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Abstract—Today’s scientific simulations are producing vast
volumes of data that cannot be stored and transferred efficiently
because of limited storage capacity, parallel I/O bandwidth, and
network bandwidth. The situation is getting worse over time
because of the ever-increasing gap between relatively slow data
transfer speed and fast-growing computation power in modern
supercomputers. Error-bounded lossy compression is becoming
one of the most critical techniques for resolving the big scientific
data issue, in that it can significantly reduce the scientific data
volume while guaranteeing that the reconstructed data is valid for
users because of its compression-error-bounding feature. In this
paper, we present a novel error-bounded lossy compressor based
on a state-of-the-art prediction-based compression framework.
Our solution exhibits substantially better compression quality
than all of the existing error-bounded lossy compressors, with
comparable compression speed. Specifically, our contribution is
threefold. (1) We provide an in-depth analysis of why the best-
existing prediction-based lossy compressor can only minimally
improve the compression quality. (2) We propose a dynamic spline
interpolation approach with a series of optimization strategies
that can significantly improve the data prediction accuracy,
substantially improving the compression quality in turn. (3) We
perform a thorough evaluation using six real-world scientific
simulation datasets across different science domains to evaluate
our solution vs. all other related works. Experiments show that
the compression ratio of our solution is higher than that of the
second-best lossy compressor by 20% ~460% with the same error
bound in most of the cases.

I. INTRODUCTION

With the ever-increasing scale of today’s scientific simula-
tions, vast amounts of scientific data are produced at every
simulation run. Climate simulation [1], for example, can
generate hundreds of terabytes of data in tens of seconds. A
cosmology simulation, such as Hardware/Hybrid Accelerated
Cosmology (HACC) [2] can produce dozens of petabytes of
data when it performs an N-body simulation with up to several
trillion particles. Such a vast amount of scientific data needs to
be stored for post hoc analysis, creating a huge challenge to the
scientific data management systems [3]-[7]. Many scientists
also need to share the large amounts of data across different
sites (i.e., endpoints) through a data-sharing web service (such
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as the Globus toolkit [8]) on the Internet. Thus, the ability to
significantly compress extremely large scientific datasets with
controlled data distortion is critical to today’s science work.

In the scientific research domain, the users often adopt
scientific data libraries such as NetCDF [9] and HDF5 [10] to
manage the scientific data due to their performance advantage
and better support of multidimensional objects over traditional
database management systems. Those scientific data libraries
have database features including metadata, data indexing, data
manipulation, and data visualization tools [11], [12]. In par-
ticular, due to the vast amount of data to deal with, these data
management libraries also support integrating different data
compressors. For example, HDF5 offers a filter mechanism
[13] to allow users to call various compressors (including SZ
[14], ZFP [15], Zlib [16], etc.) transparently when storing
scientific data.

Error-bounded lossy compression techniques [17]-[19] have
been developed for several years, and they have been widely
recognized as an optimal solution to reduce the storage de-
mand of scientific data management systems. For example,
many researchers [20], [21] have verified that the data recon-
structed through error-bounded lossy compressors is totally
acceptable for users’ post hoc analysis. Many successful
stories also showed that error-bounded lossy compressors not
only can significantly reduce the storage space but also may
substantially improve the data-moving performance with user-
acceptable data distortions. For example, Liang et al. [22]
showed that an error-bounded lossy compressor can improve
the overall I/O performance by 60X, with no degradation of
visual quality on the reconstructed data. Kukreja et al. [23]
showed that using error-bounded lossy compression can get
high compression ratios without affecting the convergence or
final solution of the full waveform inversion solver clearly.

The SZ compression library has been recognized by inde-
pendent assessments [17], [21], [24], [25] as the best-in-class
error-bounded lossy compressor for scientific datasets, espe-
cially because it has gone through many careful optimizations
[14], [17]1, [18], [26]-[29].

In this paper, we significantly improve the error-bounded
lossy compression quality for scientific datasets, by designing
a dynamic best-prediction-selection strategy and proposing a
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novel, spline interpolation based prediction approach with a se-
ries of optimizations. This predictor completely eliminates the
serious storage overhead compared with the linear-regression
predictor used in SZ. Our contribution is threefold.

o We provide an in-depth analysis of the latest version of

SZ and identify significant drawbacks of its prediction
method; the analysis also sheds light on our new design.
The critical challenge in the current design of SZ comes
from its linear-regression prediction method, which has
two significant drawbacks. On the one hand, it suffers
from limited accuracy in predicting nonlinear varied
datasets. Many scientific simulations (such as seismic
wave simulation [30] and quantum chemistry research
[31]) , however, may produce a vast amount of data with
nonlinear features, such that SZ cannot work very effec-
tively on them. On the other hand, the linear-regression-
based prediction needs to store several coefficients (e.g.,
four coefficients per block for 3D compression) in each
block of data, introducing significant overhead especially
when a relatively high compression ratio is required.
We propose a novel prediction method that can signifi-
cantly improve the compression ratio compared with the
linear-regression prediction method. On the one hand, cu-
bic spline interpolation is included in our novel approach
to represent high order data variation, which obtains
much higher prediction accuracy over linear-regression
for datasets with nonlinear data variation characteristics.
On the other hand, we derive the constant coefficients
in our interpolation approach such that the coefficient
storage overhead can be completely eliminated. We fur-
ther propose a dynamic optimization strategy to select the
best predictor from between the novel spline interpolation
approach and the multilevel Lorenzo predictor to improve
the overall compression quality.
We perform a comprehensive assessment of our solution
versus five state-of-the-art error-controlled lossy compres-
sors, using multiple real-world simulation datasets across
different scientific domains. Experiments show that our
solution improves the compression ratio by 20%~460%
over the second-best compressor with the same error
bound and experiences no degradation in the post-analysis
accuracy.

The rest of the paper is organized as follows. In Section II
we discuss the related work. In Section III we formulate the
research problem. In Section IV we offer an in-depth analysis
of the pros and cons of SZ In Section V we describe our
solution and detailed optimization strategies. In Section VI we
present the evaluation results compared with five other state-
of-the-art lossy compressors using real-world applications. In
Section VII we conclude with a discussion of future work.

