

Occurrence. — Plug-shaped burrows are perhaps the most common
trace fossils found in the Ediacaran of Namibia; our group came across
these structures in virtually every locality visited, preserved in a wide
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variety of lithologies (Fig. 5). In the Witputs Sub-basin, plug-shaped
burrows appear as low as the Kliphoek Member on farms Hansburg,
Zuurburg, and Kuibis, and are ubiquitous throughout siliciclastic units
higher in the stratigraphic column, including the Nasep, base of the
Huns, Feldschuhhorn, and both the base and top of the Spitskop mem-
bers. Plug-shaped burrows are also common in the Zaris Sub-basin,
particularly throughout the Vingerbreek Member, as well as higher in
the Urusis Formation. In cross section, these structures reveal a wide
variety in internal morphology — some (in particular those in the Vin-
gerbreek Member where it is exposed along the D850 road north and
east of Zebra River; see Fig. 6) exhibit clear cone-in-cone infill (arrowed
in Fig. 5h-i), and are thus likely best identified as Conichnus, whereas
others exhibit structureless infill and closed conical/subconical mor-
phologies, and are thus more similar to Bergaueria (Fig. 5j; see also
Darroch et al., 2016, and Cribb et al., 2019). Both Darroch et al. (2016)
and Cribb et al. (2019) also noted that plug-shaped burrows on slabs
commonly appear paired (e.g., Fig. 5b-f), maintaining consistent dis-
tances with nearest neighbors (although these do vary between slabs).
However, neighboring ‘plugs’ are never seen to be joined with spreite in
the sediment subsurface (which would identify them as more complex
burrows similar to Diplocraterion), and so the reason for this apparent
pairing is still unclear. In addition, a U-shape has not been detected in
cross-section, preventing assignment to Arenicolites. In some cases (e.g.
Fig. 5b), neighboring ‘plugs’ seem to be aligned or alternating, sug-
gesting affinities with treptichnids. Specimens described as Brooksella by
Crimes and Germs (1982) may represent a preservational variant of
plug-shaped burrows, although an inorganic origin cannot be easily
rejected. In addition, a body fossil origin has been subsequently pro-
posed for this form (Ciampaglio et al., 2006). The taxonomic status of
Brooksella is therefore controversial, and an in-depth revision is needed
(Munoz et al., 2019).

4.2.2. Simple horizontal trails

This category comprises horizontal trails with simple patterns,
typically formed within the uppermost 10 mm of the sediment, and
which reflect either non-specialized grazing strategies or, in some cases,
simple locomotion (Narbonne and Aitken, 1990; Jensen, 2003; Droser
et al., 2005; Buatois and Mangano, 2012a; Buatois et al., 2017). Hel-
minthopsisHeer, 1877, Helminthoidichnites Fitch 1850, Archae-
onassaFenton and Fenton, 1937, and GordiaEmmons, 1844 are included
in this category because, although they possess characteristics that allow
distinction at ichnogenus level, they represent broadly similar behaviors
(e.g., Jensen, 2003; Jensen et al., 2006; Buatois et al., 2017). Helmin-
thopsis comprises meandering, unbranched, horizontal trails that typi-
cally do not touch or crosscut each other, and which lack self-
overcrossing (Han and Pickerill, 1995; Wetzel and Bromley, 1996;
Buatois et al., 1998; Uchman et al., 2005; Hanken et al., 2016). This is
distinct from Helminthoidichnites, which consists of slightly winding
(rather than meandering) horizontal trails locally showing scribbling
patterns and commonly displaying overlap among specimens (Buatois
et al., 1998; Pokorny et al., 2017). Both ichnotaxa are typically pre-
served as negative epirelief or positive hyporelief. However, negative
hyporelief preservation is common in Ediacaran specimens (Gehling,
1999; see Fig. 6 for an illustration of a range of preservational styles in
the Nama). Many putative Helminthopsis and Helminthoidichnites speci-
mens in the Nama Group possess abrupt bends and terminations (in
particular in the Nasep-Huns transition), indicating that many of these
examples are more likely to be tubular body fossils — potentially poorly-
preserved Archaeichnium or similar taxa (see, for example, Fig. 4). Also,
some specimens may show discontinuous segments and pits, which
suggest potential affinities with treptichnids rather than grazing trails
per se.

Gordia is superficially similar to Helminthopsis and Helminthoidichn-
ites in that it is a smooth, unlined and winding horizontal trail with
massive infill, but can be differentiated by its tendency to self-cross
(Fillion and Pickerill, 1990; Getty et al., 2017). Specimens exhibiting
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sudden burrow terminations or isolated ‘nubs’ are thought to indicate
instances where the tracemaker probed the over- or underlying sedi-
ment, indicating that the producer of Gordia was capable of some limited
vertical movement in the sediment subsurface, either to access food
sources, or as a means of avoiding obstacles (Wang et al., 2009).

Archaeonassa comprises straight to sinuous horizontal trails, pos-
sessing a median groove flanked by rounded ridges, and commonly
preserved in positive epirelief (Yochelson and Fedonkin, 1997; Jensen,
2003; Mangano et al., 2005). The central furrow is typically wider than
lateral ridges, which may be smooth, or ornamented with oblique to
transverse striations or smaller lobes (Buckman, 1994). The lateral
ridges of this ichnogenus are clear evidence of sediment displacement,
and (unlike many Ediacaran trace fossils) leave little risk of confusion
with body fossils (Jensen et al., 2006). The specific morphology of
Archaeonassa is thought to depend on how deeply the animal was sub-
merged in the sediment as well as the sediment properties; for example,
sediments with high tensile strength tend to rupture, forming segmented
levees (Knox and Miller, 1985; Jensen, 2003).

Ichnotaxa included under the category of simple horizontal trails are
commonly interpreted as grazing traces (i.e. pascichnia) of vermiform
metazoans, potentially annelid worms, arthropod larvae, or nematodes
(Fillion and Pickerill, 1990; Buatois and Mangano, 1993; Getty et al.,
2017). Priapulid worms have been proposed as potential producers of
Gordia (Wang et al., 2009), but this link is less certain. In the case of
Archaeonassa, mollusks have been suggested as potential tracemakers,
but a wide variety of worm-like organisms, as well as arthropods, may
produce similar structures (Buckman, 1994; Yochelson and Fedonkin,
1997).

Occurrence. — Helminthopsis and Helminthoidichnites are distributed
throughout the Nama Group, and are among the most common trace
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Fig. 5. a-g) Plug-shaped burrows, from: a) Farm
Berghoek; b,d) Farm Nudaus; c¢,g) Farm Haruchas; e)
Farm Kuibis; and f) Farm Tsachanabis. Burrows from
a-d) and g) from the Vingerbreek Member; e-f) from
the Kliphoek Member. Burrows in h—j) Conichnus, and
the rest Bergaueria. Note (particularly in panels b, c, e
and f) the tendency for burrows to appear paired; h-i)
cross-sections of burrows from slab shown in panel b;
note sharp burrow margins in panel h, and diffuse
margins (and cone-in-cone sediment infill) in panel i;
j) polished cross-section of burrows shown in panel f;
note simple plug-shaped terminations in the sediment
subsurface (outlined in white dashed lines). All fossils
preserved on bed tops. Filled scale bars 1 cm; open
scale bars 5 mm.

fossils found in siliciclastic sediments. In the Witputs Sub-basin our
group has found these ichnogenera as low as the Nasep-Huns transition
in the lower Schwarzrand Subgroup where they are extremely common
(Figs. 7-8), although several putative and poorly-preserved specimens
have been found lower, in the Kliphoek Member on Farms Hansburg and
Zuurburg (Kuibis Subgroup). They are also common in thin sandstone
beds in the upper parts of the Huns limestone, at the base and top of the
Feldschuhhorn Member (at Koelkrans and Farm Sonntagsbrunn,
respectively), in sandstone beds at the base of the Spitskop Member, and
are abundant in sandstone layers towards the top of the Spitskop at Farm
Swartpunt, several meters above horizons preserving in-situ accumula-
tions of the Ediacaran body fossils Pteridinium and Swartpuntia. In the
Zaris Sub-basin, these ichnogenera are rarer, but are present in the
Vingerbreek Member on farms Berghoek and Haruchas.

Gordia is rarer in Namibia than Helminthopsis and Helminthoidichnites,
with the notable exception of within the Nasep-Huns transition, in
particular where it is exposed at both Farm Arimas and the Canyon
Roadhouse (both Witputs Sub-basin) in high densities (Fig. 7g). In these
localities, Gordia can be extremely common, contributing substantially
to relatively high (5-7%) bedding plane bioturbation indices on slabs,
representing some of the most intensive trace fossil activity found any-
where in the Ediacaran portions of the Nama Group (Cribb et al., 2019).
Gordia from these localities exhibits an approximate bimodal distribu-
tion of trail widths, with smaller trails ~1 mm in width, and rarer large
trails ~3 mm. Several larger specimens collected from the base of the
Huns Member at Canyon Roadhouse also exhibit abrupt terminations
and discontinuous trail features on slab tops, similar to those described
by Wang et al. (2009), indicating a significant degree of vertical
movement (see e.g. Fig. 9a). Gordia is also locally present in the
lowermost 10-20 m of the Feldschuhhorn Member in the Fish River



S.A.F. Darroch et al.

Earth-Science Reviews 212 (2021) 103435

Fig. 6. Outcrops of Vingerbreek Member sediments exposed in: a) riverbed section on Farm Haruchas; and, b) next to the D850 road north and east of Zebra River

(Zaris Subbasin). Vertical scale in a) 2 meters.

Canyon near Holoog. Thus far, our group has not found Gordia anywhere
in the Zaris Sub-basin, nor has it been reported by other workers.

Archaeonassa is present in several stratigraphic horizons in the Nama
Group, but is probably most common in the Zaris Sub-basin at the base
of the Vingerbreek Member (lower Schwarzrand Subgroup), in partic-
ular where it is exposed on Farm Haruchas (see Bouougri and Porada,
2007). In this locality, dense Archaeonassa are well preserved on the top-
surfaces of siltstone horizons, closely associated with beds preserving
abundant evidence for microbial mats and undermat mining burrows
(Bouougri and Porada, 2007; see below). Most specimens exhibit
extremely well-developed levees, some of which show distinct seg-
mentation (Fig. 9g). A specimen described as Nereites from these de-
posits (Crimes and Germs, 1982) most likely belongs in Archaeonassa.
Our group has also found Archaeonassa at the base of the Huns Member
at the Canyon Roadhouse, and (even rarer) in low outcrops of the Urusis
shale (middle Schwarzrand Subgroup) exposed on Urusis Farm.

