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Abstract

Recently we have developed the optimal local truncation error method (OLTEM) for PDEs with constant coefficients on
rregular domains and unfitted Cartesian meshes. However, many important engineering applications include domains with
ifferent material properties (e.g., different inclusions, multi-material structural components, etc.) for which this technique
annot be directly applied. In the paper OLTEM is extended to a much more general case of PDEs with discontinuous
oefficients and can treat the above-mentioned applications. We show the development of OLTEM for the 1-D and 2-D scalar
ave equation as well as the heat equation using compact 3-point (in the 1-D case) and 9-point (in the 2-D case) stencils that

re similar to those for linear quadrilateral finite elements. Trivial unfitted Cartesian meshes are used for OLTEM with complex
nterfaces between different materials. The interface conditions on the interfaces where the jumps in material properties occur
re added to the expression for the local truncation error and do not change the width of the stencils. The calculation of the
nknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields the
ptimal order of accuracy of the new technique at a given width of stencil equations. In contrast to the second order of accuracy
or linear finite elements, OLTEM provides the fourth order of accuracy in the 1-D case and in the 2-D case for horizontal
nterfaces as well as the third order of accuracy for the general geometry of smooth interfaces. The numerical results for the
omains with complex smooth interfaces show that at the same number of degrees of freedom, OLTEM is even much more
ccurate than quadratic finite elements and yields the results close to those for cubic finite elements with much wider stencils.
he wave and heat equations are uniformly treated with OLTEM. OLTEM can be directly applied to other partial differential
quations.
c 2021 Elsevier B.V. All rights reserved.

eywords: Wave and heat equations with discontinuous coefficients; Local truncation error; Irregular interfaces; Cartesian meshes; Optimal
ccuracy

1. Introduction

The finite element method, the finite volume method, the isogeometric elements, the spectral elements and similar
echniques represent very powerful tools for the solution of partial differential equations (PDEs) for a complex
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geometry. However, the generation of non-uniform meshes for a complex geometry is not simple and may lead
to the decrease in accuracy of these techniques if ‘bad’ elements (e.g., elements with small angles) appear in the
mesh. Moreover, the conventional derivation of discrete equations for these techniques (e.g., based on the Galerkin
approaches) does not lead to the optimal accuracy. For example, it has been shown in many publications on wave
propagation that at the same width of the stencil equations of a semi-discrete system for regular rectangular domains
with uniform meshes, the accuracy of conventional linear finite elements can be improved from order two to order
four (e.g., see [1–8] and others), the accuracy of conventional high-order finite and isogeometric elements in
the L2 norm can be improved from order 2p to order 2p + 2 (e.g., see [9–13] ) where p is the element order.
These improvements are based on the use of the averaged mass matrix or on the use of the special locations of the
integration points for the calculation of the elemental mass and stiffness matrices. However, the increase in accuracy
of these techniques is limited to the wave equation with constant coefficients, zero loading term and rectangular
domains. Moreover, the increase in the order of accuracy for the high-order elements in [9–13] is not optimal.
In [14–16] the order of accuracy of the high-order elements on rectangular domains has been improved to 4p and
this order is optimal at a given width of stencil equations. We should also mention different techniques based on the
discontinuous Galerkin method that also improve the accuracy of numerical solutions; e.g., see [17–22] and many
others.

There is a significant number of publications related to the numerical solution of different PDEs on irregular
domains with uniform embedded meshes. For example, we can mention the following fictitious domain numerical
methods that use uniform embedded meshes: the embedded finite difference method, the cut finite element method,
the finite cell method, the Cartesian grid method, the immersed interface method, the virtual boundary method,
the embedded boundary method, etc. The main objective of these techniques is to simplify the mesh generation
for irregular domains as well as to mitigate the effect of ‘bad’ elements. For example, the techniques based of
the finite element formulations (such as the cut finite element method, the finite cell method, the virtual boundary
method and others) yield the p + 1 order of accuracy in the L2 norm even with small cut cells generated due to
complex irregular boundaries (e.g., see [23–29] and many others). The main advantage of the embedded boundary
method developed in [30–34] is the use of simple Cartesian meshes. The boundary conditions or fluxes in this
technique are interpolated using the Cartesian grid points and this leads to the increase in the stencil width for the
grid points located close to the boundary (the numerical techniques developed in [30–34] provide just the second
order of accuracy for the global solution). A stable generalized finite element method for the Poisson equation
was developed in [35] for heterogeneous materials with curved interfaces and unfitted uniform meshes (the uniform
meshes are not matched with curved interfaces). The second order of accuracy in the energy norm (that includes
partial derivatives) was achieved in [35] with 2-D quadratic finite elements that form 25-point stencils.

The development of robust numerical techniques for the solution of PDEs on irregular domains that provide
an optimal and high order of accuracy is still a challenging problem. Recently in our papers [36–41] we have
developed a new numerical technique for the solution of PDEs with constant coefficients on regular and irregular
domains with Cartesian meshes. We called this approach the optimal local truncation error method. At the same
structure of the semidiscrete or discrete equations, OLTEM provides the optimal order of accuracy that exceeds the
order of accuracy of many known numerical approaches on regular and irregular domains. Here, we extend it to
a much more general case of PDEs with discontinuous coefficients that have numerous engineering applications;
e.g., the modeling of composite materials, wave propagation and heat transfer in heterogeneous materials and many
others. The focus of this paper is the development of compact high-order stencils affected by irregular interfaces
between different materials (these stencils can be used for regular and irregular domains).

Section 2 introduces the wave and heat equations for heterogeneous materials and the local truncation error. In
Section 3, OLTEM with 3-point stencils is uniformly derived for the 1-D wave and heat equations with discontinuous
oefficients. Its extension to the 2-D case for uniform and non-uniform 9-point stencils with horizontal and complex
nterfaces is considered in Section 4. 1-D and 2-D numerical examples with horizontal interfaces and the general
eometry of interfaces as well as the comparison with FEM are presented in Section 5. The approach developed

in the paper reduces PDEs to ODEs. Any known time-integration method can be used for the time integration
of ODEs. For the derivation of many analytical expressions presented below we use the computational program

“Mathematica”.
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2. The wave and heat equations for heterogeneous materials and the local truncation error

Wave propagation in a composite domain Ω = ∪Ωl (l = 1, 2, . . . , N̄ where N̄ is the total number of subdomains)
s described by the following scalar wave equation in each subdomain Ωl :

∂2ul

∂t2 − c2
l ∇

2ul = fl . (1)

imilarly, the heat equation in each subdomain Ωl can be written as:
∂ul

∂t
− al∇

2ul = fl . (2)

or each subdomain Ωl we use the following notations in Eqs. (1)–(2): cl is the wave velocity, al is the thermal
iffusivity, fl(xxx, t) is the loading or source term, ul is the field variable. Eqs. (1)–(2) can be uniformly written down
n subdomain Ωl as:

∂nul

∂tn
− c̄l∇

2ul = fl , (3)

here n = 2 and c̄l = c2
l for the wave equation and n = 1 and c̄l = al for the heat equation. We also assume

hat the functions ul and fl are sufficiently smooth in each subdomain Ωl . At the smooth interface G (G a point
n the 1-D case and a curve in the 2-D case) between any two subdomains, the following interface conditions (the
ontinuity of the function and the flux across the interface; e.g., see [42–44]) are applied:

u∗

G = u∗∗

G , e∗(nx
∂u∗

G

∂x
+ ny

∂u∗

G

∂y
) = e∗∗(nx

∂u∗∗

G

∂x
+ ny

∂u∗∗

G

∂y
) , (4)

where nx and ny are the x and y-components of the normal vector at the interface, e is the corresponding material
constant, the symbols ∗ and ∗∗ correspond to the quantities on the opposite sides from the interface for the
corresponding subdomains Ωl . This means that the functions ul are continuous across the interfaces but can have the
discontinuous spatial derivatives across the interfaces. The functions fl can be discontinuous across the interfaces.

Remark 1. The second condition in Eq. (4) for the flux continuity corresponds to isotropic materials with one
aterial parameter for the flux calculation (e.g., e∗ and e∗∗ are the thermal conductivity coefficients on opposite

ides from the interface in the case of the heat equation). However, the approach considered in the paper can be
lso extended to anisotropic materials with the modified second condition in Eq. (4) (e.g., for the heat equation, the
hermal conductivity tensors should be used for the flux calculation instead of material parameters e∗ and e∗∗).

emark 2. Numerical examples (e.g., Section 5.2 for the impact problem) show that the numerical approach
eveloped in the paper can be also applied to the problems with reduced regularity (smoothness) of the functions
l .

In this paper the Dirichlet boundary conditions u = g1 are applied along the boundary Γ . However, the Neumann
oundary conditions can be also used with the proposed approach; e.g., see our papers [41,45]. The initial conditions
re ul(xxx, t = 0) = g2, vl(xxx, t = 0) = g3 in Ωl for the wave equation and ul(xxx, t = 0) = g4 in Ωl for the heat equation
here gi (i = 1, 2, 3, 4) are the given functions and l = 1, 2, . . . , N̄ . According to OLTEM, the semidiscrete system

or the wave and heat equations after the space discretization with a Cartesian rectangular mesh can be represented
s a system of ordinary differential equations in time. The ordinary differential equation of this system for each
nternal grid point of the domain is called the stencil equation and can be written down as follows:

M∑
i=1

[h2mi
dnunum

i

dtn
+ ki unum

i ] = f̄ , (5)

here unum
i and dnunum

i
dtn are the numerical solution for function u and its time derivative at the grid points, mi and

i are the unknown stencil coefficients to be determined, f̄ (t) is the discretized loading (source) term (see the next
ections), M is the number of the grid points included into the stencil equation, n = 2 for the wave equation and
= 1 for the heat equation, h is the mesh size along the x-axis. Many numerical techniques such as the finite

ifference method, the finite element method, the finite volume method, the isogeometric elements, the spectral
3
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Fig. 1. The spatial locations of the degrees of freedom u∗

i−1, u∗∗

i , u∗∗

i+1 (i = 2, 3, 4, . . .) and the interface G between two materials for the
-point stencil.

lements, different meshless methods and others can be finally reduced to Eq. (5) with some specific coefficients
mi and ki for the wave and heat equations. In the derivations below, we will assume 3-point stencils (M = 3) in
the 1-D case and 9-point stencils (M = 9) in the 2-D case that are similar to the 3-point and 9-point stencils of
the 1-D and 2-D linear quadrilateral finite elements on Cartesian meshes. Generally, the stencils with any number
of points M can be used with the suggested approach. We should also mention that the stencil width can be used
for the approximate estimation of computational costs because numerical techniques with similar stencils require
approximately the same computational costs.

Let us introduce the local truncation error used with OLTEM. The replacement of the numerical values of function
unum

i and its time derivatives dnunum
i

dtn at the grid points in Eq. (5) by the exact solution ui and dnui
dtn to the wave or heat

quation, Eq. (1) or (2), leads to the residual e of this equation called the local truncation error of the semidiscrete
quation, Eq. (5):

e =

M∑
i=1

[h2mi
dnui

dtn
+ ki ui ] − f̄ . (6)

alculating the difference between Eqs. (5) and (6) we can get

e =

M∑
i=1

{h2mi [
dnui

dtn
−

dnunum
i

dtn
] + ki [ui − unum

i ]} =

M∑
i=1

[h2mi ēv
i + ki ēu

i ] , (7)

where ēu
i = ui − unum

i and ēv
i =

dnui
dtn −

dnunum
i

dtn are the errors of function u and its time derivatives at the grid points
. As can be seen from Eq. (7), the local truncation error e is a linear combination of the errors of the function ui

and its time derivatives at the grid points i which are included into the stencil equation.

3. OLTEM for the 1-D wave and heat equations with discontinuous coefficients (with zero loading (source)
term fl = 0 in Eqs. (1) and (2))

For OLTEM in the 1-D case, we consider a uniform mesh with 3-point stencils (similar to those for linear finite
elements). We assume that the mesh is sufficiently fine in order to include only one interface between different
materials within any 3-point stencil; see Fig. 1. The case of the 3-point stencil inside the homogeneous material
follows from this stencil when point G coincides with the end point i − 1 of the 3-point stencil; see Fig. 1 for

= 1. The coordinates xi−1 and xi+1 of the points i − 1 and i + 1 of the 3-point stencil and the coordinate xG of
he interface point G are (see Fig. 1):

xi+1 = xi + h , xi−1 = xi − h , xG = xi − ξh , (8)

here 0 ≤ ξ ≤ 1. For the exact solution, the interface conditions at the interface point G can be written down as
ollows:

u∗

G = u∗∗

G , e∗

∂u∗

G

∂x
= e∗∗

∂u∗∗

G

∂x
, (9)

here symbols ∗ and ∗∗ correspond to different materials from the left and right sides of the interface point G (of
ourse, the domain under consideration can include any number of different materials).

For the 3-point stencil in Fig. 1, the stencil equation Eq. (5) can be explicitly rewritten as follows:

h2(m1
dnu∗,num

i−1
+ m2

dnu∗∗,num
i

+ m3
dnu∗∗,num

i+1 ) + (k1u∗,num
+ k2u∗∗,num

+ k3u∗∗,num) = 0 , (10)

dtn dtn dtn i−1 i i+1

4
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where the case of zero loading fl = f̄ = 0 is considered, i = 2, . . . , N − 1 (N is the total number of the grid
oints), n = 2 for the wave equation and n = 1 for the heat equation, the coefficients m j and k j ( j = 1, 2, 3) are to
e determined from the minimization of the local truncation error, the index l related to subdomain Ωl is replaced
y the corresponding symbol ∗ or ∗∗. For convenience, we use the local numeration of the stencil coefficients k j ,

j with j = 1, 2, 3 instead of the global numeration with j = i − 1, i, i + 1.

emark 3. Only 5 out of the 6 coefficients mi , ki (i = 1, 2, 3) in Eq. (10) can be considered as unknown coefficients.
This can be explained as follows. Eq. (10) can be rescaled by the division of the left- and right-hand sides of Eq. (10)
y any scalar; i.e., one of the stencil coefficients can be selected as unity and there will be only 5 unknown rescaled
oefficients. For convenience, we will scale the stencil coefficients in such a way that the coefficient k2 is k2 = 1.

emark 4. Conventional linear finite elements used for the wave (heat) equation have the stencil given by Eq. (10)
ith the stencils coefficients mi , ki (i = 1, 2, 3) calculated in terms of the elemental mass and stiffness matrices.

The local truncation error e follows from Eq. (10) by the replacement of the numerical solution u∗,num
i−1 , u∗∗,num

i
nd u∗∗,num

i+1 by the exact solution u∗

i−1, u∗∗

i and u∗∗

i+1:

e = h2(m1
dnu∗

i−1

dtn
+ m2

dnu∗∗

i

dtn
+ m3

dnu∗∗

i+1

dtn
) + (k1u∗

i−1 + k2u∗∗

i + k3u∗∗

i+1) . (11)

ne of the ideas of the new approach is to include the interface conditions for the exact solution in the expression
or the local truncation error (Eq. (11)):

e = h2(m1
dnu∗

i−1

dtn
+ m2

dnu∗∗

i

dtn
+ m3

dnu∗∗

i+1

dtn
) + (k1u∗

i−1 + k2u∗∗

i + k3u∗∗

i+1)

+[q1(u∗

G − u∗∗

G ) + hq2(e∗

∂u∗

G

∂x
− e∗∗

∂u∗∗

G

∂x
) + h2q3(

∂nu∗

G

∂tn
−

∂nu∗∗

G

∂tn
) + h3q4(e∗

∂n+1u∗

G

∂tn∂x
− e∗∗

∂n+1u∗∗

G

∂tn∂x
)

+ h4q5(
∂2nu∗

G

∂t2n
−

∂2nu∗∗

G

∂t2n
)] , (12)

where the coefficients qi (i = 1, 2, . . . , 5) will be used for the minimization of the local truncation error in Eq. (12),
the expressions in parenthesis after q1 and q2 are the interface conditions, Eq. (9), the expressions in parenthesis
after q3, q4 and q5 are the time derivative of the interface conditions (the time derivative of the left- and right-hand
sides of Eq. (9)). Therefore, the expression in the square brackets in Eq. (12) is zero and Eqs. (11) and (12) yield
he same local truncation error e.

To derive the coefficients mi and ki (i = 1, 2, 3) in Eq. (12), let us expand the exact solution ui at the grid points
− 1, i and i + 1 into a Taylor series in the vicinity of the interface point G at small h ≪ 1 as follows (see Fig. 1
or the locations of ui and uG):

v∗

i−1 = v∗

G −
∂v∗

G

∂x
(1 − ξ )h +

∂2v∗

G

∂x2

((1 − ξ )h)2

2!
−

∂3v∗

G

∂x3

((1 − ξ )h)3

3!
+

∂4v∗

G

∂x4

((1 − ξ )h)4

4!
− · · · , (13)

v∗∗

i = v∗∗

G +
∂v∗∗

G

∂x
(ξh) +

∂2v∗∗

G

∂x2

(ξh)2

2!
+

∂3v∗∗

G

∂x3

(ξh)3

3!
+

∂4v∗∗

G

∂x4

(ξh)4

4!
+ · · · , (14)

v∗∗

i+1 = v∗∗

G +
∂v∗∗

G

∂x
(1 + ξ )h +

∂2v∗∗

G

∂x2

((1 + ξ )h)2

2!
+

∂3v∗∗

G

∂x3

((1 + ξ )h)3

3!
+

∂4v∗∗

G

∂x4

((1 + ξ )h)4

4!
+ · · · , (15)

here the function v in Eqs. (13)–(15) is u and ∂nu
∂tn .