II. RELATED WORK

Data compression is becoming a critical technique for
database management systems. For time series databases,
Gorilla [32] is proposed to improve query performance using
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lossless compression techniques including XOR and variable-
length encoding. AMMMO [33] utilizes machine learning to
select the best lossless compression scheme for each data point
in time series databases. SciDB [34] is a science-oriented
database system that supports several lossless algorithms in-
cluding run-length encoding and adaptive huffman encoding.
Snappy [35] is a high-speed lossless compression framework
used by many databases such as InfluxDB [36]. Zlib [16]
and Zstandard [37] are another two state-of-the-art lossless
COMmpressors.

Although lossless compression techniques are widely used
in database management systems, they are not suitable for
scientific data. Lossless compressors suffer from very limited
compression ratios (generally ~2 or even less) on scien-
tific data [38] since lossless compression techniques rely
on repeated byte-stream patterns whereas scientific data is
often composed of diverse floating-point numbers. Thus, lossy
compression for scientific data has been studied for years.

Unlike traditional lossy compression techniques (such as
Jpeg2000 [39]) that were designed mainly for image data, the
error-bounded lossy compression can not only get a fairly
high compression ratio (several dozens, hundreds, or even
higher) but also guarantee that the reconstructed data is valid
for scientific post-analysis in terms of the user-defined com-
pression error bound. Error-bounded lossy compression can
be categorized as higher-order singular value decomposition
(HOSVD)-based models such as TTHRESH [40], transform-
based models such as ZFP [15], and prediction-based models
including SZ [14], [17].

There are also some machine learning (ML) based lossy
compressors such as LFZIP [41]. ML compressors have two
drawbacks in terms of scientific data prediction. First, the
weights of ML models have non negligible size to be stored
and ML models need to be retrained for data in different
scientific domains. As a result, the model weights should be
stored together with compressed data and this brings signifi-
cant storage overhead. Second, ML compressors involves the
ML inference process which has much higher computational
cost than traditional methods including interpolation based
predictors that are linear time complexity.

In our work, we choose the prediction-based model because
SZ has been recognized as the leading compressor in the
scientific data compression community. In fact, how to lever-
age SZ to improve compression quality has been studied for
more than two years. Tao et al. [42] developed a strategy that
can combine SZ and ZFP to optimize the compression ratios
based on a more significant metric, peak signal-to-noise ratio
(PSNR). Liang et al. [27] further analyzed the principles of SZ
and ZFP and developed a method integrating ZFP into the SZ
compression model, which can further improve the compres-
sion quality. Zhao et al. [28] proposed to adopt second-order
Lorenzo+regression in the prediction methods and developed
an autotuning method to optimize the parameters of SZ. Liang
et al. [43] accelerated the performance of MultiGrid Adaptive
Reduction of Data (MGARD) [44] and used SZ to compress
the nodal points generated by the MGARD framework [44],
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which can improve the compression ratios significantly.

All these existing SZ-related solutions have to rely on the
linear regression prediction to a certain extent. This is a critical
restriction to the compression quality improvement, which will
be analyzed deeply in Section IV.

III. PROBLEM FORMULATION

In this section we describe the research problem formu-
lation. Given a scientific dataset (denoted by D) composed
of N floating-point values (either single precision or double
precision) and a user-specified absolute error bound (e), the
objective is to develop an error-bounded lossy compressor
that can always meet the error-bounding constraint at each
data point with optimized compression quality and comparable
performance (i.e., speed).

Rate distortion is arguably the metric most commonly used
by the lossy compression community to assess compression
quality. It can be converted to the commonly used statistical
data distortion metric known as normalized root mean squared
error, and it is a good indicator of visual quality. Rate
distortion involves two critical metrics: peak signal-to-noise
ratio and bit rate. PSNR can be written as the following:
Formula (1).

PSNR = 201log,, (vrange(D)—10log,, (mse(D,D")), (1)
where D’ is the reconstructed dataset after decompression (i.e.,
decompressed dataset) and vrange(D)) represents the value
range of the original dataset D (i.e., the difference between
its highest value and lowest value). Obviously, the higher the
PSNR value is, the smaller the mean squared error, which
means higher precision of the decompressed data.

Bit rate is used to evaluate the compression ratio (the ratio
of the original data size to the compressed size). Specifically,
bit rate is defined as the average number of bits used per
data point in the compressed data. For example, suppose a
single-precision original dataset has 100 million data points;
its original data size is 100,000,000x4 bytes (i.e., about 400
MB). If the compressed data size is 4,000,000 bytes (i.e., a
compression ratio of 100:1), then the bit rate can be calculated
as 32/100 = 0.32 (one single-precision number takes 32 bits).
Obviously, smaller bit rate means higher compression ratio.

Two other important compression assessment metrics are
compression speed (denoted by s.) and decompression speed
(denoted by s4). They are defined as the amount of data
processed per time unit (MB/s).

In our research, we focus on the optimization of compres-
sion quality (i.e., rate distortion) with high performance, which
can be formulated as follows:

Optimize rate-distortion

subjectto |d; —d}| <e
Sc(newsol.) = s.(sz)
sqa(newsol.) ~ sq4(sz),

2

where d; and d} are referred to the value of the ith data point
in the original dataset D and the decompressed dataset D’
by the new compression solution, respectively. The notations
sc(newsol.) and sg4(newsol.) represent the compression speed

and decompression speed of the new solution, respectively,
and s.(sz) and sq(sz) represent the compression speed and
decompression speed of the original SZ compressor, respec-
tively. That is, we are trying to increase the compression
ratio with the same level of data distortion and comparable
compression/decompression performance compared with SZ
as a baseline (because SZ has been confirmed as a fairly fast
lossy compressor in many existing studies [22], [43]),

In our evaluation in Section VI, not only do we present the
rate distortion results for many different datasets at different
bit-rate ranges, but we also assess the impact of our lossy
compressor on the results of decompressed-data-based post-
analysis on one production-level seismic simulation research.

