Accessibility for Deaf and Hard of Hearing Users: Sign Language Conversational User Interfaces

Abraham Glasser Rochester Institute of Technology Rochester, NY, USA atg2036@rit.edu Vaishnavi Mande Rochester Institute of Technology Rochester, NY, USA vm7801@rit.edu Matt Huenerfauth Rochester Institute of Technology Rochester, NY, USA matt.huenerfauth@rit.edu

ABSTRACT

With the proliferation of voice-based conversational user interfaces (CUIs) comes accessibility barriers for Deaf and Hard of Hearing (DHH) users. There has not been significant prior research on sign-language conversational interactions with technology. In this paper, we motivate research on this topic and identify open questions and challenges in this space, including DHH users' interests in this technology, the types of commands they may use, and the open design questions in how to structure the conversational interaction in this sign-language modality. We also describe our current research methods for addressing these questions, including how we engage with the DHH community

CCS CONCEPTS

• Human-centered computing \rightarrow Human computer interaction (HCI); Empirical studies in HCI

KEYWORDS

Deaf and Hard of Hearing, Accessibility, Personal Assistants, Sign Language

ACM Reference format:

Abraham Glasser, Vaishnavi Mande, and Matt Huenerfauth. 2020. Accessibility for Deaf and Hard of Hearing Users: Sign Language Conversational User Interfaces. In 2nd Conference on Conversational User Interfaces (CUI '20), July 22–24, 2020, Bilbao, Spain. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3405755.3406158

1 INTRODUCTION AND MOTIVATION

The recent proliferation of voice-based personal assistant technologies poses new accessibility barriers for many Deaf and Hard of Hearing (DHH) users. Voice-control is becoming a ubiquitous interface to technology, and as this trend continues, the urgency of addressing accessibility challenges in this technology increases. Prior research has established that many

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

CUI@CHI Workshop Paper CUI '20, July 22-24, 2020, Bilbao, Spain © 2020 Copyright is held by the owner/author(s). ACM ISBN 978-1-4503-7544-3/20/07. https://doi.org/10.1145/3405755.3406158 DHH users are concerned about accessing this new technology, and DHH users would prefer sign-language interaction with tools like Alexa, rather than using text input or non-ASL limited gestures [6]. Since conversational interface systems are often based in smart speakers that may be shared across multiple users in a household, these technologies are appearing in the homes of people who are DHH, e.g. when hearing members of the household purchase these devices.

1.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is an underlying technology that supports users' speech-based interaction with personal assistant devices. ASR automatically transcribes verbal commands into text, which is then processed by the personal assistant device. The DHH population is very diverse, with the level of hearing and speaking skill varying widely among individuals [2, 8]. For DHH individuals who do not use their voice (or do not feel comfortable doing so in some social settings), voice-controlled devices are inaccessible. Even for those individuals who do use their voice, even though the voice may be understandable to a human listener, it may not be understandable to ASR technology. In a prior study (winning first place in the undergraduate category of the ACM CHI 2019 student research competition) [1], we found that even among the voices of DHH individuals whom professional speech pathologists and naive hearing listeners agreed were very understandable, modern ASR technology was unsuccessful at understanding the speech. This was a concerning finding, since it indicated that our human instincts about which voices among DHH individuals may be easy to understand may not be predictive of whether ASR technology will work successfully.

1.2 Text-input Interaction

As a workaround for the speech-based interaction, some modern voice-based personal assistant devices offer a text-based input option (in which the user is able to type English commands into the system using a touch screen on the device or wireless keyboard). Unfortunately, providing this alternative text-input option is not a complete (nor functionally equivalent) solution for personal assistant devices. There are many settings and scenarios in which text-input would be undesirable by the DHH user, such as spontaneous usage in the home (when a user is across the room from a device or when the user's hands are messy during cooking in a kitchen setting). Also, there are many

DHH individuals who prefer communication in ASL, and some of these users may have difficulty with an English text-based interface, e.g. due to literacy concerns.

1.3 Universal Design

From a universal design perspective, since conversational user interfaces (CUIs) support speech-based or text-chat interaction, many DHH users will expect for these devices to also support input and output in sign language. Despite some prior misleading media reports, no CUI is currently able to accurately understand sign-language input commands. There have been claims of ASL-input capability among personal assistant devices, but these demos are generally not robust, with the technology only working for a small set of fixed commands or when the sign language message is performed in an unnatural way [3, 5, 9].