The exact solution to Eq. (3) also meets the following equations at point G:

∂nu∗

G

∂tn
= c̄∗

∂2u∗

G

∂x2 ,
∂nu∗∗

G

∂tn
= c̄∗∗

∂2u∗∗

G

∂x2 , (16)

∂ j+lnu∗

G

∂x j∂t ln
= c̄∗

∂ j+2+(l−1)nu∗

G

∂x j+2∂t (l−1)n ,
∂ j+lnu∗∗

G

∂x j∂t ln
= c̄∗∗

∂ j+2+(l−1)nu∗∗

G

∂x j+2∂t (l−1)n (17)

here the case of zero loading (source) term f ∗
= f ∗∗

= 0 is considered, l = 1, 2 and j = 1, 2, 3, 4, . . .. Eq. (17)
s obtained by the differentiation of Eq. (16) with respect to x j and tn . Inserting Eqs. (13)–(17) into Eq. (12) we
5
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get the following local truncation error in space for OLTEM:

e = b1u∗

G + b2u∗∗

G + h[b3
∂u∗

G

∂x
+ b4

∂u∗∗

G

∂x
] + h2[b5

∂2u∗

G

∂x2 + b6
∂2u∗∗

G

∂x2 ] + h3[b7
∂3u∗

G

∂x3 + b8
∂3u∗∗

G

∂x3 ]

+h4[b9
∂4u∗

G

∂x4 + b10
∂4u∗∗

G

∂x4 ] + h5[b11
∂5u∗

G

∂x5 + b12
∂5u∗∗

G

∂x5 ] + h6[b13
∂6u∗

G

∂x6 + b14
∂6u∗∗

G

∂x6 ] + O
(
h7) , (18)

here the coefficients bp (p = 1, 2, . . .) are expressed in terms of the coefficients ml , kl , q j (l = 1, 2, 3 and
j = 1, 2, . . . , 5) and the distance ξ ; see Appendix A. We should mention that by the use of the wave (heat)
equation, Eqs. (16)–(17), the time derivatives for the local truncation error in Eq. (18) are excluded. In order to
minimize the order of the local truncation error, we will zero the first 10 coefficients bp = 0 (p = 1, 2, . . . , 10) for
he smallest power of h. From these 10 algebraic equations and the condition k2 = 1 (see Remark 3 after Eq. (10))

we can find the 11 coefficients ml , kl , q j (l = 1, 2, 3 and j = 1, 2, . . . , 5):

m1 =
e∗(c̄2

∗
(e∗ξ (ξ 3

+ 2ξ 2
− 1) + e∗∗(−4ξ 4

− 2ξ 3
+ 6ξ 2

+ ξ − 1)) + 2c̄∗ c̄∗∗(ξ − 1)2(3e∗ξ (ξ + 1) + e∗∗(−2ξ 2
+ ξ + 1)) + c̄2

∗∗
e∗(ξ − 1)4)

12c̄∗ c̄∗∗(e∗ξ + e∗ − e∗∗ξ + e∗∗)(c̄∗e∗ξ (ξ + 1) + c̄∗e∗∗(−2ξ 2 + ξ + 1) + c̄∗∗e∗(ξ − 1)2)
,

m2 =
1

12c̄∗ c̄∗∗(e∗ξ + e∗ − e∗∗ξ + e∗∗)(c̄∗e∗ξ (ξ + 1) + c̄∗e∗∗(−2ξ 2 + ξ + 1) + c̄∗∗e∗(ξ − 1)2)
[c̄2

∗
(e2

∗
ξ (ξ + 1)2(ξ 2

+ 3ξ + 1)

+e∗e∗∗(−5ξ 5
− 15ξ 4

− 4ξ 3
+ 14ξ 2

+ 9ξ + 1) + e2
∗∗

(8ξ 3
+ 24ξ 2

+ 20ξ + 5)(ξ − 1)2) − 2c̄∗ c̄∗∗e∗(ξ − 1)2(e∗∗(5ξ 3
+ 5ξ 2

− 6ξ − 4)

−e∗ξ (ξ 2
+ 3ξ + 2)) + c̄2

∗∗
e∗(ξ − 1)4(5e∗(ξ + 1) + e∗∗(−ξ ) + e∗∗)] ,

m3 = −
1

12c̄∗ c̄∗∗(e∗ξ + e∗ − e∗∗ξ + e∗∗)(c̄∗e∗ξ (ξ + 1) + c̄∗e∗∗(−2ξ 2 + ξ + 1) + c̄∗∗e∗(ξ − 1)2)
[(c̄2

∗
(e2

∗
ξ 2(ξ 3

− 2ξ − 1)

+e∗e∗∗ξ (−5ξ 4
+ 5ξ 3

+ 6ξ 2
− 4ξ − 2) + e2

∗∗
(8ξ 3

− 4ξ − 1)(ξ − 1)2) + 2c̄∗ c̄∗∗e∗(ξ − 1)3(e∗(ξ + 1)ξ − 5e∗∗ξ
2
+ e∗∗)

+c̄2
∗∗

e∗(ξ − 1)4(5e∗ξ + e∗∗(−ξ ) + e∗∗))] ,

k1 = −
e∗

e∗ξ + e∗ − e∗∗ξ + e∗∗

, k2 = 1 , k3 = −
(e∗ξ + e∗∗(−ξ ) + e∗∗)
e∗ξ + e∗ − e∗∗ξ + e∗∗

, (19)

ere we show the stencil coefficients ml and kl (l = 1, 2, 3) only because the coefficients q j ( j = 1, 2, . . . , 5) are
ot used in the global system of equations.

Inserting the coefficients mi and ki (i = 1, 2, 3) for OLTEM (see Eq. (19)) into Eq. (18) we get the following
ocal truncation error:

e =
h5

xx
[(ξ − 1)(c̄∗e∗

∂5u∗

G

∂x5 (−5c̄2
∗(ξ − 1)2(e∗∗(4ξ4

+ 2ξ3
− 6ξ2

− ξ + 1) − e∗ξ (ξ3
+ 2ξ2

− 1)) − c̄∗c̄∗∗(ξ − 1)4(7e∗∗(2ξ2
− ξ − 1)

−27e∗ξ (ξ + 1)) + 2c̄2
∗∗e∗(ξ − 1)6) − c̄∗∗

∂5u∗∗

G

∂x5 (c̄2
∗(e2

∗ξ
2(ξ + 1)2(2ξ2

+ 5ξ + 2) + e∗e∗∗ξ (−14ξ5
− 42ξ4

− 25ξ3
+ 20ξ2

+ 21ξ + 4)

+e2
∗∗(30ξ6

+ 45ξ5
− 35ξ4

− 55ξ3
+ ξ2

+ 12ξ + 2)) + c̄∗c̄∗∗e∗(e∗ξ (12ξ5
+ 18ξ4

− 20ξ3
− 25ξ2

+ 8ξ + 7)

+e∗∗(−65ξ6
+ 145ξ4

− 15ξ3
− 73ξ2

+ ξ + 7)) + 5c̄2
∗∗e∗(ξ − 1)3(5e∗ξ (2ξ2

+ 3ξ + 1) + e∗∗(−3ξ3
+ 2ξ + 1))))]

+
h6

4xx
[(c̄∗∗

∂6u∗∗

G

∂x6 (c̄2
∗(e2

∗ξ
2(3ξ6

+ 8ξ5
− 10ξ3

+ 8ξ + 3) + 2e∗e∗∗ξ (−12ξ7
− 16ξ6

+ 28ξ5
+ 25ξ4

− 25ξ3
− 12ξ2

+ 9ξ + 3)

+e2
∗∗(56ξ6

+ 108ξ5
− 60ξ3

+ 16ξ + 3)(ξ − 1)2) + 4c̄∗c̄∗∗e∗(ξ − 1)2(e∗ξ (7ξ5
+ 15ξ4

− 10ξ2
+ 2)

+e∗∗(−37ξ6
− 23ξ5

+ 60ξ4
+ 20ξ3

− 20ξ2
− 2ξ + 2)) + 5c̄2

∗∗e∗(ξ − 1)4(5e∗ξ (5ξ3
+ 6ξ2

− 1)

+e∗∗(−8ξ4
+ 2ξ3

+ 6ξ2
+ ξ − 1))) − c̄∗e∗

∂6u∗

G

∂x6 (−5c̄2
∗(3ξ + 1)(ξ − 1)3(e∗∗(4ξ4

+ 2ξ3
− 6ξ2

− ξ + 1) − e∗ξ (ξ3
+ 2ξ2

− 1))

+4c̄∗c̄∗∗(ξ − 1)5(e∗ξ (20ξ2
+ 27ξ + 7) + e∗∗(−10ξ3

+ ξ2
+ 7ξ + 2)) + c̄2

∗∗e∗(5ξ + 3)(ξ − 1)7))] + O(h7) (20)
wi th

xx = 360c̄∗c̄∗∗(e∗ξ + e∗ − e∗∗ξ + e∗∗)(c̄∗e∗ξ (ξ + 1) + c̄∗e∗∗(−2ξ2
+ ξ + 1) + c̄∗∗e∗(ξ − 1)2) .

In case of a homogeneous material with ξ = 1, the following stencil coefficients ml and kl (l = 1, 2, 3) and the
local truncation error ehomog follow from Eqs. (19) and (20):

m1 =
1

24c∗∗

, m2 =
5

12c∗∗

, m3 =
1

24c∗∗

, k1 = −
1
2

, k2 = 1 , k3 = −
1
2

(21)

nd

ehomog =
h6 ∂6u∗∗

G
+ O(h8) . (22)
480 ∂x6

6
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The global semidiscrete system of equations includes the 3-point stencils for homogeneous materials inside each
subdomain Ωl with the stencil coefficients given by Eq. (21) and the sixth order of the local truncation error (see
Eq. (22)) as well as the 3-point stencils intersected by the interface (with the stencil coefficients given by Eq. (19))
that provide the fifth order of the local truncation error (see Eq. (20)). This global semidiscrete system provides the
4th order of accuracy of the entire numerical solution at mesh refinement; see the numerical examples below.

Remark 5. In order to simplify the explanation of the idea of the imposition of the interface conditions for OLTEM,
in this section we have considered a uniform stencil shown in Fig. 1. A more general case of non-uniform stencils
for the grid points close to irregular boundary is considered in the next section for the 2-D case (see also the
treatment of 1-D non-uniform stencils for homogeneous materials in our paper [36]).

4. OLTEM for the 2-D wave and heat equations with discontinuous coefficients

In this section we first introduce the local truncation error for 9-point stencils with the interface conditions in
the 2-D case. Then, we derive OLTEM with 9-point stencils for heterogeneous materials in the case of zero load
(source) term. Finally, we take into account nonzero load (source) term.

4.1. Zero load (source) term fl = 0 in Eqs. (1) and (2)

Here, we extend OLTEM described in the previous Section for the 1-D case to the 2-D case. In contrast to
the 1-D case, the interface between different materials in the 2-D case is a curve and the interface conditions also
include the components of the unit normal to the interface; see Eq. (4). Let us consider a 2-D bounded domain
and a Cartesian rectangular mesh with a mesh size h where h is the size of the mesh along the x-axis, byh is
the size of the mesh along the y-axis (by is the aspect ratio of the mesh). Similar to OLTEM for a homogeneous
material (see [36–38]), 9-point uniform stencils are used for the internal grid points located far from the boundary
and 9-point non-uniform stencils are used for the grid points located close to the boundary in the 2-D case. The
9-point stencil considered here is similar to that for 2-D linear quadrilateral finite elements. The spatial locations of
the 8 degrees of freedom that are close to the internal degree of freedom u5 and contribute to the 9-point stencil for
this degree of freedom are shown in Fig. 2a for the case when the boundary and the Cartesian mesh are matched or
when the degree of freedom u5 is located far from the boundary. In the case of non-matching grids when the grid
points do not coincide with the boundary, the neighboring grid points for the internal grid point u5 that are located
outside the physical domain are moved to the boundary of the physical domain as shown in Fig. 2b. In order to find
the boundary points that are included into the stencil for the degree of freedom u5 (see Fig. 2b) we join the central
point u5 with the 8 closest grid points; i.e., we have eight straight lines along the x− and y−axes and along the
diagonal directions (the dashed lines) of the grid; see Fig. 2b. If any of these lines intersects the boundary of the
domain then the corresponding grid point (designated as ◦) should be moved to the boundary (the new location is
designated as •). This means that for all internal points located within the domain we use a 9-point uniform (see
Fig. 2a) or non-uniform (see Fig. 2b) stencil. For convenience, the local numeration of the grid points from 1 to 9
is used in Figs. 2a and 2b as well as in the derivations below for the 9-point uniform and non-uniform stencils.

The interface in Fig. 3a divides the 9-point uniform stencil into two parts with different material properties. In
order to impose the interface condition at the interface, first we select one point at the interface with the coordinates
xG = xG,3 and yG = yG,3. This point can be selected as follows. We join the central point u5 with the 8 closest grid
points; i.e., we have eight straight lines along the x− and y−axes and along the diagonal directions of the grid; see
Fig. 3a. If several these straight lines intersect the interface then we select the intersection point closest to the grid
points u5. Then, for the procedure described below, we select four additional points at the interface located at the
same distances h̄ =

√
(xG,i+1 − xG,i )2 + (yG,i+1 − yG,i )2 (i = 1, 2, 3, 4) from each other (the numerical experiments

how that small distances h̄ = h/10 yield accurate results). In the case of the intersection of the 9-point non-uniform
tencil in Fig. 2b by the interface, the selection of five points on the interface for the 9-point non-uniform stencil
n Fig. 2b is similar to that for the uniform stencil in Fig. 3a.

To describe the coordinates of the boundary points for non-uniform stencils (see Fig. 2b) we introduce 9
oefficients 0 ≤ dp ≤ 1 (p = 1, 2, . . . , 9) as follows:
x p = x5 + (i − 2)dph , yp = y5 + ( j − 2)dpbyh , (23)

7
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Fig. 2. The spatial locations of the degrees of freedom u p (p = 1, 2, . . . , 9) that contribute to the 9-point uniform (a) and nonuniform (b)
tencils for the internal degree of freedom u5.

Fig. 3. The spatial locations of the degrees of freedom u p (p = 1, 2, . . . , 9) and the five interface points Gi (i = 1, 2, . . . , 5) on the general
a) and horizontal (b) interface that contribute to the 9-point uniform stencils for the internal degree of freedom u5.

here d5 = 0, p = 3( j − 1) + i with i, j = 1, 2, 3. Eq. (23) can be also used for the coordinates of the grid points
nside the domain with the corresponding coefficients dp equal to unity (dp = 1).

To describe the coordinates of the five points on the interface (see Fig. 3a) we introduce 10 coefficients dx,p and
y,p (p = 1, 2, . . . , 5) as follows (see also Fig. 3a):

xG, j = xG + dx, j h , yG, j = yG + dy, j byh , j = 1, 2, . . . , 5 , (24)

here dx,3 = dy,3 = 0 for the central interface point G = G3 with the coordinates xG = xG,3 and yG = yG,3; see
ig. 3.

emark 6. Some of the four interface points G1, G2, G4, G5 can be located slightly outside the 9-point cell. The
erivations presented below are also valid for this case.

Eq. (5) for the 9-point stencils for the grid point u5 (see Fig. 2, Fig. 3) will be assumed in the following form:

h2
9∑

p=1

m p[ap
dnu∗,num

p

dtn
+ (1 − ap)]

dnu∗∗,num
p

dtn
+

9∑
p=1

kp[apu∗,num
p + (1 − ap)u∗∗,num

p ] = f̄5 , (25)

here f̄5 = 0 in the case of zero load (source) fl = 0 in Eqs. (1) and (2), the 18 unknown stencil coefficients
p, kp (p = 1, 2, . . . , 9) are to be determined from the minimization of the local truncation error, the coefficients

p = 1 if point u p belongs to material ∗ and ap = 0 if point u p belongs to another material ∗∗ (i.e., only one
variable u∗,num

p or u∗∗,num
p is included into Eq. (25) for each grid point; see Fig. 3a with a1 = a2 = a3 = a5 = a6 = 1
nd a4 = a7 = a8 = a9 = 0), the superscript n in the time derivative in Eq. (25) is n = 1 for the heat equation

8
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and n = 2 for the wave equation. The local truncation error e follows from Eq. (25) by the replacement of the
numerical solution u∗,num

p and u∗∗,num
p by the exact solution u∗

p and u∗∗
p :

e = h2
9∑

p=1

m p[ap
dnu∗

p

dtn
+ (1 − ap)

dnu∗∗
p

dtn
] +

9∑
p=1

kp[apu∗

p + (1 − ap)u∗∗

p ] − f̄5 . (26)

ne of the ideas of the new approach is to include the interface conditions for the exact solution in the expression
or the local truncation error in Eq. (26) as follows:

e = h2
9∑

p=1

m p[ap
dnu∗

p

dtn + (1 − ap)
dnu∗∗

p

dtn ] +

9∑
p=1

kp[apu∗
p + (1 − ap)u∗∗

p ] + {

5∑
j=1

q1, j (u∗

G, j − u∗∗

G, j )

+

5∑
j=1

hq2, j [e∗(nx, j
∂u∗

G, j

∂x
+ ny, j

∂u∗

G, j

∂y
) − e∗∗(nx, j

∂u∗∗

G, j

∂x
+ ny, j

∂u∗∗

G, j

∂y
)] +

4∑
j=2

h2q3, j (
∂nu∗

G, j

∂tn −
∂nu∗∗

G, j

∂tn )

+h3q4[e∗(nx,3
∂n+1u∗

G,3

∂tn∂x
+ ny,3

∂n+1u∗

G,3

∂tn∂y
) − e∗∗(nx,3

∂n+1u∗∗

G,3

∂tn∂x
+ ny,3

∂n+1u∗∗

G,3

∂tn∂y
)] + h4q5(

∂2nu∗

G,3

∂t2n −
∂2nu∗∗

G,3

∂t2n )} − f̄5 , (27)

where nx, j and ny, j are the x and y-components of the normal vectors at the five selected interface points (see
Fig. 3a), the coefficients q1,i , q2,i , q3, j , q4 and q5 (i = 1, 2, . . . , 5, j = 2, 3, 4) will be used for the minimization of
the local truncation error in Eq. (27), the expressions in parenthesis after q1, j and q2, j are the interface conditions at
the five selected interface points, Eq. (9), the expressions in parenthesis after q3, j , q4 and q5 are the time derivative
of the interface conditions (similar to those in the previous Section 3 for the 1-D case). Therefore, the expression in
the curled brackets in Eq. (27) is zero and Eqs. (26) and (27) yield the same local truncation error e. The expression
in the curled brackets in Eq. (27) is the generalization of the interface conditions in Eq. (12) for the 1-D case to
the 2-D case when the interface is a curve. The addition of the interface conditions at five points in Eq. (27) with
the coefficients q1, j , q2, j , q3,i , q4 and q5 allows us to obtain the analytical expressions for the stencil coefficients
for the horizontal interface as well as to get a high accuracy for general geometry of interfaces; see below.

Remark 7. Only 32 out of the 33 coefficients m p, kp, q1, j , q2, j , q3,i , q4 and q5 (p = 1, 2, . . . , 9, i = 2, 3, 4,
j = 1, 2, 3, 4, 5) in Eq. (27) can be considered as unknown coefficients. This can be explained as follows. In the
case of zero load (source) term fl = 0 and f̄5 = 0, Eq. (27) can be rescaled by the division of the left- and
right-hand sides of Eq. (27) by any scalar; i.e., one of the coefficients can be selected as unity and there will be
only 32 unknown rescaled coefficients. The case of nonzero load (source) term f̄5 ̸= 0 can be similarly treated
because the term f̄5 is a linear function of the stencil coefficients; see below. For convenience, we will scale the
stencil coefficients in such a way that k5 is k5 = 1.

In order to represent the local truncation error e as a Taylor series, let us expand the exact solution at the grid
points and the five selected interface points in Eq. (27) into a Taylor series in the vicinity of the central interface
point G = G3 with the coordinates xG = xG,3 and yG = yG,3 (see Fig. 3) at small h ≪ 1 as follows:

vp = vG +
∂vG

∂x
[((i − 2)dp − dxG)h] +

∂vG

∂y
[((l − 2)dp − dyG)byh] +

∂2vG

∂x2

[((i − 2)dp − dxG)h]2

2!

+
∂2vG

∂y2

[((l − 2)dp − dyG)byh]2

2!
+ 2

∂2vG

∂x∂y
[((i − 2)dp − dxG)h][((l − 2)dp − dyG)byh]

2!
+ · · · , (28)

w j = vG +
∂wG

∂x
[dx, j h] +

∂wG

∂y
[dy, j byh] +

∂2vG

∂x2

[dx, j h]2

2!