4.2.3. Simple actively filled (massive) horizontal to oblique structures
PlanolitesNicholson, 1873 and TorrowangeaWebby, 1970 are
included in this group. Planolites is characterized by being unlined and
having an infill different than the host rock (Pemberton and Frey, 1982).
Functionally, and in contrast to the related ichnogenus Palaeophycus,
Planolites records active fill. Although there are common references to
the presence of Planolites in Ediacaran rocks, the name has been used in a
very loose way, commonly referring to simple trails that are more
properly assigned to Helminthoidichnites. Thus far, our group has not
recovered convincing examples of Planolites from the Ediacaran portions
of the Nama Group. Torrowangea consists of sinuous to irregularly
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meandering trace fossils, characterized by irregular transverse corru-
gations or spaced constrictions, and commonly forming overlapping
burrows (Webby, 1970; Narbonne and Aitken, 1990). The constrictions
in Torrowangea are thought to indicate peristaltic movement of the
tracemaker (Narbonne and Aitken, 1990; Buatois and Mangano, 2016;
Toom et al., 2019), and typically interpreted to represent locomotion
and feeding (i.e. pascichnia) below the sediment-water interface (Bua-
tois and Mangano, 2016). However, due to the abundance of annulated
and tube-like organisms in many Ediacaran localities, Jensen et al.
(2006) suggested that ruling out a body fossil origin for putative Tor-
rowangea in every case is crucial.

Occurrence. — Torrowangea is present in the Nasep-Huns transition in
many localities across the Witputs Sub-basin; our group identified this
ichnotaxon at both Farm Arimas and the Canyon Roadhouse, whereas
Geyer and Uchman (1995) figured similar material from the same ho-
rizons at Farm Holoog. Burrows are typically 3-4 mm wide, possess
transverse constrictions, and are commonly found as high-density
clusters on sandstone slabs (Fig. 9d-f). Although there are body fossils
of Archaeichnium in the same sections, Torrowangea is readily differen-
tiated from these by possessing irregularly (rather than regularly)
spaced annulations/corrugations, meandering in a random fashion
(rather than being broadly straight with one or two high-angle ‘kinks’),
and maintaining an approximately consistent width, rather than
tapering or terminating abruptly. Torrowangea from the Nasep-Huns
transition greatly resemble the examples figured by Carbone and Nar-
bonne (2014) from the Blueflower Formation of northwestern Canada.
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4.2.4. Complex actively filled horizontal structures

Parapsammichnites Buatois, Almond, Mangano, Jensen, and Germs
2018 is included in this category. This ichnogenus comprises unilobate
to bilobate, actively infilled, horizontal to subhorizontal and un-
branched burrows describing scribbles, simple circles, spirals, and me-
anders (Buatois et al., 2018). Burrows are large — typically 7-10 mm in
width and several 10s of cm long — and are commonly exposed in high
(2-3 mm) relief on bed tops. The type (and only) ichnospecies for this
ichnogenus — Parapsammichnites pretziliformis — was described by Buatois
et al. (2018) from highly micaceous, fine-grained sandstone exposed
near the boundary between the Feldschuhhorn and Spitskop members
(Urusis Formation) in the Fish River Canyon, near the town of Holoog.
The presence of active backfill indicates that the tracemaker was un-
doubtedly bilaterian, coelomate, and, moreover, was engaged in a
‘bulldozing’ behavior whereby sediment was forcibly pushed aside
either using the animal’s body or with appendages (Buatois et al., 2018).

Occurrence. — Our group has recovered additional Parapsammichnites
from throughout the Feldschuhhorn Member (as low as ~2 m above the
contact with the underlying Huns limestone) and in the lowermost part
of the Spitskop Member (3-4 m above the contact with the Feldschuh-
horn), where they are exposed in the Fish River Canyon near Holoog.
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Fig. 7. Simple horizontal trails from the Ediacaran
portions of the Nama Group: a-b) Helminthopsis
(Nasep-Huns transition at Canyon Roadhouse); c—d)
Helminthoidichnites (top of the Huns Member, Fish
River Canyon, and Spitskop Member, Farm Swart-
punt, respectively); e) Helminthopsis (Nasep-Huns
transition at Canyon Roadhouse); f) unidentified
simple horizontal trace (Nasep-Huns transition at
Canyon Roadhouse); g) tightly meandering and self-
overcrossing trail resembling Gordia (Nasep-Huns
transition; Farm Arimas); h) Helminthoidichnites
(basal Spitskop Formation, Fish River Canyon). Note,
however, the presence of discontinuous segments and
pits in a, f and g, suggesting that some of these
specimens may represent partially preserved trep-
tichnids. Trace fossils shown preserved on bed un-
dersides, with the exception of d) and h), which are
preserved on bed tops. Filled scale bars 1 cm.

The most abundant and best-preserved specimens are exposed near
Koelkrans camp, where the canyon floor meets the contact between
Feldschuhhorn sandstone and Spitskop limestone (Figs. 10-11); how-
ever, this ichnotaxon is relatively widespread north and south along the
main axis of the Fish River Canyon. Interestingly, while Para-
psammichnites in the Feldschuhhorn Member are largely restricted to
micaceous fine-grained sandstone, in the overlying Spitskop we have
found them both in thin sandy laminae sandwiched between thin lime
mudstone and in the lime mudstone themselves (Fig. 11g), suggesting
that the original tracemaker was relatively unrestricted in its environ-
mental preferences (however, no examples have yet been recorded from
the Zaris Sub-basin, perhaps suggesting geographical restriction). At the
base of the Spitskop in particular, Parapsammichnites is a component of
both dense and unusually diverse trace fossil assemblages also
comprising Helminthopsis, Helminthoidichnites, treptichnids (see below),
smaller, branching horizontal burrows, and plug-shaped burrows.

4.2.5. Horizontal burrows with horizontal to vertical branches

This category includes StreptichnusJensen and Runnegar, 2005 and
the burrows informally referred to as treptichnids. Streptichnus is a
complex trace fossil composed of clusters of horizontal, unidirectional
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Fig. 8. Outcrop at Farm Arimas; white line marks the approximate contact between (below) sandstones belonging to the Nasep Member, and (above) carbonates
belonging to the Huns Member. Inset image illustrating the view upslope from trace fossil-rich horizons at the base of the Huns Member.

and curved burrows that radiate from a central area, which themselves
possess numerous probes that extend horizontally and down into the
sediment (Jensen and Runnegar, 2005). This ichnogenus has many
features in common with Treptichnus, but differs in that individual
probes do not extend as far from the main burrow, and only emerge on
the concave side of curved master burrows (Jensen and Runnegar,
2005). Individual radiating burrows extend up to 9 mm vertically into
the sediment and appear ‘twisted’ suggesting a regular (and consistently
dextral) spiraling movement through the sediment (Fig. 12f-h); how-
ever, the appearance of a spiral morphology may be the consequence of
closely-spaced probes, in concert with vertical compression of the
sediment column (Jensen and Runnegar, 2005). The type (and only)
ichnospecies for this ichnogenus — Streptichnus narbonnei — was described
by Jensen and Runnegar (2005) from sandstone high in the Spitskop
Member of the Urusis Formation on Farm Swartpunt, from horizons ~10
m above beds preserving the Ediacaran organisms Swartpuntia and
Pteridinium.

Treptichnids show affinities with the ichnogenus Treptichnus, but a
current lack of understanding surrounding their three-dimensional
morphology prevents establishing a firm taxonomic determination.
Germs (1972b) was the first to report discontinuous burrows, ~3 mm in
width, in the Nasep Member exposed on Farm Arimas (Schwarzrand
Subgroup, Urusis Formation), breaching the sediment surface (under-
side of bed) at regular intervals, probably representing individual
‘probes’ possessing three parallel ridges (also mentioned in Geyer and
Uchman, 1995). Jensen et al. (2000) described these in more detail
(although noting that the trace fossils occur in the base of the Huns
rather than at the top of the Nasep, following the modified lithostrati-
graphic definitions of Saylor et al., 1995), and identified them as Trep-
tichnus isp., distinct from T. pedum in being (typically) smaller, having
more strongly unidirectional probes, and a less consistent and less sys-
tematic pattern of sediment exploitation. The Huns Member treptichnids
therefore represent the earliest appearance of ‘complex’ trace fossil
behavior, but not behavior as complex as that reflected by either
Streptichnus or T. pedum, the latter marking the base of the Cambrian
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(Narbonne et al., 1987; Landing, 1994). Although T. pedum is commonly
interpreted as being formed by priapulid worms (Orfowski and Zyliriska,
1996; Jensen et al., 2000; Vannier et al., 2010; Kesidis et al., 2019), it is
unclear if the simpler treptichnid burrows were formed by similar
organisms.

Occurrence. — Thus far, Streptichnus has not been found outside of its
type locality in Spitskop Member sandstones on Farm Swartpunt (Wit-
puts Sub-basin). Some bed-penetrative burrows found at the base of the
Huns Member (along with problematic structures found in carbonates
belonging to the Hoogland Member) possess an apparent (or approxi-
mate) twisted/spiral structure, but are not as organized or systematic as
that seen in S. narbonnei, and moreover, are either preserved as single
specimens, or possess highly variable morphology. Given that the Spit-
skop strata at Swartpunt are the youngest Ediacaran rocks preserved
anywhere in Namibia (Grotzinger et al., 1995; Narbonne et al., 1997),
this absence may simply reflect the fact that the Streptichnus tracemaker
evolved in the very latest part of the Ediacaran, and erosive downcutting
evidenced at the base of the Nomtsas Formation has removed Strep-
tichnus-bearing strata from other parts of the basin.

Our group recovered treptichnids similar to those described by
Germs (1972b) and Jensen et al. (2000) from the top of the Nasep
Formation and the base of the Huns Member (Urusis Formation) on both
Farm Arimas (i.e., the original locality noted in Germs, 1972b), and the
Canyon Roadhouse (Fig. 13). Individual probes are oval in shape, are 1-4
mm long, and form both linear and curvilinear burrows (and more
rarely, circles) several cm long (Fig. 13a-e). Those rare specimens
forming circles somewhat resemble Treptichnus coronatum (Crimes and
Anderson, 1985; MacNaughton and Narbonne, 1999; Buatois et al.,
2014). In addition, our group recovered several slabs possessing trep-
tichnids from both the base of the Feldschuhhorn Member, and the base
of the Spitskop Member in the vicinity of the Fish River Canyon near
Holoog. In the latter case, trepichnids are preserved in thin sandstone
laminae sandwiched between lime mudstone, and commonly preserve
faint traces of master burrows linking individual probes (Fig. 13f-h).
Probes are slightly larger (5-6 mm), and like those of Treptichnus isp.
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from the Nasep-Huns transition, are largely unidirectional.

There are several trace fossils recorded in the Nama Group that do
not have enough significant morphologic characteristics allowing to
place them in previously known ichnotaxa. Accordingly, they cannot be
confidently included in any category of architectural design. These are
listed below and left in open nomenclature.

