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Abstract—Today’s scientific simulations are producing vast
volumes of data that cannot be stored and transferred efficiently
because of limited storage capacity, parallel I/O bandwidth, and
network bandwidth. The situation is getting worse over time
because of the ever-increasing gap between relatively slow data
transfer speed and fast-growing computation power in modern
supercomputers. Error-bounded lossy compression is becoming
one of the most critical techniques for resolving the big scientific
data issue, in that it can significantly reduce the scientific data
volume while guaranteeing that the reconstructed data is valid for
users because of its compression-error-bounding feature. In this
paper, we present a novel error-bounded lossy compressor based
on a state-of-the-art prediction-based compression framework.
Our solution exhibits substantially better compression quality
than all of the existing error-bounded lossy compressors, with
comparable compression speed. Specifically, our contribution is
threefold. (1) We provide an in-depth analysis of why the best-
existing prediction-based lossy compressor can only minimally
improve the compression quality. (2) We propose a dynamic spline
interpolation approach with a series of optimization strategies
that can significantly improve the data prediction accuracy,
substantially improving the compression quality in turn. (3) We
perform a thorough evaluation using six real-world scientific
simulation datasets across different science domains to evaluate
our solution vs. all other related works. Experiments show that
the compression ratio of our solution is higher than that of the
second-best lossy compressor by 20%∼460% with the same error
bound in most of the cases.

I. INTRODUCTION

With the ever-increasing scale of today’s scientific simula-

tions, vast amounts of scientific data are produced at every

simulation run. Climate simulation [1], for example, can

generate hundreds of terabytes of data in tens of seconds. A

cosmology simulation, such as Hardware/Hybrid Accelerated

Cosmology (HACC) [2] can produce dozens of petabytes of

data when it performs an N-body simulation with up to several

trillion particles. Such a vast amount of scientific data needs to

be stored for post hoc analysis, creating a huge challenge to the

scientific data management systems [3]–[7]. Many scientists

also need to share the large amounts of data across different

sites (i.e., endpoints) through a data-sharing web service (such
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as the Globus toolkit [8]) on the Internet. Thus, the ability to

significantly compress extremely large scientific datasets with

controlled data distortion is critical to today’s science work.

In the scientific research domain, the users often adopt

scientific data libraries such as NetCDF [9] and HDF5 [10] to

manage the scientific data due to their performance advantage

and better support of multidimensional objects over traditional

database management systems. Those scientific data libraries

have database features including metadata, data indexing, data

manipulation, and data visualization tools [11], [12]. In par-

ticular, due to the vast amount of data to deal with, these data

management libraries also support integrating different data

compressors. For example, HDF5 offers a filter mechanism

[13] to allow users to call various compressors (including SZ

[14], ZFP [15], Zlib [16], etc.) transparently when storing

scientific data.

Error-bounded lossy compression techniques [17]–[19] have

been developed for several years, and they have been widely

recognized as an optimal solution to reduce the storage de-

mand of scientific data management systems. For example,

many researchers [20], [21] have verified that the data recon-

structed through error-bounded lossy compressors is totally

acceptable for users’ post hoc analysis. Many successful

stories also showed that error-bounded lossy compressors not

only can significantly reduce the storage space but also may

substantially improve the data-moving performance with user-

acceptable data distortions. For example, Liang et al. [22]

showed that an error-bounded lossy compressor can improve

the overall I/O performance by 60X, with no degradation of

visual quality on the reconstructed data. Kukreja et al. [23]

showed that using error-bounded lossy compression can get

high compression ratios without affecting the convergence or

final solution of the full waveform inversion solver clearly.

The SZ compression library has been recognized by inde-

pendent assessments [17], [21], [24], [25] as the best-in-class

error-bounded lossy compressor for scientific datasets, espe-

cially because it has gone through many careful optimizations

[14], [17], [18], [26]–[29].

In this paper, we significantly improve the error-bounded

lossy compression quality for scientific datasets, by designing

a dynamic best-prediction-selection strategy and proposing a
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novel, spline interpolation based prediction approach with a se-

ries of optimizations. This predictor completely eliminates the

serious storage overhead compared with the linear-regression

predictor used in SZ. Our contribution is threefold.

• We provide an in-depth analysis of the latest version of

SZ and identify significant drawbacks of its prediction

method; the analysis also sheds light on our new design.

The critical challenge in the current design of SZ comes

from its linear-regression prediction method, which has

two significant drawbacks. On the one hand, it suffers

from limited accuracy in predicting nonlinear varied

datasets. Many scientific simulations (such as seismic

wave simulation [30] and quantum chemistry research

[31]) , however, may produce a vast amount of data with

nonlinear features, such that SZ cannot work very effec-

tively on them. On the other hand, the linear-regression-

based prediction needs to store several coefficients (e.g.,

four coefficients per block for 3D compression) in each

block of data, introducing significant overhead especially

when a relatively high compression ratio is required.

• We propose a novel prediction method that can signifi-

cantly improve the compression ratio compared with the

linear-regression prediction method. On the one hand, cu-

bic spline interpolation is included in our novel approach

to represent high order data variation, which obtains

much higher prediction accuracy over linear-regression

for datasets with nonlinear data variation characteristics.

On the other hand, we derive the constant coefficients

in our interpolation approach such that the coefficient

storage overhead can be completely eliminated. We fur-

ther propose a dynamic optimization strategy to select the

best predictor from between the novel spline interpolation

approach and the multilevel Lorenzo predictor to improve

the overall compression quality.

