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Abstract

While much of the research on graph analytics over large
power-law graphs has focused on developing algorithms for
evaluating a single global graph query, in practice we may be
faced with a stream of queries. We observe that, due to their
global nature, vertex specific graph queries present an opportu-
nity for sharing work across queries. To take advantage of this
opportunity, we have developed the VRGQ framework that
accelerates the evaluation of a stream of queries via coarse-
grained value reuse. In particular, the results of queries for a
small set of source vertices are reused to speedup all future
queries. We present a two step algorithm that in its first step
initializes the query result based upon value reuse and then in
the second step iteratively evaluates the query to convergence.
The reused results for a small number of queries are held in a
reuse table. Our experiments with best reuse configurations
on four power law graphs and thousands of graph queries of
five kinds yielded average speedups of 143, 13.2x, 6.89x%,
1.43%x,and 1.18x.

1 Introduction

Graph analytics is employed in many domains (e.g., social
networks, web graphs) to uncover insights by analyzing high
volumes of connected data. Real world graphs are often large
(e.g., Twitter - TT has 2 billion edges and 52.6 million vertices)
and iterative graph analytics requires repeated passes over
the graph till the algorithm converges to a stable solution. As
a result, in practice, iterative graph analytics workloads are
highly data- and compute-intensive. Therefore, there has been
a great deal of interest in developing scalable and efficient
graph analytics systems such as Pregel [10], GraphLab [9],
PowerGraph [3], Galois [13], GraphChi [7], Ligra [15], AS-
PIRE [18, 19] and others.

While the performance of graph analytics has improved
greatly due to advances introduced in aforementioned sys-
tems, much of this research has focussed on developing highly
parallel algorithms for solving a single iterative graph ana-
lytic query. For example, SSSP(s) query computes shortest
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paths from a single source s to all other vertices in the graph.
However, in practice the query evaluation system may need to
respond to multiple queries for different source vertices. The
queries may be generated by a single user or multiple users.
In this work we develop a general framework, VRGQ, aimed
at evaluating a stream of vertex queries received from users
for different source vertices of a large graph. For example, for
SSSP algorithm, we may be faced with the following stream
of queries: SSSP(s1); SSSP(s»); SSSP(sy).

We observe that different queries typically traverse the
majority of the graph and thus present an opportunity for
reuse across multiple queries. For example, the same shortest
subpaths may contribute to solutions of many queries and
hence reusable across them. Our approach for reuse is as
follows. Given an input graph and type of vertex query, we
precompute the results of queries for a small number of source
vertices and save them in a table for coarse-grained value
reuse to optimize the evaluation of all future queries. Note
that an iterative algorithm updates vertex property values of
active vertices in each iteration driving them towards their
final stable solution. When all vertex values become stable, the
algorithm terminates. Our proposed reuse strategy is designed
to update property values of all vertices in a single reuse step
such that a good number of vertex values arrive at their final
stable solutions and thus the active vertex sets of subsequent
iterations are greatly reduced.

In the development of VRGQ we consider the following
factors. First, because the reuse step incurs significant cost as
it updates property values of all vertices, to limit its cost reuse
is performed only once during the evaluation of a query by
both the presented algorithms. Second, to maximize the bene-
fits of reuse, reuse should be performed as early as possible
and therefore we develop an algorithm that performs reuse
right at the start. In particular, we have developed the 2Step
algorithm where the Step 1 of the algorithm safely initializes
the values of all vertices with the benefit of the precomputed
results of other source vertex queries and then Step 2 simply
iterates till the algorithm converges. Experiments with four
power law graphs show that 2Step delivers varying amounts



of speedups across queries of different kinds. In particular,
with best reuse configurations, for thousands of graph queries
of five kinds 2Step yielded average speedups of 143, 13.2x,
6.89x, 1.43x, and 1.18x.

The remainder of the paper is organized as follows. Section
2 develops the 2Step reuse based query evaluation algorithm
that is at the heart of VRGQ. Section 3 presents the evaluation
of the 2Step algorithm. Section 4 describes our approach for
selecting reuse source vertices whose queries are evaluated to
populate the reuse table. Additional related work is discussed
in Section 5 and concluding remarks are given in Section 6.

2 VRGQ: Two Step Value Reuse Algorithm

Let us assume that given a source vertex s, a query Q(s)
computes the desired property value val for every destina-
tion vertex d with respect to s, also denoted as val(d \ s). A
straightforward and intuitive approach for enabling reuse of
the computed values is to explicitly transform the graph to
express the computed property values so that they become
available for reuse to future queries.