IV. DEEPLY UNDERSTANDING THE PROS AND CONS OF SZ

In this section, we first give a review of the current SZ
design and then provide an in-depth analysis of a serious
problem in the latest version of the SZ compressor (SZ2.1)
[18]. Understanding this problem is fundamental to under-
standing why our new solution can significantly improve the
compression ratio.

A. Review of SZ Lossy Compression Framework

SZ2.1 [18], the latest version of SZ, has been recognized
as an excellent error-bounded lossy compressor based on
numerous experiments with different scientific applications by
different researchers [27], [28], [42].

SZ2.1 involves four stages during the compression: (1)
data prediction, (2) linear-scale quantization, (3) Huffman
encoding, and (4) lossless compression such as Zlib [16]. We
briefly describe the four steps, and we refer readers to read
our prior papers [17], [18] for technical details.

o Step 1: data prediction. In this step, SZ predicts each
data point by its nearby data values. The prediction
methods differ with various versions (from 0.1 through
2.1). For example, SZ 0.1~1.0 [14] adopted a simple one-
dimensional adaptive curve-fitting method, which selects
the best predictor for each data point from among three
candidates: previous-value fitting, linear-curve fitting, and
quadratic-curve fitting. SZ1.4 [17] completely replaced
the curve-fitting method by a multidimensional first-order
Lorenzo predictor, significantly improving compression
ratios by over 200% over SZ1.0. SZ2.0~SZ2.1 further
improved the prediction method by proposing a blockwise
linear regression predictor that can significantly enhance
compression ratios by 150%~800% over SZ1.4, espe-
cially for cases with a high compression-ratio (i.e., when
the error bound is relatively large).

o Step 2: linear-scale quantization. In this step, SZ com-
putes the difference (denoted A) between the predicted
value (calculated in Step 1) and the original value for
each data point and then quantizes A based on the user-
predefined error bound (e). The quantization bins are
equal-sized and are twice as large as the error bound, such
that the maximum compression errors must be controlled
within the specified error bound. After this step, all
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floating-point values are converted to integer numbers
(i.e., quantization numbers), most of which are to be close
to zero, especially when the data are fairly smooth in
locality or the predefined error bound is relatively large.
Step 3: customized Huffman encoding. SZ has a
tailored integer-based Huffman encoding algorithm to
encode the quantization numbers generated by Step 2.
Step 4: lossless compression. The last step in SZ is
adopting a lossless compressor with a pattern-recognized
algorithm such as LZ77 [45] to further improve the
compression ratios significantly.

B. Critical Features of SZ Compression Framework

First, SZ is a very flexible compression framework, in which
the data prediction is the most critical step. More accurate
data prediction will result in more quantization numbers being
close to zero which leads to a better compression ratio during
the encoding and lossless compression steps. Thus we have
explored other more efficient predictors in the past two years
(from version 0.1 through the latest released version 2.1, as
well as a few recent prototypes [27], [28]). Accordingly, we
are still focused only on the data prediction stage in this paper.

Second, SZ has to follow a necessary condition, in order
to guarantee that the compression errors are always within
the user-predefined error bound. For the same data point, its
predicted value during the compression stage has to be exactly
the same as the one predicted in the decompression stage.
Otherwise, the compression errors would be accumulated
easily during the decompression, causing totally uncontrolled
compression errors. Thus, in the compression stage, SZ has
to predict each data point by its nearby lossy decompressed
values instead of the original values, which will in turn degrade
the prediction accuracy (as exemplified in our prior work
[17]). We proposed the linear-regression predictor in SZ2.1
[18], which can mitigate this issue to a certain extent. Such
a predictor, however, has a significant drawback and may
substantially inhibit the compressor from obtaining a high
compression ratio in many cases. We analyze this drawback
in detail in the following text.

C. Review of Linear Regression Predictor in SZ2.1

In what follows, we describe the linear regression predictor
used in SZ2.1 and its serious drawback.

In SZ2.1, the whole dataset is split into equal-sized blocks
(e.g., 6x6x6 for a 3D dataset) and performs a linear-
regression-based prediction when the data inside the block is
relatively smooth or the error bound is relatively high. The
basic idea is to use linear regression to construct a hyperplane
in each block, such that the data inside the block can be
approximated by the hyperplane with minimized min squared
error (MSE), as illustrated in Fig. 1. The details can be found
in our prior work [18].

D. Serious Dilemma of Linear-Regression Predictor in SZ2.1

In order to get a high compression quality (i.e., a very
good rate-distortion result), the four coefficients need to be

1646

f(x,y)=Bo +B1x + B2y

Equal-sizéd data bloi
in a 2D dataset

Fig. 1. Illustration of Linear-regression-based prediction (2D dataset)

compressed based on a certain error bound, which may
introduce a serious dilemma: a higher error bound used on
coefficient compression will decrease the overhead of storing
the coefficients (to be demonstrated in Fig. 2) but also decrease
the regression accuracy of the constructed hyperplane (to
be demonstrated in Fig. 3). We confirm this issue by four
real-world scientific simulations (QMCPack [46], RTM [30],
Hurricane [47], and NYX [48]), which are commonly used
by scientists in quantum structure research, seismic imaging
for oil and gas exploration, climate research, and cosmology
research, respectively. More details about these applications
are given in Section VI. We exemplify the results using specific
fields (e.g., time step 1500 of RTM data, the W field of
Hurriane, and velocity z in NYX) because of the space limits
and similar results in other fields.

Fig. 2 shows that the overhead always increases with de-
creasing error bounds used on the compression of coefficients.
Specifically, we observe that when the error bound decreases
from 0.1 to 0.01, the coefficient overhead in the compressed
data increases from 55% to 68%, from 25% to 37%, from
40% to 53%, and from 60% to 70%, for the four test cases,
respectively. The compression ratios (the red curve) thus
degrade from 179 to 128, from 102 to 86, from 114 to 90,
and from 152 to 118, respectively.