+
∂2wG

∂y2

[dy, j byh]2

2!
+ 2

∂2wG

∂x∂y
[dx, j h][dy, j byh]

2!
+ · · · , (29)

here p = 3(l − 1) + i with i, l = 1, 2, 3 and j = 1, 2, . . . , 5 (see Fig. 3a), dxG =
xG−x5

h and dyG =
yG−y5

by h . The

function vp in Eq. (28) is u∗
p, u∗∗

p ,
∂nu∗

p
∂tn and

∂nu∗∗
p

∂tn , the function w j in Eq. (29) is u∗

G, j , u∗∗

G, j ,
∂u∗

G, j
∂x ,

∂u∗∗
G, j

∂x ,
∂u∗

G, j
∂y ,

∂u∗∗
G, j

∂y ,
∂nu∗

G, j
∂tn ,

∂nu∗∗
G, j

∂tn ,
∂n+1u∗

G, j
∂tn∂x ,

∂n+1u∗∗
G, j

∂tn∂x ,
∂n+1u∗

G, j
∂tn∂y ,

∂n+1u∗∗
G, j

∂tn∂y ,
∂2nu∗

G, j
∂t2n ,

∂2nu∗∗
G, j

∂t2n . The exact solution u∗

G and u∗∗

G to the
wave and heat equations, Eqs. (1) and (2), at the central interface point G = G with the coordinates x = x
3 G G,3

9
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and yG = yG,3 meets the following equations:

∂nu∗

G

∂tn
− c̄∗∇

2u∗

G = f ∗

G ,
∂nu∗∗

G

∂tn
− c̄∗∗∇

2u∗∗

G = f ∗∗

G , (30)

∂ (i+ j+ln)u∗

G
∂t ln∂x i ∂y j − c̄∗

∂ (i+ j+(l−1)n)
∇

2u∗

G

∂x i ∂y j ∂t (l−1)n =
∂ (i+ j+(l−1)n) f ∗

G

∂x i ∂y j ∂t (l−1)n ,
∂ (i+ j+ln)u∗∗

G
∂t ln∂x i ∂y j − c̄∗∗

∂ (i+ j+(l−1)n)
∇

2u∗∗

G

∂x i ∂y j ∂t (l−1)n =
∂ (i+ j+(l−1)n) f ∗∗

G

∂x i ∂y j ∂t (l−1)n (31)

ith l = 1, 2 and i, j = 0, 1, 2, 3, 4, . . .. Here, Eq. (31) is directly obtained by the differentiation of Eq. (30) with
espect to tn , x i and y j . Inserting Eqs. (28)–(29) and Eqs. (30)–(31) with zero load (source) term f̄5 = 0 into
q. (27) we will get the following local truncation error in space e:

e = b1u∗

G + b2u∗∗

G + h(b3
∂u∗

G

∂x
+ b4

∂u∗∗

G

∂x
+ b5

∂u∗

G

∂y
+ b6

∂u∗∗

G

∂y
)

+h2(b7
∂2u∗

G

∂x2 + b8
∂2u∗∗

G

∂x2 + b9
∂2u∗

G

∂x∂y
+ b10

∂2u∗∗

G

∂x∂y
+ b11

∂2u∗

G

∂y2 + b12
∂2u∗∗

G

∂y2 )

+h3(b13
∂3u∗

G

∂x3 + b14
∂3u∗∗

G

∂x3 + b15
∂3u∗

G

∂x2∂y
+ +b16

∂3u∗∗

G

∂x2∂y
+ b17

∂3u∗

G

∂x∂y2 + b18
∂3u∗∗

G

∂x∂y2 + b19
∂3u∗

G

∂y3 + b20
∂3u∗∗

G

∂y3 )

+h4(b21
∂4u∗

G

∂x4 + b22
∂4u∗∗

G

∂x4 + b23
∂4u∗

G

∂x3∂y
+ b24

∂4u∗∗

G

∂x3∂y
+ b25

∂4u∗

G

∂x2∂y2

+b26
∂4u∗∗

G

∂x2∂y2 + b27
∂4u∗

G

∂x∂y3 + b28
∂4u∗∗

G

∂x∂y3 + b29
∂4u∗

G

∂y4 + b30
∂4u∗∗

G

∂y4 )

+h5(b31
∂5u∗

G

∂x5 + b32
∂5u∗∗

G

∂x5 + b33
∂5u∗

G

∂x4∂y
+ b34

∂5u∗∗

G

∂x4∂y
+ b35

∂5u∗

G

∂x3∂y2 + b36
∂5u∗∗

G

∂x3∂y2

+b37
∂5u∗

G

∂x2∂y3 + b38
∂5u∗∗

G

∂x2∂y3 + b39
∂5u∗

G

∂x∂y4 + b40
∂5u∗∗

G

∂x∂y4 + b41
∂5u∗

G

∂y5 + b42
∂5u∗∗

G

∂y5 )

+h6(b43
∂6u∗

G

∂x6 + b44
∂6u∗∗

G

∂x6 + b45
∂6u∗

G

∂x5∂y
+ b46

∂6u∗∗

G

∂x5∂y
+ b47

∂6u∗

G

∂x4∂y2 + b48
∂6u∗∗

G

∂x4∂y2 + b49
∂6u∗

G

∂x3∂y3 + b50
∂6u∗∗

G

∂x3∂y3

+b51
∂6u∗

G

∂x2∂y4 + b52
∂6u∗∗

G

∂x2∂y4 + b53
∂6u∗

G

∂x∂y5 + b54
∂6u∗∗

G

∂x∂y5 + b55
∂6u∗

G

∂y6 + b56
∂6u∗∗

G

∂y6 ) + O(h7) , (32)

here the coefficients bp (p = 1, 2, . . . , 56) are expressed in terms of the coefficients mi , ki , q1, j , q2, j , q3,l , q4
nd q5; see Appendix B. We should mention that by the use of the wave (heat) equation, Eqs. (30)–(31), the time
erivatives for the local truncation error in Eq. (32) are excluded.

For the uniform stencil with the horizontal (or vertical) interface in Fig. 3b with dp = 1 (p = 1, 2, . . . , 9),
with the distance ξbyh between the central grid point u∗∗

5 and the horizontal interface, with the components of
the normal vectors to the interface nx, j = 0 and ny, j = 1 ( j = 1, 2, 3, 4, 5), the expressions for coefficients bp

(p = 1, 2, . . . , 56) are simplified and the stencil coefficients can be analytically obtained. For example, equating
to zero coefficients bp = 0 (p = 1, 2, . . . , 26, 29, 30, 38), q2,1 = q3,2 = q3,4 = 0 and using the scaling equation
k5 = 1 we get 33 algebraic equations with the 33 unknown stencil coefficients mi , ki (i = 1, 2, . . . , 9) and q1, j ,

2, j , q3,l , q4 and q5 ( j = 1, 2, . . . , 5, l = 2, 3, 4). Solving this system we can analytically find the 18 unknown
stencil coefficients mi and ki (i = 1, 2, . . . , 9); see Appendix C. Because some of the coefficients bp in Eq. (32) are
linearly dependent, the analytical solution given in Appendix C zeros the first 30 coefficients bp in Eq. (32); i.e., for
uniform stencils with the horizontal interface we can get the fifth order of the local truncation error in Eq. (32)
(see Appendix C). It is also necessary to mention that for the uniform distribution of the five interface points G i

(i = 1, 2, . . . , 5) (see Fig. 3b), the stencil coefficients in Appendix C are independent of the distance h̄ between
the interface points G i .

Some analytical results for the stencil coefficients can be also obtained for the uniform stencil and the interface
represented by an inclined line. In this case, if we zero the coefficients bp = 0 (p = 1, 2, . . . , 30) up to the fourth
order in Eq. (32) then the stencil coefficients ki = 0 (i = 1, 2, . . . , 9) are zero; i.e., this solution is unacceptable
and we cannot zero all coefficients bp = 0 (p = 1, 2, . . . , 26, 29, 30) up to the fourth order.

Therefore, we will use the following procedure in order to minimize the order of the local truncation error in
Eq. (32) for uniform and non-uniform stencils for the general geometry of the interface. First, we will zero the first
10
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20 coefficients bp in Eq. (32) up to the third order with respect to h; i.e.,

bp = 0 , p = 1, 2, . . . , 20 . (33)

hen, in order to have a sufficient number of equations for the calculation of the 33 stencil coefficients including
i , ki (i = 1, 2, . . . , 9) and q1, j , q2, j , q3,l , q4, q5 ( j = 1, 2, . . . , 5, l = 2, 3, 4), we use the least square method

for the minimization of coefficients bp related to the fourth and higher orders of the local truncation error with the
following residual R:

R =

30∑
p=21

b2
p + h1

42∑
p=31

b2
p + h2

56∑
p=43

b2
p , (34)

where h1 and h2 are the weighting factors to be selected (e.g., the numerical experiments show that h1 = h2 = 0.1
yields accurate results). In order to minimize the residual R with the constraints given by Eq. (33), we can form a
new residual R̄ with the Lagrange multipliers λl :

R̄ =

20∑
l=1

λlbl +

30∑
p=21

b2
p + h1

42∑
p=31

b2
p + h2

56∑
p=43

b2
p . (35)

The residual R̄ is a quadratic function of the stencil coefficients mi , ki (i = 1, 2, . . . , 9) and q1, j , q2, j ,
3,r , q4, q5 ( j = 1, 2, . . . , 5, r = 2, 3, 4) and a linear function of the Lagrange multipliers λl ; i.e., R̄ =

R̄(mi , ki , q1, j , q2, j , q3,r , q4, q5, λl). In order minimize the residual R̄ = R̄(mi , ki , q1, j , q2, j , q3,r , q4, q5, λl), the
following equations based on the least square method for the residual R̄ can be written down:

∂ R̄
∂mi

= 0 ,
∂ R̄
∂ki

= 0 ,
∂ R̄

∂q1, j
= 0 ,

∂ R̄
∂q2, j

= 0 ,

∂ R̄
∂q3,r

= 0 ,
∂ R̄
∂q4

= 0 ,
∂ R̄
∂q5

= 0 ,
∂ R̄
∂λl

= 0 , (36)

i = 1, 2, . . . , 9 , j = 1, 2, . . . , 5 , r = 2, 3, 4 , l = 1, 2, . . . , 20 ,

here equation ∂ R̄
∂k5

= 0 should be replaced by k5 = 1; see Remark 7 after Eq. (27). Eq. (36) forms a system of
53 linear algebraic equations with respect to 33 unknown coefficients mi , ki (i = 1, 2, . . . , 9) and q1, j , q2, j , q3,r ,

4 and q5 ( j = 1, 2, . . . , 5, r = 2, 3, 4) and 20 Lagrange multipliers λl (l = 1, 2, . . . , 20). Solving these linear
algebraic equations numerically, we can find the coefficients mi , ki (i = 1, 2, . . . , 9) for the 9-point non-uniform
and uniform stencils. As can be seen, the presented procedure provides the fifth order of the local truncation error
for the 9-point uniform stencils with a horizontal interface and the fourth order of the local truncation error for the
9-point uniform and non-uniform stencils with the general geometry of the interface. The 9-point uniform stencils
of OLTEM for a homogeneous material (with no interface) provide the sixth order of the local truncation error. This
leads to the fourth order of accuracy of global solutions; see the numerical examples below. Moreover, due to the
minimization of the leading high-order terms of the local truncation error in Eq. (35) for uniform and nonuniform
stencils, at the same numbers of degrees of freedom OLTEM on irregular domains yields more accurate results than
those obtained by high-order finite elements (up to the third order) with much wider stencils; see the numerical
examples below.

Remark 8. To estimate the computational costs of the solution of 53 linear algebraic equations formed by Eq. (36)
we solved 106 such systems with a general MATLAB solver on a simple student laptop computer (Processor: Intel
(R) Core(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz). The computation ‘wall’ time was T = 5658 s for 106

systems or the average time for one system was 0.005658 s. Because the coefficients mi , ki (i = 1, 2, . . . , 9) are
independently calculated for different grid points, the computation time of their calculation for different grid points
can be significantly reduced on modern parallel computers. This means that for large global systems of equations,

the computation time for the calculation of the coefficients mi , ki (i = 1, 2, . . . , 9) is very small compared to
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that for the solution of the global system of equations. We should mention that the coefficients q1, j , q2, j , q3,r ,
4 and q5 ( j = 1, 2, . . . , 5, r = 2, 3, 4) are used for the calculation of non-zero load (source) term f̄5 only (see

the next section) while the Lagrange multipliers λl in the local system of equations, Eq. (36), are only used for
the calculation of the unknown coefficients mi , ki (i = 1, 2, . . . , 9), q1, j , q2, j , q3,r , q4 and q5 ( j = 1, 2, . . . , 5,

= 2, 3, 4) and are not used in the global system of equations.

The global semi-discrete system of equations includes the 9-point uniform and nonuniform stencils with and
ithout interfaces between different materials (see Figs. 2–3) for all internal grid points located inside the domain.
he difference between the 9-point uniform and nonuniform (for the grid points located close to curved boundary;
ee Fig. 2b) stencils is in the values of the dp (p = 1, 2, . . . , 9) coefficients in Eq. (23). These dp coefficients
ontribute to the calculations of the bp coefficients in Eq. (32); see also Appendix B. Numerical examples with the

application of nonuniform stencils to curved boundary can be found in our recent papers [38,41,45] for PDEs with
constant coefficients.

Remark 9. In the presented approach we use the non-diagonal mass matrix with 9 m p (p = 1, 2, . . . , 9) coefficients
contributing to the mass matrix. In this case we can get a high order of accuracy. Therefore, in the numerical
examples considered below we use implicit time integration methods. In our paper [16] we have shown that the
9-point stencils with the diagonal mass matrix (m5 ̸= 0 and m p = 0 (p = 1, . . . , 4, 6, . . . , 9)) can provide only
the second order of accuracy (similar to that for linear finite elements) for the wave (heat) equation with constant
coefficients.

Remark 10. Here we considered the derivation of the stencils coefficients of the 9-point stencils for the 2-D wave
and heat equations with heterogeneous materials that include interfaces. The derivation of the stencils coefficients
of the 9-point stencils for the 2-D wave and heat equations with homogeneous materials that are also used for
numerical simulations is presented in our paper [36]. It is interesting to mention that the stencil coefficients can be
also derived by using the central grid point with the coordinates x5 and y5 in Eqs. (28)–(32) instead of the interface
point with the coordinates xG and yG .

4.2. Nonzero load (source) term fl ̸= 0 in Eqs. (1) and (2)

The inclusion of non-zero loading (source) term fl in the partial differential equations, Eqs. (1) and (2), leads
to the non-zero term f̄5 in the stencil equation, Eq. (25) (similar to Eq. (5)). As we mentioned after Eq. (4), the
functions fl can be discontinuous across the interfaces. The expression for the term f̄5 can be calculated from
the procedure used for the derivation of the local truncation error in the case of zero loading (source) term as
follows. In the case of non-zero loading (source) term fl(xxx, t) ̸= 0 and f5 ̸= 0, the insertion of Eqs. (28)–(29) and
Eqs. (30)–(31) into Eq. (27) yields the following local truncation error in space e f :

e f = e − [ f̄5 − h2((a1m1 + a2m2 + a3m3 + a4m4 + a5m5 + a6m6 + a7m7 + a8m8 + a9m9 + q3,2 + q3,3 + q3,4) f ∗

G

+(−a1m1 + m1 − a2m2 + m2 − a3m3 + m3 − a4m4 + m4 − a5m5 + m5 − a6m6 + m6 − a7m7 + m7 − a8m8 + m8

−a9m9 + m9 − q3,2 − q3,3 − q3,4) f ∗∗

G ) + h3...] , (37)

where e is the local truncation error in space given by Eq. (32) for zero loading (source) term, f ∗

G and f ∗∗

G designate
functions f ∗(x, y, t) and f ∗∗(x, y, t) calculated at the central interface point with the coordinates x = xG and
y = yG . Equating to zero the expression in the square brackets on the right-hand side of Eq. (37), we will get the
expression for f̄5:

f̄5 = h2((a1m1 + a2m2 + a3m3 + a4m4 + a5m5 + a6m6 + a7m7 + a8m8 + a9m9 + q3,2 + q3,3 + q3,4) f ∗

G

+(−a1m1 + m1 − a2m2 + m2 − a3m3 + m3 − a4m4 + m4 − a5m5 + m5 − a6m6 + m6 − a7m7 + m7 − a8m8 + m8

−a9m9 + m9 − q3,2 − q3,3 − q3,4) f ∗∗

G ) + h3... , (38)

as well as we will get the same local truncation errors e f = e for zero and non-zero loading (source) term (see
Appendix D for the detailed expression of f̄5). This means that the coefficients mi , ki (i = 1, 2, . . . , 9) of the stencil
equations are first calculated for zero loading (source) term fl = 0 as described in Section 4.1. Then, the nonzero

¯
loading (source) term f5 given by Eq. (38) is used in the stencil equation, Eq. (25).

12
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5. Numerical examples

In this Section the computational efficiency of OLTEM developed for the solution of the wave and heat equations
with discontinuous coefficients will be demonstrated and compared with conventional linear (Q2, T3, Q4) and
high order (quadratic Q3, T6, Q9 and cubic T10, Q16) finite elements. ‘T’ and ‘Q’ designate the triangular and
quadrilateral finite elements in the 1-D (Q2, Q3) and 2-D (T3, Q4, T6, Q9, T10, Q16) cases. For finite element
calculations, the commercial finite element software ‘COMSOL’ with isoparametric finite elements is used. Similar
to the finite element terminology, a grid point of a Cartesian mesh will be called a node. In order to compare the
accuracy of OLTEM with FEM, the following errors are considered in this Section. The relative errors e j

u for the
function u and e j

v for its first time derivative at the j th node are defined as:

e j
u =

| unum
j − uexact

j |

uexact
max

and e j
v =

| vnum
j − vexact

j |

vexact
max

, j = 1, 2, . . . , N . (39)

The maximum relative errors emax
u for the function u and emax

v for its first time derivative are defined as:

emax
u = max

j
e j

u and emax
v = max

j
e j
v , j = 1, 2, . . . , N . (40)

n Eqs. (39)–(40) the superscripts ′num ′ and ′exact ′ correspond to the numerical and exact solutions, N is the
otal number of the grid points used in calculations, uexact

max and vexact
max are the maximum absolute value of the exact

olution over the entire spatial and temporal domain for the function u and its first time derivative, respectively. We
lso use the L2 error norm for finite elements (e.g., see [46]) and the l2 error norm (e.g., see [47]) for OLTEM:

el2

w = {dx dy
Nx∑
i=0

Ny∑
j=0

[wnum(xi , y j ) − wexact (xi , y j )]2
}

1
2 , (41)

here w = u for the function u and w = v for the its first time derivative v; Nx and Ny are the numbers of Cartesian
rid points along x- and y-axes; xi and y j are the coordinates of Cartesian grid points. All the above mentioned
rrors are evaluated at the final observation time. The errors e j

v and emax
v are used for the wave equation only. For

onvenience, index l related to subdomain Ωl is dropped as well as u and v are called the displacement and the
velocity for the wave equation; and u is called the temperature for the heat equation. For the time integration, the
trapezoidal rule is used for the wave equation and the backward difference method is used for the heat equation.
A sufficiently small size of time steps is used in calculations. Therefore, the error in time is negligible and the
numerical error is related to the space-discretization error only.