The above approach is illustrated by an example shown in
Figure | using single-source shortest-path or SSSP queries.
Figure 1(a) shows a small graph followed by the evaluation
of query SSSP(2) using a push-style strictly synchronous
algorithm. The shortest path values for all vertices are first
initialized to O for source vertex 2 and oo for all other desti-
nation vertices. Following each iteration the updated shortest
path values are shown along with list of active vertices, that
is, vertices whose values have changed and thus must play a
role in further propagation. Note that we do not add vertex 5
to the set of active vertices because it has no outgoing edges.
As we can see, in all it takes four iterations for the shortest
path values to converge.

Now let us assume that SSSP(7) had been previously eval-
uated and we would like to reuse its result to accelerate the
computation of query SSSP(2). In Figure 1(b) we observe
that the results of SSSP(7) indicate that val(4\7) is 5 and
val(5\7) is 9. As shown, this information can be incorporated
explicitly into the graph by introducing the two additional
edges, or shortcuts, one from 7 to 4 and the other from 7 to 5
with weights of 5 and 9 respectively. Next the results of com-
puting SSSP(2) on the transformed are shown. We observe
that the shortcuts cause faster propagation and hence conver-
gence is achieved in one less iteration than before. While in
the above example there is a reduction in number of total
iterations, even if the number of iterations remains the same,
reuse can lead to reduction in total amount of work performed
due to reduction in number of active vertices.

While the above approach is straightforward and applicable
to other graph algorithms where query evaluation originates
at a source vertex, it also has the following limitations. First,
the approach based upon graph transformation may cause the
shortcuts introduced to be processed multiple times increas-
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[Mer# || 1 [2[3 [4 [5 [6 [7 || Active Vertices |
1 oo | 0| 10 | oo | o | o |3 {3,7}
2 o 0|5 131196 |3 {3,4,6}
3 o |0]5 [8 [14]6]3 {4}
4 o | 0|5 8 1216 |3 {}
(a) Evaluation of SSSP(2) on the Original Graph.
|Source||1|2|3|4|5|6|7|
[ 7 [efel2]5]9]3]0]
|Iter# || 1 | 2 | 3 | 4 | 5 | 6 | 7 || Active Vertices |
1 o | 0] 10 | o0 | oo | o |3 {3,7}
2 o | 0|5 8 1216 |3 {3,4,6}
3 o | 0|5 8 1216 |3 {}

(b) Evaluation of SSSP(2) on the Graph Transformed Via Shortcuts
to Reuse Results of Query SSSP(7).

[Mer# [ 112 [3 [4 [5 [6 [7 [ Active Vertices |

0 [0 Joo [0 [oo [0 | oo (1)
T [[0[20 [ [0 | | 10]25 (2,67
2 [[0] 20273034 10]23 (34,7}
3 [[0[20[25[28[32]10] 23 (3.4)
4 [[0 20|25 283210 23 0

(c) Evaluation of SSSP(1) on Graph Transformed Via Shortcuts.
Figure 1: Value Reuse via Graph Transformation.
ing the overhead of reuse and thus cutting into its benefits.

This limitation is illustrated in Figure 1(c) where evaluation
of SSSP(1) on the transformed graph causes shortcuts to be



processed twice as vertex 7 is activated twice. At first acti-
vation val(7\ 1) is 25 which is not stable and during second
activation val(7 \ 1) is 23 which is the final stable value. Sec-
ond, introduction of shortcuts increases the number of edges
in the graph. Hence there is an increase in the size of memory
footprint as well as number of irregular memory accesses.
To overcome the above limitations we developed the 2Step
algorithm for evaluating a query Q(s). At the start of the com-
putation, the Step 1 of the algorithm initializes the values
of vertices using the results for another query, say Q(r). By
performing reuse exactly once right at the start, the benefits
of reuse are maximized and its overhead is minimized. Then,
in Step 2 the algorithm iterates applying conventional up-
dates to all vertices till the algorithm converges. Instead of
transforming the graph by adding shortcuts, in this approach
we store results of evaluating a small number of queries in a
reuse table and select a suitable Q(r) for reuse. By using a
reuse table, the footprint of the graph is not increased and its
locality of graph accesses is not worsened. Moreover accesses
of values from the reuse table exhibit good spatial locality.
The reuse table is designed to contain both the forward and
backward results of query Q(r). This ensures that when Q(s)
reuses results of query Q(r), it makes use of stable value of
val(r\ s) which maximizes the stable values produced via
reuse. When reuse table contains results of multiple queries
for different source vertices, to limit the cost of reuse 2Step
selectively reuses results of a small subset of most promising
source vertices in the reuse table. Thus, 2Step, while control-
ling the cost of reuse, maximizes production of stable values.