1.4 Sign Language Recognition

There has been recent excitement among the DHH community and researchers in the area of sign-language technologies, as evidenced by research projects, hackathons, and workshops regarding in this area [4, 7, 10, 11]. While artificial intelligence researchers and developers are still making progress in the area of sign language recognition technologies, it is important for HCI researchers to begin investigating the future interaction potential of this technology. In particular, there is a need to understand what users may want from this technology and how to best design the interaction.

As discussed in the best-paper-award winning research study at the ACM ASSETS'19 conference [4], a major bottleneck for artificial intelligence researchers working on sign language recognition is data. Currently available sign language datasets are very expensive to produce, due to the significant cost in annotating video of human signing. While these datasets may support linguistic research, when considering the complexity and diversity of the language within each, they are not large enough to support modern deep-learning methods for sign recognition.

1.5 Open HCI Research Questions for Sign-Language CUI

Several CUI-based HCI questions have arisen in recent CUI research on the needs and interests of DHH users. Rodolitz et al. called for HCI researchers to continue exploring interaction methods for DHH with CUIs before they become ubiquitous in daily lives [6]. It is currently unknown which sets of commands DHH users are most interested in when using personal assistant devices. Fundamental research is needed to investigate DHH users' interest in this technology and to understand what they want to do with it.

Many aspects of the interaction with these devices are yet to be determined: For instance, it is unknown how DHH users may want to "wake up" a CUI system so that it is expecting a command, how the system should visually acknowledge the command from a sign-language user, what types of vocabulary or linguistic structures sign-language users prefer to use when interacting with a system, how the system should show the results to the users (e.g., as sign-language animation or written text, etc.).

In addition, the technical and performance requirements for sign recognition technologies have not yet been established: For instance, it is unknown what threshold of accuracy is needed in automatic sign recognition technology to create a usable experience for DHH users -- or whether the current state-of-theart in sign-language animation technology is sufficient for providing users with understandable output.

Since ASR technology has a much longer history than automatic sign-language recognition, there has been prior research on how hearing individuals speak when using ASR. However, there are still fundamental open questions as to how DHH individuals may linguistically interact with an inanimate device using sign language.

2 OUR RESEARCH METHODS

To address several of these open research questions, our research team has begun a research project to investigate the requirements of DHH users for conversational-based interfaces, with a particular focus on users of American Sign Language (ASL). The goal of this research is to engage with the DHH community on this topic, so that we can learn what they would want from such technologies, via interviews and a large online survey. We have nearly completed the initial interview-phase of our research, which includes conducting interviews with approximately 30 DHH users of ASL about their interest in using sign language to convey commands to personal assistant devices. A key goal has been to acquire a set of desired features or capabilities for the personal assistant system through our conversations with these users, to understand whether the interests among this community in personal assistant technology differs from other groups of users. These initial interviews have informed the design of a questionnaire for an online survey we will conduct with approximately 200 DHH people across the U.S. A key goal of this survey will be to identify a set of "scenarios" that users believe would be high-priority for interacting with such systems.

The next phase of our research will be to conduct some inperson studies in which DHH users interact with an actual personal assistant device. A goal from the earlier interview and survey phases of our work will be to identify use-cases or commands that DHH users are interested in, which could be used to inform the creation of a set of scenarios or prompts, which may be useful during these lab-based studies. In these sessions, DHH users will interact with a personal assistant device (with a screen for displaying output), using a Wizard-of-Oz recognition approach, in which DHH users interact with a device using sign-language commands which are "voiced" into spoken English by an interpreter. This study design will enable our team to investigate user's interests in sign-language-based

interaction with these devices before automatic recognition technology is actually available.

These lab-based studies will enable us to investigate several of the open research questions outlined above, e.g. in regard to what users would actually try to do with this technology, how the interaction can best be structured, and how users would linguistically construct their commands to the device.

In addition to enabling our investigation of these HCI research questions, a side-effect of our project is that we will be collecting video recordings of the DHH users interacting in signlanguage with the device. Our goal is to create a video dataset of a variety of DHH individuals interacting in ASL with such devices; such recordings will likely be of interest to computervision researchers interested in creating sign-recognition technology for this genre of ASL utterances.