• We perform a comprehensive assessment of our solution

versus five state-of-the-art error-controlled lossy compres-

sors, using multiple real-world simulation datasets across

different scientific domains. Experiments show that our

solution improves the compression ratio by 20%∼460%

over the second-best compressor with the same error

bound and experiences no degradation in the post-analysis

accuracy.

The rest of the paper is organized as follows. In Section II

we discuss the related work. In Section III we formulate the

research problem. In Section IV we offer an in-depth analysis

of the pros and cons of SZ In Section V we describe our

solution and detailed optimization strategies. In Section VI we

present the evaluation results compared with five other state-

of-the-art lossy compressors using real-world applications. In

Section VII we conclude with a discussion of future work.

II. RELATED WORK

Data compression is becoming a critical technique for

database management systems. For time series databases,

Gorilla [32] is proposed to improve query performance using

lossless compression techniques including XOR and variable-

length encoding. AMMMO [33] utilizes machine learning to

select the best lossless compression scheme for each data point

in time series databases. SciDB [34] is a science-oriented

database system that supports several lossless algorithms in-

cluding run-length encoding and adaptive huffman encoding.

Snappy [35] is a high-speed lossless compression framework

used by many databases such as InfluxDB [36]. Zlib [16]

and Zstandard [37] are another two state-of-the-art lossless

compressors.

Although lossless compression techniques are widely used

in database management systems, they are not suitable for

scientific data. Lossless compressors suffer from very limited

compression ratios (generally ∼2 or even less) on scien-

tific data [38] since lossless compression techniques rely

on repeated byte-stream patterns whereas scientific data is

often composed of diverse floating-point numbers. Thus, lossy

compression for scientific data has been studied for years.

Unlike traditional lossy compression techniques (such as

Jpeg2000 [39]) that were designed mainly for image data, the

error-bounded lossy compression can not only get a fairly

high compression ratio (several dozens, hundreds, or even

higher) but also guarantee that the reconstructed data is valid

for scientific post-analysis in terms of the user-defined com-

pression error bound. Error-bounded lossy compression can

be categorized as higher-order singular value decomposition

(HOSVD)-based models such as TTHRESH [40], transform-

based models such as ZFP [15], and prediction-based models

including SZ [14], [17].

There are also some machine learning (ML) based lossy

compressors such as LFZIP [41]. ML compressors have two

drawbacks in terms of scientific data prediction. First, the

weights of ML models have non negligible size to be stored

and ML models need to be retrained for data in different

scientific domains. As a result, the model weights should be

stored together with compressed data and this brings signifi-

cant storage overhead. Second, ML compressors involves the

ML inference process which has much higher computational

cost than traditional methods including interpolation based

predictors that are linear time complexity.

In our work, we choose the prediction-based model because

SZ has been recognized as the leading compressor in the

scientific data compression community. In fact, how to lever-

age SZ to improve compression quality has been studied for

more than two years. Tao et al. [42] developed a strategy that

can combine SZ and ZFP to optimize the compression ratios

based on a more significant metric, peak signal-to-noise ratio

(PSNR). Liang et al. [27] further analyzed the principles of SZ

and ZFP and developed a method integrating ZFP into the SZ

compression model, which can further improve the compres-

sion quality. Zhao et al. [28] proposed to adopt second-order

Lorenzo+regression in the prediction methods and developed

an autotuning method to optimize the parameters of SZ. Liang

et al. [43] accelerated the performance of MultiGrid Adaptive

Reduction of Data (MGARD) [44] and used SZ to compress

the nodal points generated by the MGARD framework [44],
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which can improve the compression ratios significantly.

All these existing SZ-related solutions have to rely on the

linear regression prediction to a certain extent. This is a critical

restriction to the compression quality improvement, which will

be analyzed deeply in Section IV.

III. PROBLEM FORMULATION

In this section we describe the research problem formu-

lation. Given a scientific dataset (denoted by D) composed

of N floating-point values (either single precision or double

precision) and a user-specified absolute error bound (e), the

objective is to develop an error-bounded lossy compressor

that can always meet the error-bounding constraint at each

data point with optimized compression quality and comparable

performance (i.e., speed).

Rate distortion is arguably the metric most commonly used

by the lossy compression community to assess compression

quality. It can be converted to the commonly used statistical

data distortion metric known as normalized root mean squared

error, and it is a good indicator of visual quality. Rate

distortion involves two critical metrics: peak signal-to-noise

ratio and bit rate. PSNR can be written as the following:

Formula (1).

PSNR = 20 log10 (vrange(D)−10log10 (mse(D,D′)),, (1)

where D′ is the reconstructed dataset after decompression (i.e.,

decompressed dataset) and vrange(D) represents the value

range of the original dataset D (i.e., the difference between

its highest value and lowest value). Obviously, the higher the

PSNR value is, the smaller the mean squared error, which

means higher precision of the decompressed data.

Bit rate is used to evaluate the compression ratio (the ratio

of the original data size to the compressed size). Specifically,

bit rate is defined as the average number of bits used per

data point in the compressed data. For example, suppose a

single-precision original dataset has 100 million data points;

its original data size is 100,000,000×4 bytes (i.e., about 400

MB). If the compressed data size is 4,000,000 bytes (i.e., a

compression ratio of 100:1), then the bit rate can be calculated

as 32/100 = 0.32 (one single-precision number takes 32 bits).