Forward-Backward Reuse Table Our objective is to per-
form reuse first, i.e. apply reuse updates and then run the
original iterative algorithm to completion. Moreover, we want
to ensure maximal production of stable values. We observe
that both these objectives can be met if we enhance the infor-
mation contained in the reuse table such that it contains both
forward and backward information for a given reuse vertex r
as described below:

e FWDTABLE [r] [d] (V d € ALLVERTICES) represents
the property values (e.g., shortest path) computed for
query Q(r) on graph Graph.

e BWDTABLE [s] [r] (Vs € ALLVERTICES) represents
the property values (e.g., shortest path) computed for
query Q(r) on edge-reversed graph Graph® — which is
obtained by reversing the direction of each edge in the
original Graph.

Now let us see how the precomputed values can be used
right away at the start of evaluation of query Q (v ). Given a
vertex d, its value can be initialized using the precomputed
results of a reuse source vertex r in the table as follows:

REUSEFUNC (d,BWDTABLE[V][r], FWDTABLE[r][d] )
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The REUSEFUNC function for five algorithms is given in
Table 1. For example, for SSSP,

BWDTABLE[V|[r] + FWDTABLE|[r][d]

is the shortest path from v to d via r and thus it is the best
estimate we can obtain for d.value by using the results for
vertex r in the reuse table. If we reuse results for multiple »
vertices in the reuse table then we find the shortest paths via
each of these vertices and then take the minimum across all
the computed shortest paths to initialize d.value. Because the
BWDTABLE contains stable values, reuse produces maximal
number of stable values upon completion of the reuse step.
Let us reconsider the computation of SSSP(1) whose eval-
uation was shown earlier in Figure 1(c). Now let us apply
2Step to this query; however, now the reuse table contains
both forward and backward information for vertex 7 as in
Figure 2. The evaluation now involves reuse followed by iter-
ations. Following reuse, only two iterations are required for
termination. In contrast earlier it took an extra iteration.

]Source \\1\2\3\4\5\6\7‘
FWD o [ oo | 2 5191310
BWD || 23| 3 | 13|10 3510

7

[Tter# [[1[2 [3 [4 [5 |6 [7 | Active ]

[Init. [[O[oo oo Joo [0 [0 [eo [[{1} |
d e {3,4,5,6,7}
Reuse || BwdTable[7][1] + FwdTable[7][d]
0\00\25\28\32\26\23 {1}
p 1 020 | 25|28 |32 |10 | 23| {2,6}
2 110]20 25|28 32|10 |23 | {}

Figure 2: Computing SSSP(1) via 2Step Algorithm by
Reusing results of SSSP(7).

Push-style 2Step Reuse Algorithm In Algorithm 1 we
summarize our 2Step algorithm. As we can see, in Step 1
(lines 4-9) of evaluating the query for a given source vertex s,
we exploit the precomputed results for REUSABLEVERTICES
whose queries were precomputed and used to populate the
reuse table (BWDTABLE, FWDTABLE). The algorithm first
carries out the reuse step and sets the values of all destination
vertices by reusing n most promising reusable source vertices
for which precomputed query results are stored in the reuse
table. To find the n most promising vertices we use function
PRIORITIZE which looks at values in the BWDTABLE and
prioritizes vertices in the increasing or decreasing order (de-
pending upon algorithm characteristic) of BWDTABLE[r][s]
values where r is a reusable source vertex whose results were
precomputed and stored in the reuse table and s is the source
vertex for which the query Q(s) is being evaluated. The de-
tails of function REUSE show how it uses REUSEFUNC (lines
32-35) to perform reuse updates of all the vertex values so



Algorithm 1 Backward-Forward Reuse Algorithm.

1: function 2STEP (Q (s ), BWDTABLE, FWDTABLE, n )
2 > Initialize ACTIVE Vertex Set and Vertex Values
3 ACTIVE < INITIALIZE (Q (s))

4: > Step 1: Reuse

5: Q <+ PRIORITIZE( s )

6 > Select reuse vertices and perform Reuse

7 for all r € first n vertices in Q do

8 REUSE (s, 1)

9: end for

10: > Step 2: lterate

11: while ACTIVE # ¢ do

12: ACTIVE < PROCESS ( ACTIVE )

13: end while

14: end function

15:

16: function PRIORTIZE (s )

17: > Ordering Vertices Used to Populate Reuse Table
18: Build Priority Queue Q by inserting all

19: vertices ¥ € REUSABLEVERTICES such that

20: they are sorted in increasing order of

21: BWDTABLE[r][s] values.