4.2.6. Undermat mining trace fossils

Bouougri and Porada (2007) were the first to report dendritic
structures from the base of the Vingerbreek Member, resembling the
undermat mining trace fossils similar to those described by Seilacher
(1999) from the upper Cambrian of Oman. Burrows are typically 5-20
cm long, and form curved furrows with irregular lobe-like extensions
perpendicular on either side. These structures are present in biolaminite
facies preserving abundant evidence for colonization by microbial mats
and episodes of subaerial exposure (including shrinkage cracks and
teepee structures). Presumed burrows themselves are commonly asso-
ciated with shrinkage cracks, which may have functioned as both oxy-
gen oases and sources of moisture to trace-making organisms (Bouougri
and Porada, 2007).

Occurrence. — Thus far, our group has only found these putative trace
fossils at the original site described by Bouougri and Porada (2007) on
Farm Haruchas (Vingerbreek Member), and from nearby Farm Nudaus
(Niederhagen Member). On specific surfaces at Haruchas, these struc-
tures are abundant and well preserved on the canyon floor (Fig. 14b—e).
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Fig. 9. Trace fossils from the Nasep-Huns transition
(all Canyon Roadhouse and Farm Arimas): a) trace
fossil assemblage, including Helminthoidichnites, a
burrow similar to Torrowangea (arrowed top-center;
note abrupt change in burrow trajectory and
possible constrictions), and small treptichnids
(arrowed center-bottom); b-c) sub-mm scale burrows
(‘Form A’), showing both branching (arrowed in b),
and shallow movement in and out of the sediment
plane (arrowed in c), possibly produced by meio-
fauna; d) diverse and densely bioturbated surface
comprising several different ichnogenera, including
simple horizonal trails (‘sh’) resembling Helminthoi-
dichnites, larger traces preserving irregular constric-
tions (and thus evidence of peristaltic movement)
similar to Torrowangea (‘To’), sub-mm horizonal trails
most likely produced by meiofauna (‘m’), and oval-
saped protuberances arranged in lines, suggestive of
treptichnid-type behavior (‘Tr’); e-f) Torrowangea (cf.
Carbone and Narbonne, 2014; their Fig. 5), showing
characteristic transverse constrictions and burrow
meshworks; g) Archaeonassa, preserving prominent
ridges of sediment either side of the central furrow; h)
slab covered in dense Intrites. All trace fossils/pseu-
dofossils shown preserved on bed undersides, with
the exception of g) and h), which are preserved on
bed tops. Filled scale bars 1 cm; open scale bars 5
mm.

Although they are overwhelmingly associated with shrinkage cracks
(thus raising the possibility that they instead represent abiotic sedi-
mentary structures associated with desiccation), lobe-shaped extensions
off main axial structure commonly preserve clear crescentic features,
suggestive of meniscate backfill (following Jensen et al., 2005). Ac-
cording to Bououghri and Porada (2007), the sedimentary facies and
fabrics hosting the putative trace fossils suggest deposition in an
extremely shallow, intertidal to lower supratidal environment charac-
terized by periodic emergence; the relative rarity of these paleoenvir-
onments in the succession may explain the apparent absence of these
structures anywhere else in the Nama Group - essentially a function of
facies restriction.

4.2.7. Irregular networks

Small (sub-mm-scale), horizontal, irregular networks were reported
by Jensen et al. (2000) from the base of the Huns Member at Arimas
Farm, and Jensen and Runnegar (2005) from the same horizons at
Holoog Farm, comparable to Olenichnus irregularis Fedonkin 1985. Ole-
nichnus was synonymized with Multina by Uchman and Alvaro (2000),
but it has been recently regarded as valid (Marusin and Kuper, 2020).
These appear superficially similar to the thread-like trace fossils figured
by Germs (1972b) from the Nasep Formation on Arimas Farm (as well as
from the Nomtsas Formation on Farm Swartkloofberg), and the struc-
tures referred to as Olenichnus-like and Planolites-like networks in Lin-
nemann et al. (2019) from the Spitskop and Nomtsas formations,
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Fig. 10. Stratigraphy exposed at Koelkrans in the
Fish River Canyon; a) side of the canyon visible from
the campsite, with the contacts between Ediacaran-
aged Feldschuhhorn and Spitskop Members, and
Cambrian-aged Nomtsas Formation indicated in
white. Small-scale reverse fault marked on left hand
side of the image marked in black. b) Base of the
Feldschuhhorn Member exposed on the eastern bank
of the Fish River. c¢) Contacts illustrated in panel a)
exposed where they meet the canyon floor eastwards
of the camp; siltstones at the top of the Feldschuh-
horn Member preserve dense accumulations of Para-
psammichnites pretzeliformis (see also Buatois et al.,
2018). Ribbon limestones with thin sandstone
laminae at the base of the Spitskop Member preserve
a moderately diverse assemblage of trace fossils,
including P. pretzeliformis, large treptichnids, and
horizonal burrows with range of sizes and morphol-
ogies (see also Figs. 11 and 19). Sandstones belonging
to the Nomtsas Formation preserve rare Treptichnus
pedum. Note both that the Spitskop member here is
very thin (~6 m), and that the contact between the
Spitskop Member and Nomtsas Formation in this lo-
cality is largely planar, showing little evidence for the
deep incised valley-fill profiles seen elsewhere in the
Witputs Subbasin, suggesting that the Koelkrans sec-
tion was formed in an interfluve area that nonetheless
was subjected to significant erosion (Buatois et al.,
2018).

Fig. 11. Parapsammichnites from (a-f) the Feldschuhhorn Member, and; g) base of the Spitskop Member, in sandstone drapes overlying thin-bedded limestones (Fish
River Canyon near Holoog). Note section in panel ¢ (arrowed) where the top of the burrow has been weathered, revealing bilobed internal structure of the burrow. All

fossils preserved on bed tops. Filled scale bars 1 cm.
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respectively. All three reports figured horizontal burrows that branch
(commonly at 90-degree angles), forming diffuse networks on the tops of
sandstone beds; the examples figured in Germs (1972b) from Swart-
kloofberg appear to show a degree of rope-like and twisted morphology,
indicating that the tracemaker was capable of (or prone to) a loose spiral
movement in the sediment. Similar minute forms have been interpreted
as produced by meiofaunal organisms (Parry et al., 2017; Marusin and
Kuper, 2020). It has been noted that the increase in trace-fossil density
on bedding planes from rocks of terminal Ediacaran age has resulted in
common burrow and trail overlap and, therefore, increasing the risk of
misinterpreting overlap with branching; this may lead to an over-
estimation of the level of complexity (see discussion in Mangano and
Buatois, 2020).

Occurrence. — Our group encountered small, sub-mm-scale burrows
similar to those figured by Germs (1972b), Jensen and Runnegar (2005),
and Linnemann et al. (2019) in several horizons from within the Witputs
Sub-basin; from the top of the Nasep Member, base of the Huns Member
(Farm Arimas and the Canyon Roadhouse), and from high in the Spit-
skop Member on Farm Swartpunt. Although all these burrows occupy a
similar range of sizes (widths typically 0.3-0.5 mm), we note two distinct
morphologies, hereafter termed Forms A and B. Form A (Fig. 9b-c) has
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Fig. 12. Trace fossils from the upper Spitskop For-
mation (Farm Swartpunt): a-d) dense networks of
sub-mm scale horizontal burrows (‘Form B’), showing
90 degree branching and burrow junctions (espe-
cially panel a), and regular vertical movement in and
out of the sediment plane (arrowed in panels b-d); e)
meshwork of indeterminate horizontal, unbranched
burrows showing frequent cross-cutting and vertical
avoidance; f-h) Streptichnus narbonnei, showing
burrow radiation from central points (‘c’), and char-
acteristic corkscrew (or ‘rope-like’) appearance
(Specimen NESM-F-626, housed at the National Earth
Science Museum in Windhoek). All fossils preserved
on bed undersides. Filled scale bars 1 cm; open scale
bars 5 mm.

been found by our group at the top of the Nasep Formation and base of
the Huns Member in the Witputs Sub-basin, and comprises small, thread-
like horizontal trace fossils preserved on the underside of sandstone/
quartzite beds. Burrows rarely show branching, but commonly over-
cross, displaying a degree of vertical avoidance such that superimposed
burrows go over and under one another, rather than through. Burrows
are winding, and commonly show a regular sinuous pattern reminiscent
of Cochlichnus (Fig. 9c; see also Jensen et al., 2006; their Fig. 2E). Form A
does show some evidence for a small degree of movement in and out of
the horizontal plane, but while it occurs in dense accumulations on
single surfaces, it was not found forming networks in the localities we
examined (and therefore differs from structures typically assigned to
Olenichnus). Individual traces show bends that range from sinuous to
right angles (Fig. 9b), with the sharpest bends appearing to correspond
to close proximity of other traces. This form is also present at the base of
the cuesta on Farm Swartpunt, likely sourced from the Spitskop Mem-
ber, albeit in lower numbers.

Form B (Fig. 12a-d) was found at the top of the Spitskop Member on
Farm Swartpunt (several meters both above and below beds containing
Swartpuntia and Pteridinium), and comprises irregular networks of hor-
izontal burrows preserved on bed tops. Burrows commonly branch at 90
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Fig. 13. Treptichnid-type traces from the Ediacaran portions of the Nama Group: a-e) small treptichnids from the Nasep-Huns transition (Canyon Roadhouse and
Farm Arimas); note circular pattern of individual probes in panel e (arrowed); f-h) larger treptichnids from the basal Spitskop Member (Fish River Canyon near
Holoog); note circular pattern of individual probes in panel g (arrowed), and preservation of linking burrows between steeper, vertical probes in panel h (highlighted
with dashed white lines). All fossils preserved on bed undersides. Filled scale bars 1 cm; open scale bars 5 mm.

degrees, and in many places display regular vertical movement in and
out of the sediment plane, creating a stitch-like pattern. Forms A and B
have similar widths, but the branching and network forming of Form B
are more consistent with a maintained, dwelling burrow rather than the
simpler movement/feeding trace indicated by Form A.