Obviously, smaller bit rate means higher compression ratio.

Two other important compression assessment metrics are

compression speed (denoted by sc) and decompression speed

(denoted by sd). They are defined as the amount of data

processed per time unit (MB/s).

In our research, we focus on the optimization of compres-

sion quality (i.e., rate distortion) with high performance, which

can be formulated as follows:

Optimize rate-distortion
subject to |di − d′

i
| ≤ e

sc(newsol.) ≈ sc(sz)
sd(newsol.) ≈ sd(sz),

(2)

where di and d′
i

are referred to the value of the ith data point

in the original dataset D and the decompressed dataset D′

by the new compression solution, respectively. The notations

sc(newsol.) and sd(newsol.) represent the compression speed

and decompression speed of the new solution, respectively,

and sc(sz) and sd(sz) represent the compression speed and

decompression speed of the original SZ compressor, respec-

tively. That is, we are trying to increase the compression

ratio with the same level of data distortion and comparable

compression/decompression performance compared with SZ

as a baseline (because SZ has been confirmed as a fairly fast

lossy compressor in many existing studies [22], [43]),

In our evaluation in Section VI, not only do we present the

rate distortion results for many different datasets at different

bit-rate ranges, but we also assess the impact of our lossy

compressor on the results of decompressed-data-based post-

analysis on one production-level seismic simulation research.

IV. DEEPLY UNDERSTANDING THE PROS AND CONS OF SZ

In this section, we first give a review of the current SZ

design and then provide an in-depth analysis of a serious

problem in the latest version of the SZ compressor (SZ2.1)

[18]. Understanding this problem is fundamental to under-

standing why our new solution can significantly improve the

compression ratio.

A. Review of SZ Lossy Compression Framework

SZ2.1 [18], the latest version of SZ, has been recognized

as an excellent error-bounded lossy compressor based on

numerous experiments with different scientific applications by

different researchers [27], [28], [42].

SZ2.1 involves four stages during the compression: (1)

data prediction, (2) linear-scale quantization, (3) Huffman

encoding, and (4) lossless compression such as Zlib [16]. We

briefly describe the four steps, and we refer readers to read

our prior papers [17], [18] for technical details.

• Step 1: data prediction. In this step, SZ predicts each

data point by its nearby data values. The prediction

methods differ with various versions (from 0.1 through

2.1). For example, SZ 0.1∼1.0 [14] adopted a simple one-

dimensional adaptive curve-fitting method, which selects

the best predictor for each data point from among three

candidates: previous-value fitting, linear-curve fitting, and

quadratic-curve fitting. SZ1.4 [17] completely replaced

the curve-fitting method by a multidimensional first-order

Lorenzo predictor, significantly improving compression

ratios by over 200% over SZ1.0. SZ2.0∼SZ2.1 further

improved the prediction method by proposing a blockwise

linear regression predictor that can significantly enhance

compression ratios by 150%∼800% over SZ1.4, espe-

cially for cases with a high compression-ratio (i.e., when

the error bound is relatively large).

• Step 2: linear-scale quantization. In this step, SZ com-

putes the difference (denoted ∆) between the predicted

value (calculated in Step 1) and the original value for

each data point and then quantizes ∆ based on the user-

predefined error bound (e). The quantization bins are

equal-sized and are twice as large as the error bound, such

that the maximum compression errors must be controlled

within the specified error bound. After this step, all
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floating-point values are converted to integer numbers

(i.e., quantization numbers), most of which are to be close

to zero, especially when the data are fairly smooth in

locality or the predefined error bound is relatively large.

• Step 3: customized Huffman encoding. SZ has a

tailored integer-based Huffman encoding algorithm to

encode the quantization numbers generated by Step 2.

• Step 4: lossless compression. The last step in SZ is

adopting a lossless compressor with a pattern-recognized

algorithm such as LZ77 [45] to further improve the

compression ratios significantly.

B. Critical Features of SZ Compression Framework

First, SZ is a very flexible compression framework, in which

the data prediction is the most critical step. More accurate

data prediction will result in more quantization numbers being

close to zero which leads to a better compression ratio during

the encoding and lossless compression steps. Thus we have

explored other more efficient predictors in the past two years

(from version 0.1 through the latest released version 2.1, as

well as a few recent prototypes [27], [28]). Accordingly, we

are still focused only on the data prediction stage in this paper.

Second, SZ has to follow a necessary condition, in order

to guarantee that the compression errors are always within

the user-predefined error bound. For the same data point, its

predicted value during the compression stage has to be exactly

the same as the one predicted in the decompression stage.

Otherwise, the compression errors would be accumulated

easily during the decompression, causing totally uncontrolled

compression errors. Thus, in the compression stage, SZ has

to predict each data point by its nearby lossy decompressed

values instead of the original values, which will in turn degrade

the prediction accuracy (as exemplified in our prior work

[17]). We proposed the linear-regression predictor in SZ2.1

[18], which can mitigate this issue to a certain extent. Such

a predictor, however, has a significant drawback and may

substantially inhibit the compressor from obtaining a high

compression ratio in many cases. We analyze this drawback

in detail in the following text.

C. Review of Linear Regression Predictor in SZ2.1

In what follows, we describe the linear regression predictor

used in SZ2.1 and its serious drawback.