Remark 11. The numerical experiments presented below show that at the same numbers of degrees of freedom,
approximately the same time increments can be used for OLTEM and linear finite elements. For example, for the
problems in Sections 5.3–5.4, OLTEM and linear finite elements with approximately 3300 degrees of freedom
require the time increments ∆t = 0.00122 for the small error in time. However, the maximum relative error in
space in this case is 1.2% for OLTEM and 70% for linear finite elements. In order to have the same error in space
for OLTEM and linear finite elements, a much larger number of degrees of freedom is required for linear finite
elements. However, this leads to a significant decrease in the size of time increments for linear finite elements.
For example, for the maximum relative error in space of 1.2%, linear finite elements requires 256895 degrees of
freedom with much smaller ∆t = 0.0000185 time increments. This trend was observed for all problems considered
below as well as for the wave and heat equations with homogeneous materials considered in our paper [37].

Remark 12. In OLTEM presented in the paper, function u is the basic unknown in the stencil equations. Therefore,
in the numerical examples in this section we plot function u. If necessary the fluxes for OLTEM can be calculated
during post-processing using any approach and any approximation for fluxes. This is exactly the same procedure
as that for conventional finite elements.

5.1. Traveling waves in a 1-D bi-material bar

Let us consider wave propagation in the 1-D bi-material bar; see Fig. 4. Young’s modulus E , the density ρ and
2
the corresponding wave velocity c = E/ρ are selected to be E I = 1/2, ρI = 1/2 and cI = 1 for the left half of

13
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Fig. 4. Wave propagation in a 1-D bi-material bar.

Fig. 5. The distribution of the relative errors in displacement eu (a) and in velocity ev (b) as a function of distance x from the left end
f the bi-material bar; see Fig. 4. The numerical solutions of the 1-D wave equation are obtained by OLTEM (curve 1) and by linear Q2
nite elements (curve 2) on a uniform mesh of size h = 1/40.

he bar ΩI and E I I = 1/4, ρI I = 1 and cI I = 1/2 for the right half of the bar ΩI I . The following coefficients
I and eI I are used in the interface conditions: eI = E I = 1/2 and eI I = E I I = 1/4. Based on the method of
anufactured solutions, the following exact solution to the 1-D wave equation can be constructed:

u(x, t) =

{
cos{4π (x + t)} in ΩI

cos{4π (2x + t)} in ΩI I .
(42)

It meets the interface conditions shown in Fig. 4 as well as the 1-D wave equation with zero loading term. The
initial conditions at time t = 0 in the entire domain and the Dirichlet boundary conditions at both ends of the bar
are imposed according to the exact solution given by Eq. (42). This problem is solved by linear Q2 finite elements
and by OLTEM.

In order to compare the accuracy of the numerical results obtained by OLTEM and by linear finite elements
(these two methods have the same width of the stencil equations), Fig. 5 shows the relative error in displacement
eu and in velocity ev at the final observation time T = 10 as a function of the distance x along the bar for the mesh
size h = 1/40. It can be seen that the results obtained by OLTEM are much more accurate than those obtained
by linear Q2 finite elements; see Fig. 5. In order to compare the convergence of different numerical techniques at
mesh refinement, the maximum relative errors in displacement emax

u and in velocity emax
v are plotted in Fig. 6 as

a function of the mesh size h in the logarithmic scale. As can be seen, OLTEM yields more accurate results than
those by linear Q2 finite elements at the same h. It can also be seen from Fig. 6 that the order of accuracy for
OLTEM is close to four. This is in agreement with the theoretical results in Section 3.

In the Introduction we mentioned the finite element techniques for the wave equation (see [1–8] and other)
based on the modified integration rule (MIR) or the averaged mass matrix (these techniques coincide in the 1-D
case and result in 3-point stencils for linear finite elements). They improve the order of convergence of linear finite
elements to four for the wave equation with constant coefficients. However, these techniques do not improve the
order of convergence of linear finite elements in the case of discontinuous coefficients; see curve 2 for Q2 M I R
in Fig. 6.
14
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Fig. 6. The maximum relative errors in displacement emax
u (a) and in velocity emax

v (b) as a function of the mesh size h in the logarithmic
cale at mesh refinement. The numerical solutions of the 1-D wave equation for the bi-material bar are obtained by OLTEM (curve 1), by
onventional linear Q2 finite elements (curve 3) and by the modified linear Q2_M I R finite elements (curve 2) on uniform meshes.

It can be concluded that in contrast to the known finite element techniques with the 3-point stencils, the proposed
LTEM improves the order of accuracy to four not only for the wave equation with constant coefficients but also

or the wave equation with discontinuous coefficients.

.2. Wave propagation in a 1-D bi-material bar under impact loading

Let us consider a 1-D bi-material bar under impact loading; see Fig. 4. Young’s modulus E , the density ρ and
he corresponding wave velocity c2

= E/ρ are selected to be E I = 1, ρI = 1 and cI = 1 for the left half of the
ar ΩI and E I I = 1/4, ρI I = 1 and cI I = 1/2 for the right half of the bar ΩI I . The following coefficients eI and
I I are used in the interface conditions: eI = E I = 1 and eI I = E I I = 1/4. The boundary conditions are: the
isplacement u(x = 0, t) = t is applied at the left end of the bar. This corresponds to the velocity v(x = 0, t) = 1
nstantaneously applied at the left end of the bar (impact loading). The right end of the bar is free of forces. The
nitial displacements and velocities at time t = 0 are zero, the observation time is selected to be T = 0.8. This
roblem has the continuous solution for the displacement and the discontinuous solution for the velocities. The
xact solution for this problem (see curves 3 in Fig. 7) can be found using the approach presented in [16].

This impact problem is solved by OLTEM and by linear and quadratic finite elements on the same mesh with 201
egrees of freedom. It is known that the accurate time integration of the semidiscrete systems for impact problems
ay lead to large spurious oscillations in numerical results. Therefore, the two-stage time-integration procedure
ith the basic computations and the filtering stage (that has been developed in our papers [48–50]) is used to
btain accurate and non-oscillatory numerical results. The basic calculations in this procedure correspond to the
ccurate time integration of the semidiscrete system and are equivalent to the time integration procedure used for
he first test problem in Section 5.1. The velocity distributions along the bar at time T = 0.8 after the stage of basic
omputations and after the filtering stage are shown in Fig. 7 for OLTEM and for linear and quadratic finite elements
n the same mesh with 201 degrees of freedom. As can be seen, two considered approaches yield large spurious
scillation after basic computations. However, it is very easy to compare the numerical results after the filtering
tage. As can be seen from Fig. 7b,d, after the filtering stage OLTEM yields more accurate results compared to
hose obtained by linear finite elements and slightly more accurate results compared to those obtained by quadratic
nite elements.

It is interesting to note that higher order isogeometric elements (with continuous high-order spatial derivatives)
pplied to the same 1-D impact problem yield more accurate results than lower order isogeometric elements
e.g., see [50]); i.e., the approximation of discontinuous solutions by smooth functions of high-order isogeometric
lements yields accurate results.

.3. Traveling waves in a 2-D bi-material plate with the horizontal interface

Let us consider wave propagation in a 2-D bi-material plate ABC DE F consisting of two square plates ABC F
domain ΩI ) and C DE F (domain ΩI I ) with the horizontal interface FC ; see Fig. 8. For the horizontal interface

he components of the unit normal used in the interface conditions equal nx = 0 and ny = 1 for all interface points.

15



A. Idesman and B. Dey Computer Methods in Applied Mechanics and Engineering 384 (2021) 113998

s
1
c

T

s

i

Fig. 7. The velocity distribution along the 1-D bi-material bar (see Fig. 4 for the bar) after basic computations (a, c) and after the filtering
tage (b, d). The numerical solutions of the 1-D wave equation for the bi-material bar under impact loading are obtained by OLTEM (curve
) and by conventional linear Q2 (curve 2(a, b)) and quadratic Q3 (curve 2(c, d)) finite elements with 201 degrees of freedom. Curve 3
orresponds to the exact solution.

he wave velocities are selected to be cI = 2/
√

5 for ABC F (domain ΩI ) and cI I = 1/
√

5 for C DE F (domain
ΩI I ). The following coefficients eI and eI I are used in the interface conditions: eI = 4/5 and eI I = 1/5. Based on
the method of manufactured solutions, the following exact solution to the 2-D wave equation can be constructed:

u(x, y, t) =

{
cos(4πx)cos{2π (y + 2t)}, in ΩI

cos(4πx)cos{4π (2y + t)}, in ΩI I
(43)

It meets the interface conditions shown in Fig. 8a as well as the 2-D wave equation with zero loading term.
The observation time is chosen to be T = 5. Fig. 9a,c shows the distribution of the displacement and the velocity
of the exact solution at time T = 5. The initial conditions at time t = 0 in the entire domain and the Dirichlet
boundary conditions along AB, B D, DE and E A are imposed according to the exact solution given by Eq. (43).
This problem is solved by linear, quadratic and cubic finite elements as well as by OLTEM. For convenience, for
OLTEM we use the Cartesian meshes for which two vertical grid lines are matched with the boundary B D and
E A. Then, moving the Cartesian mesh in the vertical direction, the non-matched and matched (with the interface
FC as well as with the boundaries AB and DE) meshes can be created. Fig. 8b shows examples of non-matched
and matched Cartesian meshes (only matched meshes are used in finite element calculations).

First, we solve the problem by OLTEM on the matched square (by = 1) Cartesian mesh of size h = 1/80. Fig. 9
shows the distribution of the relative error in the numerical results for the displacement and for the velocity. As
can be seen from Fig. 9b,d, the results obtained by OLTEM are accurate (the errors are small). We should also
mention that the stencil coefficients obtained analytically (see Appendix C) and calculated numerically from the
general procedure (see Eq. (36)) yield practically the same results.

Next, let us analyze the effect of non-matched (with the interface) meshes on the accuracy of the numerical
olutions obtained by OLTEM. We start with a mesh matched with the interface FC ; see Fig. 8c. Then, we move

the mesh in the vertical direction by a distance ξh , (0 ≤ ξ ≤ 1) in order to create meshes non-matched with the

nterface; see Fig. 8b. Fig. 10 shows the results obtained by OLTEM for different distances ξ . As can be seen from
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Fig. 8. A 2-D bi-material plate ABC DE F with the horizontal interface FC (a). Examples of non-matched (b) and matched (c) Cartesian
meshes.

Fig. 9. The distribution of the displacement u (a) and velocity v (c) of the exact solution as well as the distribution of the relative errors
in displacement eu (b) and in velocity ev (d) of the numerical solution for the 2-D plate with the horizontal interface; see Fig. 8a. The
numerical solution for the 2-D wave equation is obtained by OLTEM on a square (by = 1) Cartesian mesh of size h = 1/80.

Fig. 10. The logarithm of the maximum relative errors in displacement emax
u (a) and in velocity emax

v (b) as a function ξ for the 2-D plate
with horizontal interface (Fig. 8a). The numerical solutions of the 2-D wave equation with discontinuous properties are obtained by OLTEM
on square (by = 1) Cartesian meshes with the mesh sizes h = 1/20 (curve 1) and h = 1/30 (curve 2).
17
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Fig. 10, the maximum errors emax
u and emax

v are practically constant for different ξ at the constant mesh size h. This
means that OLTEM yields almost the same results on matched and non-matched (with the interface) meshes.

In order to compare the accuracy of the numerical results obtained by different techniques, the errors emax
u and

emax
v are plotted in Fig. 11 as a function of the number N of degrees of freedom in the logarithmic scale at mesh

refinement. As can be seen, at the same N the numerical results obtained by OLTEM are more accurate than those
obtained by linear and quadratic finite elements as well as they are close to those obtained by cubic finite elements.
For the rectangular plate with Cartesian meshes, the relationship between h and N is h = 1/

√
N . Therefore, the

slopes of the curves at large N in Fig. 11 correspond to the order of convergence. It can be also seen from Fig. 11
that the order of accuracy of OLTEM is close to four which is in agreement with the theoretical results in Section 4.
A similar comparison of OLTEM with finite elements can be obtained in the L2 error norm; see Fig. 12. At the same
N the numerical results obtained by OLTEM are more accurate than those obtained by linear and quadratic finite
elements and are close to those obtained by cubic finite elements. We should also mention that similar numerical
results with the fourth order of convergence of OLTEM were obtained for different grid points.

Next let us compare the partial derivatives ∂u
∂x and ∂u

∂y for OLTEM and finite elements that can be calculated by
post-processing the numerical results for function u. For OLTEM we will use the following simple formula that
requires negligible computation time:(

∂u
∂s

)
i
≈

1
ds

(
1
12

ui−2 −
2
3

ui−1 +
2
3

ui+1 −
1

12
ui+2

)
, (44)

here ds = dx for the x derivative and ds = dy for the y derivative, i = 1, 2, . . . , 5 correspond to five
niformly-spaced grid points with distance ds along the horizontal or vertical grid line that are located in the
ame subdomain. This formula provides the fourth order of the truncation error if the exact solution for ui is used
this can be easily checked using a Taylor series for ui−2, ui−1, ui+1, ui+2):(

∂u
∂s

)
i
−

(
1
12

ui−2 −
2
3

ui−1 +
2
3

ui+1 −
1

12
ui+2

)
= −

ds4

30

(
∂5u
∂s5

)
i
+ O(ds5) . (45)

e calculated the relative errors in the partial derivatives e ∂u
∂x

=
1

( ∂u
∂x )exact

max
|( ∂u

∂x )num
− ( ∂u

∂x )exact
| and e ∂u

∂y
=

1
( ∂u
∂y )exact

max
|( ∂u

∂y )num
− ( ∂u

∂y )exact
| at several grid points and obtained similar results at all points with similar orders

of convergence (here ( ∂u
∂x )exact

max and ( ∂u
∂y )exact

max are the maximum absolute values of the partial derivatives over the
entire domain). Therefore, Fig. 13 presents the numerical results of the convergence for the partial derivatives ∂u

∂x
and ∂u

∂y at two points G(0.4, 0.9) and H (0.3, 1.1) located in different subdomains (see Fig. 8a for the locations of
these points). As can be seen from Fig. 13, OLTEM yields more accurate results for ∂u

∂x and ∂u
∂y compared to those

for linear, quadratic and cubic finite elements at the same number N of degrees of freedom. The fourth order of
accuracy for OLTEM at mesh refinement in Fig. 13 will be studied in more detail in the future (we expected a
lower order of convergence for ∂u

∂x and ∂u
∂y due to the use of numerical values of function ui in Eq. (44)).

5.4. Traveling waves in a 2-D bi-material plate with the inclined interface

Here, we consider wave propagation in a 2-D bi-material plate ABC DE F consisting of two trapezoidal plates
ABC F (domain ΩI ) and C DE F (domain ΩI I ) with the inclined interface FC ; see Fig. 14a. For the inclined
nterface the components of the unit normal used in the interface conditions equal nx = −cos(50◦) and ny =

in(50◦) for all interface points. The same material properties as those in Section 5.3 are selected. We use a test
roblem with the same exact solution as Section 5.3 that is written down in the Cartesian system x ′ - y′; see Fig. 14a
or the x ′ and y′ axes. This solution can be rewritten in the Cartesian system x - y (see Fig. 14b for the x and y
xes) as follows:

u(x, y, t) =

{
cos(4πx ′)cos{2π (y′

+ 2t)}, in ΩI

cos(4πx ′)cos{4π (2y′
+ t)}, in ΩI I

(46)

ith x ′
= xcos(2π/9) + (y − 1)sin(2π/9) and y′

= −xsin(2π/9) + (y − 1)cos(2π/9).
Fig. 15a,c shows the distribution of the displacement and the velocity of the exact solution. The initial conditions
t time t = 0 in the entire domain and the Dirichlet boundary conditions along AB, B D, DE and E A are imposed
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t

Fig. 11. The maximum relative errors in displacement emax
u (a) and in velocity emax

v (b) as a function of
√

N in the logarithmic scale at
mesh refinement for the 2-D plate with the horizontal interface (Fig. 8); N is the number of degrees of freedom. The numerical solutions
of the 2-D wave equation are obtained by OLTEM (curve 1) and by linear and high-order finite elements (curves 2–4) on square (by = 1)
Cartesian meshes. The Cartesian meshes of size h = 1/10, 1/20, 1/40, 1/80 are used for OLTEM and linear finite elements. The slopes of
he curves 2–4 at mesh refinement are 1.93, 3.92, 4.03 in (a) and 2.16, 3.63, 3.45 in (b).

Fig. 12. The L2 error norm for displacement eL2
u (a) and for velocity eL2

v (b) as a function of
√

N in the logarithmic scale at mesh
refinement for the 2-D plate with the horizontal interface (Fig. 8); N is the number of degrees of freedom. The numerical solutions of the
2-D wave equation are obtained by OLTEM (curve 1) and by linear, quadratic and cubic finite elements (curves 2, 3, 4) on square (by = 1)
Cartesian meshes. The Cartesian meshes of size h = 1/10, 1/20, 1/40, 1/80 are used for OLTEM and linear finite elements. The slopes of
the curves 2, 3, 4 at mesh refinement are 1.77, 3.87, 4.15 in (a) and 2.06, 3.91, 4.33 in (b).

according to the exact solution, Eq. (46). The observation time is chosen to be T = 5. The problem is solved by
linear and high-order finite elements as well as by OLTEM. For convenience, Cartesian meshes used by OLTEM are
always matched with the boundary AB and E A; i.e., the mesh is always non-matched with the inclined interface
FC and can be non-matched or matched with the boundary B D and DE . Fig. 14b shows a typical non-matched
Cartesian mesh used by OLTEM. Fig. 14c,d also shows examples of triangular and quadrilateral finite element
meshes generated by COMSOL.

The distribution of the relative error of the numerical solution for the displacement and for the velocity obtained
by OLTEM on the square (by = 1) Cartesian mesh of size h = 1/80 is shown in Fig. 15b,d. As can be seen from
Fig. 15b,d, the results obtained by OLTEM are accurate (the errors are small).

In order to compare the accuracy of the numerical results obtained by different techniques, the errors emax
u and

emax
v are shown in Fig. 16 as a function of the number N of degrees of freedom in the logarithmic scale at mesh

refinement. As can be seen from Fig. 16, at the same N the numerical results obtained by OLTEM are much more
accurate than those obtained by linear and quadratic finite elements (the OLTEM results are close to those for cubic
elements in the considered mesh size range: they are slightly more accurate for coarse meshes and are slightly less
accurate for fine meshes). For fine meshes the slopes of the curves for the cubic elements in Fig. 16a are slightly
greater than those for OLTEM. It can be also seen from Fig. 16 that the order of accuracy of OLTEM exceeds
three (for the problem under consideration it is close to four). This is in agreement with the theoretical results in
Section 4. A similar comparison of OLTEM with finite elements can be obtained in the L2 error norm; see Fig. 17.
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(
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Fig. 13. The relative errors e ∂u
∂x

(a, c) and e ∂u
∂y

(b, d) in the partial derivatives ∂u
∂x and ∂u

∂y at point G(0.4, 0.9) (a, b) and at point H (0.3, 1.1)

c, d) (see Fig. 8) as a function of
√

N in the logarithmic scale at mesh refinement; N is the number of degrees of freedom. The numerical
solutions of the 2-D wave equation are obtained by OLTEM (curve 1) and by linear, quadratic and cubic finite elements (curves 2, 3, 4)
on square (by = 1) Cartesian meshes. The Cartesian meshes of size h = 1/20, 1/40, 1/80 are used for OLTEM and linear finite elements.
The slopes of the curves at mesh refinement 2–4 are 2.29, 2.63, 3.23 in (a); 1.77, 2.43, 3.05 in (b); 1.78, 2.25, 3.53 in (c) and 1.5, 2.1,
3.31 in (d).