4.3. Pseudofossils and problematica

Similar to many coeval sections worldwide, latest Ediacaran strata
from the Nama Group preserve a wide variety of problematic structures
that have been regarded as trace fossils by some authors, but considered
to represent abiotic processes, microbially-induced sedimentary struc-
tures, or tubular organisms by others (see discussions in Jensen et al.,
2006; Sappenfield et al., 2011 and Buatois and Mangano, 2016). This
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tendency for Ediacaran sediments to preserve hard-to-interpret features
has been extensively noted by previous workers. For example, Paterson
(1994) and Jensen et al. (2005) pointed to the role played by microbial
mats in lowering the potential erodibility of thin sediment layers, which
may preserve fine-scale sedimentary structures that are rare or absent in
later deposits (for example, as mats become less common, see Seilacher
and Pfliiger, 1994, and Seilacher, 1997). Several authors have noted that
the surfaces of Ediacaran microbial mats themselves can preserve fea-
tures that may have been misdiagnosed as trace fossils (Gehling and
Droser, 2009; Seilacher et al., 2005; Jensen et al., 2006; Buatois and
Mangano, 2016; Davies et al., 2016; Tarhan et al., 2017). Hoffmann
(1971) suggested that Precambrian pseudofossils and unusual sedi-
mentary structures were likely both over-represented and over-reported
(largely because of their potential evolutionary significance). However,
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Fig. 14. Trace fossils and sedimentary structures from Farm Haruchas (Zaris Sub-basin; Vingerbreek Member): a) abundant Kinneyia-type microbial mat fabrics; b-e)
dendritic undermat mining trace fossils; f) single, large Archaeonassa; g) close-up view of Archaeonassa highlighted in f), showing well-preserved sediment lobes
flanking the central furrow; h) indeterminate and cross-cutting horizontal trace fossils resembling Helminthoidichnites. All fossils preserved on bed tops. Filled scale

bars 1 cm; open scale bars 5 mm.

a majority of workers maintain that a late Ediacaran-Cambrian escala-
tion in both depth and intensity of bioturbation would have greatly
reduced the survival potential of both sedimentary and non-resistant
biological structures, leading to an overall reduction in the frequency
(and fidelity) of bedding-plane features (Jensen et al., 1998; Mcllroy and
Logan, 1999; Seilacher, 1999; Gehling et al., 2000; Buatois and
Mangano, 2011, 2012a).

More recently, it has been suggested that the thick microbial mats
that characterize much of the Neoproterozoic may not be ideal for
preserving surface structures in siliciclastic sediments, as the object (or
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organism) typically has to penetrate the mat and disturb the sediment
underneath in order for the trace to be recorded (e.g., Wray, 2015).
However, this view is inconsistent with the common preservation of
minute trace fossils in Ediacaran strata (Buatois and Mangano, 2016;
Parry et al., 2017; Mangano and Buatois, 2020). In this context, the
latest Ediacaran Nama interval may itself represent a unique preserva-
tional regime; the increase in density of very shallow-tier trace fossils as
seen on bedding planes and, in particular, the local occurrence of more
penetrative trace fossils may have resulted in (or from) a patchier dis-
tribution of microbially induced sedimentary structures (‘MISS’);
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Mariotti et al. (2014) even suggested that certain types of MISS
involving mat fragments may actually be the result of mat-penetrative
bioturbation. Several studies (e.g., Hagadorn and Bottjer, 1997, 1999)
have noted an apparent Neoproterozoic-Cambrian peak in MISS abun-
dance. Notably, it is also true that strata in the Nama Group showing
evidence of the highest intensity of bioturbation do not typically pre-
serve microbially induced sedimentary structures (Buatois et al., 2018).
In addition, although MISS (in particular Kinneyia textures and
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microbial wrinkle marks - see e.g., Fig. 15a-c) are abundant in the Nama
Group, there are few (if any) of the ‘textured organic surfaces’ figured by
Gehling and Droser (2009) and Tarhan et al. (2017) from the older
White Sea interval. The controls on differences between interpreted mat
textures in White Sea and Nama-aged sediments are as yet unknown.
However, it may be that Nama-interval sedimentary environments
represent a latest Neoproterozoic ‘sweet spot’ in the preservation of
traces, where activity by motile organisms thinned microbial mats to the

Fig. 15. Pseudofossils and problematica: a—c) dendritic pseudotraces resembling Aristophycus, potentially formed by the movement of fluid and/or gas beneath
microbial mats (bed top); d-f) ‘guitar strings’ from near the top of the Spitskop Member on Farm Swartpunt, potentially representing sponge biofabrics (bed un-
derside); g) Kullingia scratch circle from near the top of the Spitskop Member on Farm Swartpunt (bed underside); h-k) dense accumulations of problematic circular
structures from quartzites in the Kliphoek Member on Farm Hansburg, superficially resembling Skolithos burrows in Cambrian ‘pipe rock’ (bed top); 1) chevronate
drag mark from the Feldschuhhorn Member, superficially resembling the Cambrian ichnotaxon Climactichnites (bed underside). Filled scale bars 1 cm.
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extent that even the smallest disturbances were capable of deforming
underlying sediment, but sediment mixing was not intense enough to
weaken the sediment rheology sufficiently such that substrates become
‘soupy’, and small surface structures were immediately erased.
Regardless, Ediacaran sediments from the Nama Group preserve an
unusually large array of problematic bedding-plane structures; this may
be linked to the properties of seafloor microbial mats, but is likely
exacerbated by the large diversity of proximal sedimentary facies
characterized by intense erosion (producing, for example, abundant tool
marks, groove casts, and other features). In this section, we briefly
discuss a variety of problematic structures.

4.3.1. Arched structures

A series of crescentic, arched structures preserved on bedding planes
have been recorded from the Nama Group, and assigned to the ichno-
genus Zoophycos (Macdonald et al., 2014). They were found in talus
blocks sourced from the Upper Omkyk Member on Farm Hauchabfon-
tein (Zaris Sub-basin), <100 m below an ash bed dated by Grotzinger
et al. (1995) at 547.03 + 0.7 Ma. These are large (5-30 cm long), but
relatively shallow-penetrating (<1 cm) structures, consisting of arcuate
U-shaped ridges, interpreted as thick (cm-scale) spreite that gradually
increase in width (maximum ~10 cm) towards the apex (Fig. 16d). The
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authors also identified 2-3 mm structures that were interpreted as
master burrows (‘outer tube’) which runs around the outside of the
structure, and which would have presumably hosted the tracemaker as it
systematically probed the encircled sediment for buried food particles.
Several specimens were recovered from the locality, all from within thin
(0.5-2 cm thick) sandstone lenses within m-scale limestone beds. The
assignment of these structures is problematic, however, in that they lack
several diagnostic features characteristic of Zoophycos, such as clear
evidence of regularly spaced secondary lamellae, causative burrow, and
spreite (Buatois and Mangano, 2016).

Additionally, the discovery of numerous, similar-looking structures
from within the Mooifontein limestone on Farm Hansburg (Witputs Sub-
basin) potentially offers an abiotic interpretation. These structures occur
~2-4 m above the contact with the underlying Kliphoek sandstones (see
Maloney et al., 2020), are similarly large (10-30 cm in total length), and
are characterized by arcuate U-shaped ridges that increase in diameter
along the length of the structure (Fig. 16a-c). The Hansburg structures
encompass a spectrum of morphologies that range from more biological-
looking (i.e., elongate, directional, and with regularly-spaced arches), to
more abiotic (broadly circular in aspect — see Fig. 16a-b, and comprising
multiple aligned ‘lobes’, such as might be produced if soft sand were
being forced along rheological interfaces with gradual loading of the

Fig. 16. Problematic arcuate structures from the
Kuibis Subbgroup: a-c) repeated lobe-like structures
developed in sandy horizons near the base of the
Mooinfontein limestone on Farm Hansburg, illus-
trating sub-parallel ridges resembling spreite, and
multiple ‘lobes’ spreading off the central structure
(arrowed in ¢); d) arcuate structures (labelled ‘1’ and
‘2’) developed in sand lenses within limestones
belonging to the upper Omkyk Member on Farm
Hauchabfontein assigned to ?Zoophycos isp. by Mac-
donald et al. (2014), illustrating parallel to sub-
parallel ridges (arrowed), and paired penetrative
structures (‘p’); e) magnified image of area high-
lighted in d), showing possible coiled and rope-like
horizontal trace, with numerous individual ‘probes’
arrowed. All fossils/pseudofossils preserved on bed
tops. Filled scale bars 1 cm.



S.A.F. Darroch et al.

sediment pile). Crucially, the Mooifontein structures are preserved in a
similar lithology to the structures from Hauchabfontein —in 1-3 cm thick
sandstone lenses sandwiched within m-scale limestone beds. This lith-
ological context (i.e., developed at the interface between sediment types
with different rheological properties) offers a potential parallel with the
pseudofossils figured by Knaust and Hauschke, (2004; their Fig. 3B)
from the lower Triassic Buntsandstein playa deposits of Germany. These
structures are commonly formed along horizontal sandstone-claystone
interfaces (where claystone has different fissility along boundaries to
the sandstone), and are typically of a shape and size that mimic spreiten
burrows. Superficially at least, the pseudofossils figured by Knaust and
Hauschke (2004) bear strong similarities with the Mooifontein struc-
tures discovered by our group, and thus may offer an abiotic interpre-
tation for the structures discovered in the Omkyk (although this
interpretation remains speculative, until more detailed petrographic
analyses can be performed). We also note that the structures described
by Macdonald et al. (2014) do have several unique features which are
not seen in the Mooifontein structures — principally, the more regularly
spaced crescentic marks (compare, for example, Fig. 16a with 16d) (S.
Pruss, Pers. Comm.).

4.3.2. V-shaped chevronate structures

These consist of undulating, nested V-shaped chevronate structures
preserved as ridges and separated by shallow furrows on the tops of
micaceous, sandy siltstone (Fig. 151). One specimen possesses a left-
lateral crenulated margin ~0.3 cm in width which runs the entire
length of the structure. These structures occur in the Feldschuhhorn
Member, where it is exposed on Farm Sonntagsbrunn in the vicinity of
the Fish River (Witputs Sub-basin). The V-shaped chevrons somewhat
resemble the pattern of undulating bars and furrows of the Cambrian
ichnogenus Climactichnites (Getty and Hagadorn, 2008). However, on
closer inspection, there are a number of features which are inconsistent
with interpretation of these structures as Climactichnites in particular
and as trace fossils in general. Specifically, the tight internal angles of
chevrons seen in these structures, as well as the presence of a crenulated
margin on only one side of the structure (rather than both, as is seen in
Climactichnites) are problematic. Furthermore, transverse bar morphol-
ogies characteristic of this ichnotaxon, including straight, sinusoidal,
and zipper morphologies, are absent. A variety of abiotic in-
terpretations, including chevronate tool marks or drag marks left by
microbial aggregates, are therefore the most likely (cf. Peakall et al.,
2020).