22: return Q

23: end function

24:

25: function REUSE (s, r)
26: > Only Reuse Valid Values
27: if BWDTABLE[s][r] # initialValue then

28: for d € ALLVERTICES do

29: > Only Reuse Valid Values

30: if FWDTABLE[r][d] # initialValue then
31: > Perform Reuse Update of d
32: REUSEFUNC (d,

33: BWDTABLE[s][r],
34: FWDTABLE[r][d])
35: )

36: end if

37: end for

38: end if

39: end function

40:

41: function PROCESS ( ACTIVE )

42: NEWACTIVE < ¢

43: for all v € ACTIVE do

44: for each e € Graph.outEdges(v) do

45: > Apply Conventional Update to e.dest
46: changed < EDGEFUNC (e)

47: if changed then

48: > Update NEWACTIVE Set

49: NEWACTIVE ¢~ NEWACTIVE U {e.dest }
50: end if

51: end forall

52: end forall

53: return NEWACTIVE

54: end function

that remainder of the iterative algorithm does not have to start
from the initialization values of all vertices but rather better
values computed by the reuse step. Once the reuse step has
been completed, then the iterative computation is completed
(see Step 2, lines 10-13) by applying conventional updates to
all vertices using the Process function (lines 41-54).

Table 1: Functions for Reuse Updates for Four Algorithms.

| d.value <~ VRFUNC (d, BWDTABLE[s][r], FWDTABLE|[r][d] ) |

SSWP(s): d.value

max(d.value,min(BWDTABLE[s][r],FWDTABLE[r][d]))
Viterbi(s): d.value +

max(d.value, BWDTABLE[s][r] * FWDTABLE[r][d])
SSSP(s): d.value +

min(d.value, BWDTABLE[s][r] + FWDTABLE[r][d])
BFS(s): d.value +

min(d.value, BWDTABLE[s][r] + FWDTABLE[r][d])
SSNP(s): d.value

min(d.value,max(BWDTABLE[s][r],FWDTABLE[r][d]))

3 Experimental Evaluation of VRGQ

Next we evaluate VRGQ that is based upon the presented
2Step algorithm and report the speedups achieved, reduction
in number of active edges processed, and extent to which
stable values are produced.
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We implemented our algorithms using Ligra [15] that pro-
vides a shared memory abstraction for vertex algorithms
which is particularly good for graph traversal. Graph algo-
rithms used include — Single Source Widest Path (SSWP),
Viterbi [8], Single Source Shortest Path (SSSP), Breadth First
Search (BFS), and Single Source Narrowest Path (SSNP). Ex-
periments were performed on a 64 core (8 sockets x 8 cores)
machine with AMD Opteron 2.3 GHz processor 6376, 512
GB memory, and running CentOS Linux release 7.4.1708.

Table 2: Input graphs used in experiments.

| Graphs || #Edges | #Vertices |
Twitter (TT) [2] 2.0B 52.6M
Twitter (TTW) [6] 1.5B 41.7M
LiveJournal (LJ) [1] 69M 4.8M
PokeC (PK) [16] 31IM 1.6M

We use four directed and edge-weighted power-law input
graphs with relatively small diameter that are listed in Table 2
=TT, TTW, LJ, PK. We use the default weight generation tool
provided by Ligra. Ligra generated weights range from 1 to
the log(n) + 1 (where, n = |vertices|). For the four graphs we
tested, log(n) ranged from 20 to 25. We also varied the upper
bound of the range to 64 and 128, but the results were similar.



Table 3: Coverage Characteristics of Reuse Table with 5

REUSABLEVERTICES.
| [ Hiin | Hmax |ALL — REUSABLE[  #Queries |
T 1 4 | 81.9% — 81.7% | 20K (5K/hop)
W 1 4 | 96.1% — 95.8% | 20K (5K/hop)
LJ 2 5 | 87.2% — 83.2% | 20K (5K/hop)
PK 2 5 | 86.8% — 85.1% | 20K (5K/hop)

Table 4: NoReuse: Average execution times in Seconds
across 20,000 queries.