Fig. 14. A 2-D bi-material plate ABC DE F with the inclined interface FC (a). Examples of a Cartesian mesh (b) for OLTEM as well as
triangular (c) and quadrilateral (d) finite element meshes generated by the commercial software COMSOL.

At the same N the numerical results obtained by OLTEM are more accurate than those obtained by linear and
quadratic finite elements and are close to those obtained by cubic finite elements. The order of convergence for
OLTEM in the L2 error norm is also close to four for the considered problem. The fourth order of convergence of

LTEM were also observed at different grid points.
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Fig. 15. The distribution of the displacement u (a) and velocity v (c) of the exact solution as well as the distribution of the relative errors
n displacement eu (b) and in velocity ev (d) of the numerical solution for the 2-D plate with the inclined interface; see Fig. 14a. The
umerical solution of the 2-D wave equation is obtained by OLTEM on the square (by = 1) Cartesian mesh of size h = 1/80.

Fig. 16. The maximum relative errors in displacement emax
u (a) and in velocity emax

v (b) as a function of
√

N (a, b) and the maximum
relative errors as a function of the mesh size h (c) in the logarithmic scale at mesh refinement. N is the number of degrees of freedom.
The numerical solutions of the 2-D wave equation for the 2-D plate with the inclined interface (Fig. 14a) are obtained by OLTEM (curve
1 in (a, b, c) and curve 2 in (c)) on uniform square (by = 1) Cartesian meshes and by linear (curves 2, 5 in (a, b)), quadratic (curves 3, 6
n (a, b)) and cubic (curves 4, 7 in (a, b)) finite elements on triangular (curves 2, 3, 4 in (a, b)) and quadrilateral (curves 5, 6, 7 in (a, b))

eshes. The Cartesian meshes of size h = 1/10, 1/20, 1/40, 1/80, 1/160 are used for OLTEM in (a, b). The slopes of the curves 2–7 at
esh refinement are 1.85 3.87, 4.67, 2.07, 3.72, 5.2 in (a) and 1.27, 2.10, 3.09, 1.03, 2.01, 3.11 in (b).

Next let us compare the partial derivatives ∂u
∂x and ∂u

∂y for OLTEM and finite elements that can be calculated by

post-processing the numerical results for function u for OLTEM using Eq. (44). We calculated the relative errors
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Fig. 17. The L2 error norm for displacement eL2
u (a) and for velocity eL2

v (b) as a function of
√

N in the logarithmic scale at mesh
refinement for the 2-D plate with the inclined interface (Fig. 14); N is the number of degrees of freedom. The numerical solutions of the
2-D wave equation are obtained by OLTEM (curve 1) on square (by = 1) Cartesian meshes and by linear (curves 2, 5), quadratic (curves
3, 6) and cubic (curves 4, 7) triangular (2–4) and quadrilateral (5–7) finite elements. The Cartesian meshes of size h = 1/30, 1/60, 1/120
are used for OLTEM. The slopes of the curves 2–7 are 1.93, 3.83, 4.25, 2.01, 3.87, 4.73 in (a) and 2.00, 3.7, 3.46, 2.42, 3.77, 4.17 in (b).

in the partial derivatives e ∂u
∂x

=
1

( ∂u
∂x )exact

max
|( ∂u

∂x )num
− ( ∂u

∂x )exact
| and e ∂u

∂y
=

1
( ∂u
∂y )exact

max
|( ∂u

∂y )num
− ( ∂u

∂y )exact
| at several grid

points and obtained similar results at all points with similar orders of convergence. Therefore, Fig. 13 presents the
numerical results of the convergence for the partial derivatives ∂u

∂x and ∂u
∂y at two points G(0.7, 1.5) and H (0.6, 1.6)

located in different subdomains (see Fig. 14a for the locations of these points). As can be seen from Fig. 18, OLTEM
yields more accurate results for ∂u

∂x and ∂u
∂y compared to those for linear and quadratic finite elements and provides

similar results (somewhere more accurate and somewhere less accurate) compared to those for cubic finite elements
at the same number N of degrees of freedom. The fourth order of accuracy for OLTEM at mesh refinement in

ig. 18 will be studied in more detail in the future (we expected a lower order of convergence for ∂u
∂x and ∂u

∂y due
to the use of numerical values of function ui in Eq. (44)).

In order to study the convergence of the numerical results obtained by OLTEM in more detail, Fig. 16c presents
curves 1 in Figs. 16a,b at small changes of the mesh size h (curves 1 and 2 in Fig. 16c correspond to curves
1 in Figs. 16a and 16b, respectively). For this study, we solve the test problem on 1001 Cartesian meshes with
the mesh sizes hi = h1 +

(h2−h1)(i−1)
1000 with h1 = 0.1, h2 = 0.02 and i = 1, 2, . . . , 1001. As can be seen from

ig. 16c, OLTEM shows convergent and stable results with small oscillations in the convergence curve at large
h. At mesh refinement, these oscillations become smaller at small h. This oscillatory behavior can be explained
y the complicated dependency of the leading terms of the local truncation error on the coefficients dx, j and dy, j

1, 2, 3, 4, 5). It is important to mention that small oscillations in the numerical convergence curves are typical for
any numerical techniques on domains with irregular interfaces at small variations of h. For example, the change

n the angles of finite elements at small variations of the element size h also leads to such oscillations in the
onvergence curves for the finite element techniques.

.5. Traveling waves in a 2-D bi-material plate with the circular interface

Let us consider wave propagation in a 2-D bi-material plate ABC D consisting of an outer domain (domain ΩI )
nd a circular inner domain centered at O(0.5, 0.5) with radius r = 0.25 (domain ΩI I ) with the circular interface;
ee Fig. 19a. For the circular interface the components of the unit normal used in the interface conditions are
ifferent for different interface points (they are calculated according to the geometry of the circular interface). The
ave velocities are selected to be cI = 2/

√
5 for domain ΩI and cI I = 1/

√
5 for domain ΩI I ; the coefficients

eI and eI I in the interface conditions are selected to be eI = 4/5 for domain ΩI and eI I = 1/5 for domain
ΩI I . The loading term in the wave equation is selected to be f I (x, y, t) = 1 for ΩI and f I I (x, y, t) = 0 for
ΩI I . The following Dirichlet boundary conditions are applied: u(y, t) = −cos(4πy)sin(5π t) along the edge AD,
u(y, t) = cos(4πy)sin(5π t) along the edge BC , u(x, t) = sin(2πx − 5π t) along the edges AB and C D. The
nitial displacements u(x, y, t = 0) = sin(2πx)cos(4πy) and velocities v(x, y, t = 0) = −5πcos(2πx)cos(4πy)

re imposed over the entire domain. The final observation time is chosen to be T = 5. For these loading term,
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Fig. 18. The relative error in the x-derivative of the displacement e ∂u
∂x

(a, c) and in the y-derivative of the displacement e ∂u
∂y

(b, d) as a

function of
√

N in the logarithmic scale at mesh refinement at point G(0.7, 1.5) (a, b) and at point H (0.6, 1.6) (c, d) (see Fig. 14a); N
is the number of degrees of freedom. The numerical solutions of the 2-D wave equation are obtained by OLTEM (curve 1) on square
(by = 1) Cartesian meshes and by linear (curves 2, 5) and high-order finite elements (curves 3, 4, 6, 7). The Cartesian meshes of size
h = 1/30, 1/60, 1/120 are used for OLTEM. The slopes of the curves 2–7 at mesh refinement are 1.2, 2.6, 3.21, 1.63, 2.32, 3.5 in (a);
1.43, 2.47, 3.01, 1.7, 2.06, 3.23 in (b); 1.67, 2.98, 3.14, 2.13, 2.42, 3.2 in (c) and 1.9, 2.43, 3.03, 1.65, 2.52, 3.02 in (d).

Fig. 19. A 2-D bi-material plate ABC D with the circular interface centered at O(0.5, 0.5) with a radius r = 0.25 (a). Examples of a
artesian mesh used by OLTEM (b) as well as triangular (c) and quadrilateral (d) meshes for linear finite elements generated by the
ommercial software COMSOL.

oundary and initial conditions, the exact solution is unknown. Therefore, the numerical solution obtained by the
th order finite elements on a triangular mesh with 679401 degrees of freedom is used as the reference solution for
he error calculation. Fig. 20 shows the distribution of the displacement and the velocity of this reference solution
t the time T = 5.

This problem is solved by linear, quadratic and cubic finite elements as well as by OLTEM. Fig. 19b,c,d shows
xamples of a Cartesian mesh used by OLTEM as well as triangular and quadrilateral finite element meshes
enerated by COMSOL.
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Fig. 20. The distributions of the displacement u (a) and the velocity v (b) of the reference solution for the plate with the circular interface;
ee Fig. 19a. The reference numerical solution of the 2-D wave equation at the time T = 5 is obtained by the 5th order finite elements on
triangular mesh with 679401 degrees of freedom.

Fig. 21. The relative errors in displacement eO
u (a) and in velocity eO

v (b) at point O(0.5, 0.5) as a function of
√

N in the logarithmic scale
at mesh refinement. N is the number of degrees of freedom. The numerical solutions of the 2-D wave equation for the 2-D plate with the
circular interface (Fig. 19a) at the time T = 5 are obtained by OLTEM (curve 1) on uniform square (by = 1) Cartesian meshes and by
linear (curves 2, 5), quadratic (curves 3, 6) and cubic (curves 4, 7) finite elements on triangular (curves 2–4) and quadrilateral (curves 5–7)
meshes. The Cartesian meshes of size h = 1/10, 1/20, 1/40, 1/80, 1/160 are used for OLTEM. The slopes of the curves 2–7 at mesh
efinement are 1.90, 2.95, 4.30, 1.94, 2.81, 3.84 in (a) and 2.13, 3.47, 3.07, 2.13, 3.55, 4.04 in (b).

In order to study the order of convergence of OLTEM and to compare the accuracy of the numerical solutions
btained by different techniques, we select point O(0.5, 0.5) and plot the errors in displacement eO

u and in velocities
eO
v at this point O; see Fig. 21 with the errors plotted in the logarithmic scale at mesh refinement. It can be seen

from Fig. 21 that at the same number N of degrees of freedom, OLTEM yields more accurate results than linear,
quadratic and cubic finite elements (the OLTEM results are close to those for cubic elements in the considered mesh
size range: they are slightly more accurate for coarse meshes and are slightly less accurate for fine meshes). Similar
results can be obtained at other points. It can be also seen from Fig. 21 that the order of convergence of OLTEM
for the displacement and velocity exceeds three which is in agreement with the theoretical results in Section 4.

It can be concluded that for the 2-D wave equation with discontinuous coefficients, the developed OLTEM yields
ore accurate results than those obtained by linear and quadratic finite elements at the same numbers of degrees of

reedom (it yields the results close to those for cubic finite elements with much wider stencils). It should be also
entioned that at the same number of degrees of freedom, high-order finite elements require greater computational

osts compared to those for OLTEM due to a greater width of their stencil equations.

.6. Heat transfer in a 2-D bi-material plate with the circular interface

Here, we consider heat transfer in the bi-material plate ABC D shown in Fig. 19a and used in the previous
ection 5.5. The thermal diffusivity of the plate are selected to be aI = 2/5 for ΩI and aI I = 1/10 for ΩI I ; the
coefficients eI and eI I in the interface conditions are selected to be eI = 4/5 for domain ΩI and eI I = 1/5 for
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Fig. 22. The distribution of the temperature u of the reference solution obtained by the 5th order finite elements on a triangular mesh with
679401 degrees of freedom (a) as well as the relative error in temperature eO

u at point O(0.5, 0.5) as a function of
√

N in the logarithmic
scale at mesh refinement (b). N is the number of degrees of freedom. The numerical solutions of the 2-D heat equation for the 2-D plate
(Fig. 19a) with the circular interface (b) at the time T = 1 are obtained by OLTEM (curve 1) on uniform square (by = 1) Cartesian meshes
and by linear (curves 2, 5), quadratic (curves 3, 6) and cubic (curves 4, 7) finite elements on triangular (curves 2–4) and quadrilateral
(curves 5–7) meshes. The Cartesian meshes of size h = 1/10, 1/20, 1/40, 1/80, 1/160 are used for OLTEM. The slopes of the curves
2–7 at mesh refinement are 2.01, 2.93, 4.00, 1.95, 2.68, 3.66.

domain ΩI I . The source term in the heat equation is selected to be f I (x, y, t) = 0 for ΩI and f I I (x, y, t) = 20
for ΩI I . The following Dirichlet boundary conditions are applied: u(y, t) = 10cos(4πy)cos(3π t) along the edge
AD, u(y, t) = −10cos(4πy)cos(3π t) along the edge BC , u(x, t) = 10cos(5πx)cos(3π t) along the edges AB and

D. The initial temperature u(x, y, t = 0) = 10cos(5πx)cos(4πy) is imposed over the entire domain. The final
bservation time is chosen to be T = 1.

For these source term, boundary and initial conditions, the exact solution is unknown. Therefore, the numerical
olution obtained by the 5th order finite elements on a triangular mesh with 679401 degrees of freedom is used as
he reference solution for the error calculation. Fig. 22a shows the distribution of the temperature of this reference
olution at the time T = 5.

This problem is solved by linear, quadratic and cubic finite elements as well as by OLTEM; see Fig. 19b,c,d
or examples of a Cartesian mesh used by OLTEM as well as triangular and quadrilateral finite element meshes
enerated by COMSOL.

In order to study the order of convergence of OLTEM and to compare the accuracy of the numerical solutions
btained by different techniques, we select point O(0.5, 0.5) and plot the error in temperature eO

u ; see Fig. 22b for
he errors plotted in the logarithmic scale at mesh refinement. It can be seen from Fig. 22b that at the same number

of degrees of freedom, OLTEM yields more accurate results than linear, quadratic and cubic finite elements (the
LTEM results are close to those for cubic elements in the considered mesh size range: they are slightly more

ccurate for coarse meshes and are slightly less accurate for fine meshes). Similar results can be obtained at other
oints. It can be also seen from Fig. 22b that the order of convergence of OLTEM for the temperature exceeds three
hich is in agreement with the theoretical results in Section 4.
It can be concluded that for the 2-D heat equation with discontinuous coefficients, the developed OLTEM yields

ore accurate results than those obtained by linear and quadratic finite elements at the same numbers of degrees of
reedom (it yields the results close to those for cubic finite elements with much wider stencils). It should be also
entioned that at the same number of degrees of freedom, high-order finite elements require greater computational

osts compared to those for OLTEM due to a greater width of their stencil equations.

. Concluding remarks

The new numerical approach developed in the paper is the extension of our approach for the wave and heat
quations with constant coefficients (see [36–38]) to a much more general case of discontinuous coefficients. The

ain idea that allows this extension is the addition of the interface conditions at a number of the interface points
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to the expression for the local truncation error. The unknown stencil coefficients can be analytically found in the
1-D case and in the 2-D case for horizontal (vertical) interfaces or can be numerically calculated from a small local
system of algebraic equations for the general geometry of interfaces. This procedure does not change the width
of the stencil equation; i.e., the size of the global system of equations is the same for the wave (heat) equation
with constant or discontinuous coefficients. The calculation of the unknown stencil coefficients is based on the
minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy of the
new technique at a given width of stencil equations. The increase in the computational costs for the calculation of
the unknown stencil coefficients from the local system is insignificant compared to the computational costs for the
time integration of the global semidiscrete system.

The main advantages of the suggested technique can be summarized as follows:

• Many difficulties of the existing numerical techniques for irregular domains (e.g., finite elements, spectral
element, isogeometric elements, the finite volume method, and many other) are related to complicated mesh
generators and the accuracy of ‘bad’ elements (e.g., the elements with small angles). In contrast to these
techniques, OLTEM is based on trivial unfitted Cartesian meshes with a trivial procedure for the formation of
the 9-point uniform and nonuniform stencils for 2-D domains with complex irregular interfaces.

• OLTEM has the same width of the stencil equations and the same structure of the global semidiscrete equations
for the wave (heat) equations with the constant and discontinuous coefficients. There are no unknowns on the
interfaces between different materials for the proposed technique; i.e., complex irregular interfaces do not
affect the structure of the global system of equations (they affect just the values of the stencils coefficients).

• In contrast to the finite-difference techniques with the stencil coefficients calculated through the approximation
of separate partial derivatives, the entire partial differential equation is used for the calculation of the stencil
coefficients in OLTEM. This leads to the optimal accuracy of the proposed technique. For example, the
9-point uniform and nonuniform stencils of OLTEM in the 2-D case provide the optimal accuracy that cannot
be improved without changing the width of stencil equations. In contrast to the 9-point stencils of linear
quadrilateral finite elements, OLTEM yields a much higher order of accuracy (the increase by two orders for
horizontal (vertical) interfaces and by one order for the general geometry of interfaces).

• The numerical results for domains with complex interfaces show that at the same number of degrees of
freedom, OLTEM is even much more accurate than quadratic finite elements and yields the results close
to those for cubic finite elements with much wider stencils. This also means that at a given accuracy, OLTEM
significantly reduces the computation time compared to that for linear and high-order finite elements.

• OLTEM does not require time consuming numerical integration for finding the coefficients of the stencil
equations; e.g., as for high-order finite, spectral and isogeometric elements. The stencil coefficients are
calculated analytically or numerically (for the general geometry of interfaces) by the solution of small local
systems of linear algebraic equations. Numerical experiments show that the solution of these small local
systems of algebraic equations is fast. Moreover, these local systems are independent of each other and can
be efficiently solved on a parallel computer.

• It has been shown that the wave and heat equations can be uniformly treated with OLTEM. The order of the
time derivative in these equations does not affect the coefficients of the stencil equations of the semi-discrete
systems because in the presented derivations the space discretization is considered independent of the time
discretization without the interaction between the errors in space and time.

• Numerical examples (e.g., Section 5.2 for the impact problem) show that the numerical approach developed
in the paper can be also applied to the problems with reduced regularity (smoothness) of the solutions within
each subdomain with the same material properties.