We present a slice segment of the four application datasets
in Fig. 3 to illustrate that the error bounds of the coefficient
compression would significantly affect the prediction accuracy
of the constructed linear-regression hyperplane. For instance,
when the coefficients’ compression error bound is set to
0.001 for QMCPack and 0.01 for RTM (time step 1500),
the constructed hyperplane (the yellow curve) can fit the real
data (the red curve) well, but the fitting will be much worse
with increasing error bounds. In the case with a relatively
large error bound (e.g., 0.1 in QMAPack), the hyperplane
will downgrade to a simple horizontal line (see blue lines in
the figures), because simply using the neighbor data value is
“accurate” enough for the large error-bounded compression of
the coefficients. This will definitely result in large prediction
errors (the difference between predicted value and raw value)
significantly degrading the final compression ratios.

In Fig. 4, we demonstrate that the latest version of SZ (v2.1)
may cause significant loss of the data visualization, especially
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when the compression ratio (CR) is relatively high (e.g., 196
and 568 for the two test cases). We observe that SZ2.1 suffers
from a significant undesired block texture artifact, resulting
from its blockwise linear-regression design.

To address the serious issue of the linear regression pre-
dictor, we developed a novel efficient predictor based on a
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Fig. 4. Visualization of SZ Decompressed Data Based on Two Applications:
(1) QMCPack — PSNR=56.2, CR=196, and (2) RTM - PSNR=50.7, CR=316

dynamic spline interpolation, such that compression quality
(rate distortion) can be significantly improved for almost all
application datasets, with little performance overhead.

V. ERROR-BOUNDED L0OSSY COMPRESSION WITH A
DYNAMIC MULTIDIMENSIONAL SPLINE INTERPOLATION

We present the design overview in Fig. 5, with yellow
rectangles indicating the differences between our design and
the classic SZ compressor and with highlighted rectangles
indicating the critical steps. The fundamental idea is to develop
a dynamic multidimensional spline interpolation-based pre-
dictor (i.e., solution P2 shown in Fig. 5) to replace the linear-
regression-based predictor such that the coefficient overhead
can be completely eliminated while still keeping a fairly high
prediction accuracy. Our newly designed interpolation-based
predictor starts with one data point and performs interpolation
and linear-scale quantization alternatively along each dimen-
sion recursively until all data points are processed. Two alter-
native approaches can be used to perform the interpolation in
the multidimensional space. We can build a multidimensional
curve to fit all the already-processed data points, or we can
build multiple 1D curves to do the interpolation. We choose
the latter because the former is much more expensive.

In what follows, we introduce the background of spline
interpolation (Section V-A), followed by our design of dy-
namic multidimensional spline interpolation based predictor
(Sections V-B, V-C, and V-D).

A. Introduction to Spline Interpolation

Interpolation is widely used in the field of engineering and
science to construct new data points with a set of known
data points. Interpolation techniques attempt to build a curve
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that goes through all the known data points. It differs from
regression analysis, which usually seeks a curve that most
closely fits the known data points according to a specific
mathematical criterion such as mean squared error. The curve
generated by regression may not go through all known points.

The most popular interpolation methods can be categorized
into three types: piecewise constant interpolation, polynomial
interpolation, and spline interpolation. Piecewise constant in-
terpolation always uses the nearest known data points to
estimate the new data point, so it has a simple implementation
and fast speed. However, its ability to estimate complex
curves is limited because it does not consider the surrounding
data points. Polynomial interpolation is designed to find a
polynomial with the lowest possible degree that passes through
all the known data points. If the number of known data
points is large, the polynomial may suffer highly inaccurate
oscillation between the data points. This issue is well known
as Runge’s phenomenon and could be mitigated by spline
interpolation. Spline interpolation uses piecewise polynomials
to define the estimation curve. If the degree of the polynomials
is 1, the spline interpolation turns to linear interpolation.
If the degree of polynomials is 3, it is known as cubic
spline interpolation. Cubic spline polynomials have different
restrictions. In this paper, we use not-a-knot restriction for
cubic spline interpolation.

B. Spline Interpolation Designed for Scientific Data

In this sub-section, we introduce a basic interpolation
method and derive closed-form formulas with the optimal
coefficients, which is a fundamental work to the development
of our following multi-dimensional interpolation predictor.
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We propose a light-weight cubic interpolation based pre-
diction method for each unknown data point by only using its
four surrounding data values, to address the drawbacks of the
conventional interpolation methods. The accuracy of polyno-
mial interpolation could be affected significantly by Runge’s
phenomenon when interpolating across multiple regions with
different locality features. Cubic spline interpolation can pre-
vent large oscillation, but it has high computational cost as it
needs to solve a huge linear system. To avoid high computation
cost, we precompute a closed-form interpolation formula based
on four specific neighbor data points (e.g., using the data
points :—3, i—1, i+1 and ¢+3 to predict data point ¢ as shown
in Figure 6). In what follows, we mainly use a 1D example
to illustrate how we derive the interpolation formula, but the
formula can be extended to multidimensional cases easily.

Lemma 1: Denote the dataset as d = (dy,da, ..., d;,,) with
n as the total number of elements. The prediction values
are denoted as p=(p1, p2, ..., Pn). We consider all elements in
odd-index positions as preknown and use them to predict the
elements in even-index positions. The prediction formulas of
linear and cubic spline interpolation are shown in Table I.