| G ][ SSWP | Viterbi | SSSP | BFS [ SSNP |
T 7.04s | 9.28s [ 8.4ls [ 042s | 18.03s
TTW [ 3.10s | 391s | 3.62s [ 0.28s | 11.02s
LJ 021s | 029s [ 0.22s [ 0.04s | 0.58s
PK 0.07s | 0.14s [ 0.09s | 0.02s | 0.09s

Table 5: 2Step: Speedups for three Reuse Table configurations: 5 out of 20; 2 out of 10; and 1 out of 5.
Overall the 1 out of 5 configuration performs the best in 3 of 5 benchmarks as it minimizes the reuse overhead.

| G | Hops || SSWP \ Viterbi \ SSSP \ BFS \ SSNP |
1 66.5: 155.9:249.0 9.51:10.2:10.5 1.97:1.85:1.72 2.12:2.20:2.14 16.2:17.3:18.0
2 52.1:125.7:266.2 6.61:6.82:6.96 1,57 : 148 : 140 115:122:1.24 16.1:153:16.1
F s 482:106.5 : 205.1 3.81:3.94:3.90 149:142:135 0.95:138:1.27 160:148:155
4 43.9:95.9:199.9 320:3.24:3.28 1.49:1.41:1.36 0.95:0.95:1.01 118:12.1:124
1 82.4:94.6:157.6 9.61:9.48:10.9 1.83:1.75:1.67 1.69:2.01:2.10 144:153:157
= [ 2 71.0:69.3:125.6 6.83:7.44:7.34 1.39:1.33:1.30 0.99:1.14:1.03 148:142:152
F[ 3 71.0:79.0: 1253 447:397:482 138:135:1.26 0.87:1.00: 0.94 124:153:145
4 477:51.7:111.6 3.01:3.76:3.86 132:127:121 0.83:0.93:0.97 11.8:139:13.0
2 262:72.7:1222 850:10.9:10.4 1.14:1.13: 1.13 0.96:1.04: 1.09 14.8:17.6:187
- 3 232:659:119.6 520:646: 651 [12:1.13:1.14 0.88:0.90:0.97 11.9:14.1:159
-4 252:573:105.2 4.53:5.71:4.80 L12:1.14:1.14 0.84:0.91:0.94 934:133:142
5 17.8:46.1:787 400:425:472 L17:1.15: 111 0.82:0.90:0.95 6.75:8.62:9.62
2 38.0:89.3:1385 11.5:15.6: 145 1.47:1.51:1.43 1.09: 1.17: 1.17 11.3:12.6:6.23
v« | 3 31.2:75.6:1202 6.83:8.04:827 137:129:132 0.95:1.02:1.04 491:547:557
a4 23.0:57.1:88.0 5.19:4.89:529 1.50: 148 :1.37 0.90:0.97:1.00 8.16:9.03:5.12
5 20.5:52.0:785 4.05:4.52:4.19 1.48:1.42:1.39 0.88:0.93:0.97 7.40:8.03:4.28

| Average [[43.0x:80.9x :143.2x [6.05x : 6.82x : 6.89x [ 1.43x : 1.38x : 1.33x [1.05x : 1.17x : 1.18x [12.0x : 13.2x : 12.8X |

For each input graph, we generated 20,000 queries. Table 3
characterizes the coverage of queries and reuse table that are
used in our evaluation. The queries used were for source ver-
tices that are H,yj, to Hq hops from the reuse source vertices
in the reuse table. The reuse table populated with results of
only 5 source vertices allows nearly all possible queries to
take advantage of its contents for reuse (ALL ranging from
81.9% to 96.1%). The hops considered account for nearly all
of these queries (REUSABLE ranging from 81.7% to 95.8%).
For each input graph we used 20,000 queries spread across
the four different hop values considered. For 80% of ver-
tices, Hops ranged from 1 to 4 or 2 to 5 for four graphs. We
randomly picked 5K corresponding to each hop. Thus, the
selected queries maximize diversity in terms of number of
hops between the source vertex and the reusable vertices.

Finally, we use multiple reuse table configurations of the
form n out of m in these experiments, where m is the number
of sources vertices whose full results are stored in the reuse
table and #n is the most promising subset number of these that
are actually exploited during reuse. The configurations used
are 5 out of 20; 2 out of 10; and 1 out of 5.

Speedups Table 5 presents the speedups achieved by 2Step
for the three reuse table configurations for all the input graphs
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and algorithms considered. The baseline running times with-
out reuse (NoReuse) that are used in computing speedups are
given in Table 4. For power law graphs, the results for 20,000
queries are separated according to the 5,000 queries each
for the four hop values considered. The average speedups
obtained for power-law graphs and table configurations are
substantial, 43x to 143x for SSWP, 6.05x to 6.89x for
Viterbi, 1.33x to 1.43x for SSSP, 1.05x to 1.18x for BFS,
and 12x to 13.2x for SSNP.