In SZ2.1, the whole dataset is split into equal-sized blocks

(e.g., 6×6×6 for a 3D dataset) and performs a linear-

regression-based prediction when the data inside the block is

relatively smooth or the error bound is relatively high. The

basic idea is to use linear regression to construct a hyperplane

in each block, such that the data inside the block can be

approximated by the hyperplane with minimized min squared

error (MSE), as illustrated in Fig. 1. The details can be found

in our prior work [18].

D. Serious Dilemma of Linear-Regression Predictor in SZ2.1

In order to get a high compression quality (i.e., a very

good rate-distortion result), the four coefficients need to be

f(x,y)=β0 +β1 x + β2 y

x
y

Fig. 1. Illustration of Linear-regression-based prediction (2D dataset)

compressed based on a certain error bound, which may

introduce a serious dilemma: a higher error bound used on

coefficient compression will decrease the overhead of storing

the coefficients (to be demonstrated in Fig. 2) but also decrease

the regression accuracy of the constructed hyperplane (to

be demonstrated in Fig. 3). We confirm this issue by four

real-world scientific simulations (QMCPack [46], RTM [30],

Hurricane [47], and NYX [48]), which are commonly used

by scientists in quantum structure research, seismic imaging

for oil and gas exploration, climate research, and cosmology

research, respectively. More details about these applications

are given in Section VI. We exemplify the results using specific

fields (e.g., time step 1500 of RTM data, the W field of

Hurriane, and velocity z in NYX) because of the space limits

and similar results in other fields.

Fig. 2 shows that the overhead always increases with de-

creasing error bounds used on the compression of coefficients.

Specifically, we observe that when the error bound decreases

from 0.1 to 0.01, the coefficient overhead in the compressed

data increases from 55% to 68%, from 25% to 37%, from

40% to 53%, and from 60% to 70%, for the four test cases,

respectively. The compression ratios (the red curve) thus

degrade from 179 to 128, from 102 to 86, from 114 to 90,

and from 152 to 118, respectively.

We present a slice segment of the four application datasets

in Fig. 3 to illustrate that the error bounds of the coefficient

compression would significantly affect the prediction accuracy

of the constructed linear-regression hyperplane. For instance,

when the coefficients’ compression error bound is set to

0.001 for QMCPack and 0.01 for RTM (time step 1500),

the constructed hyperplane (the yellow curve) can fit the real

data (the red curve) well, but the fitting will be much worse

with increasing error bounds. In the case with a relatively

large error bound (e.g., 0.1 in QMAPack), the hyperplane

will downgrade to a simple horizontal line (see blue lines in

the figures), because simply using the neighbor data value is

“accurate” enough for the large error-bounded compression of

the coefficients. This will definitely result in large prediction

errors (the difference between predicted value and raw value)

significantly degrading the final compression ratios.

In Fig. 4, we demonstrate that the latest version of SZ (v2.1)

may cause significant loss of the data visualization, especially
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Fig. 2. Overhead of Linear Regression Coefficients
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Fig. 3. Linear Regression Prediction Hyperplane with Different Error Bound
Settings of Coefficients

when the compression ratio (CR) is relatively high (e.g., 196

and 568 for the two test cases). We observe that SZ2.1 suffers

from a significant undesired block texture artifact, resulting

from its blockwise linear-regression design.

To address the serious issue of the linear regression pre-

dictor, we developed a novel efficient predictor based on a

(a) Original data (QMCPack) (b) Decompressed data (QMCPack)

(c) Original data (RTM) (d) Decompressed data (RTM)

Fig. 4. Visualization of SZ Decompressed Data Based on Two Applications:
(1) QMCPack – PSNR=56.2, CR=196, and (2) RTM – PSNR=50.7, CR=316

dynamic spline interpolation, such that compression quality

(rate distortion) can be significantly improved for almost all

application datasets, with little performance overhead.

V. ERROR-BOUNDED LOSSY COMPRESSION WITH A

DYNAMIC MULTIDIMENSIONAL SPLINE INTERPOLATION

We present the design overview in Fig. 5, with yellow

rectangles indicating the differences between our design and

the classic SZ compressor and with highlighted rectangles

indicating the critical steps. The fundamental idea is to develop

a dynamic multidimensional spline interpolation-based pre-

dictor (i.e., solution P2 shown in Fig. 5) to replace the linear-

regression-based predictor such that the coefficient overhead

can be completely eliminated while still keeping a fairly high

prediction accuracy. Our newly designed interpolation-based

predictor starts with one data point and performs interpolation

and linear-scale quantization alternatively along each dimen-

sion recursively until all data points are processed. Two alter-

native approaches can be used to perform the interpolation in

the multidimensional space. We can build a multidimensional

curve to fit all the already-processed data points, or we can

build multiple 1D curves to do the interpolation. We choose

the latter because the former is much more expensive.

In what follows, we introduce the background of spline

interpolation (Section V-A), followed by our design of dy-

namic multidimensional spline interpolation based predictor

(Sections V-B, V-C, and V-D).

A. Introduction to Spline Interpolation

Interpolation is widely used in the field of engineering and

science to construct new data points with a set of known

data points. Interpolation techniques attempt to build a curve
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that goes through all the known data points. It differs from

regression analysis, which usually seeks a curve that most

closely fits the known data points according to a specific

mathematical criterion such as mean squared error. The curve

generated by regression may not go through all known points.