TABLE I
SPLINE ESTIMATIONS
Prediction Value p;
pi=zdi_1 + 3dig1
pi=—1=di_3+ 1xdi_1 + t£dit1 — 1=dit3

Spline method
Linear spline
Cubic spline

Proof: The linear formula is easy to derive, so we prove
only the cubic spline formulas as follows. In our designed cu-
bic spline interpolation, the known data points d;_3,d;—1,d;+1
and d; 3 are used to predict the data point p;. Three spline
curves correspond to the known data points:

Sitx) Sa(x) S3()
value
div3
dis - ® Known points
dy dit1 | 0 Unknown points
" Interpolation
L . L L L . 1
i-3 i-1 i i+1 i3 index

Fig. 6. Illustration of Cubic Spline Interpolation

fi(@) = a1 (2—(i=3))>+b1 (2—(i-3) ) *+e1 (2—(i-3) )+01
fo(x) = ag(2—(i—1))34bo (2—(i—1))?+co(2—(i—1))+d2  (3)
f3(x) = az(x—(i41))>+b3 (z—(i41) ) *+ez (2 —(i41) ) +03

The scope of fi, fo, and fs is [i—3,i—1], [i—1,i+1], and
[¢+1,i43] (as shown in Fig. 6). The spline curves should pass
through the known data points, so we have

fi(t=3)=di—s; fi(i —1)=d;j_1

fa(i—=1) =di—1; fo(i+1) =dipy

f3(i+1) =dip1; f3(i+3) = diss
The first derivatives of f;(z) is f;(z) = 3a;(z — (i — 3))% +
2by (¢ —(i—3))+c1. The second derivative is f, () = 6ay (z—
(i—3))-+2by. The third derivative is f; (2) = 6a;. Derivatives
of fo and f3 are similar with fi.

“
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To have a smooth curve, we should let the adjacent spline
functions have the same first derivatives and the same second
derivatives on the joint data points.

AA=1)=fli=1) L+ =fG+1) o
fi(i=1)=f(i—-1); fo(i+1)=f3(+1)

The not-a-knot restriction requires the third derivative of f
to be equal on locations ¢ — 1 and 7 + 1.

R=1D=0p"G-1; [ (+1)=f5'G+1)  (©

Using the system of Equations (4), (5), and (6), we can

derive 1 1 1 1
az = —ggdi—3 + 1gdi-1 — 1gdi+1 + g5di+3
1 1 1
by = gdi—3 — 3di—1 + §dit1 7
= lg o 1lg 4+ 1lg . 1lg
Co = 6Wi—3 g%i—1 5 Wi+1 12 Wi+3

(52 = difl.

Thus the prediction value of pi will be

pi = fo(i) = —f5di_s + {5di1 + 15dis1 — fodiys. (8)

Equation (8) is the cubic formula in Table I. |

We discuss why we adopt only four known data points in
our interpolation instead of six or more data points. If we
use six data points d;_5, d;—3, d;—1, d;j+1, dit+3, and d;15 to
predict p;, the formula by not-a-knot spline turns out to be

Di = dé{f’ dilf)s + %di—l + %di-H - dfog + d;—g? )

Compared with Equation (8), Equation (9) involves two
additional data points d;_5 and d;5, but the weight of the two
data points is only 1/80, which means a very limited effect
on the prediction. Moreover, it has 50% higher computation
cost compared with Equation (8). Hence, we choose to use
four data points for prediction, as shown in Table I.

In addition, we note that the linear spline interpolation
may exhibit better prediction accuracy than the cubic spline
does when setting a relatively large error bound (as shown in
Table II). The reason is that our interpolation method relies
on the reconstructed data values generated after a linear-scale
quantization step, so that the reconstructed data is lossy to a
certain extent. When the error bound is relatively large, the
loss of these reconstructed data would degrade the prediction
accuracy, and the more data points used in the interpolation,
the higher the impact on the accuracy. Since linear spline
adopts fewer data points, it could be superior to cubic spline
especially when the error bound is relatively large. This
possibility motivated us to design a dynamic method selecting
the better interpolation type (linear or cubic) in practice.

TABLE II
COMPARISON OF SPLINE METHODS PREDICTION ERROR
Dataset - €= ]E_Z, - - €= 1E—4, -
Linear Spline | Cubic Spline | Linear Spline | Cubic Spline
RTM (time step 1500) 1.20E-4 1.27E-4 2.0E-5 8.3E-6
Miranda (velocityz) 0.0026 0.0025 0.0061 0.0020
QMCPACK 0.05 0.06 0.008 0.004
SCALE (QS) 0.076 0.078 0.040 0.041
NYX (velocityz) 123486 134820 22453 19978
Hurricane (W) 0.04 0.05 0.023 0.022

C. Multilevel Multidimensional Spline Interpolation

The previous derivation works in the 1D case with 50% of
preknown data points, based on which we predict the other
50%. In this section, we extend this interpolation method to
support data prediction on the entire multidimensional dataset.
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O Unknown data points (to be predicted)
di Reconstructed data

ds d7

@ Known data points

d; Original raw data
di dy di da

Level0 O

ds

Use 0 to predict d4

Level 1 - Use d¢' to predict dg

- Use d¢" and dy' to predict ds
_ Usedy, ds', and do' to
predict dzand d

Use dy', d3', ds', d7', and do'
to predict d,, ds, ds, dg

PR S

Level 4 @-
# of levels = [loga(n)] +1

Fig. 7. Illustration of Multilevel Linear Spline Interpolation

We use Fig. 7 to demonstrate the multilevel solution with
linear interpolation; cubic interpolation has the same multilevel
design. Suppose the dataset has n elements in one dimension.
The number of levels required to cover all elements in this
dimension is [ = 1 4 [logan]. At level 0, we use 0 to predict
dy, followed by the error-bounded linear-scale quantization.
We perform a series of interpolations from level 1 to level [—1
recursively, as shown in Fig. 7. At each level, we use error-
bounded linear-scale quantization to process the predicted
value such that the corresponding reconstructed data must be
within the error bound. We denote the reconstructed data as

", db,..d, as shown in the figure.