The larger power-law graphs (TT and TTW) experience
higher speedups than smaller power-law graphs (LJ and PK).
The number of hops from query source vertex to nearest reuse
table source vertex also impacts performance. By and large,
the smallest hop distance gives the best speedups while the
largest hop distance gives the least speedup. For example, for
SSWP on TTW with the smallest reuse table configuration,
speedups decrease from 157.6x to 111.6x as hop distance
increases from 1 to 4. For SSWP the smallest table configu-
ration gives best speedups, for Viterbi and BFS the speedups
for the two smaller table configurations are fairly close and
significantly better than for the largest table configuration,
and for SSSP mostly the largest table gives best speedups,
though by a small margin. Larger reuse tables may enable



Table 6: 2Step: % reduction in processed active edges due to
reuse for table configuration of 2 out of 10.

| G [Hops || SSWP [ Viterbi | SSSP | BFS | SSNP |

1 99.99 95.28 73.14 | 29.94 | 99.99
- 2 99.99 99.99 82.80 | 18.89 | 99.99
= 3 99.99 89.30 66.84 2.21 99.99
4 99.99 85.60 71.31 3.89 99.99
1 99.99 94.42 68.76 | 34.06 | 99.99
= 2 99.99 99.99 80.48 | 38.09 | 99.99
E 3 99.99 89.67 62.05 2.11 99.99
4 99.99 91.44 70.93 1.67 99.99
2 99.99 96.66 58.53 5.86 99.99
- 3 99.99 86.89 50.03 3.04 99.99
- 4 99.99 94.86 46.84 0.41 99.99
5 99.99 93.94 49.38 0.34 99.99
2 99.99 98.03 74.59 6.78 99.99
w 3 99.99 89.56 70.93 9.71 99.99
o 4 99.99 93.21 69.54 1.10 99.99
5 99.99 91.36 71.88 0.77 99.99

| Average [[ 99.99% [ 93.14% [ 66.75% | 9.93% | 99.99%

Table 7: 2Step: Percentage of values that become stable
following reuse for table configuration of 2 out of 10.

| G [Hops[| SSWP | Viterbi | SSSP | BFS | SSNP |

1 99.99 90.57 41.37 93.04 99.99
- 2 99.99 85.81 21.58 60.28 99.99
= 3 99.99 74.70 22.64 4291 99.99
4 99.99 62.81 28.88 47.31 99.99
1 99.99 90.79 48.76 94.78 99.99
= 2 99.99 89.38 31.81 72.83 99.99
F 3 99.99 80.31 31.26 5297 99.99
4 99.99 79.10 30.86 47.83 99.99
2 99.99 91.72 21.08 46.24 99.99
- 3 99.99 84.69 16.61 23.65 99.99
- 4 99.99 84.72 11.94 16.52 99.99
5 99.99 79.25 13.39 15.69 99.99
2 99.99 92.99 46.34 66.88 99.99
w 3 99.99 84.14 41.52 39.41 99.99
o 4 99.99 71.65 33.97 32.76 99.99
5 99.99 61.77 36.24 27.59 99.99

Average [[ 99.99% [ 81.52% | 29.89% [ 48.79% | 99.99% |

more effective reuse but also incur higher reuse overhead.
Thus, depending upon the algorithm characteristics, different
sized reuse tables deliver the best performance for different
benchmarks.

Reduction in Active Edges and Stable Values Produced
Next we present additional data for the benchmarks to better
understand the large degree of difference in speedups ob-
served. Tables 6 and 7 provides reduction in active edges
processed and extent to which reuse step produces stable val-
ues. The reason for varying degrees of speedups can be found
in algorithms characteristics.
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First, performance benefit of reuse is very high for SSWP
because in this algorithm no new values are computed — the
resulting property value for each vertex is essentially equal
to the weight of a selected edge. Thus, reuse often produces
stable values as high as 99.99% as shown in Table 7. This
unique characteristic of SSWP resulted in high speedups.

The nature of Viterbi and SSSP is quite similar as both
compute new values, except that one involves real values and
the other integer values. However, on average, Viterbi produces
81.52% stable values while SSSP produces only 29.89%
stable values on average across all four power law graphs.
Thus, average reduction in active edges is 93.14% for Viterbi
which is significantly higher than 66.75% for SSSP across all
power law graphs. This explains why Viterbi achieves higher
speedups than SSSP via reuse even though the values were
not stable following reuse.