The most popular interpolation methods can be categorized

into three types: piecewise constant interpolation, polynomial

interpolation, and spline interpolation. Piecewise constant in-

terpolation always uses the nearest known data points to

estimate the new data point, so it has a simple implementation

and fast speed. However, its ability to estimate complex

curves is limited because it does not consider the surrounding

data points. Polynomial interpolation is designed to find a

polynomial with the lowest possible degree that passes through

all the known data points. If the number of known data

points is large, the polynomial may suffer highly inaccurate

oscillation between the data points. This issue is well known

as Runge’s phenomenon and could be mitigated by spline

interpolation. Spline interpolation uses piecewise polynomials

to define the estimation curve. If the degree of the polynomials

is 1, the spline interpolation turns to linear interpolation.

If the degree of polynomials is 3, it is known as cubic

spline interpolation. Cubic spline polynomials have different

restrictions. In this paper, we use not-a-knot restriction for

cubic spline interpolation.

B. Spline Interpolation Designed for Scientific Data

In this sub-section, we introduce a basic interpolation

method and derive closed-form formulas with the optimal

coefficients, which is a fundamental work to the development

of our following multi-dimensional interpolation predictor.

We propose a light-weight cubic interpolation based pre-

diction method for each unknown data point by only using its

four surrounding data values, to address the drawbacks of the

conventional interpolation methods. The accuracy of polyno-

mial interpolation could be affected significantly by Runge’s

phenomenon when interpolating across multiple regions with

different locality features. Cubic spline interpolation can pre-

vent large oscillation, but it has high computational cost as it

needs to solve a huge linear system. To avoid high computation

cost, we precompute a closed-form interpolation formula based

on four specific neighbor data points (e.g., using the data

points i−3, i−1, i+1 and i+3 to predict data point i as shown

in Figure 6). In what follows, we mainly use a 1D example

to illustrate how we derive the interpolation formula, but the

formula can be extended to multidimensional cases easily.

Lemma 1: Denote the dataset as d = (d1, d2, ..., dn) with

n as the total number of elements. The prediction values

are denoted as p=(p1, p2, ..., pn). We consider all elements in

odd-index positions as preknown and use them to predict the

elements in even-index positions. The prediction formulas of

linear and cubic spline interpolation are shown in Table I.

TABLE I
SPLINE ESTIMATIONS

Spline method Prediction Value pi

Linear spline pi =
1

2
di−1 +

1

2
di+1

Cubic spline pi = − 1

16
di−3 +

9

16
di−1 +

9

16
di+1 − 1

16
di+3

Proof: The linear formula is easy to derive, so we prove

only the cubic spline formulas as follows. In our designed cu-

bic spline interpolation, the known data points di−3,di−1,di+1

and di+3 are used to predict the data point pi. Three spline

curves correspond to the known data points:

f1(x) f2(x) f3(x)

di–3

di–1
di+1

di+3

pi

i–3 i–1 i+1 i+3i

value

index

Known points

Unknown points

Interpolation

Fig. 6. Illustration of Cubic Spline Interpolation

f1(x) = a1(x−(i−3))
3+b1(x−(i−3))

2+c1(x−(i−3))+δ1
f2(x) = a2(x−(i−1))

3+b2(x−(i−1))
2+c2(x−(i−1))+δ2

f3(x) = a3(x−(i+1))
3+b3(x−(i+1))

2+c3(x−(i+1))+δ3

(3)

The scope of f1, f2, and f3 is [i−3,i−1], [i−1,i+1], and

[i+1,i+3] (as shown in Fig. 6). The spline curves should pass

through the known data points, so we have

f1(i− 3) = di−3; f1(i− 1) = di−1

f2(i− 1) = di−1; f2(i+ 1) = di+1

f3(i+ 1) = di+1; f3(i+ 3) = di+3

(4)

The first derivatives of f1(x) is f
′

1(x) = 3a1(x− (i− 3))2 +
2b1(x−(i−3))+c1. The second derivative is f

′′

1 (x) = 6a1(x−
(i−3))+2b1. The third derivative is f

′′′

1 (x) = 6a1. Derivatives

of f2 and f3 are similar with f1.
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To have a smooth curve, we should let the adjacent spline

functions have the same first derivatives and the same second

derivatives on the joint data points.

f
′

1(i− 1) = f
′

2(i− 1); f
′

2(i+ 1) = f
′

3(i+ 1)

f
′′

1 (i− 1) = f
′′

2 (i− 1); f
′′

2 (i+ 1) = f
′′

3 (i+ 1)
(5)

The not-a-knot restriction requires the third derivative of f
to be equal on locations i− 1 and i+ 1.

f
′′′

1 (i− 1) = f
′′′

2 (i− 1); f
′′′

2 (i+ 1) = f
′′′

3 (i+ 1) (6)

Using the system of Equations (4), (5), and (6), we can

derive a2 = − 1

48
di−3 +

1

16
di−1 −

1

16
di+1 +

1

48
di+3

b2 = 1

8
di−3 −

1

4
di−1 +

1

8
di+1

c2 = − 1

6
di−3 −

1

4
di−1 +

1

2
di+1 −

1

12
di+3

δ2 = di−1.

(7)

Thus the prediction value of pi will be

pi = f2(i) = − 1

16
di−3 +

9

16
di−1 +

9

16
di+1 −

1

16
di+3. (8)

Equation (8) is the cubic formula in Table I.