1o %25 =-Ym>
ﬁdimo
.E.'z o

Level 1
[e] L]

« Known data points o Unknown data points (to be predicted) " interpolation

Fig. 8. Illustration of Multidimensional Linear Spline Interpolation

Such a multilevel interpolation is applied on a multidi-
mensional dataset, illustrated in Fig. 8 with a 2D dataset
as an example. We perform interpolation separately along
all dimensions at each level, with a fixed sequence of di-
mensions. A 2D dataset, for example, has two possible se-
quences: dimo—dim; and dim;—dimg. A 3D dataset has
6 possible sequences. In our solution, we propose to check
only two sequences, dimg—dimi—dimsy (sequence 1) and
dime—dimy— dimg (sequence 2) instead of all 6 possible
combinations. On the one hand, the last interpolation dimen-
sion involves about 50% of the data points (much more than
other dimensions), so which dimension to be put in the end
of the sequence determines the overall prediction accuracy.
On the other hand, we note that either the highest or lowest
dimension in scientific datasets tends to be smoother than other
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dimensions without loss of generality, as confirmed by the first
three columns of Table III (with all 6 applications), which
presents the autocorrelation (AC) of each dimension (higher
AC means smoother data). Accordingly, putting either dim0
or dim2 in the end of the sequence at each level will get lower
overall prediction errors, as validated in Table III. Hence, we
also develop a dynamic strategy to select the best-fit sequence
of dimensions from among the two candidates, as detailed in
the next subsection.
TABLE III
AUTOCORRELATION AND PREDICTION ERROR OF CUBIC SPLINE

INTERPOLATION WITH DIFFERENT SEQUENCES OF DIMENSION
SETTINGS, e=1E—3

Dataset A_utocorrela_lion (Lag=4) Prediction Error

i dim2 diml | dim0 | 0—=1=2 [ 0—52—1 | 2—1—0

RTM (time step 1500) 0.88 0.58 0.45 2.17E-5 2.32E-5 2.51E-5
Miranda (velocityz) 0.84 0.82 0.96 0.004 0.004 0.003
QMCPACK 0.83 0.83 0.75 0.010 0.010 0.013
SCALE (QS) 0.987 | 0.986 | 0.872 0.0447 0.0448 0.10
NYX (velocityz) 0.9818 | 0.99 0.99 31668 29903 28975
Hurricane (W) 0.19 0.027 | 0.86 0.024 0.025 0.016

D. Dynamic Optimization Strategies

In this section we propose a dynamic design with two
adaptive strategies: (1) automatically optimizing the spline
interpolation predictor (Trial run in Fig. 5) by select-
ing the best-fit interpolation type (either linear or cubic)
and optimizing the sequence of interpolation dimensions and
(2) automatically selecting the better predictor between the
Lorenzo-based predictor (Trial run @ in Fig. 5) and the
interpolation predictor.

We use a uniform sampling method to determine the best
interpolation settings for the input dataset. There are two
settings to optimize for the multidimensional interpolation
predictor: the interpolation type and the dimension sequence.
We adopt a uniform sampling method with only 3% total data
points to select the better interpolation type with the higher
compression ratio.

We note that the spline interpolation predictor does not work
as effectively as the multilayer Lorenzo predictor [17], [28] on
the relatively nonsmooth dataset, especially when the user’s
error bound is relatively small (as shown in Table IV). As a
result, our final solution is selecting the better predictor from
our spline interpolation method and Lorenzo method.

TABLE IV
PREDICTION ERROR OF MULTIDIMENSIONAL SPLINE INTERPOLATION

PREDICTOR (S), REGRESSION PREDICTOR (R), AND LORENZO
PREDICTOR (L)

e=1F—2 e=1FE—7
Dataset S R T S R T

RTM (time step 1500) | 1.2E-4 1.3E-4 2.0E-4 | 69E-6 | 1.0E-4 | 1.8E-7
Miranda (velocityz) 0.02 0.03 0.05 0.001 0.02 6E-5
QMCPACK 0.05 0.06 0.13 0.004 0.03 6E-4
SCALE (QS) 0.07 0.16 0.11 0.04 0.15 0.01
NYX (velocityz) 121436 | 132071 | 410083 | 15237 | 51963 16965
Hurricane (W) 0.04 0.05 0.06 0.01 0.04 0.004

VI. EXPERIMENTAL EVALUATION

In this section we present the experimental setup and discuss
the evaluation results and our analysis.
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A. Experimental Setup

1) Execution Environment: We perform the experiments on
the Argonne Bebop supercomputer. Each node in Bebop is
driven by two Intel Xeon E5-2695 v4 processors with 128
GB of DRAM.

2) Applications: We perform the evaluation using six real-
world scientific applications from different domains:

¢« QMCPack: An open source ab initio quantum Monte
Carlo package for the electronic structure of atoms,
molecules, and solids [46].

RTM: Reverse time migration code for seismic imaging
in areas with complex geological structures [30].

NYX: An adaptive mesh, cosmological hydrodynamics
simulation code.

Hurricane: A simulation of a hurricane from the National
Center for Atmospheric Research in the United States.
Scale-LETKF: Local Ensemble Transform Kalman Filter
(LETKF) data assimilation package for the SCALE-RM
weather model.

Miranda: A radiation hydrodynamics code designed for
large-eddy simulation of multicomponent flows with tur-
bulent mixing.

Detailed information about the datasets (all using single preci-
sion) is presented in Table V. Some data fields are transformed
to their logarithmic domain before compression for better
visualization, as suggested by domain scientists.

TABLE V
BASIC INFORMATION ABOUT APPLICATION DATASETS
App. # files Dimensions Total Size Domain
RTM 3600 449x449x235 635GB Seismic Wave
Miranda 7 256384 %384 1GB Turbulence
QMCPACK 1 288 x 115x69x69 612MB Quantum Structure
Scale-LETKF 13 98 x1200x 1200 6.4GB Climate
NYX 6 S12x512x512 3.1GB Cosmology
Hurricane 48x13 100500 500 58GB ‘Weather

3) State-of-the-Art Lossy Compressors in Our Evaluation:
In our experiment we compare our new compressor with five
other state-of-the-art error-bounded lossy compressors (SZ2.1
[18], ZFP0.5.5 [15], SZ(Hybrid) [27], SZ(SP+PO)' [28] and
MGARDx [43]), which have been recognized as the best in
class (validated by different researchers [18], [21], [25]).

4) State-of-the-Art Lossless Compressors in Our Evalua-
tion: We also evaluate six lossless compressors including
Google Brotli [49], Google Snappy [35], Facebook Zstandard
[37], LZMA [50], Zlib [16], and Fpzip [S1] in our experiment
as a comparison with lossy compressors. Brotli, Snappy and
Zstandard (Zstd) are depolyed in many industrial data man-
agement systems. LZMA is the default compression method
of 7-Zip. Zlib [16] is one of the most widely used compressor
in operating systems. Fpzip [51] is a compressor targeted at
floating-point data.