4.3.3. Intrites

In addition to the plug-shaped burrows described above, several
horizons at the top of the Nasep and base of the Huns formations pre-
serve well-developed Intrites — small, raised mounds commonly found
on the top-surfaces of beds, and possessing a small central depression
(Fig. 9h). The origin of Intrites is still controversial; initially it was
regarded as a trace fossil (e.g., Fedonkin, 1980; Crimes, 1987), but a
growing consensus has subsequently emerged considering it a body
fossil (e.g., Gehling et al., 2000; Mcllroy et al., 2005; Seilacher et al.,
2005; Jensen et al., 2006), and affinities with paleopascichnids have
been indicated for the type material (Jensen et al., 2006). Structures
resembling Intrites from the Longmydian Group of England have now
been interpreted as sedimentary structures resulting from interplay be-
tween microbial mats, sediment binding, and mineral precipitation on
the flanks of small sediment volcanoes (Menon et al., 2016, 2017),
although the potential affinities of these structures with the type mate-
rial of Intrites from White Sea area deserve further exploration. The
close resemblance between Intrites from the Nama and those described
by Menon et al. (2017) from the Longmydian Group do, however, make
a strong case that our examples from the Nasep-Huns transition repre-
sent sedimentary structures. Moreover, these occurrences suggest the
strong potential influence of matgrounds in producing water and gas-
escape structures in these horizons, and reinforces the notion that
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putative vertically-oriented trace fossils, such as Skolithos and Dip-
locraterion, need to be treated with caution, and ideally examined in
cross-section.

4.3.4. ‘Guitar strings’

Siliciclastic deposits towards the top of the Schwarzrand Subgroup
on Farm Swartpunt contain abundant straight and sub-cylindrical stri-
ations, preserved in either parallel longitudinal sets or slightly radiating
groups, which are informally referred to here as ‘guitar strings’
(Fig. 15d-f). Striations are sub-mm in width, ranging from less than 0.1
mm up to 0.7 mm, and comprise approximately two to three size orders.
Parallel striations are regularly spaced 0.1-2.0 mm apart. Sets span 3.5-
188 mm in length (incomplete) and 0.6-40 mm in width, and may occur
as both single- and double-parallel striation arrays. In some Swartpunt
specimens, arrays are preserved in walls of higher-relief cylinders (see e.
g. Fig. 15e). Smallest-scale striations average 0.075 mm in width, are
preserved as densely packed thatch or in isolation, and possibly taper at
termini. Thatch orientation varies but may lie transverse to larger stri-
ation arrays. “Vein”-like ridges, 0.5-7.5 mm-wide, co-occur with stria-
tion sets in Swartpunt fossils, either bounding parallel arrays or lying
obliquely over/under smaller-scale structure. Veins are rectilinear to
sub-cylindrical, and unlike striation arrays, cylindrical veins may show
gentle curvature or deformation. Commonly, veins bounding parallel
arrays form 2-4 cm-wide and up to 28 cm-long rectangular tracts. Some
veins are themselves striated, indicating that they are constructed of
bundles of the smaller cylindrical units.

Although the generation of subparallel, rectilinear ridges and
grooves on bed surfaces by erosional flow has been demonstrated
experimentally (e.g. Allen, 1969), several factors argue against a me-
chanical interpretation for these structures. First, overlapping arrays of
parallel striations comprise multiple size orders and orientations, and
exhibit no destruction that would be expected if directional shift in flow
resulted in cross-cutting grooves. Second, striations do not bifurcate or
re-join, as would be expected from erosional features (Allen, 1969).
These factors, alongside the scale and regularity in striation spacings,
suggest a biological, rather than mechanical origin. Savazzi (2015)
illustrated a wide variety of Eophyton-type tool marks with broadly
similar patterns of grooves, although these are overwhelmingly pre-
served in obvious furrows and commonly exhibit cross-cutting re-
lationships (unlike the vast majority of ‘guitar string’ structures
preserved in the Spitskop). Given that a number of Cambrian sponges
possess parallel longitudinal spicule arrays (see e.g., Finks and Rigby,
2004), we tentatively interpret the <0.1 mm striations and parallel-
arrayed sub-cylindrical striations as sponge monaxon spicules and
larger spicule rods, respectively. Further, the regular sub-mm spacing of
striations indicates binding by organic tissue, and we thus suggest that
the longitudinal parallel arrays may represent sponge wall fragments. As
such, the ‘guitar strings’ preserved in the Spitskop Member and in late
Ediacaran deposits elsewhere may represent sponge biofabrics. An
interpretation for these structures as tool marks is, however, still plau-
sible, and thus further work will be required to establish the biogenicity
of these structures beyond reasonable doubt.

4.3.5. Circular bumps

Among the most problematic structures found by our team in the
Nama Group are medium-sized (3-5 mm in diameter) circular impres-
sions that are commonly densely packed on bed tops (Fig. 15h-k). These
possess a raised rim around a central depression, in the center of which is
a raised ‘bump’, which itself can possess a small central depression
~0.5-1 mm in diameter. Similar structures have been occasionally
referred to as Skolithos (e.g. Crimes and Germs, 1982). When found in
large numbers, these structures can commonly appear paired (much like
the Bergaueria and Conichnus described above). However, the structures
here are distinguished from such ichnogenera in having a much more
consistent size and appearance (for example, never preserved as epi-
relief ‘bumps’). These circular bumps are also typically much bigger
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than the Intrites that are common in the Nasep-Huns transition, which
also do not sit in a central depression.

Thus far, our group has almost exclusively found these structures in
white quartzite units belonging the Kuibis Subgroup where it is exposed
on Farm Hansburg (which on the basis of recent chemostratigraphic
work, likely belong to the Kliphoek Member; Maloney et al., 2020),
although similar (but less well-preserved) examples were also found in
Kuibis quartzites on farms Kuibis and Tsachanabis. The circular struc-
tures occur towards the top of the quartzite units (2-3 m below beds
containing in-situ Ernietta — see Gibson et al., 2019; Maloney et al.,
2020), in thinner beds that also possess reddish and pitted areas that
may indicate the influence of microbial mats. Due to extensive recrys-
tallization, few specimens retain any trace of vertical structure; how-
ever, in the original material collected by Crimes and Germs (1982), a
series of vertical pipe-like structures can be seen joining surface de-
pressions with features several centimeters into the subsurface
(Fig. 151). The consistent width and angle of these ‘pipes’ along their
length make identification as either water-/gas-escape structures un-
likely, and thus these structures remain perhaps the strongest candidates
for vertically-oriented burrows in the Ediacaran portions of the Nama.
However, the possibility that these structures represent the rooting
structures of body fossils that were originally anchored in the sediment
requires thorough testing before comparisons with Skolithos and other
bioirrigative structures can be made.

4.3.6. Kullingia

Several localities in the Nama Group, most notably the Vingerbreek
Member (Zaris Sub-basin), and siliciclastic horizons near the top of the
Spitskop Member of the Urusis Formation (Witputs Sub-basin), preserve
bed-parallel ‘scratch circles’ consisting of multiple, concentrically-
arranged impressions in the sediment (see Fig. 15g). Although they
bear some resemblance to the holdfast structures of frondose Ediacara
biota (e.g., Aspidella), scratch circles can usually be distinguished on the
basis of sharp, deeply-impressed ridges arranged around a raised central
boss (Jensen et al., 2018). Rather than body fossils or trace fossils, they
represent the wind- or current-induced rotation of a fixed organism
where some portion of the organism is in contact with the sediment
(Jensen et al., 2002, 2018).

4.3.7. Aristophycus

Aristophycus refers to bed-parallel dendritic structures where vari-
able filaments are distally bifurcated and cross cut one another (Knaust
and Hauschke, 2004; Davies et al., 2016; McMahon et al., 2017).
Problematic dendritic structures are found through the Nama Group (see
Fig. 15a—c), although most commonly in shallow-water facies that also
preserve evidence for subaerial exposure, in particular parts of the
Vingerbreek and Niederhagen members (Nudaus Formation; Zaris Sub-
basin). McMahon et al. (2017) reviewed the potential interpretations of
this structure, which fall within three major groups: (1) expulsion of
interstitial water through burrows (Seilacher, 1982), (2) dewatering of
unconsolidated sands beneath a clay seal (Knaust and Hauschke, 2004),
and (3) movement of gas or water through sediment capped by micro-
bial mats (Seilacher, 2007; Kumar and Ahmad, 2014). The absence of
any associated vertical burrow allows ruling out the first interpretation
in the case of the Nama structures. As in the case of the structures
described by McMahon et al. (2017), a dewatering origin in connection
to a microbial mat seal is inferred for the structures in the Nudaus
Formation. A similar origin may be tentatively put forward for structures
referred to as ?Chondrites from the Vingerbreek Member by Crimes and
Germs (1982).

4.3.8. Meandering tubes

Darroch et al. (2016) described accumulations of tubular structures
with closely-spaced transverse annulations from the Vingerbreek
Member (Schwarzrand Subgroup) north of Zebra River which they
tentatively identified as the body fossil Shaanxilithes ningqiangensis,
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broadly based on a comparison of tube widths (Fig. 17). However, these
fossils also bear passing resemblances to Palaeopascichnus minimus, a
likely protozoan (Seilacher et al., 2005; Antcliffe et al., 2011).

Shaanxilithes, represented by a sole species, S. ninggiangensis, is a
ribbon-like body fossil, ranging in width from sub-mm-scale up to nearly
15 mm, composed of closely spaced, potentially stacked, discoidal,
lensoidal, or crescentic segments (Meyer et al., 2012; Tarhan et al.,
2014; Darroch et al., 2016). Taphonomically, Shaanxilithes is preserved
either as carbonaceous compressions (Tarhan et al., 2014) or via
aluminosilicate templating (Meyer et al., 2012). In either taphonomic
style, Shaanxilithes can be densely aggregated on bedding surfaces,
appearing as long, winding ribbons that can overlap and/or dis-
articulated clusters of discs (Meyer et al., 2012), although it rarely ex-
hibits significant three dimensionality. The winding or meandering
appearance of the transversely annulated fossils from the Vingerbreek
Member might be grossly comparable to Shaanxilithes, but the thin,
repeating, discoidal structures typical of Shaanxilithes differ from what is
observed in the Vingerbreek specimens, which instead have evenly-
spaced straight ridges along a ribbon-like trough. The common dis-
articulated discs associated with Shaanxilithes are also absent from these
Vingerbreek samples.