In the future we plan to consider the stencils with a larger number of grid points for a higher order of accuracy
(similar to high-order finite elements or to high-order finite-difference techniques) for problems with interfaces. For
example, in our papers [15,16] we showed that on uniform meshes, OLTEM with 2-D 25-point stencils yields the
18 − th order of accuracy for the Poisson equation with constant coefficients and the 8 − th order of accuracy for
the scalar wave (heat) equation with constant coefficients. Another direction is the development of OLTEM with
adaptive refinement similar to h− and p− refinements for finite elements (e.g., in our papers [15,40] we showed

that OLTEM can easily combine different stencils). We plan to use quadtrees/octrees meshes that allow a simple
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refinement strategy with Cartesian meshes. The extension of OLTEM to other PDEs with discontinuous coefficients
as well as to non-linear PDEs will be also considered in the future.
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Appendix A. The coefficients bp used in Eq. (18)

b1 = k1 + q1
b2 = k2 + k3 − q1
b3 = e∗q2 + k1(ξ − 1)
b4 = −e∗∗q2 + k2ξ + k3ξ + k3
b5 = c̄∗(m1 + q3) +

1
2 k1(ξ − 1)2

b6 =
1
2 (2c̄∗∗(m2 + m3 − q3) + k2ξ

2
+ k3(ξ + 1)2)

b7 = c̄∗e∗q4 + c̄∗m1(ξ − 1) +
1
6 k1(ξ − 1)3

b8 =
1
6 (6c̄∗∗(−e∗∗q4 + m2ξ + m3ξ + m3) + k2ξ

3
+ k3(ξ + 1)3)

b9 =
1

24 (12c̄∗(2c̄∗q5 + m1(ξ − 1)2) + k1(ξ − 1)4)
b10 =

1
24 (−24c̄2

∗∗
q5 + 12c̄∗∗(m2ξ 2

+ m3(ξ + 1)2) + k2ξ
4
+ k3(ξ + 1)4)

b11 =
1
6 c̄∗m1(ξ − 1)3

+
1

120 k1(ξ − 1)5

b12 =
1

120 (20c̄∗∗m2ξ 3
+ 20c̄∗∗m3(ξ + 1)3

+ k2ξ
5
+ k3(ξ + 1)5)

b13 =
1

720 (ξ − 1)4(30c̄∗m1 + k1(ξ − 1)2)
b14 =

1
720 (30c̄∗∗m2ξ 4

+ 30c̄∗∗m3(ξ + 1)4
+ k2ξ

6
+ k3(ξ + 1)6)

Appendix B. The coefficients bp used in Eq. (32)

The first ten coefficients bi (i = 1, 2, . . . , 10) are presented below. All coefficients bi (i = 1, 2, . . . , 56) used in
the paper are given in the attached files ’b-coeff.pdf’ and ’b-coeff.nb’.

b1 = a1k1 + a2k2 + a3k3 + a4k4 + a5k5 + a6k6 + a7k7 + a8k8 + a9k9 + q1,1 + q1,2 + q1,3 + q1,4 + q1,5
b2 = −a1k1 − a2k2 − a3k3 − a4k4 − a5k5 − a6k6 − a7k7 − a8k8 − a9k9 + k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8 +

9 − q1,1 − q1,2 − q1,3 − q1,4 − q1,5
b3 = −a1k1(d1 +dxG)−dxG(a2k2 +a3k3 +a4k4 +a5k5 +a6k6 +a7k7 +a8k8 +a9k9)+a3d3k3 −a4d4k4 +a6d6k6 −

7d7k7 + a9d9k9 + dx,1q1,1 + dx,2q1,2 + dx,4q1,4 + dx,5q1,5 + e∗(nx,1q2,1 + nx,2q2,2 + nx,3q2,3 + nx,4q2,4 + nx,5q2,5)
b4 = dxG((a1 − 1)k1 + (a2 − 1)k2 + (a3 − 1)k3 + (a4 − 1)k4 + (a5 − 1)k5 + (a6 − 1)k6 + (a7 − 1)k7 + (a8 − 1)k8 +

a9 − 1)k9) + (a1 − 1)d1k1 − (a3 − 1)d3k3 + (a4 − 1)d4k4 − (a6 − 1)d6k6 + (a7 − 1)d7k7 − (a9 − 1)d9k9 − dx,1q1,1 −

x,2q1,2 − dx,4q1,4 − dx,5q1,5 − e∗∗(nx,1q2,1 + nx,2q2,2 + nx,3q2,3 + nx,4q2,4 + nx,5q2,5)
b5 = −a1byk1(d1+dyG)−a2byk2(d2+dyG)+by(−a3k3(d3+dyG)−dyG(a4k4+a5k5+a6k6+a7k7+a8k8+a9k9)+

7d7k7+a8d8k8+a9d9k9+d1,2q1,1+dy,2q1,2+dy,4q1,4+dy,5q1,5)+e∗(ny,1q2,1+ny,2q2,2+ny,3q2,3+ny,4q2,4+ny,5q2,5)
b6 = by(dyG((a1 − 1)k1 + (a2 − 1)k2 + (a3 − 1)k3 + (a4 − 1)k4 + (a5 − 1)k5 + (a6 − 1)k6 + (a7 − 1)k7 + (a8 −

)k8 + (a9 − 1)k9) + (a1 − 1)d1k1 + (a2 − 1)d2k2 + (a3 − 1)d3k3 − a7d7k7 − a8d8k8 − a9d9k9 − d1,2q1,1 − dy,2q1,2 −

y,4q1,4 − dy,5q1,5 + d7k7 + d8k8 + d9k9) − e∗∗(ny,1q2,1 + ny,2q2,2 + ny,3q2,3 + ny,4q2,4 + ny,5q2,5)
b7 =

1
2 (2a1c̄∗m1+a1k1(d1+dxG)2

+2a2c̄∗m2+a2dx2
Gk2+2a3c̄∗m3+a3d2

3 k3−2a3d3dxGk3+a3dx2
Gk3+2a4c̄∗m4+

4d2
4 k4 + 2a4d4dxGk4 + a4dx2

Gk4 + 2a5c̄∗m5 + a5dx2
Gk5 + 2a6c̄∗m6 + a6d2

6 k6 − 2a6d6dxGk6 + a6dx2
Gk6 + 2a7c̄∗m7 +

7d2
7 k7+2a7d7dxGk7+a7dx2

Gk7+2a8c̄∗m8+a8dx2
Gk8+2a9c̄∗m9+a9d2

9 k9−2a9d9dxGk9+a9dx2
Gk9+2c̄∗q3,2+2c̄∗q3,3+

c̄ q +d2 q +2d e n q +d2 q +2d e n q +d2 q +2d e n q +d2 q +2d e n q )
∗ 3,4 x,1 1,1 x,1 ∗ x,1 2,1 x,2 1,2 x,2 ∗ x,2 2,2 x,4 1,4 x,4 ∗ x,4 2,4 x,5 1,5 x,5 ∗ x,5 2,5

27
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(
k
(
d

a
a
a
b

1
(
a
d

A
i

8

ξ

c

(
ξ

4

8
4

b8 =
1
2 (−2c̄∗∗(a1m1 + (a2 −1)m2 + (a3 −1)m3 + (a4 −1)m4 + (a5 −1)m5 + (a6 −1)m6 + (a7 −1)m7 + (a8 −1)m8 +

a9 −1)m9 +q3,2 +q3,3 +q3,4)+dx2
G(−a1k1 −a2k2 −a3k3 −a4k4 −a5k5 −a6k6 −a7k7 −a8k8 −a9k9 +k1 +k2 +k3 +

4 + k5 + k6 + k7 + k8 + k9)+d2
1 (k1 −a1k1)−2(a1 −1)d1dxGk1 +2dxG((a3 −1)d3k3 − (a4 −1)d4k4 + (a6 −1)d6k6 −

a7 − 1)d7k7 + (a9 − 1)d9k9) − (a3 − 1)d2
3 k3 − (a4 − 1)d2

4 k4 − (a6 − 1)d2
6 k6 − (a7 − 1)d2

7 k7 − (a9 − 1)d2
9 k9 + 2c̄∗∗m1 −

2
x,1q1,1 − 2dx,1e∗∗nx,1q2,1 − d2

x,2q1,2 − 2e∗∗(dx,2nx,2q2,2 + dx,4nx,4q2,4) − d2
x,4q1,4 − dx,5(dx,5q1,5 + 2e∗∗nx,5q2,5))

b9 = a1byk1(d1 + dxG)(d1 + dyG) + a2bydxGk2(d2 + dyG) − a3byd2
3 k3 + a3byd3dxGk3 − a3byd3dyGk3 +

3bydxGdyGk3 + a4byd4dyGk4 + a4bydxGdyGk4 + a5bydxGdyGk5 − a6byd6dyGk6 + a6bydxGdyGk6 − a7byd2
7 k7 −

7byd7dxGk7 + a7byd7dyGk7 + a7bydxGdyGk7 − a8byd8dxGk8 + a8bydxGdyGk8 + a9byd2
9 k9 − a9byd9dxGk9 −

9byd9dyGk9+a9bydxGdyGk9+bydx,1d1,2q1,1+byd1,2e∗nx,1q2,1+bydx,2dy,2q1,2+bydy,2e∗nx,2q2,2+bydx,4dy,4q1,4+

ydy,4e∗nx,4q2,4 + bydx,5dy,5q1,5 + bydy,5e∗nx,5q2,5 + dx,1e∗ny,1q2,1 + dx,2e∗ny,2q2,2 + dx,4e∗ny,4q2,4 + dx,5e∗ny,5q2,5
b10 = −by(dxG(dyG((a1 −1)k1 + (a2 −1)k2 + (a3 −1)k3 + (a4 −1)k4 + (a5 −1)k5 + (a6 −1)k6 + (a7 −1)k7 + (a8 −

)k8 + (a9 − 1)k9) + (a2 − 1)d2k2 + (a3 − 1)d3k3 − a7d7k7 − a8d8k8 − a9d9k9 + d7k7 + d8k8 + d9k9) + (a1 − 1)d2
1 k1 +

a1 − 1)d1k1(dxG + dyG) + dyG(d3(k3 − a3k3) + (a4 − 1)d4k4 − (a6 − 1)d6k6 + (a7 − 1)d7k7 − (a9 − 1)d9k9) + d2
3 (k3 −

3k3) − (a7 − 1)d2
7 k7 + (a9 − 1)d2

9 k9 + dx,1d1,2q1,1 + d1,2e∗∗nx,1q2,1 + dx,2dy,2q1,2 + dy,2e∗∗nx,2q2,2 + dx,4dy,4q1,4 +

y,4e∗∗nx,4q2,4 + dx,5dy,5q1,5 + dy,5e∗∗nx,5q2,5) − e∗∗(dx,1ny,1q2,1 + dx,2ny,2q2,2 + dx,4ny,4q2,4 + dx,5ny,5q2,5)

ppendix C. The coefficients k j , m j ( j = 1, 2, . . . , 9) for the 9-point uniform stencil with the horizontal
nterface and the corresponding local truncation error

k1 = −
bye∗((e∗+e∗∗)b4

y+ξ (e∗−e∗∗)b3
y+(e∗+e∗∗)b2

y−ξ (8ξ2
+1)(e∗−e∗∗)by+2ξ2(4ξ2

+1)(e∗−e∗∗))
2xx ,

k2 =
bye∗((e∗+e∗∗)b4

y+ξ (e∗−e∗∗)b3
y−5(e∗+e∗∗)b2

y−ξ (8ξ2
−5)(e∗−e∗∗)by+2ξ2(4ξ2

−5)(e∗−e∗∗))
xx ,

k3 = −
bye∗((e∗+e∗∗)b4

y+ξ (e∗−e∗∗)b3
y+(e∗+e∗∗)b2

y−ξ (8ξ2
+1)(e∗−e∗∗)by+2ξ2(4ξ2

+1)(e∗−e∗∗))
2xx ,

k4 =
−5(e∗+e∗∗)2b5

y+10ξ (e2
∗−e2

∗∗)b4
y+((1−13ξ2)e2

∗+2(ξ2
+1)e∗∗e∗+(11ξ2

+1)e2
∗∗)b3

y−4ξ3(3e2
∗+2e∗∗e∗−5e2

∗∗)b2
y+ξ2(e∗−e∗∗)(8e∗ξ2

+e∗+(8ξ2
+3)e∗∗)by−2ξ3(4ξ2

−1)(e∗−e∗∗)2

2xx ,

k5 = 1,

k6 =
−5(e∗+e∗∗)2b5

y+10ξ (e2
∗−e2

∗∗)b4
y+((1−13ξ2)e2

∗+2(ξ2
+1)e∗∗e∗+(11ξ2

+1)e2
∗∗)b3

y−4ξ3(3e2
∗+2e∗∗e∗−5e2

∗∗)b2
y+ξ2(e∗−e∗∗)(8e∗ξ2

+e∗+(8ξ2
+3)e∗∗)by−2ξ3(4ξ2

−1)(e∗−e∗∗)2

2xx ,

k7 =
1

2xx [−e∗∗(e∗ + e∗∗)b5
y + ξ (3e2

∗
− e∗∗e∗ − 2e2

∗∗
)b4

y − ((17e2
∗
− 10e∗∗e∗ − 7e2

∗∗
)ξ 2

+ e∗∗(e∗ + e∗∗))b3
y + ξ (e∗ −

e∗∗)((28ξ 2
− 1)e∗ − 4ξ 2e∗∗)b2

y − ξ 2(e∗ − e∗∗)((24ξ 2
− 1)e∗ + (3 − 16ξ 2)e∗∗)by + 2ξ 3(4ξ 2

− 1)(e∗ − e∗∗)2],
k8 =

1
5xx [e∗∗(e∗ +e∗∗)b5

y +ξ (−3e2
∗
+e∗∗e∗ +2e2

∗∗
)b4

y + (ξ 2(17e2
∗
−10e∗∗e∗ −7e2

∗∗
)−5e∗∗(e∗ +e∗∗))b3

y + (−4(7e2
∗
−

e∗∗e∗ + e2
∗∗

)ξ 3
− 5e∗(e∗ − e∗∗)ξ )b2

y + ξ 2(e∗ − e∗∗)((24ξ 2
+ 5)e∗ − (16ξ 2

+ 15)e∗∗)by − 2ξ 3(4ξ 2
+ 5)(e∗ − e∗∗)2],

k9 =
1

2xx [−e∗∗(e∗ + e∗∗)b5
y + ξ (3e2

∗
− e∗∗e∗ − 2e2

∗∗
)b4

y − ((17e2
∗
− 10e∗∗e∗ − 7e2

∗∗
)ξ 2

+ e∗∗(e∗ + e∗∗))b3
y + ξ (e∗ −

e∗∗)((28ξ 2
− 1)e∗ − 4ξ 2e∗∗)b2

y − ξ 2(e∗ − e∗∗)((24ξ 2
− 1)e∗ + (3 − 16ξ 2)e∗∗)by + 2ξ 3(4ξ 2

− 1)(e∗ − e∗∗)2],
m1 =

1
4c̄∗ c̄∗∗xx [by(by − ξ )2e∗(−c̄∗(c̄∗ − c̄∗∗)e∗∗(e∗ + e∗∗)b6

y + ξe∗((e∗∗ − e∗)c̄2
∗
+ c̄∗∗(5e∗ + 7e∗∗)c̄∗ + 4c̄2

∗∗
e∗)b5

y +

(e∗(−13e∗ξ
2
+ 3e∗∗ξ

2
+ e∗ + e∗∗)c̄2

∗∗
+ c̄∗(e∗∗(e∗ + e∗∗) − ξ 2(6e2

∗
+ e∗∗e∗ + 3e2

∗∗
))c̄∗∗ + c̄2

∗
ξ 2(e2

∗
+ 2e∗∗e∗ + 9e2

∗∗
))b4

y +

ξ (e∗((11ξ 2
−3)e∗−(3ξ 2

+1)e∗∗)c̄2
∗∗

+ c̄∗((9ξ 2
+1)e2

∗
+(e∗∗−27ξ 2e∗∗)e∗+2(5ξ 2

+1)e2
∗∗

)c̄∗∗+2c̄2
∗
ξ 2e∗∗(e∗∗−e∗))b3

y +

ξ 2(e∗((7ξ 2
+5)e∗ −3(3e∗∗ξ

2
+ e∗∗))c̄2

∗∗
+ c̄∗((e∗ −3e∗∗)e∗∗ −8ξ 2e∗(e∗ −2e∗∗))c̄∗∗ − c̄2

∗
ξ 2(e2

∗
−13e∗∗e∗ +18e2

∗∗
))b2

y +
3(e∗ −e∗∗)(−5(3ξ 2

+1)e∗c̄2
∗∗

+ c̄∗(−12e∗ξ
2
+e∗ +4(6e∗∗ξ

2
+e∗∗))c̄∗∗ +3c̄2

∗
ξ 2e∗)by +2ξ 4(e∗ −e∗∗)((3ξ 2

+1)e∗c̄2
∗∗

+

¯∗(8e∗ξ
2
+ e∗ − 2(4e∗∗ξ

2
+ e∗∗))c̄∗∗ + c̄2

∗
ξ 2(e∗ − 4e∗∗)))],

m2 =
1

2c̄∗ c̄∗∗xx [bye∗(c̄∗(c̄∗−c̄∗∗)e∗∗(e∗+e∗∗)b8
y+ξ ((e2

∗
−3e∗∗e∗−2e2

∗∗
)c̄2

∗
+c̄∗∗(−5e2

∗
−5e∗∗e∗+2e2

∗∗
)c̄∗−4c̄2

∗∗
e2
∗
)b7

y+

−((3e2
∗
−e∗∗e∗+8e2

∗∗
)ξ 2

+e∗∗(e∗+e∗∗))c̄2
∗
+ c̄∗∗(2(8e2

∗
+7e∗∗e∗+e2

∗∗
)ξ 2

+e∗∗(e∗+e∗∗))c̄∗+3c̄2
∗∗

ξ 2e∗(7e∗−e∗∗))b6
y +

(((3ξ 2
−1)e2

∗
+ (5e∗∗ξ

2
+ e∗∗)e∗ +16ξ 2e2

∗∗
)c̄2

∗
+ c̄∗∗((5−26ξ 2)e2

∗
+3(6e∗∗ξ

2
+ e∗∗)e∗ −16ξ 2e2

∗∗
)c̄∗ + c̄2

∗∗
ξ 2e∗(9e∗∗ −

1e∗))b5
y + ξ 2((e2

∗
+ (2 − 19ξ 2)e∗∗e∗ + (13ξ 2

+ 9)e2
∗∗

)c̄2
∗

+ c̄∗∗(−69e∗e∗∗ξ
2
+ 2(16ξ 2

− 5)e2
∗

+ (23ξ 2
− 6)e2

∗∗
)c̄∗ +

28c̄2
∗∗

ξ 2e2
∗
)b4

y +ξ 3(((−5e2
∗
+31e∗∗e∗ −38e2

∗∗
)ξ 2

+2e∗∗(e∗∗ −e∗))c̄2
∗
+ c̄∗∗((10−13ξ 2)e2

∗
+ (23ξ 2

−14)e∗∗e∗ +2(7ξ 2
+

2)e2
∗∗

)c̄∗ +6c̄2
∗∗

ξ 2e∗(3e∗ −5e∗∗))b3
y + ξ 4(((5ξ 2

−1)e2
∗
+ (13−9ξ 2)e∗∗e∗ +2(5ξ 2

−9)e2
∗∗

)c̄2
∗
+ c̄∗∗(−8(4e2

∗
−11e∗∗e∗ +

e2
∗∗

)ξ 2
−3(e∗ −3e∗∗)e∗∗)c̄∗ + c̄2

∗∗
ξ 2e∗(45e∗∗ −43e∗))b2

y +ξ 5(e∗ −e∗∗)(((ξ 2
+3)e∗ −16ξ 2e∗∗)c̄2

∗
+ c̄∗∗((44ξ 2

−15)e∗ +

(3−14ξ 2)e∗∗)c̄∗+27c̄2
∗∗

ξ 2e∗)by−2ξ 6(e∗−e∗∗)((ξ 2
−1)(e∗−4e∗∗)c̄2

∗
+c̄∗∗(8e∗ξ

2
−8e∗∗ξ

2
−5e∗+2e∗∗)c̄∗+3c̄2

∗∗
ξ 2e∗))],

m3 =
1

4c̄∗ c̄∗∗xx [by(by − ξ )2e∗(−c̄∗(c̄∗ − c̄∗∗)e∗∗(e∗ + e∗∗)b6
y + ξe∗((e∗∗ − e∗)c̄2