We discuss why we adopt only four known data points in

our interpolation instead of six or more data points. If we

use six data points di−5, di−3, di−1, di+1, di+3, and di+5 to

predict pi, the formula by not-a-knot spline turns out to be

pi =
di−5

80
− di−3

10
+ 47

80
di−1 +

47

80
di+1 −

di+3

10
+ di+5

80
. (9)

Compared with Equation (8), Equation (9) involves two

additional data points di−5 and di+5, but the weight of the two

data points is only 1/80, which means a very limited effect

on the prediction. Moreover, it has 50% higher computation

cost compared with Equation (8). Hence, we choose to use

four data points for prediction, as shown in Table I.

In addition, we note that the linear spline interpolation

may exhibit better prediction accuracy than the cubic spline

does when setting a relatively large error bound (as shown in

Table II). The reason is that our interpolation method relies

on the reconstructed data values generated after a linear-scale

quantization step, so that the reconstructed data is lossy to a

certain extent. When the error bound is relatively large, the

loss of these reconstructed data would degrade the prediction

accuracy, and the more data points used in the interpolation,

the higher the impact on the accuracy. Since linear spline

adopts fewer data points, it could be superior to cubic spline

especially when the error bound is relatively large. This

possibility motivated us to design a dynamic method selecting

the better interpolation type (linear or cubic) in practice.

TABLE II
COMPARISON OF SPLINE METHODS PREDICTION ERROR

Dataset
ǫ = 1E − 2 ǫ = 1E − 4

Linear Spline Cubic Spline Linear Spline Cubic Spline

RTM (time step 1500) 1.20E-4 1.27E-4 2.0E-5 8.3E-6

Miranda (velocityz) 0.0026 0.0025 0.0061 0.0020

QMCPACK 0.05 0.06 0.008 0.004

SCALE (QS) 0.076 0.078 0.040 0.041

NYX (velocityz) 123486 134820 22453 19978

Hurricane (W) 0.04 0.05 0.023 0.022

C. Multilevel Multidimensional Spline Interpolation

The previous derivation works in the 1D case with 50% of

preknown data points, based on which we predict the other

50%. In this section, we extend this interpolation method to

support data prediction on the entire multidimensional dataset.

Level 0

Level 1

Level 2

Level 3

Level 4

d1 d2 d3 d4 d5 d6 d7 d8 d9

Known data points Unknown data points (to be predicted)

Use 0 to predict d1

Use d1' to predict d9

Use d1' and d9' to predict d5

di'  di Original raw data Reconstructed data

Use d1', d5', and d9' to 

predict d3 and d7

Use d1', d3', d5', d7', and d9' 

to predict d2, d4, d6, d8# of levels = ⌈log2(n)⌉ +1

Fig. 7. Illustration of Multilevel Linear Spline Interpolation

We use Fig. 7 to demonstrate the multilevel solution with

linear interpolation; cubic interpolation has the same multilevel

design. Suppose the dataset has n elements in one dimension.

The number of levels required to cover all elements in this

dimension is l = 1+ ⌈log2n⌉. At level 0, we use 0 to predict

d1, followed by the error-bounded linear-scale quantization.

We perform a series of interpolations from level 1 to level l−1

recursively, as shown in Fig. 7. At each level, we use error-

bounded linear-scale quantization to process the predicted

value such that the corresponding reconstructed data must be

within the error bound. We denote the reconstructed data as

d′1, d
′

2, ..d
′

n
, as shown in the figure.
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Fig. 8. Illustration of Multidimensional Linear Spline Interpolation

Such a multilevel interpolation is applied on a multidi-

mensional dataset, illustrated in Fig. 8 with a 2D dataset

as an example. We perform interpolation separately along

all dimensions at each level, with a fixed sequence of di-

mensions. A 2D dataset, for example, has two possible se-

quences: dim0→dim1 and dim1→dim0. A 3D dataset has

6 possible sequences. In our solution, we propose to check

only two sequences, dim0→dim1→dim2 (sequence 1) and

dim2→dim1→ dim0 (sequence 2) instead of all 6 possible

combinations. On the one hand, the last interpolation dimen-

sion involves about 50% of the data points (much more than

other dimensions), so which dimension to be put in the end

of the sequence determines the overall prediction accuracy.

On the other hand, we note that either the highest or lowest

dimension in scientific datasets tends to be smoother than other
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dimensions without loss of generality, as confirmed by the first

three columns of Table III (with all 6 applications), which

presents the autocorrelation (AC) of each dimension (higher

AC means smoother data). Accordingly, putting either dim0

or dim2 in the end of the sequence at each level will get lower

overall prediction errors, as validated in Table III. Hence, we

also develop a dynamic strategy to select the best-fit sequence

of dimensions from among the two candidates, as detailed in

the next subsection.