3 OUR CONTRIBUTIONS TO THE WORKSHOP

We wish to participate in this CUI@CHI Workshop so that we can engage with experts in this field, discuss issues relating to the accessibility of CUI systems, and highlight the perspective of DHH users of this technology. Our team has expertise in the research fields of computing accessibility and intelligent systems for DHH users. Our team is based at the Center for Accessibility and Inclusion Research (CAIR) at the Rochester Institute of Technology (RIT), in Rochester, NY, USA, where there are about 1300 DHH students, several hundred DHH faculty/staff, and a large local DHH community in the city. CAIR has many DHH researchers, and we operate in both English and ASL. Approximately a third of our research team is DHH, with 3 Deaf PhD students (including the first-author on this position-paper submission who would participate in this workshop). Our team has experience in sign-language data collection and linguistic labeling, and our research facilities include a video and motioncapture recording studio. However, our team is new to the CUI field, and we would greatly benefit from engaging with the research community at this workshop. We believe our participation in this event would spark constructive research discussions about accessibility, CUI interactions in the visual/spatial modality of sign language, and the unique interests in this technology among DHH users.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Award No. 1462280 and 1822747 and by Microsoft. We are grateful to our collaborator Becca Dingman for her contributions to this research.

REFERENCES

- Abraham Glasser. 2019. Automatic Speech Recognition Services: Deaf and Hard-of-Hearing Usability. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (CHI EA '19). Association for Computing Machinery, New York, NY, USA, Paper SRC06, 1–6. DOI:https://doi.org/10.1145/3290607.3308461
- [2] Abraham T. Glasser, Kesavan R. Kushalnagar, and Raja S. Kushalnagar. 2017. Feasibility of Using Automatic Speech Recognition with Voices of Deaf and Hard-of-Hearing Individuals. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '17). Association for Computing Machinery, New York, NY, USA, 373–374. DOI:https://doi.org/10.1145/3132525.3134819.
- [3] BBC. 2018. Sign-language hack lets Amazon Alexa respond to gestures. (July 2018). Retrieved February 10, 2020 from https://www.bbc.com/news/technology-44891054
- [4] Danielle Bragg, Oscar Koller, Mary Bellard, Larwan Berke, Patrick Boudreault, Annelies Braffort, Naomi Caselli, Matt Huenerfauth, Hernisa Kacorri, Tessa Verhoef, Christian Vogler, and Meredith Ringel Morris. 2019. Sign Language Recognition, Generation, and Translation: An Interdisciplinary Perspective. In The 21st International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '19). Association for Computing Machinery, New York, NY, USA, 16–31. DOI:https://doi.org/10.1145/3308561.3353774
- [5] Devin Coldewey. 2018. SignAll is slowly but surely building a sign language translation platform. (February 2018). Retrieved February 11, 2020 from https://techcrunch.com/2018/02/14/signall-is-slowly-but-surely-building-asign-language-translation-platform/
- [6] Jason Rodolitz, Evan Gambill, Brittany Willis, Christian Vogler, Raja Kushalnagar. 2019. Accessibility of Voice-Activated Agents for People who are Deaf or Hard of Hearing. Journal on Technology & Persons with Disabilities, Volume 7. pages 144-156. California State University Northridge. http://hdl.handle.net/10211.3/210397
- [7] Jason Ward. 2018. Why Microsoft must bring sign language recognition to Windows and Cortana. (August 2018). Retrieved February 10, 2020 from https://www.windowscentral.com/microsoft-must-bring-sign-languagerecognition-windows-and-cortana
- [8] Jeffrey P. Bigham, Raja Kushalnagar, Ting-Hao Kenneth Huang, Juan Pablo Flores, and Saiph Savage. 2017. On How Deaf People Might Use Speech to Control Devices. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '17). Association for Computing Machinery, New York, NY, USA, 383–384. DOI:https://doi.org/10.1145/3132525.3134821
- Kaleigh Rogers. 2018. Augmented Reality App Can Translate Sign Language Into Spoken English, and Vice Versa. (March 2018). Retrieved February 11, 2020 from https://www.vice.com/en_us/article/zmgnd9/app-to-translate-sign-language
- [10] Microsoft. 2019. AI for Accessibility Hackathon 2019. (October 2019). Retrieved February 11, 2020 from https://blogs.partner.microsoft.com/mpn-apac/ai-for-accessibility-hackathon-2019/
- [11] 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives. Retrieved February 11, 2020 from https://www.sign-lang.uni-hamburg.de/lrec2020/cfp.html