∗
+ c̄∗∗(5e∗ + 7e∗∗)c̄∗ + 4c̄2

∗∗
e∗)b5

y +

(e∗(−13e∗ξ
2
+ 3e∗∗ξ

2
+ e∗ + e∗∗)c̄2

∗∗
+ c̄∗(e∗∗(e∗ + e∗∗) − ξ 2(6e2

∗
+ e∗∗e∗ + 3e2

∗∗
))c̄∗∗ + c̄2

∗
ξ 2(e2

∗
+ 2e∗∗e∗ + 9e2

∗∗
))b4

y +

ξ (e∗((11ξ 2
−3)e∗−(3ξ 2

+1)e∗∗)c̄2
∗∗

+ c̄∗((9ξ 2
+1)e2

∗
+(e∗∗−27ξ 2e∗∗)e∗+2(5ξ 2

+1)e2
∗∗

)c̄∗∗+2c̄2
∗
ξ 2e∗∗(e∗∗−e∗))b3

y +
2 2 2 2 2 2 2 2 2 2
ξ (e∗((7ξ +5)e∗ −3(3e∗∗ξ + e∗∗))c̄

∗∗
+ c̄∗((e∗ −3e∗∗)e∗∗ −8ξ e∗(e∗ −2e∗∗))c̄∗∗ − c̄

∗
ξ (e

∗
−13e∗∗e∗ +18e

∗∗
))by +

28
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c

3
5

8
4
ξ

ξ

3
5

8
4
ξ

ξ 3(e∗ −e∗∗)(−5(3ξ 2
+1)e∗c̄2

∗∗
+ c̄∗(−12e∗ξ

2
+e∗ +4(6e∗∗ξ

2
+e∗∗))c̄∗∗ +3c̄2

∗
ξ 2e∗)by +2ξ 4(e∗ −e∗∗)((3ξ 2

+1)e∗c̄2
∗∗

+

¯∗(8e∗ξ
2
+ e∗ − 2(4e∗∗ξ

2
+ e∗∗))c̄∗∗ + c̄2

∗
ξ 2(e∗ − 4e∗∗)))],

m4 =
1

12c̄∗ c̄∗∗xx [4(c̄∗ − c̄∗∗)c̄∗∗e∗e∗∗(e∗ + e∗∗)b9
y − 4ξe∗(2e∗e∗∗c̄2

∗
+ c̄∗∗(e∗ + e∗∗)2c̄∗ + c̄2

∗∗
(5e2

∗
+ 2e∗∗e∗ − e2

∗∗
))b8

y +

(2(e2
∗∗

(e∗ +e∗∗)−ξ 2e∗(4e2
∗
−7e∗∗e∗ +e2

∗∗
))c̄2

∗
+ c̄∗∗e∗(e∗ +e∗∗)((31e∗ −43e∗∗)ξ 2

+2e∗∗)c̄∗ + c̄2
∗∗

ξ 2e∗(55e2
∗
+10e∗∗e∗ +

27e2
∗∗

))b7
y +2ξ ((e∗(7e2

∗
+14e∗∗e∗ −3e2

∗∗
)ξ 2

+2e∗∗(e2
∗
+2e∗∗e∗ +2e2

∗∗
))c̄2

∗
+ c̄∗∗e∗(12e∗e∗∗ξ

2
+ (1−32ξ 2)e2

∗
+ (14ξ 2

+

1)e2
∗∗

)c̄∗ −20c̄2
∗∗

ξ 2e∗(e∗ − e∗∗)2)b6
y + ξ 2(((13ξ 2

+2)e3
∗
+ (9−84ξ 2)e∗∗e2

∗
+ (19ξ 2

+10)e2
∗∗

e∗ − e3
∗∗

)c̄2
∗
+ c̄∗∗e∗((30ξ 2

−

)e2
∗
− 2(13ξ 2

+ 2)e∗∗e∗ + (136ξ 2
− 13)e2

∗∗
)c̄∗ − c̄2

∗∗
ξ 2e∗(55e2

∗
+ 58e∗∗e∗ + 47e2

∗∗
))b5

y + ξ 3(((3 − 34ξ 2)e3
∗
+ (28ξ 2

+

)e∗∗e2
∗
+ (14ξ 2

+ 5)e2
∗∗

e∗ − 29e3
∗∗

)c̄2
∗
+ 2c̄∗∗e∗((22ξ 2

+ 1)e2
∗
+ 4(1 − 3ξ 2)e∗∗e∗ − (46ξ 2

+ 1)e2
∗∗

)c̄∗ + 2c̄2
∗∗

ξ 2e∗(85e2
∗
−

98e∗∗e∗ + 57e2
∗∗

))b4
y − ξ 4(((2ξ 2

− 3)e3
∗
− (82ξ 2

+ 15)e∗∗e2
∗
+ 7(8ξ 2

+ 3)e2
∗∗

e∗ + 5e3
∗∗

)c̄2
∗
+ c̄∗∗e∗((73ξ 2

− 2)e2
∗
+ 2(11 −

2ξ 2)e∗∗e∗+(159ξ 2
−28)e2

∗∗
)c̄∗+c̄2

∗∗
ξ 2e∗(135e2

∗
−198e∗∗e∗+19e2

∗∗
))b3

y +ξ 5(((26ξ 2
+7)e3

∗
+(3−64ξ 2)e∗∗e2

∗
+(26ξ 2

−

3)e2
∗∗

e∗+37e3
∗∗

)c̄2
∗
+2c̄∗∗e∗((20ξ 2

−3)e2
∗
+(8−58ξ 2)e∗∗e∗+(60ξ 2

−7)e2
∗∗

)c̄∗−4c̄2
∗∗

ξ 2e∗(15e2
∗
−30e∗∗e∗+23e2

∗∗
))b2

y −
6e∗(e∗ − e∗∗)((3e∗ξ

2
+ 15e∗∗ξ

2
− 7e∗ + 17e∗∗)c̄2

∗
− c̄∗∗(12e∗ξ

2
− 54e∗∗ξ

2
+ e∗ + 9e∗∗)c̄∗ + 15c̄2

∗∗
ξ 2(5e∗∗ − 9e∗))by −

2ξ 7(e∗ −e∗∗)(((3ξ 2
−1)e2

∗
−5(ξ 2

−1)e∗∗e∗ −6e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((8ξ 2

−1)e∗ + (3−22ξ 2)e∗∗)c̄∗ + c̄2
∗∗

ξ 2e∗(25e∗ −9e∗∗))],
m5 =

1
6c̄∗ c̄∗∗xx [−4(c̄∗ − c̄∗∗)c̄∗∗e∗e∗∗(e∗ +e∗∗)b9

y +4ξe∗(2e∗e∗∗c̄2
∗
+ c̄∗∗(e∗ +e∗∗)2c̄∗ + c̄2

∗∗
(5e2

∗
+2e∗∗e∗ −e2

∗∗
))b8

y +

((2e∗(4e2
∗
−7e∗∗e∗+e2

∗∗
)ξ 2

+e∗∗(3e2
∗
+16e∗∗e∗+13e2

∗∗
))c̄2

∗
− c̄∗∗e∗(ξ 2(31e∗−43e∗∗)−22e∗∗)(e∗+e∗∗)c̄∗+ c̄2

∗∗
e∗((15−

55ξ 2)e2
∗
− 2(5ξ 2

− 9)e∗∗e∗ + 3(1 − 9ξ 2)e2
∗∗

))b7
y + ξ (((3 − 14ξ 2)e3

∗
+ (23 − 28ξ 2)e∗∗e2

∗
+ (6ξ 2

+ 37)e2
∗∗

e∗ + 37e3
∗∗

)c̄2
∗
+

2c̄∗∗e∗((32ξ 2
+5)e2

∗
−12(ξ 2

+1)e∗∗e∗+(5−14ξ 2)e2
∗∗

)c̄∗+4c̄2
∗∗

e∗(5(2ξ 2
−3)e2

∗
−4(5ξ 2

+3)e∗∗e∗+(10ξ 2
−3)e2

∗∗
))b6

y +
2(((10−13ξ 2)e3

∗
+6(14ξ 2

+5)e∗∗e2
∗
+(20−19ξ 2)e2

∗∗
e∗−32e3

∗∗
)c̄2

∗
− c̄∗∗e∗(15(2ξ 2

+1)e2
∗
+(8−26ξ 2)e∗∗e∗+(136ξ 2

+

125)e2
∗∗

)c̄∗ + c̄2
∗∗

e∗(5(11ξ 2
+21)e2

∗
+2(29ξ 2

+3)e∗∗e∗ +(47ξ 2
+9)e2

∗∗
))b5

y +2ξ 3(((17ξ 2
+6)e3

∗
−14(ξ 2

−1)e∗∗e2
∗
+(2−

7ξ 2)e2
∗∗

e∗ − 62e3
∗∗

)c̄2
∗
+ c̄∗∗e∗((5 − 22ξ 2)e2

∗
+ 4(3ξ 2

+ 8)e∗∗e∗ + (46ξ 2
+ 7)e2

∗∗
)c̄∗ + c̄2

∗∗
e∗(−5(17ξ 2

+ 9)e2
∗
+ 2(49ξ 2

+

15)e∗∗e∗+3(5−19ξ 2)e2
∗∗

))b4
y+ξ 4((2(ξ 2

+9)e3
∗
+(45−82ξ 2)e∗∗e2

∗
+2(28ξ 2

−51)e2
∗∗

e∗+35e3
∗∗

)c̄2
∗
+c̄∗∗e∗((73ξ 2

+10)e2
∗
−

2(82ξ 2
+ 85)e∗∗e∗ + (159ξ 2

+ 224)e2
∗∗

)c̄∗ + c̄2
∗∗

e∗(15(9ξ 2
− 1)e2

∗
− 6(33ξ 2

− 5)e∗∗e∗ + (19ξ 2
− 75)e2

∗∗
))b3

y + ξ 5(((29 −

26ξ 2)e3
∗
+ (64ξ 2

− 27)e∗∗e2
∗
− (26ξ 2

+ 113)e2
∗∗

e∗ + 131e3
∗∗

)c̄2
∗
− 2c̄∗∗e∗(5(4ξ 2

+ 3)e2
∗
− 2(29ξ 2

+ 26)e∗∗e∗ + (60ξ 2
+

59)e2
∗∗

)c̄∗+4c̄2
∗∗

e∗(15(ξ 2
+2)e2

∗
−6(5ξ 2

+7)e∗∗e∗+(23ξ 2
+18)e2

∗∗
))b2

y +ξ 6(e∗−e∗∗)(((3ξ 2
+20)e2

∗
+(15ξ 2

−58)e∗∗e∗+

24e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((5−12ξ 2)e∗ +27(2ξ 2

+3)e∗∗)c̄∗ +3c̄2
∗∗

e∗((25ξ 2
+11)e∗∗ −5(9ξ 2

+7)e∗))by +2ξ 7(e∗ −e∗∗)(((3ξ 2
+

2)e2
∗
− 5(ξ 2

+ 2)e∗∗e∗ + 18e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((8ξ 2

+ 5)e∗ − (22ξ 2
+ 27)e∗∗)c̄∗ + c̄2

∗∗
e∗(5(5ξ 2

+ 3)e∗ − 3(3e∗∗ξ
2
+ e∗∗)))],

m6 =
1

12c̄∗ c̄∗∗xx [4(c̄∗ − c̄∗∗)c̄∗∗e∗e∗∗(e∗ + e∗∗)b9
y − 4ξe∗(2e∗e∗∗c̄2

∗
+ c̄∗∗(e∗ + e∗∗)2c̄∗ + c̄2

∗∗
(5e2

∗
+ 2e∗∗e∗ − e2

∗∗
))b8

y +

(2(e2
∗∗

(e∗ +e∗∗)−ξ 2e∗(4e2
∗
−7e∗∗e∗ +e2

∗∗
))c̄2

∗
+ c̄∗∗e∗(e∗ +e∗∗)((31e∗ −43e∗∗)ξ 2

+2e∗∗)c̄∗ + c̄2
∗∗

ξ 2e∗(55e2
∗
+10e∗∗e∗ +

27e2
∗∗

))b7
y +2ξ ((e∗(7e2

∗
+14e∗∗e∗ −3e2

∗∗
)ξ 2

+2e∗∗(e2
∗
+2e∗∗e∗ +2e2

∗∗
))c̄2

∗
+ c̄∗∗e∗(12e∗e∗∗ξ

2
+ (1−32ξ 2)e2

∗
+ (14ξ 2

+

1)e2
∗∗

)c̄∗ −20c̄2
∗∗

ξ 2e∗(e∗ − e∗∗)2)b6
y + ξ 2(((13ξ 2

+2)e3
∗
+ (9−84ξ 2)e∗∗e2

∗
+ (19ξ 2

+10)e2
∗∗

e∗ − e3
∗∗

)c̄2
∗
+ c̄∗∗e∗((30ξ 2

−

)e2
∗
− 2(13ξ 2

+ 2)e∗∗e∗ + (136ξ 2
− 13)e2

∗∗
)c̄∗ − c̄2

∗∗
ξ 2e∗(55e2

∗
+ 58e∗∗e∗ + 47e2

∗∗
))b5

y + ξ 3(((3 − 34ξ 2)e3
∗
+ (28ξ 2

+

)e∗∗e2
∗
+ (14ξ 2

+ 5)e2
∗∗

e∗ − 29e3
∗∗

)c̄2
∗
+ 2c̄∗∗e∗((22ξ 2

+ 1)e2
∗
+ 4(1 − 3ξ 2)e∗∗e∗ − (46ξ 2

+ 1)e2
∗∗

)c̄∗ + 2c̄2
∗∗

ξ 2e∗(85e2
∗
−

98e∗∗e∗ + 57e2
∗∗

))b4
y − ξ 4(((2ξ 2

− 3)e3
∗
− (82ξ 2

+ 15)e∗∗e2
∗
+ 7(8ξ 2

+ 3)e2
∗∗

e∗ + 5e3
∗∗

)c̄2
∗
+ c̄∗∗e∗((73ξ 2

− 2)e2
∗
+ 2(11 −

2ξ 2)e∗∗e∗+(159ξ 2
−28)e2

∗∗
)c̄∗+c̄2

∗∗
ξ 2e∗(135e2

∗
−198e∗∗e∗+19e2

∗∗
))b3

y +ξ 5(((26ξ 2
+7)e3

∗
+(3−64ξ 2)e∗∗e2

∗
+(26ξ 2

−

3)e2
∗∗

e∗+37e3
∗∗

)c̄2
∗
+2c̄∗∗e∗((20ξ 2

−3)e2
∗
+(8−58ξ 2)e∗∗e∗+(60ξ 2

−7)e2
∗∗

)c̄∗−4c̄2
∗∗

ξ 2e∗(15e2
∗
−30e∗∗e∗+23e2

∗∗
))b2

y −
6e∗(e∗ − e∗∗)((3e∗ξ

2
+ 15e∗∗ξ

2
− 7e∗ + 17e∗∗)c̄2

∗
− c̄∗∗(12e∗ξ

2
− 54e∗∗ξ

2
+ e∗ + 9e∗∗)c̄∗ + 15c̄2

∗∗
ξ 2(5e∗∗ − 9e∗))by −

2ξ 7(e∗ −e∗∗)(((3ξ 2
−1)e2

∗
−5(ξ 2

−1)e∗∗e∗ −6e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((8ξ 2

−1)e∗ + (3−22ξ 2)e∗∗)c̄∗ + c̄2
∗∗

ξ 2e∗(25e∗ −9e∗∗))],
m7 = −

1
12c̄∗ c̄∗∗xx [(by − ξ )((c̄∗ − c̄∗∗)c̄∗∗e∗e∗∗(e∗ + e∗∗)b8

y + ξe∗(4e∗e∗∗c̄2
∗
+ c̄∗∗(5e2

∗
+ 2e∗∗e∗ + 3e2

∗∗
)c̄∗ − c̄2

∗∗
(5e2

∗
+

6e∗∗e∗ +3e2
∗∗

))b7
y +((ξ 2e∗(4e2

∗
−9e∗∗e∗ +7e2

∗∗
)−e2

∗∗
(e∗ +e∗∗))c̄2

∗
− c̄∗∗e∗(2(9e2

∗
+2e∗∗e∗ +8e2

∗∗
)ξ 2

+e∗∗(e∗ +e∗∗))c̄∗ +

c̄2
∗∗

ξ 2e∗(−10e2
∗
− 11e∗∗e∗ + 9e2

∗∗
))b6

y + ξ (−(e∗(9e2
∗
+ 2e∗∗e∗ − e2

∗∗
)ξ 2

+ 2e∗∗(e2
∗
+ e∗∗e∗ + e2

∗∗
))c̄2

∗
+ c̄∗∗e∗((32ξ 2

−

1)e2
∗
+ (2−22ξ 2)e∗∗e∗ + (1−36ξ 2)e2

∗∗
)c̄∗ + c̄2

∗∗
ξ 2e∗(55e2

∗
+36e∗∗e∗ +17e2

∗∗
))b5

y −ξ 2(((2ξ 2
+1)e3

∗
+ (2−46ξ 2)e∗∗e2

∗
+

(34ξ 2
+ 1)e2

∗∗
e∗ − 6e3

∗∗
)c̄2

∗
+ c̄∗∗e∗((22ξ 2

− 2)e2
∗

+ (2 − 9ξ 2)e∗∗e∗ − (61ξ 2
+ 6)e2

∗∗
)c̄∗ + c̄2

∗∗
ξ 2e∗(90e2

∗
− 53e∗∗e∗ +

45e2
∗∗

))b4
y + ξ 3(((18ξ 2

− 1)e3
∗
− 52ξ 2e∗∗e2

∗
+ (16ξ 2

+ 1)e2
∗∗

e∗ + 10e3
∗∗

)c̄2
∗
− c̄∗∗e∗(18e∗e∗∗ξ

2
+ (17ξ 2

+ 2)e2
∗
+ (8 −

83ξ 2)e2
∗∗

)c̄∗ + c̄2
∗∗

ξ 2e∗(65e2
∗
−86e∗∗e∗ −9e2

∗∗
))b3

y −ξ 4(((8ξ 2
+1)e3

∗
+3(7ξ 2

+2)e∗∗e2
∗
− (41ξ 2

+16)e2
∗∗

e∗ +13e3
∗∗

)c̄2
∗
+

c̄∗∗e∗(e∗∗(7e∗∗−11e∗)−2ξ 2(12e2
∗
+19e∗∗e∗−53e2

∗∗
))c̄∗+c̄2

∗∗
ξ 2e∗(−50e2

∗
+101e∗∗e∗−83e2

∗∗
))b2

y −ξ 5(e∗−e∗∗)(((9ξ 2
+

3)e2
∗
− (41ξ 2

+ 3)e∗∗e∗ − 12e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((20ξ 2

− 3)e∗ + (15 − 34ξ 2)e∗∗)c̄∗ + 23c̄2
∗∗

ξ 2e∗(5e∗ − 3e∗∗))by + 2ξ 6(e∗ −

e∗∗)(((3ξ 2
− 1)e2

∗
− 5(ξ 2

− 1)e∗∗e∗ − 6e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((8ξ 2

− 1)e∗ + (3 − 22ξ 2)e∗∗)c̄∗ + c̄2
∗∗

ξ 2e∗(25e∗ − 9e∗∗)))],
m8 =

1
6c̄∗ c̄∗∗xx [(c̄∗ − c̄∗∗)c̄∗∗e∗e∗∗(e∗ + e∗∗)b9

y + ξe∗(4e∗e∗∗c̄2
∗
+ c̄∗∗(5e2

∗
+ e∗∗e∗ + 2e2

∗∗
)c̄∗ − c̄2

∗∗
(5e2

∗
+ 5e∗∗e∗ +

2e2
∗∗

))b8
y + ((e∗(4e2

∗
− 13e∗∗e∗ + 7e2

∗∗
)ξ 2

+ 2e2
∗∗

(e∗ + e∗∗))c̄2
∗