Small benefits are expected for BFS as cost of computing
a value for a vertex is similar to cost of generating the value
via reuse. The competing factors of possibly increased work
(when insufficient number of stable values are produced) and
better memory behavior during reuse (because edge-lists are
not accessed and vertices are visited in the order they are
stored) result in small speedups or small slowdowns.

Speedups for Individual Queries So far we have pre-
sented the average execution times and speedups over 20,000
queries for the 2 out of 10 configuration. To demonstrate
that the speedups are achieved across nearly all queries, we
present plots in Figure 3 where for the TT graph, the execution
times of 2Step and NoReuse for each query are plotted. The
plots are given for the SSWP and BFS algorithms that give
maximum and minimum average speedups across all bench-
marks. The scatter plots in Figure 3 show that execution times
for nearly all of the 20K queries are improved by VRGQ (the
only exception is Hops=4 queries for BFS).

4 Populating the Reuse Table

To populate the reuse table we need to identify a small subset
of vertices in the graph, say N, whose backward and forward
query results will be precomputed and stored in the reuse table.
Since an input graph typically contains millions of vertices,
we need to develop a methodology for selecting the N vertex
set. Our selection is aimed at achieving two goals:

e Maximize Reuse — Since all vertices are not equally effec-
tive in the degree of reuse they support, we will include
vertices in N that have high centrality. That is, we will
give preference to vertices that play an influential role in
computation of results of large number of other queries.

e High Coverage — Ideally we would like to choose N such
that, from all other vertices in the graph, at least some
vertices in N can be reached in less than MaxHops. That
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Figure 3: Performance of individual queries — each scatter plot depicts execution times of 2Step and NoReuse for 20,000 queries
— black dots correspond to 2Step execution times and gray dots are for NoReuse execution times. The plots show that vast
majority of queries benefit from 2Step algorithm.

Table 8: Populating Reuse Table: Overlap in 20 source vertices selected; Runtime costs of using different number of random
queries to select 20 vertices; and Runtime overhead of populating the Reuse Table with full results for the 20 vertices.

G Number of Random Queries Populating
1000 | 10 | 20 | 40 | 60 || Reuse Table

T Overlap 20 19 20 20 20
Overhead || 6070s (3.8%) || 101s (3.1%) | 175s(5.1%) | 333s(6.2%) | 393s (4.7%) 699s

W Overlap 20 19 18 19 19
Overhead || 3095s (5.7%) 60s (7.9%) 89s (1.5%) | 155s(6.4%) | 227s (6.8%) 490s

LJ Overlap 20 20 18 18 20
Overhead || 164s (14.1%) || 3.1s(7.3%) 55 (9.7%) | 7.4s(6.7%) | 13.6s (4.4%) 43s

PK Overlap 20 17 19 19 19
Overhead 81s (8.5%) 1.35 (0.3%) | 2.5s (10.3%) | 4.2s (10.2%) | 5.6s (7.8%) 16s

is, all queries will encounter reusable vertices. Since
this is not always possible, we attempt to achieve high
coverage, i.e. for most queries reuse is possible.

Our three step methodology for selecting vertex set N such
that it meets the above goals is presented below.

Step 1: Identify High Centrality Candidates using Ran-
dom Queries — We evaluate randomly selected queries and
during each query evaluation we maintain impact counts for
all other vertices in the graph. Each time the value of some
vertex v, causes an update of its out-neighbor, the impact
count of v is incremented. Betweenness centrality quantifies
the number of times a node acts as a bridge along the short-
est path between pairs of nodes. Vertices that have a high
probability to occur on a randomly chosen shortest path be-
tween two randomly chosen vertices have a high betweenness.
High impact counts are treated as an indicator for high cen-
trality. Thus, extremely expensive centrality is avoided. For
each query evaluated, the top N vertices, i.e. vertices with
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the highest impact counts, are identified. Since this process
is repeated for multiple queries, say q1, g2 - -+ g,, We obtain
multiple candidate sets N(q1), N(g2) --- N(gn).

Step 2: Selecting top | N | High Centrality Candidates —
Note that the same vertex may appear in multiple sets N(g;),
N(g2) --- N(gy) obtained in the first step but not necessarily
in all the sets. We select the final set N by both considering
how frequently a vertex appears in different sets and its corre-
sponding impact counts. This is achieved by summing up the
impact counts of all occurrences of a vertex in the above sets
and sorting the final sums to identify the top | N | vertices.