TABLE III
AUTOCORRELATION AND PREDICTION ERROR OF CUBIC SPLINE

INTERPOLATION WITH DIFFERENT SEQUENCES OF DIMENSION

SETTINGS, ǫ=1E−3

Dataset
Autocorrelation (Lag=4) Prediction Error
dim2 dim1 dim0 0→1→2 0→2→1 2→1→0

RTM (time step 1500) 0.88 0.58 0.45 2.17E-5 2.32E-5 2.51E-5

Miranda (velocityz) 0.84 0.82 0.96 0.004 0.004 0.003

QMCPACK 0.83 0.83 0.75 0.010 0.010 0.013

SCALE (QS) 0.987 0.986 0.872 0.0447 0.0448 0.10

NYX (velocityz) 0.9818 0.99 0.99 31668 29903 28975

Hurricane (W) 0.19 0.027 0.86 0.024 0.025 0.016

D. Dynamic Optimization Strategies

In this section we propose a dynamic design with two

adaptive strategies: (1) automatically optimizing the spline

interpolation predictor (Trial run B in Fig. 5) by select-

ing the best-fit interpolation type (either linear or cubic)

and optimizing the sequence of interpolation dimensions and

(2) automatically selecting the better predictor between the

Lorenzo-based predictor (Trial run A in Fig. 5) and the

interpolation predictor.

We use a uniform sampling method to determine the best

interpolation settings for the input dataset. There are two

settings to optimize for the multidimensional interpolation

predictor: the interpolation type and the dimension sequence.

We adopt a uniform sampling method with only 3% total data

points to select the better interpolation type with the higher

compression ratio.

We note that the spline interpolation predictor does not work

as effectively as the multilayer Lorenzo predictor [17], [28] on

the relatively nonsmooth dataset, especially when the user’s

error bound is relatively small (as shown in Table IV). As a

result, our final solution is selecting the better predictor from

our spline interpolation method and Lorenzo method.

TABLE IV
PREDICTION ERROR OF MULTIDIMENSIONAL SPLINE INTERPOLATION

PREDICTOR (S), REGRESSION PREDICTOR (R), AND LORENZO

PREDICTOR (L)

Dataset
ǫ = 1E − 2 ǫ = 1E − 7

S R L S R L

RTM (time step 1500) 1.2E-4 1.3E-4 2.0E-4 6.9E-6 1.0E-4 1.8E-7

Miranda (velocityz) 0.02 0.03 0.05 0.001 0.02 6E-5

QMCPACK 0.05 0.06 0.13 0.004 0.03 6E-4

SCALE (QS) 0.07 0.16 0.11 0.04 0.15 0.01

NYX (velocityz) 121436 132071 410083 15237 51963 16965

Hurricane (W) 0.04 0.05 0.06 0.01 0.04 0.004

VI. EXPERIMENTAL EVALUATION

In this section we present the experimental setup and discuss

the evaluation results and our analysis.

A. Experimental Setup

1) Execution Environment: We perform the experiments on

the Argonne Bebop supercomputer. Each node in Bebop is

driven by two Intel Xeon E5-2695 v4 processors with 128

GB of DRAM.

2) Applications: We perform the evaluation using six real-

world scientific applications from different domains:

• QMCPack: An open source ab initio quantum Monte

Carlo package for the electronic structure of atoms,

molecules, and solids [46].

• RTM: Reverse time migration code for seismic imaging

in areas with complex geological structures [30].

• NYX: An adaptive mesh, cosmological hydrodynamics

simulation code.

• Hurricane: A simulation of a hurricane from the National

Center for Atmospheric Research in the United States.

• Scale-LETKF: Local Ensemble Transform Kalman Filter

(LETKF) data assimilation package for the SCALE-RM

weather model.

• Miranda: A radiation hydrodynamics code designed for

large-eddy simulation of multicomponent flows with tur-

bulent mixing.

Detailed information about the datasets (all using single preci-

sion) is presented in Table V. Some data fields are transformed

to their logarithmic domain before compression for better

visualization, as suggested by domain scientists.

TABLE V
BASIC INFORMATION ABOUT APPLICATION DATASETS

App. # files Dimensions Total Size Domain

RTM 3600 449×449×235 635GB Seismic Wave

Miranda 7 256×384×384 1GB Turbulence

QMCPACK 1 288×115×69×69 612MB Quantum Structure

Scale-LETKF 13 98×1200×1200 6.4GB Climate

NYX 6 512×512×512 3.1GB Cosmology

Hurricane 48×13 100×500×500 58GB Weather

3) State-of-the-Art Lossy Compressors in Our Evaluation:

In our experiment we compare our new compressor with five

other state-of-the-art error-bounded lossy compressors (SZ2.1

[18], ZFP0.5.5 [15], SZ(Hybrid) [27], SZ(SP+PO)1 [28] and

MGARDx [43]), which have been recognized as the best in

class (validated by different researchers [18], [21], [25]).

4) State-of-the-Art Lossless Compressors in Our Evalua-

tion: We also evaluate six lossless compressors including

Google Brotli [49], Google Snappy [35], Facebook Zstandard

[37], LZMA [50], Zlib [16], and Fpzip [51] in our experiment

as a comparison with lossy compressors. Brotli, Snappy and

Zstandard (Zstd) are depolyed in many industrial data man-

agement systems. LZMA is the default compression method

of 7-Zip. Zlib [16] is one of the most widely used compressor

in operating systems. Fpzip [51] is a compressor targeted at

floating-point data.

5) Evaluation Metrics: We evaluate the six lossy compres-

sors based on five critical metrics, as described below.

• Compression ratio (CR) based on the same error bound:

The descriptions of CR and absolute error bound are de-

1SZ(SP+PO) represents the SZ compression model with 2nd-order predic-
tion (SP) and parameter optimization (PO), suffering 1X slower compression.
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compressors. Our solution reduces the elapsed time to less than

100 seconds and it is 1.7X faster than the second-best one.