+ c̄∗∗e∗(5e∗∗(e∗ + e∗∗) − ξ 2(23e2

∗
+ 6e∗∗e∗ + 19e2

∗∗
))c̄∗ −

c̄2
∗∗

e∗((5e2
∗
+5e∗∗e∗ −12e2

∗∗
)ξ 2

+3e∗∗(e∗ +e∗∗)))b7
y +ξ ((e∗(−13e2

∗
+7e∗∗e∗ −6e2

∗∗
)ξ 2

+4e∗∗(e2
∗
+2e∗∗e∗ +2e2

∗∗
))c̄2

∗
+

29
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(
a
+

a
1
1
(
a
(
1
+

d
2
d
1
c
a

c̄∗∗e∗((50ξ 2
+5)e2

∗
−3(6ξ 2

+5)e∗∗e∗−10(2ξ 2
+1)e2

∗∗
)c̄∗+ c̄2

∗∗
e∗(5(13ξ 2

−3)e2
∗
+(47ξ 2

+3)e∗∗e∗+4(2ξ 2
+3)e2

∗∗
))b6

y +

ξ 2(((7ξ 2
+2)e3

∗
+3(16ξ 2

+3)e∗∗e2
∗
− (35ξ 2

+2)e2
∗∗

e∗ −13e3
∗∗

)c̄2
∗
+ c̄∗∗e∗(−3(18ξ 2

+5)e2
∗
+ (31ξ 2

+8)e∗∗e∗ + (97ξ 2
−

37)e2
∗∗

)c̄∗ − c̄2
∗∗

e∗(5(29ξ 2
− 15)e2

∗
+ (6 − 17ξ 2)e∗∗e∗ + (62ξ 2

+ 9)e2
∗∗

))b5
y + ξ 3(((20ξ 2

+ 3)e3
∗
− 7(14e∗∗ξ

2
+ e∗∗)e2

∗
+

5(10ξ 2
+ 1)e2

∗∗
e∗ − 41e3

∗∗
)c̄2

∗
+ c̄∗∗e∗(5(ξ 2

+ 4)e2
∗
+ (38 − 27ξ 2)e∗∗e∗ + 2(11ξ 2

+ 47)e2
∗∗

)c̄∗ + c̄2
∗∗

e∗(5(31ξ 2
− 36)e2

∗
+

(90 − 139ξ 2)e∗∗e∗ + 6(6ξ 2
− 5)e2

∗∗
))b4

y + ξ 4((e∗(−26e2
∗
+ 31e∗∗e∗ + 25e2

∗∗
)ξ 2

+ e∗∗(21e2
∗
− 24e∗∗e∗ + 55e2

∗∗
))c̄2

∗
+

c̄∗∗e∗((41ξ 2
−10)e2

∗
+ (56ξ 2

−151)e∗∗e∗ + (19−189ξ 2)e2
∗∗

)c̄∗ + c̄2
∗∗

e∗(−15(ξ 2
−18)e2

∗
−15(ξ 2

+17)e∗∗e∗ + (92ξ 2
+

75)e2
∗∗

))b3
y − ξ 5(((ξ 2

− 7)e3
∗

+ (9 − 71ξ 2)e∗∗e2
∗

+ (82ξ 2
+ 67)e2

∗∗
e∗ − 49e3

∗∗
)c̄2

∗
+ c̄∗∗e∗((44ξ 2

+ 15)e2
∗

− (16ξ 2
+

265)e∗∗e∗ + 2(103 − 36ξ 2)e2
∗∗

)c̄∗ + c̄2
∗∗

e∗(15(11ξ 2
+ 17)e2

∗
− 3(95ξ 2

+ 101)e∗∗e∗ + 8(19ξ 2
+ 9)e2

∗∗
))b2

y + ξ 6(e∗ −

e∗∗)(((15ξ 2
+ 4)e2

∗
− (51ξ 2

+ 38)e∗∗e∗ + 96e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((36ξ 2

+ 25)e∗ − 3(26ξ 2
+ 63)e∗∗)c̄∗ + 3c̄2

∗∗
e∗(5(11ξ 2

+

9)e∗ − (29ξ 2
+ 11)e∗∗))by − 2ξ 7(e∗ − e∗∗)(((3ξ 2

+ 2)e2
∗
− 5(ξ 2

+ 2)e∗∗e∗ + 18e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((8ξ 2

+ 5)e∗ − (22ξ 2
+

27)e∗∗)c̄∗ + c̄2
∗∗

e∗(5(5ξ 2
+ 3)e∗ − 3(3e∗∗ξ

2
+ e∗∗)))],

m9 = −
1

12c̄∗ c̄∗∗xx [(by − ξ )((c̄∗ − c̄∗∗)c̄∗∗e∗e∗∗(e∗ + e∗∗)b8
y + ξe∗(4e∗e∗∗c̄2

∗
+ c̄∗∗(5e2

∗
+ 2e∗∗e∗ + 3e2

∗∗
)c̄∗ − c̄2

∗∗
(5e2

∗
+

6e∗∗e∗ +3e2
∗∗

))b7
y +((ξ 2e∗(4e2

∗
−9e∗∗e∗ +7e2

∗∗
)−e2

∗∗
(e∗ +e∗∗))c̄2

∗
− c̄∗∗e∗(2(9e2

∗
+2e∗∗e∗ +8e2

∗∗
)ξ 2

+e∗∗(e∗ +e∗∗))c̄∗ +

c̄2
∗∗

ξ 2e∗(−10e2
∗
− 11e∗∗e∗ + 9e2

∗∗
))b6

y + ξ (−(e∗(9e2
∗
+ 2e∗∗e∗ − e2

∗∗
)ξ 2

+ 2e∗∗(e2
∗
+ e∗∗e∗ + e2

∗∗
))c̄2

∗
+ c̄∗∗e∗((32ξ 2

−

1)e2
∗
+ (2−22ξ 2)e∗∗e∗ + (1−36ξ 2)e2

∗∗
)c̄∗ + c̄2

∗∗
ξ 2e∗(55e2

∗
+36e∗∗e∗ +17e2

∗∗
))b5

y −ξ 2(((2ξ 2
+1)e3

∗
+ (2−46ξ 2)e∗∗e2

∗
+

(34ξ 2
+ 1)e2

∗∗
e∗ − 6e3

∗∗
)c̄2

∗
+ c̄∗∗e∗((22ξ 2

− 2)e2
∗

+ (2 − 9ξ 2)e∗∗e∗ − (61ξ 2
+ 6)e2

∗∗
)c̄∗ + c̄2

∗∗
ξ 2e∗(90e2

∗
− 53e∗∗e∗ +

45e2
∗∗

))b4
y + ξ 3(((18ξ 2

− 1)e3
∗
− 52ξ 2e∗∗e2

∗
+ (16ξ 2

+ 1)e2
∗∗

e∗ + 10e3
∗∗

)c̄2
∗
− c̄∗∗e∗(18e∗e∗∗ξ

2
+ (17ξ 2

+ 2)e2
∗
+ (8 −

83ξ 2)e2
∗∗

)c̄∗ + c̄2
∗∗

ξ 2e∗(65e2
∗
−86e∗∗e∗ −9e2

∗∗
))b3

y −ξ 4(((8ξ 2
+1)e3

∗
+3(7ξ 2

+2)e∗∗e2
∗
− (41ξ 2

+16)e2
∗∗

e∗ +13e3
∗∗

)c̄2
∗
+

c̄∗∗e∗(e∗∗(7e∗∗−11e∗)−2ξ 2(12e2
∗
+19e∗∗e∗−53e2

∗∗
))c̄∗+c̄2

∗∗
ξ 2e∗(−50e2

∗
+101e∗∗e∗−83e2

∗∗
))b2

y −ξ 5(e∗−e∗∗)(((9ξ 2
+

3)e2
∗
− (41ξ 2

+ 3)e∗∗e∗ − 12e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((20ξ 2

− 3)e∗ + (15 − 34ξ 2)e∗∗)c̄∗ + 23c̄2
∗∗

ξ 2e∗(5e∗ − 3e∗∗))by + 2ξ 6(e∗ −

e∗∗)(((3ξ 2
− 1)e2

∗
− 5(ξ 2

− 1)e∗∗e∗ − 6e2
∗∗

)c̄2
∗
+ c̄∗∗e∗((8ξ 2

− 1)e∗ + (3 − 22ξ 2)e∗∗)c̄∗ + c̄2
∗∗

ξ 2e∗(25e∗ − 9e∗∗)))],
These coefficients provide the fifth order of the local truncation error in Eq. (32):
e =

h5

480c̄∗ c̄∗∗xx [by(by −ξ )(−8c̄∗e∗((e∗ +e∗∗)b2
y +ξ (e∗∗ −e∗)by +2ξ 2(e∗ −e∗∗))((−5e∗∗c̄2

∗
+7c̄∗∗e∗∗c̄∗ +2c̄2

∗∗
e∗)b4

y +

ξ (−5(e∗ − e∗∗)c̄2
∗
+ c̄∗∗(27e∗ − 7e∗∗)c̄∗ − 8c̄2

∗∗
e∗)b3

y + 3ξ 2(10e∗∗c̄2
∗
− c̄∗∗(9e∗ + 7e∗∗)c̄∗ + 4c̄2

∗∗
e∗)b2

y + · · · ] + O(h6)
with
xx = (5(e∗ + e∗∗)2b5

y −10ξ (e2
∗
− e2

∗∗
)b4

y + ((13ξ 2
+5)e2

∗
−2(ξ 2

−5)e∗∗e∗ + (5−11ξ 2)e2
∗∗

)b3
y +4ξ 3(3e2

∗
+2e∗∗e∗ −

e2
∗∗

)b2
y − ξ 2(e∗ − e∗∗)((8ξ 2

−5)e∗ + (8ξ 2
−15)e∗∗)by +2ξ 3(4ξ 2

+5)(e∗ − e∗∗)2)((c̄∗∗e∗ + c̄∗e∗∗)b2
y + ξ (c̄∗(e∗ + e∗∗)−

2c̄∗∗e∗)by + ξ 2(c̄∗∗e∗ + c̄∗(e∗ − 2e∗∗))),

Appendix D. The explicit expression for the term f̄5 in Eq. (38) in the case of nonzero loading (source)
term fl ̸= 0 in the wave (heat) equation

The expression for f̄5 up to the fourth order with respect to hhh (see the attached files ’RHS.pdf’ and ’RHS.nb’ for
more terms): f̄5 = ((a1m1 + a2m2 + a3m3 + a4m4 + a5m5 + a6m6 + a7m7 + a8m8 + a9m9 + q3,2 + q3,3 + q3,4)( f ∗

G) +

−a1m1 + m1 − a2m2 + m2 − a3m3 + m3 − a4m4 + m4 − a5m5 + m5 − a6m6 + m6 − a7m7 + m7 − a8m8 + m8 −

9m9 + m9 − q3,2 − q3,3 − q3,4)( f ∗∗

G ))h2

((e∗ny,3q4 − by(a1(d1 + dyG)m1 + a2(d2 + dyG)m2 + a3d3m3 − a7d7m7 − a8d8m8 − a9d9m9 + dyG(a3m3 + a4m4 +

5m5 + a6m6 + a7m7 + a8m8 + a9m9) − dy,2q3,2 − dy,4q3,4))( f ∗

G)(0,1)
+ (by((a1 − 1)d1m1 + (a2 − 1)d2m2 + (a3 −

)d3m3 − a7d7m7 + d7m7 − a8d8m8 + d8m8 − a9d9m9 + d9m9 + dyG((a1 − 1)m1 + (a2 − 1)m2 + (a3 − 1)m3 + (a4 −

)m4 + (a5 −1)m5 + (a6 −1)m6 + (a7 −1)m7 + (a8 −1)m8 + (a9 −1)m9)−dy,2q3,2 −dy,4q3,4)−e∗∗ny,3q4)( f ∗∗

G )(0,1)
+

−a1(d1 + dxG)m1 + a3d3m3 − a4d4m4 + a6d6m6 − a7d7m7 + a9d9m9 − dxG(a2m2 + a3m3 + a4m4 + a5m5 + a6m6 +

7m7 + a8m8 + a9m9) + dx,2q3,2 + dx,4q3,4 + e∗nx,3q4)( f ∗

G)(1,0)
+ ((a1 − 1)d1m1 − (a3 − 1)d3m3 + (a4 − 1)d4m4 −

a6 − 1)d6m6 + (a7 − 1)d7m7 − a9d9m9 + d9m9 + dxG((a1 − 1)m1 + (a2 − 1)m2 + (a3 − 1)m3 + (a4 − 1)m4 + (a5 −

)m5 + (a6 − 1)m6 + (a7 − 1)m7 + (a8 − 1)m8 + (a9 − 1)m9) − dx,2q3,2 − dx,4q3,4 − e∗∗nx,3q4)( f ∗∗

G )(1,0))h3

1
2 ((a1(d1 + dyG)2m1b2

y + a2(d2 + dyG)2m2b2
y + (q3,2d2

y,2 + a3(d3 + dyG)2m3 + a7d2
7 m7 + a8d2

8 m8 + a9d2
9 m9 +

yG(dyG(a4m4+a5m5+a6m6+a7m7+a8m8+a9m9)−2(a7d7m7+a8d8m8+a9d9m9))+d2
y,4q3,4)b2

y +2c̄∗q5)( f ∗

G)(0,2)
+

(− 1
2 ((a1−1)m1d2

1 +2(a1−1)dyGm1d1+(a2−1)d2
2 m2+(a3−1)d2

3 m3+(a7−1)d2
7 m7+(a8−1)d2

8 m8+(a9−1)d2
9 m9+

yG(dyG((a1−1)m1+(a2−1)m2+(a3−1)m3+(a4−1)m4+(a5−1)m5+(a6−1)m6+(a7−1)m7+(a8−1)m8+(a9−

)m9)+2((a2 −1)d2m2 +(a3 −1)d3m3 −a7d7m7 +d7m7 −a8d8m8 +d8m8 −a9d9m9 +d9m9))+d2
y,2q3,2 +d2

y,4q3,4)b2
y −

¯∗∗q5)( f ∗∗

G )(0,2)
+ 2by(−a3m3d2

3 + a3dxGm3d3 − a3dyGm3d3 + a1(d1 + dxG)(d1 + dyG)m1 + a2dxG(d2 + dyG)m2 +

dx dy m +a d dy m +a dx dy m +a dx dy m −a d dy m +a dx dy m −a d2m −a d dx m +
3 G G 3 4 4 G 4 4 G G 4 5 G G 5 6 6 G 6 6 G G 6 7 7 7 7 7 G 7

30
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a

d
a
1
d
a
2
a
1

w

7d7dyGm7+a7dxGdyGm7−a8d8dxGm8+a8dxGdyGm8+a9d2
9 m9+a9(dxGdyG −d9(dxG +dyG))m9+dx,2dy,2q3,2+

dx,4dy,4q3,4)( f ∗

G)(1,1)
−2by((a1 −1)m1d2

1 +(a1 −1)(dxG +dyG)m1d1 +d2
3 (m3 −a3m3)−(a7 −1)d2

7 m7 +(a9 −1)d2
9 m9 +

yG(d3(m3−a3m3)+(a4−1)d4m4−(a6−1)d6m6+(a7−1)d7m7−(a9−1)d9m9)+dxG((a2−1)d2m2+(a3−1)d3m3−

7d7m7 +d7m7 −a8d8m8 +d8m8 −a9d9m9 +d9m9 +dyG((a1 −1)m1 + (a2 −1)m2 + (a3 −1)m3 + (a4 −1)m4 + (a5 −

)m5 + (a6 −1)m6 + (a7 −1)m7 + (a8 −1)m8 + (a9 −1)m9))+dx,2dy,2q3,2 +dx,4dy,4q3,4)( f ∗∗

G )(1,1)
+ (q3,2d2

x,2 +a1(d1 +

xG)2m1 +a3d2
3 m3 +a4d2

4 m4 +a6d2
6 m6 +a7d2

7 m7 +a9d2
9 m9 +dxG(dxG(a2m2 +a3m3 +a4m4 +a5m5 +a6m6 +a7m7 +

8m8 + a9m9) − 2(a3d3m3 − a4d4m4 + a6d6m6 − a7d7m7 + a9d9m9)) + d2
x,4q3,4 + 2c̄∗q5)( f ∗

G)(2,0)
+ ((m1 − a1m1)d2

1 −

(a1 −1)dxGm1d1 −(a3 −1)d2
3 m3 −(a4 −1)d2

4 m4 −(a6 −1)d2
6 m6 −(a7 −1)d2

7 m7 −(a9 −1)d2
9 m9 +dx2

G(−a1m1 +m1 −

2m2 +m2 −a3m3 +m3 −a4m4 +m4 −a5m5 +m5 −a6m6 +m6 −a7m7 +m7 −a8m8 +m8 −a9m9 +m9)+2dxG((a3 −

)d3m3 − (a4 − 1)d4m4 + (a6 − 1)d6m6 − (a7 − 1)d7m7 + (a9 − 1)d9m9) − d2
x,2q3,2 − d2

x,4q3,4 − 2c̄∗∗q5)( f ∗∗

G )(2,0))h4

ith ( f ∗

G)(i, j)
=

∂ i+ j f ∗(xG ,yG ,t)
∂x i ∂y j and ( f ∗∗

G )(i, j)
=

∂ i+ j f ∗∗(xG ,yG ,t)
∂x i ∂y j .

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2021.113998.
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