While it may have the appearance of a trace fossil, Palaeopascichnus is
an Ediacaran body fossil consisting of a series of latitudinal segments
preserved as flattened and curved-to-crescent shaped chambers (Jensen,
2003; Shen et al., 2007; Antcliffe et al., 2011). Palaeopascichnus is rep-
resented by four species, P. delicatus, P. linearis (inc. P. sinuosus),
P. meniscatus, and P. minimus (Shen et al., 2007; Antcliffe et al., 2011;
Kolesnikov et al., 2018), and likely grew through accretion of individual
segments or chambers (Kolesnikov et al., 2018), although the arrange-
ment of these chambers may be inconsistent throughout growth of the
organism. Of the four described species, P. minimus is the smallest, is
non-branching, maintains a fairly constant chamber width, and has the
simplest overall morphology (Shen et al., 2007) — which may be most
comparable of the genus to the Vingerbreek meandering tubes. Tubes of
P. minimus are less than 0.7 mm in width and have total lengths of less
than 10 mm, with individual chambers being up to 0.2 mm in thickness
(Shen et al., 2007). As with Shaanxilithes, similarities between the Vin-
gerbreek tubes and Palaeopascichnus dominantly lie within the gross
ribbon-like morphology of the fossils. Unlike all species of Palae-
opascichnus, the “chambers” of the Vingerbreek tubes are instead a series
of straight ridges, with the major ridge axis perpendicular to the ribbon
length, and the ridges maintaining separation (terminating at the fossil
edge) instead of joining to form walls of individual chambers. Some of
these apparent disparities, however, may come from differences in
preservation (i.e., flattened impressions of chamber walls in White Sea-
aged examples, as opposed to the three-dimensional preservation,
potentially ‘chamber-fill’, seen here), and so further investigation is
warranted.

In summary, the tubular fossils described by Darroch et al. (2016)
from the Vingerbreek Member bear superficial similarities to Palae-
opascichnus, but possess key characteristics that preclude identification
as such. At present, these fossils can be best interpreted as body fossils
belonging to tubular and annulated organisms. This interpretation is
supported by the presence of overlapping (rather than crosscutting)
relationships, and rare instances where ridges are oriented at an oblique
angle to the tube margin, suggesting that individual annuli may have
‘slipped’ in the process of decay and disarticulation (Fig. 17c), similar to
that described by Cai et al. (2013). However, these fossils also bear some
notable dissimilarities with Shaanxilithes, and so it seems likely that they
represent a new taxon, requiring more in-depth investigation.

5. Discussion
5.1. Ediacaran ichnodiversity and ichnodisparity in the Nama Group

In both sub-basins, the Ediacaran trace fossil record of the Nama
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Group preserves a progression from simple plug-shaped burrows with a
variety of internal fabrics (potentially representing actinian cnidarians —
see Mata et al., 2012; Darroch et al., 2016), into simple horizontal
burrows produced by bilaterians within ~1 cm of the sediment-water
interface (including undermat mining), and finally more complex bur-
rows preserving evidence of systematic feeding behaviors, and/or ver-
tical disruption of the sediment-water interface (see also Cribb et al.,
2019). As yet, our group has found no unequivocal evidence for mid- to
deep-tier domichnia (for example, Skolithos and Diplocraterion) below
the Cambrian-aged Nomtsas Formation, and previous reports of these
ichnotaxa from the Ediacaran portions of the Nama Group seem likely to
represent either paired Conichnus/Bergaueria (see e.g., Fig. 5), individual
treptichnid probes (e.g., Fig. 13), or potentially even the attachment
sites of tubular body fossils, supporting suggestions made by Crimes and
Fedonkin (1996), Jensen (2003), and Jensen et al. (2006) (although we
also note that several problematic structures, in particular the ‘circular
bumps’ found in the Kliphoek Member, deserve more in-depth analysis).
This revised ichnostratigraphy brings the Nama Group into line with
many other late Ediacaran to Cambrian-aged successions worldwide (e.
g., Jensen, 2003; Mangano and Buatois, 2017), including those recorded
from Newfoundland (Crimes and Anderson, 1985; Narbonne et al.,
1987; Buatois et al., 2014; Herringshaw et al., 2017; Gougeon et al.,
2018; Laing et al., 2019), NW Canada (Carbone and Narbonne, 2014),
Argentina (Buatois and Mangano, 2004, 2012b) and Norway (Banks,
1970; Hogstrom et al., 2013; Mcllroy and Brasier, 2017; Jensen et al.,
2018). More importantly, the succession of behavioral complexity is
similar to what has been reported from NW Canada (Carbone and Nar-
bonne, 2014), with a variety of horizontal to oblique grazing and
deposit-feeding trace fossils (including both 2D and 3D avoidance)
appearing in the late Ediacaran prior to the FAD of T. pedum. The
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Fig. 17. a—c) Meandering and annulated tubes from
the Vingerbreek Member, Zaris Sub-basin. Although
these fossils bear passing resemblance to the likely
protozoan body fossil Palaeopascichnus, they possess
features that are incompatible with this taxon; note in
particular the straight ridges defining annuli
(arrowed in b) that maintaining separation rather
joining to form walls of individual chambers, and
overlapping, but not crosscutting relationships
(typical of body fossils). In ¢), note where annuli are
oriented at an oblique angle to the tube margin,
suggesting that individual annuli may have ‘slipped’
in the process of decay and disarticulation, similar to
that described by Cai et al. (2013). All fossils pre-
served on bed underside. Scale bars 1 cm.

principal differences between the Ediacaran succession observed in the
Nama Group and coeval sections worldwide are: 1) the early appear-
ance, size, and abundance of treptichnids (see in particular those from
the Nasep-Huns transition, and the base of the Spitskop Member - Figs. 9
and 13); and 2) the presence of irregular ‘network’ traces (see Section
4.2.7 above). Even if the existence of Ediacaran Skolithos and Dip-
locraterion is not supported, this revised ichnostratigraphy of the Nama
Group thus extends the ranges of some key metazoan behaviors and
ichnotaxa below the Ediacaran-Cambrian boundary (Fig. 18).

The Zaris and Witputs Sub-basins contain markedly different trace
fossil assemblages; whereas trace fossils are abundant and diverse
throughout the Witputs succession (specifically, above the Kliphoek
Member), they are comparatively rare in the Zaris Sub-basin, with many
of the localities that our group examined possessing none at all. In
particular, many of the more energetically costly and complex traces (for
example, treptichnid-type burrows) are apparently absent in the Zaris.
This discrepancy mirrors the distribution of soft-bodied Ediacara biota
in the region, which are also comparatively rare in the Zaris (although
not entirely absent — see Fig. 3g-k). This disparity can potentially be
explained in terms of the redox conditions inferred to have been oper-
ating in each basin. Although iron speciation data suggest that redox
conditions were highly dynamic in both the Zaris and Witputs (with
persistent oxygenation mostly present in mid-ramp settings during
transgressive systems tracts — see Wood et al., 2015), the Zaris Sub-basin
is thought to have been less persistently oxygenated, possibly driven by
upwelling anoxic ferruginous deep water (Wood et al., 2015; Bowyer
et al., 2017). Both Wood et al. (2015) and Tostevin et al. (2016) also
noted a general trend of increasing oxygenation throughout the strati-
graphic columns of both sub-basins, which may represent an overriding
control on biological activity in the region. Therefore, although
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Fig. 18. Top panel: a) ichnostratigraphy of the Nama Group as compiled from Crimes and Germs (1982), Germs (1972b, 1995), Jensen et al. (2000), Jensen and
Runnegar (2005); Bouougri and Porada (2007), and Macdonald et al. (2014). Bottom panel: b) revised ichnostratigraphy of the Ediacaran portions of the Nama
Group, based on both a critical appraisal of the literature, and our own field investigations. ‘u/c’ = unconformity.
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stratigraphic trends in trace fossil diversity, complexity, and bio-
turbation intensity plausibly represents a genuine evolutionary signal (e.
g., Cribb et al., 2019), the differences in paleontological content be-
tween sub-basins illustrate that this signal may be modulated by spatial
and temporal trends in ocean redox conditions. However, we also note
that alternative explanations involving (for example) different paleo-
environments and associated taphonomic potentials also require testing.

5.2. Proximal-distal trends

The diversity of paleoenvironments preserved in the Nama Group
allows for a preliminary description of proximal-distal trends, and an
opportunity to address the question of precisely where complex bur-
rowing behaviors were appearing in the terminal Neoproterozoic, and
thus whether there were paleoenvironmental and/or -ecological in-
fluences on bilaterian evolution.

Trace fossil assemblages in the Nama Group are unusual in context of
the late Ediacaran, not just for the diversity and complexity of traces that
have been described, but also in that multiple ichnotaxa can often be
found in close association on the same slab. Two horizons in the Witputs
Sub-basin where this is particularly true are the Nasep-Huns transition,
and the base of the Spitskop Member. Both these stratigraphic horizons
host unusually dense and diverse trace fossil communities (in places
with 3+ different bilaterian behaviors represented — see Fig. 19), and
mark pronounced increases in alpha ichnodiversity. Interestingly, both
localities record relatively shallow and high-energy environments. In
the vicinity of the Fish River, the Nasep Member is 8-20 m thick and
divided into distinct units — well-sorted, massive to planar-bedded
sandstone at the base (suggesting deposition by strong, sediment-laden
currents), and which are overlain by grey-green siltstone with local
hummocky cross-bedding and symmetric and quasi-symmetric ripples,
representing alternation of storms and suspension fallout below fair-
weather base during a transgressive event (Grotzinger and Miller,
2008). The overall paleoenvironment for this sequence is interpreted as
fluvial to wave-dominated shallow-marine (Germs, 1983; Grotzinger
and Miller, 2008). High-energy transport is consistent with the presence
of abundant tool marks, current-aligned tubular body fossils, and gutter

Fig. 19. Slab preserving a moderately diverse assemblage of trace fossils from
the base of the Spitskop Member (Urusis Formation) collected from the vicinity
of the Fish River. View is of slab underside, broken along the plane of a thin
(sub-cm scale) sand drape separating 2-3 cm-thick limestone beds. ‘Hel.” —
Helminthoidichnites; ‘Meio.” — meiofaunal traces resembling ‘Form A’ found
lower in the stratigraphy; ‘P.p.” — Parapsammichnites pretzeliformis briefly
exposed between sandstone laminae, showing characteristic bilobate structure;
‘Tr.” — abundant treptichnid-type traces preserved in a variety of styles,
including as a characteristic semicircle of probes (far right; see also Fig. 13g),
and as individual probes (top left), in places showing branching off a central
master burrow (e.g., lower right, far left). Remnants of the central burrow be-
tween individual probes can be clearly seen. View is of bed underside. Scale bar
5 cm.
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casts. Oscillatory flows are indicated by hummocky cross-stratification,
and the symmetric and quasi-symmetric ripples, which are suggestive of
waves and combined flows, respectively. The base of the Huns Member
is marked by 10-40 cm of pebbly, very coarse- to coarse-grained sand-
stone with large-scale ripples, which are subsequently overlain by ~260
m of interbedded platform limestone and shale (Grotzinger and Miller,
2008). Similarly, the base of the Spitskop Member at Koelkrans Camp is
composed of current-ripple cross-laminated, micaceous, siltstone and
very fine- to fine-grained sandstone that preserve abundant tool marks
and primary current lineation, and pass upwards to cross-bedded very
fine- to medium-grained sandstone with reactivation surfaces and
superimposed ripples that are interpreted as representing subtidal dunes
formed by strong tidal currents (Buatois et al., 2018), and also record
part of a transgressive systems tract and relative deepening (Grotzinger
and Miller, 2008). These clastic horizons are then overlain by >100 m of
alternating siliciclastics and ramp limestone, the uppermost of which are
preserved on Farm Swartpunt.