5) Evaluation Metrics: We evaluate the six lossy compres-
sors based on five critical metrics, as described below.

o Compression ratio (CR) based on the same error bound:

The descriptions of CR and absolute error bound are de-

1SZ(SP+PO) represents the SZ compression model with 2nd-order predic-
tion (SP) and parameter optimization (PO), suffering 1X slower compression.
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fined in Section III. Without loss of generality, we adopt
value-range-based error bound (denoted as €), which takes
the same effect with absolute error bound (denoted e)
because e = e¢(max(D) — min(D)).

Compression speed and decompression  speed:
original size reconstructed size

compression time (MB/S) and decompression time (MB/S)

Rate-distortion: The detailed description is in Section III.

Visualization with the same CR: Compare the visual
quality of the reconstructed data based on the same CR.
Precision of final execution results of RTM data with
lossy compression.

B. Evaluation Results and Analysis

First, we verified the maximum compression errors for all
six lossy compressors based on all the application datasets
with different error bounds. Experiments confirm that they all
respect the error bound constraint very well. Fig. 9 shows the
distribution of compression errors of our solution on two error
bounds (e=1E-3 and e=1E-4, in other words, e=0.033&0.0033
for QMCPACK and e=8.2E-5&8.2E-6 for RTM). We can
clearly see that the compression errors are 100% within the
absolute error bound (e) for all data points.

e=1E-3 €=1E-3
W e-0.033 W e—B.2E-5
£=1E-4 e=1E-4
€=0.0033 e=8.2E-6
0.033 8.2E-5
0.0033 \ 8.2E-6 \

0 35&550&525&5

~, N ~ 7“7 ~ ~
00500500, %00 %07 %05 %05 5 Jog 2'5&5
g) R”fM (time step 1500)

(a) QMCPack (
Fig. 9. Compression Error Distribution of Our Solution

Table VI presents the compression ratios of the six lossy
compressors based on the six real-world applications with the
same error bounds. We can clearly observe that our solution
always exhibits the highest compression ratio in all cases.
In particular, the compression ratio of our solution is higher
than other compressors by 20%~460% in most cases. For
example, when setting the error bound to 1E-3 for compressing
RTM data, the second-best compressor ((SZ(SP+PO)) gets
a compression ratio of 114.4, while our compressing ratio
reaches up to 397.6 (with a 247.5% improvement). The key
reason our solution can get a significantly higher compression
ratio is twofold: (1) we significantly improve the prediction
accuracy by a dynamic spline interpolation, and (2) some
other compressors such as ZFP and MGARDx suffer from
the precision-overpreservation issue (i.e., the actual maximum
errors are smaller than the required error bound, as verified
by prior works [14], [17], [43].

Table VII compares the compression/decompression speed
among all six lossy compressors for all six applications. It
clearly shows that our solution exhibits compression per-
formance similar to that of SZ2.1 and MGARDx, and its
decompression performance is also comparable to that of
SZ2.1 and is about 30% higher than that of MGARDXx.

Data smoothness and error bound settings are two key
factors that affect the compression ratio and speed. In the SZ
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TABLE VI
COMPRESSION RATIO COMPARISON BASED ON THE SAME ERROR BOUND

SZ SZ SZ OurSol
Dataset € o1 (Hybrid) | (SP+PO) ZFP MGARDx | OurSol Improve %
TE2 | 2717 | 1957 3581 | 1110 229.7 19975 457%
RTM 1E-3 109.8 101.4 114.4 59.3 78.1 397.6 247%
TE4 | 573 [EX) 63.0 349 383 1163 84%
1E-2 125.6 130.4 188.4 46.6 113.7 582.1 209%
Miranda [ TE-3 | 39.9 554 584 256 380 160.7 T68%
TE4 | 306 234 339 45 200 7.1 39%
1E-2 196.2 144.8 174.5 39.4 159.8 675.5 244%
QMCPack [ TE3 | 511 534 68.0 212 71 204.3 200%
1E-4 18.9 249 23.6 10.4 14.9 63.7 155%
TE2 | 843 932 1082 45 528 157.0 5%
SCALE 1E-3 26.6 27.1 31.8 7.8 20.2 40.5 27%
TE4 | 140 32 41 76 104 4.9 5%
TE2 | 436 332 787 2.0 247 594 2%
NYX TE3 | 168 6.3 74 6.0 12 211 21%
TE4 | 76 30 81 37 55 9.1 2%
TE2 | 494 746 654 113 281 69.3 6%
Hurricane [ 1E3 | 17.6 7.9 198 6.7 2.7 225 3%
TE4 | 98 0.1 105 73 74 10.8 3%
TABLE VII
COMPRESSION/DECOMPRESSION SPEEDS (MB/S) WITH e=1E-3
SZ Sz SZ
Type Dataset 2.1 | (Hybrid) | (SP+PO) ZFP | MGARDx | OurSol
- RTM 207 76 97 549 128 149
g Miranda | 125 73 91 201 140 128
§ QMCPack | 146 63 78 158 136 133
& SCALE 145 59 75 101 122 128
I NYX 123 81 86 131 117 110
©  ["Hurricane | 115 63 73 115 22 131
B RTM 385 299 298 o84 173 276
'z Miranda | 285 221 206 531 177 232
£ [ QMCPack [ 327 232 282 367 168 241
g SCALE 271 184 192 295 164 215
§ NYX 222 172 215 244 145 136
=] Hurricane | 222 186 200 257 163 193

framework, datasets with better local smoothness or with larger
error bound settings will result in smaller quantization data
value range and more close-to-zero quantized data values. In
general, this will get higher compression ratios and speed be-
cause such quantized data turns much easier to be compressed
by the succeeding encoding steps. This analysis also applies
to other lossy compressors such as ZFP and MGARDx that
utilize the coding stage.
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Fig. 10. Parallel Performance Evaluation of QMCPack Simulation (SP(S+0O)
stands for SP(SP+PQO))