Table VIII demonstrates the compression ratios of the six

lossless compressors. It confirms our statement in Section II

that lossless compressors have limited compression ratios on

scientific datasets. Lossy compressors, on the other hand, can

achieve much higher compression ratio as shown in Table VI.

TABLE VIII
COMPRESSION RATIO COMPARISON OF LOSSLESS COMPRESSORS

Dataset Brotli Zstd Snappy Fpzip Zlib LZMA

RTM 2.04 2.02 1.87 2.62 2.04 2.18

Miranda 1.21 1.21 1.11 1.86 1.21 1.30

QMCPack 1.19 1.19 1.01 1.75 1.20 1.51

SCALE 1.45 1.39 1.17 2.60 1.39 1.80

NYX 1.19 1.11 1.00 1.37 1.11 1.25

Hurricane 1.52 1.49 1.26 2.28 1.49 1.78
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Fig. 11. Our Solution Compared with Interpolation and Lorenzo

As discussed in Section V-D, we designed a dynamic strat-

egy to optimize the compression quality throughout the entire

bit-rate range. Fig. 11 demonstrates that the dynamic strategy

has a critical effect in the compression quality improvement.

For instance, as shown in Fig. 11 (a), our solution always

exhibits the best compression quality when the bit rate is lower

than 2.5 because it adopts a dynamic interpolation method with

optimized dimension sequences on a multilevel interpolation,

whereas both linear interpolation and tricubic interpolation

(shown in the figure) use a fixed sequence. (z→y→x). On the

other hand, Fig. 11 (a) shows that our solution also keeps the

best rate-distortion level when the bit rate is higher than 2.5,

a result that is attributed to our accurate predictor selection

algorithm (selecting a better predictor between interpolation

and Lorenzo at runtime).
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Fig. 12. Overall Evaluation (Lower Bit Rate / Higher PSNR → Better Quality)

Fig. 12 presents the overall compression quality (i.e., rate

distortion). One can see that our solution is the best in class

from among all the related works for all six applications. In

particular, with the same data-distortion level (PSNR), the

compressed data size under our solution is about 50% of

the compressed data size under the second-best compressor
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in most of the cases for RTM, Miranda, and QMCPack.

We demonstrate the visual quality of the decompressed

data of four error-bounded lossy compressors in Fig. 13,

using one slice image (slice 340) in the RTM dataset. The

original visualization is shown in Fig. 4. The figure clearly

shows that our solution keeps an excellent visual quality in

the decompressed data with a compression ratio even up to

315. In contrast, other compressors suffer from prominent

degradation in visual quality to different extents with the same

compression ratios. In particular, SZ and ZFP suffer from

undesired blockwise texture artifacts.

(a) OurSol (PSNR:69.3,CR:315) (b) SZ (PSNR:50.7,CR:315)

(c) ZFP (PSNR:51.7,CR:258) (d) MGARDx (PSNR:62.5,CR:310)

Fig. 13. Visualization of Decompressed Snapshot Data (RTM)

We show in Fig. 14 and Fig. 15 that the final RTM image for

a single shot is not degraded at all using our lossy compressor

with very high compression ratios (about 2∼4× higher than

that of other compressors). We use value-range-based error

bound 1.25E-3 in our solution for each time step. The RTM

application requires propagating waves generated by a source

signal, in a given subsurface model. At the beginning of the

propagation the compression ratios are very high (10k+) when

the waves are close to the source locations. Over time, the

waves are propagating further in the model, resulting in more

complex images and compression ratios dropping to about 70.

The overall compression ratio is 274 because the compression

ratio at most time steps can reach 300+ (e.g., CR=315 at time

step 1500 as shown in Fig. 13 (a)). In this simulation we used

one shot to generate the final image in Fig. 15. One can see a

very good preservation of amplitudes and main structures of

the lossy-compression-based final result, which is acceptable

for post-analysis as confirmed by the seismic researchers. Our

lossy compressor dramatically decreases the size of the RTM

snapshots while not increasing the computation time compared

with SZ 2.1. This can significantly lower the I/O throughput

requirements and enable either faster turnaround or higher-

fidelity simulations for production-level seismic imaging.
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Fig. 15. Visualization of RTM Image for One Shot

VII. CONCLUSION AND FUTURE WORK

In this paper we present a novel error-bounded lossy

compressor based on the SZ framework. We develop a dy-

namic spline interpolation approach with adaptive optimization

strategies. We thoroughly evaluate the compression quality and

performance of our solution compared with that of five other

lossy compressors on six real-world scientific simulations. The

key findings are summarized below.
• Our analysis shows that the linear regression predictor has

a significant problem because its coefficient overhead is

non-negligible (25%∼70% in compressed data).

• Our dynamic spline interpolation solution can improve

the compression ratio by 457%, 244%, and 209% com-

pared with the second-best compressor on RTM, QMC-

PACK, and Miranda datasets, respectively.

• Our solution has high compression/decompression per-

formance comparable to that of SZ2.1. Its compression

speed is 28%∼100% faster than other SZ-based methods

such as SZ(Hybrid) and SZ(SP+PO).

• Our solution keeps an extremely high visual quality in

the decompressed data, whereas other lossy compressors

suffer from prominent degradation in visualization with

the same compression ratios.
In the future work, we plan to improve the compression

quality by exploring more effective prediction models and im-

prove the performance by optimizing the code implementation.
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