The two most diverse trace fossil assemblages (and also those that
record the most complex behaviors and among the largest trace widths)
in the Nama Group occur in transgressive settings below fair-weather
wave base (but above storm wave base), characterized by the alterna-
tion of high-energy episodes (e.g. during storms) and low-energy back-
ground conditions. This could certainly be coincidence (or represent a
preservational bias), but could also hint at paleoenvironmental and
ecological controls, and support a general evolutionary proximal-distal
trend in the appearance of new bilaterian behaviors and intensity of
infaunal activity (see e.g., Buatois et al., 2020). For example, Wood et al.
(2015) noted that persistent oxygenation in the Nama basin is primarily
associated with transgressive systems tracts, suggesting that ventilation
of the water column took place during relative sea-level rises, whereas
limited accommodation during highstand systems tracts resulted in
episodic oxygenation. In this light, pulses of oxygenation into the Wit-
puts basin could have facilitated the evolution of more diverse and
energy-intensive behaviors, which would then have spread into deeper
water later in the Phanerozoic (e.g. Crimes and Fedonkin, 1994). A
general proximal-innovation, distal-archaic pattern in Paleozoic benthic
ecosystems was first noted by Jablonski et al. (1983), and potentially
explained either in terms of shallow-marine clades being more extinc-
tion resistant (increasing the probability that innovations persist long
enough to diversify and spread into distal environments), or shallow-
marine environments being more temporally and spatially variable,
and thus more conducive to the development of evolutionary novelties
(Jablonski et al., 1983; Bottjer et al., 1996; Mata et al., 2012). Alter-
natively, shallow water environments would also be subject to a much
higher degree of mechanical mixing with the atmosphere due to wave
action, and would therefore be more highly oxygenated. Lastly, there
would also be more organic carbon in offshore settings, and increased
food availability likely would have allowed for more energy-intensive
complex bioturbation behaviors, particularly for deposit feeding trace-
makers (Dunne et al., 2007; Sperling and Stockey, 2018). Regardless of
the driving mechanism, several studies have since noted that both new
behaviors and increases in the intensity of bioturbation typically moved
from proximal to distal settings through the Paleozoic, indicating that
the evolutionary innovations responsible first appeared in relatively
shallow water, before expanding into deeper water settings (Droser,
1987; Droser and Bottjer, 1989, 1993; Crimes and Fedonkin, 1994,
1996; Mangano and Buatois, 2014; Buatois et al., 2009, Buatois et al.,
2020).

Viewed in this light, the first appearance of diverse tracemaking
communities (and key new behaviors, such as treptichnid-type bur-
rowing) in shallow-marine settings may represent the Ediacaran origins
of a key Phanerozoic macroevolutionary and macroecological trend.
Lastly, given that complex, multicellular (if not necessarily metazoan)
communities first flourished in deepwater environments before moving
into the nearshore (Boag et al., 2018), the emergence and proximal-
distal migration of more complex bilaterian behaviors would illustrate
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that modern marine benthic ecosystems owe their existence to two
separate evolutionary cradles (although we note that the degree to
which Avalon-aged Ediacara biota are related to Metazoa is still
debated).

5.3. Ecosystem engineering, and implications for drivers of the Ediacaran-
Cambrian transition

In context of the Ediacaran-Cambrian transition and a putative ‘bi-
otic replacement’ model for the extinction of soft-bodied Ediacara biota,
a key question is: to what extent might the trace fossils and metazoan
behaviors preserved in the Nama Group represent agents of geo-
biological change, and/or a source of ecological stress for Ediacaran
organisms? Application of the ‘Ecosystem Engineering Impact’ values
(‘EEIs’ of Herringshaw et al., 2017) to the Nama Group showed rela-
tively high values in the Witputs Sub-basin for the Nasep-Huns transition
(Fig. 15b; see also Cribb et al., 2019). However, this approach has been
criticized based on the fact that overlap of functional group (e.g.
epifaunal bioturbators, surficial modifiers) with tiering position may
lead to distortions in the final estimation of ecosystem engineering ef-
fects (Mangano and Buatois, 2020; Buatois et al., 2020). The problem of
redundancy may be particularly serious in the case of Ediacaran ich-
nofaunas, which are dominated by epifaunal and very shallow infaunal
organisms, leading to overestimations of the actual impact of ecosystem
engineers. Regardless of these metrics, how these activities may have
impacted communities of Ediacara biota is an under-explored topic in
studies discussing putative mechanisms of biotic replacement (Darroch
et al., 2018a).

As mentioned above, bioturbation is a crucial ecosystem process that
can have profound geobiological effects, including in oxygenating the
water column, altering pore water redox chemistry, reducing sediment
stability, and in the cycling of marine nutrients. Many of these effects are
associated with strong positive feedbacks — for example, the advent of
vertical sediment penetration would have led to the mixing of both
oxygen and labile organic matter into the subsurface, creating new
ecospace and encouraging deeper and more intense bioturbation
(Mcllroy and Logan, 1999). As a result, although the treptichnid-type
traces present in the Nasep-Huns transition (for example) are small
and relatively shallow, they may represent the trigger for runaway
ecological feedbacks encouraging deeper and more systematic exploi-
tation of the sediment, and limited only by organism physiology, and the
rate at which adaptations for more efficient feeding and burrowing can
evolve. It may thus be the case that the first appearance of new bur-
rowing behaviors (and their associated ecosystem engineering impacts)
is as, if not more, important than their initial size, depth, or abundance.
Additionally, the recognition of meiofaunal trace fossils which, at least
locally, occur in higher densities has significant implications for our
understanding of evolution of the sediment mixed layer. Meiofauna are
important ecosystem components in modern oceans, significantly
modifying the chemical, physical and biological properties of the sedi-
ment even when macrofauna are absent (e.g. Schratzberger and Ingels,
2018). The extent to which they may have aided colonization of the
sediment by macroinfauna, or have influenced environmental condi-
tions affecting the life or preservation of the soft-bodied Ediacara biota,
requires more in-depth investigation.

In terms of the specific ichnotaxa recorded here, trace fossils in the
Nama Group predominantly represent an increase in biomixing in-
tensity, rather than an increase in bioirrigation intensity. In the Zaris
Sub-basin, for example, most trace fossils represent horizontal sediment
mixing behaviors, such as Archaeonassa, Helminthoidichnites, and under-
mat mining traces, which tend to be present in bedding planes with
relatively high density of trace fossils (Cribb et al., 2019). Such trace
fossils represent behaviors that are effective at mixing solid sediment
particles but are less effective at solute mixing. Critically, these bio-
mixing behaviors results in the downward transport of reactive organic
matter, stimulating anaerobic pathways such as denitrification,
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manganese-reduction, iron-reduction, and sulfate-reduction (Aller,
1977), thereby increasing the production of Ny, Mn2+, Fe2+, and H,S in
the sediment above the methanogenesis zone (e.g., Thamdrup et al.,
1994). However, the extent to which biomixing behaviors increase the
depth of organic matter remineralization is dependent on the depth of
bioturbation, and horizontal trace fossils in the Zaris Sub-basin do not
represent deep sediment mixing. Nevertheless, even very shallow bio-
mixing without contemporaneous and nearby bioirrigation behaviors to
re-supply microbially-consumed oxygen in the sediment could have
actually led to a shallowing of oxygenated sediment layers. Plug-shaped
burrows, such as Conichnus, may in fact represent the earliest bio-
irrigation behaviors in this basin. Following the interpretation that
Conichnus and other plug-shaped burrows represent dwelling, resting,
and escape traces of actinia (Pemberton et al., 1988; Mata et al., 2012),
these trace fossils likely represent suspension feeders, which typically
need to ventilate their burrows while feeding in order to keep up with
physiological food demand (Christensen et al., 2000; Kristensen et al.,
2012). The Conichnus/Bergaueria tracemakers may thus have contrib-
uted to the flushing out of any reduced compounds (such as sulfide and
ammonium) in the sediment via advective forcing across the burrow
wall-water interface, and up through the porous coarse sediment
(Kristensen et al., 2012). However, we note that these trace makers were
quite small, so their physiological demands for food were likely low and
thus their feeding behaviors would not have resulted in nearly the same
level of bioirrigation as observed for modern suspension feeders. In this
regard, it is worth noting that Cambrian representatives of plug-shaped
burrows are typically much larger and deeper than their Ediacaran
counterparts (e.g. Pemberton and Magwood, 1990; Mata et al., 2012),
suggesting an increase in irrigation levels.

A similar pattern occurs in the Witputs Sub-basin. Horizontal trace
fossils like Helminthoidichnites, Helminthopsis, Gordia, Cochlichnus,
Archaeonassa, and Parapsammichnites represent biomixing behaviors
with little to no solute mixing component. The presence of Para-
psammichnites pretziliformis in the Spitskop Member is significant for the
Witputs Sub-basin benthic ecosystems, though, as coelomic-grade sedi-
ment bulldozing behaviors (Buatois et al., 2018), record a much more
intense biomixing behavior than those represented by the smaller hor-
izontal trace fossils. P. pretziliformis tracemakers could have therefore
mixed more organic matter deeper into the sediment, increasing oxygen
consumption even more intensely than smaller tracemakers earlier in
the Witputs and Zaris sub-basins. However, the Witputs Sub-basin is also
unique in the early appearance and size of treptichnids, as well as the
early appearance and widespread occurrences of plug-shaped burrows
such as Conichnus. Bioirrigation behaviors, therefore, are more widely
represented and occur earlier in the Witputs Sub-basin, and thus seafloor
sediments are more likely to have been oxygenated to a deeper depth
than in coeval Zaris Sub-basin sediments. The eventual appearance of
T. pedum in the Witputs Sub-basin represents styles of animal-sediment
interaction that, despite being dominantly horizontal biomixing be-
haviors, would have resulted in at least minor solute mixing between
sediment porewaters and the overlying water by consequence of moving
between the sediment-water interface and the deeper sediment. In either
of these behaviors, increased solute mixing between the sediment and
oxygenated overlying waters could have both increased the depth of
oxygen penetration into the sediment, stimulating aerobic respiration,
and flushing out reduced species, such as hydrogen sulfide (Banta et al.,
1999; van de Velde and Meysman, 2016). This in turn could have
facilitated colonization of the sediment by organisms more sensitive to
pore-water oxygenation.