We evaluate the data dumping and loading performance of
the QMCPack simulation when using lossy compressors to
demonstrate the performance impact of lossy compressors on
scientific simulations. SZ2.1, SZ(SP+PO), ZFP, and our solu-
tion are assessed under the same level of data distortion (PSNR
fixed to 70). The evaluation uses up to 4096 cores and each
core processes 3.4GB of data. Fig. 10 shows that our solution
leads to the highest data dumping and loading performance.
In the scale of 4096 cores, QMCPACK simulation needs more
than 3 hours to dump the data to disk without the help of lossy
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compressors. Our solution reduces the elapsed time to less than
100 seconds and it is 1.7X faster than the second-best one.
Table VIII demonstrates the compression ratios of the six
lossless compressors. It confirms our statement in Section II
that lossless compressors have limited compression ratios on
scientific datasets. Lossy compressors, on the other hand, can
achieve much higher compression ratio as shown in Table VI.

TABLE VIII
COMPRESSION RATIO COMPARISON OF LOSSLESS COMPRESSORS
Dataset Brotli | Zstd | Snappy | Fpzip | Zlib | LZMA
RTM 2.04 2.02 1.87 2.62 2.04 2.18
Miranda 1.21 1.21 1.11 1.86 1.21 1.30
QMCPack 1.19 1.19 1.01 1.75 1.20 1.51
SCALE 1.45 1.39 1.17 2.60 1.39 1.80
NYX 1.19 1.11 1.00 1.37 1.11 1.25
Hurricane 1.52 1.49 1.26 2.28 1.49 1.78
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Fig. 11. Our Solution Compared with Interpolation and Lorenzo

As discussed in Section V-D, we designed a dynamic strat-
egy to optimize the compression quality throughout the entire
bit-rate range. Fig. 11 demonstrates that the dynamic strategy
has a critical effect in the compression quality improvement.
For instance, as shown in Fig. 11 (a), our solution always
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exhibits the best compression quality when the bit rate is lower
than 2.5 because it adopts a dynamic interpolation method with
optimized dimension sequences on a multilevel interpolation,
whereas both linear interpolation and tricubic interpolation
(shown in the figure) use a fixed sequence. (z—y—>x). On the
other hand, Fig. 11 (a) shows that our solution also keeps the
best rate-distortion level when the bit rate is higher than 2.5,
a result that is attributed to our accurate predictor selection
algorithm (selecting a better predictor between interpolation
and Lorenzo at runtime).
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Fig. 12. Overall Evaluation (Lower Bit Rate / Higher PSNR — Better Quality)

Fig. 12 presents the overall compression quality (i.e., rate
distortion). One can see that our solution is the best in class
from among all the related works for all six applications. In
particular, with the same data-distortion level (PSNR), the
compressed data size under our solution is about 50% of
the compressed data size under the second-best compressor
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in most of the cases for RTM, Miranda, and QMCPack.

We demonstrate the visual quality of the decompressed
data of four error-bounded lossy compressors in Fig. 13,
using one slice image (slice 340) in the RTM dataset. The
original visualization is shown in Fig. 4. The figure clearly
shows that our solution keeps an excellent visual quality in
the decompressed data with a compression ratio even up to
315. In contrast, other compressors suffer from prominent
degradation in visual quality to different extents with the same
compression ratios. In particular, SZ and ZFP suffer from
undesired blockwise texture artifacts.

(a) OurSol (PSNR:69.3,CR:315)

(c) ZFP (PSNR:51.7,CR:258)  (d) MGARDx (PSNR:62.5,CR:310)

Fig. 13. Visualization of Decompressed Snapshot Data (RTM)

We show in Fig. 14 and Fig. 15 that the final RTM image for
a single shot is not degraded at all using our lossy compressor
with very high compression ratios (about 2~4x higher than
that of other compressors). We use value-range-based error
bound 1.25E-3 in our solution for each time step. The RTM
application requires propagating waves generated by a source
signal, in a given subsurface model. At the beginning of the
propagation the compression ratios are very high (10k+) when
the waves are close to the source locations. Over time, the
waves are propagating further in the model, resulting in more
complex images and compression ratios dropping to about 70.
The overall compression ratio is 274 because the compression
ratio at most time steps can reach 300+ (e.g., CR=315 at time
step 1500 as shown in Fig. 13 (a)). In this simulation we used
one shot to generate the final image in Fig. 15. One can see a
very good preservation of amplitudes and main structures of
the lossy-compression-based final result, which is acceptable
for post-analysis as confirmed by the seismic researchers. Our
lossy compressor dramatically decreases the size of the RTM
snapshots while not increasing the computation time compared
with SZ 2.1. This can significantly lower the I/O throughput
requirements and enable either faster turnaround or higher-
fidelity simulations for production-level seismic imaging.
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Fig. 15. Visualization of RTM Image for One Shot

VII. CONCLUSION AND FUTURE WORK

In this paper we present a novel error-bounded lossy
compressor based on the SZ framework. We develop a dy-
namic spline interpolation approach with adaptive optimization
strategies. We thoroughly evaluate the compression quality and
performance of our solution compared with that of five other
lossy compressors on six real-world scientific simulations. The
key findings are summarized below.

o Our analysis shows that the linear regression predictor has

a significant problem because its coefficient overhead is
non-negligible (25%~70% in compressed data).

e Our dynamic spline interpolation solution can improve
the compression ratio by 457%, 244%, and 209% com-
pared with the second-best compressor on RTM, QMC-
PACK, and Miranda datasets, respectively.

¢ Our solution has high compression/decompression per-
formance comparable to that of SZ2.1. Its compression
speed is 28%~100% faster than other SZ-based methods
such as SZ(Hybrid) and SZ(SP+PO).

e Our solution keeps an extremely high visual quality in
the decompressed data, whereas other lossy compressors
suffer from prominent degradation in visualization with
the same compression ratios.

In the future work, we plan to improve the compression

quality by exploring more effective prediction models and im-
prove the performance by optimizing the code implementation.
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