This escalation in both the diversity and intensity of bioturbation
could plausibly have a number of downstream impacts on benthic ma-
rine organisms (see also Buatois et al., 2018, and Cribb et al., 2019).
First, increasing bioturbation intensity and depth of burrow penetration
would have led to at least partial removal of microbial matgrounds,
altering the rheological properties of the sediment-water interface and
leading to the formation of less firm substrates. This could potentially
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represent a severe source of ecological stress for Ediacaran organisms
that require matgrounds for either attachment (e.g., frondose Ediacaran
taxa possessing holdfasts) or a source of nutrients (e.g., Dickinsonia).
Second, the presence of infaunal deposit-feeders, particularly repre-
sented by large trace fossils, such as Parapsammichnites, can have
detrimental effects on benthic suspension feeders. Disrupting the sed-
iment-water interface can inhibit the settlement of larvae and re-
suspend sediment in a way that can ‘clog’ the feeding apparatus of
suspension-feeding organisms positioned in the water column (‘trophic
group amensalism’, see Rhoads and Young, 1970; Buatois et al., 2018).
Third, it is possible that some of the bilaterian trace fossils preserved in
the Nama Group represent the movement of predators (priapulid worms,
which are frequently claimed as the producers of treptichnids, are
overwhelmingly predatory), representing a new ecological pressure on
soft-bodied Ediacara biota. Lastly, the evolution of bioturbation has long
been linked to state shifts in global biogeochemical cycles. Perhaps most
critically, bioturbation is shown to increase phosphorus relative to car-
bon in organic matter (Aller, 1994). Because phosphorus is generally the
limiting nutrient for oxygen production in organic matter degradation,
increased bioturbation has been shown to have potentially driven global
anoxia (Boyle et al., 2014; van de Velde et al., 2018). Although the Nama
Group trace fossil record represents the work of small and shallow
bioturbators, van de Velde and Meysman (2016) showed through
diagenesis modeling that shallow bioturbation can result in significant
biogeochemical impacts. Thus, bioturbation itself could have resulted in
dynamic redox conditions on the Ediacaran seafloor, stimulating
evolutionary innovation in early bioturbating Metazoa (Wood and
Erwin, 2017). Moreover, if the onset of bioturbation during the Edia-
caran did contribute to anoxia, even on a local scale, the resulting
reduction in size of benthic habitable ecosystem (van de Velde et al.,
2018) may have potentially led to (enhanced) competition between the
Ediacara biota and (more motile) Metazoa.

These hypothetical ecological and biogeochemical drivers of biotic
replacement bring with them predictions, which can be subjected to
(albeit rudimentary) testing through looking at the identity of latest
Ediacaran ‘survivors’ (see also Darroch et al., 2018a). The first model —
removal of microbial matgrounds — would perhaps predict that mobile
taxa such as the dickinsonimorphs and bilateromorphs would persist at
the expense of sessile and frondose taxa, as (all other conditions being
equal) they would be able to move up- or downslope following the
distribution of unexploited substrate. Perhaps surprisingly the opposite
seems to be true, with the latest Ediacaran Nama interval comprising an
assemblage of exclusively sessile rangeomorphs, erniettomorphs and
arboreomorphs, many of which (e.g., Rangea, Swartpuntia) possess
holdfast structures thought to represent sophisticated adaptations to a
matground lifestyle. One difficulty is the small amount of fossiliferous
rock preserved from the latest Ediacaran — we may not be sampling all
communities that were present at this time, exacerbated by the potential
reduction in habitable environment.

The second model — re-suspension of sediment — might predict the
survival of osmotrophs at the expense of low-tier suspension feeders.
This prediction receives at least weak support from apparent late Edia-
caran extinction patterns; the Nama interval is dominated by rangeo-
morphs, which are widely thought to have fed osmotrophically on the
basis of modeled surface area-to-volume ratios (Sperling et al., 2007;
Laflamme et al., 2009; Hoyal-Cuthill and Conway Morris, 2016), and
erniettomorphs, whose tubular construction may have allowed for
osmotrophy if the units were hollow or fluid-filled. Concurrently, two
taxa that have been recently reconstructed as possible low-tier suspen-
sion feeders (Tribrachidium, Parvancorina; see Rahman et al., 2015;
Darroch et al., 2017) are among those that apparently disappear during
the first pulse of Ediacaran extinction (Darroch et al., 2018a). The early
biomineralizing metazoan Cloudina is another potential low-tier sus-
pension feeder that was prolific in the latest Ediacaran, but was appar-
ently largely restricted to reef-top environments (Penny et al., 2014),
and so perhaps less likely to be affected by increased turbidity —
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especially given the lower documented incidence of bioturbation in
carbonate environments. We note, however, that the common late
Ediacaran fossil Ernietta has also been reconstructed as a suspension
feeder (Gibson et al., 2019), and so this may be inconsistent with this
model. However, this taxon’s growth and development was highly un-
usual (apparently collecting sediment within the body cavity as it grew —
see Ivantsov et al., 2016), and may not have possessed the specialized
feeding structures typical of many metazoan suspension feeders.

The third model - predation - is much harder to test; the appearance
of mobile bilaterian bioturbators and predators would perhaps predict
the survival of mobile over sessile Ediacaran taxa (which, as we note
above, is inconsistent with current data); however, it is unknown to
what extent soft-bodied Ediacara biota may have possessed defensive
mechanisms against emerging bilaterian predators. Added to which,
although predation as a feeding strategy is thought to have been present
in the latest Ediacaran (Bengston and Yue, 1992; Hua et al., 2003;
Schiffbauer et al., 2016), there is as yet no fossil evidence for bilaterian
metazoan bioturbators preying upon soft-bodied Ediacara biota. Dar-
roch et al. (2016) suggested that, if many of the Conichnus/Bergaueria
which are widespread through the Ediacaran portions of the Nama
Group do represent resting- or escape-traces of actinian cnidarians (e.g.,
Mata et al., 2012), then this might represent a proliferation in passive
predation, and a severe ecological pressure on water-borne Ediacaran
larvae or propagules. However, the methods by which many Ediacaran
groups were reproducing and dispersing are still unclear, and so pre-
dation as a mechanism of biotic replacement remains speculative.
Lastly, several authors (Crimes and Fedonkin, 1996; Darroch et al.,
2016) have noted that, in the latest Ediacaran at least, trace fossils are
rare or absent in most horizons containing soft-bodied Ediacara biota
(although see Budd and Jensen, 2017; Tarhan et al., 2018; and Gehling
and Droser, 2018, for a competing picture from the older White Sea
interval), suggesting that these two broad community types may have
engaged in a form of niche or environmental partitioning. If this
observation is borne out by more targeted studies, then it may offer some
valuable clues as to how the soft-bodied Ediacara biota and emerging
Cambrian-type metazoan fauna interacted.

The final model - anoxia leading to increased competition — is similar
to the predation model in that it does not carry predictions that can be
easily tested. Although several studies (Wood et al., 2015; Tostevin
et al., 2017) have helped to produce a basin-scale reconstruction of
redox conditions through the Nama Group, and shown that the
oxygenation state of the water column was likely highly variable, few
studies have been done at the extreme local scale required to link bio-
turbation with localized anoxia. Enhanced competition may imply that a
greater proportion of soft-bodied Ediacara biota and metazoan trace-
makers should be found co-occurring within communities; however
(and as noted above), evidence for this is equivocal, and a more detailed
investigation of co-occurrence metrics is required. Lastly, the idea that
metazoans may have outcompeted soft-bodied Ediacara biota for re-
sources is interesting and (in theory) perhaps the easiest tenet of this
model to test. However, extremely little is currently known about how a
majority of Ediacaran groups fed and obtained nutrients. Recent work —
principally involving computational fluid dynamics - has helped eluci-
date the feeding modes of several taxa (Rahman et al., 2015; Darroch
et al., 2017; Gibson et al., 2019), and suggests that several Ediacaran
groups that did not survive the first pulse of extinction may have prin-
cipally functioned as low-tier passive suspension feeders. The hypothesis
that a diversification and intensification in bioturbating behaviors
fundamentally altered the hydrodynamic landscape of the sediment-
water interface (changing the character or availability of transported
organic matter at specific tiers in the water column) is thus certainly one
that deserves further exploration.

Lastly, we note that there is no a priori reason to assume a single
driver of Ediacaran extinction, especially given the now widely-held
understanding that they contain multiple unrelated clades (e.g. Xiao
and Laflamme, 2009) possessing different biologies and ecologies, and



S.A.F. Darroch et al.

which would have likely responded in different ways to sources of
ecological and/or environmental change. It is entirely possible that the
four models here acted in concert, combined with the advent of
ecological innovations through the latest Neoproterozoic (see e.g.,
Darroch et al., 2018a; Wood et al., 2019), resulting in a protracted
transition from Ediacaran to Cambrian biotas.

6. Final considerations

The trace fossil record of the Nama Group from the Kuibis through
Schwarzrand subgroups illustrates a pronounced increase in the di-
versity, intensity, behavioral complexity, and ecosystem engineering
impact of metazoan bioturbation (Buatois et al., 2018; Cribb et al.,
2019). On the basis of our field investigations, we produce a revised
ichnostratigraphy for the Nama Group that describes the distribution of
recently-discovered forms, removes occurrences of Ediacaran-aged
deep-tier burrows such as Skolithos and Diplocraterion, and brings the
trace fossil record of the Nama into much closer alignment with what is
known from other Ediacaran sections worldwide. The activity repre-
sented by these trace fossils would have had a variety of geobiological
effects, many of which could have had downstream impacts on com-
munities of soft-bodied Ediacara biota. However, observed patterns of
extinction and survival over the first pulse of late Ediacaran extinction
are hard to ally with any one specific source of ecological stress asso-
ciated with bioturbation (although this picture may obviously change,
as we gain a better idea of how many soft-bodied Ediacaran taxa fed,
reproduced, and interacted within communities). Consequently,
although many (or all) of these mechanisms may have been in operation,
a putative biotic replacement model is more likely to have been driven
by some combination of these factors, rather than any single one. We
also note that bioturbation is far from the only facet of metazoan
ecosystem engineering likely to have been operating over the Ediacaran-
Cambrian transition; filter feeders (in particular sponges) would have
likely helped to oxygenate the water column (Butterfield, 2009), newly-
evolved metazoans possessing guts (e.g., Schiffbauer et al., 2020) would
have altered the character and particle size of bioavailable carbon, and
the burgeoning Cambrian-style metazoan fauna may have competed
with soft-bodied Ediacarans for a variety of resources (summarized in
Erwin and Tweedt, 2012, Laflamme et al., 2013). A robust test of ‘biotic
replacement’ may therefore require sophisticated modeling techniques,
incorporating substrate stability, nutrient cycling, seawater chemistry,
and a better understanding of the ecological and physiological re-
quirements of Ediacaran organisms.
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