Step 3: Populating the Table — The top centrality candi-
dates identified in the preceding step are processed one by one
to populate the reuse table. By evaluating the query for each
vertex v in both the forward direction on the original graph and
backward direction on the edge reversed graph, the reuse table
is populated with FWDTABLE[v][*] and BWDTABLE[*][V].



Table 9: Improvements if instead of using 5 out of 20 we
reuse results of all 20 queries. The minimal improvements
indicate that reusing results of a few queries is enough.

Improvements in || SSWP | Viterbi | SSSP | BFS |
Vertices Processed || 0% 0% 3% 5%
Stable Values 0% 0% 1% 7%

Table 10: Substantial overlap in high centrality vertices for
different benchmarks and graphs for 20 REUSABLE-
VERTICES indicates that same reuse vertices can be used
across different benchmarks.

[TT[TIW [ LJ[PK |

SSWP || 20 | 20 20 | 20
Viterbi || 20 | 19 18 | 19
SSSP 20 | 19 17 | 16
BFS 19 | 18 19 | 16

Cost of populating strategy Finally we would like to de-
scribe the runtime cost of constructing the reuse table of size
20 — we present this cost when using different number of
random queries — 1000, 10, 20, 40 and 60 — in Table 8. Con-
sidering the 20 vertices found using 1000 random queries
as the best selection, we compared its results with sources
vertices selected by using 10, 20, 40 and 60 random queries.
The overlap among the selected vertices is very high — when
using 60 random queries, the overlap is 20 out of 20 for TT
and LJ and it is 19 out of 20 for TTW and PK. Thus, run-
ning 60 random queries is more than sufficient for identifying
high centrality vertices. The runtime overheads for selecting
20 vertices using 60 random queries range for 5.6 to 393
seconds depending upon the size of the power law graph
graph while populating the table with results takes 16 to 699
seconds. Note that while high centrality vertices are being
selected, new queries can be processed in parallel. The cost of
selecting high centrality vertices varies from 0.44s (for PK) to
18.47s (for TT) for power law graphs for 60 random queries
in Table 8. Thus, the overhead of populating the reuse tables
is modest as it has to be done only once.

In Table 9 we show results of our experiment justifying the
selection of 5 out of 20 configuration. If in the reuse step,
instead of reusing results of best 5 we reuse results of all 20,
little to no reductions in vertices processed and increase in
stable values produced are observed as shown in the table. We
also increased the size of the reuse table from 20 to 40 source
vertices. No improvements in vertices processed or stable
values produced were observed for the first three programs
and 1% improvement was seen for BFS.

Heuristic effectiveness Our heuristic for finding high cen-
trality vertices is very effective. To verify this we found high
centrality vertices using the betweenness centrality algorithm
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Table 11: Higher Hub populating times in seconds and their
comparison with VRGQ populating times.

[Graph— [[ TT [ TTW | LJ | PK |

Hub=20 || 1102s [ 732s [ 43s 165
1.58x | 1.49x | 1.00x | 1.00x

Hub=100 || 5925s | 3390s | 211s | 77s
8.50x | 6.92x | 4.90x | 4.81x

Table 12: Evaluation of Hub and VRGQ applying reuse on
4K BFS queries with size of 20. The results show that
Hub-based reuse largely results in slowdowns.

l Speedups H Reuse 1 ‘ Reuse 2 ‘ Reuse All ‘
Hb-20 | o056 075
Hub=100 l:'lr( ?gii 8:32§ g;?i
VRGQ % [0

available in Ligra and compared them with ones found by
our heuristic. We found that top 5 vertices found by the orig-
inal algorithm appear among the top 10 vertices found by
our heuristic. Thus, there is great degree of overlap, though
vertices appear in different order.

Finally, we identified the top 20 vertices in the four power
law graphs by considering the centrality with respect to prop-
erty values of all four algorithms and found that vast majority
of vertices are the same for all algorithms. Table 10 shows
how many of the 20 reuse sources found for SSWP also ap-
pear in the 20 reuse sources found for Viterbi, SSSP and BFS.
The high overlap indicates that structure of the graph is the
determinative factor much more so than the graph algorithm.
Thus, for a given graph, it is possible to find reuse vertices
once and use them for all algorithms.

Hub Accelerator vs. VRG(Q The Hub Accelerator [5] is
used to speedup the evaluation of graph queries. At a high
level it is similar to VRGQ as both rely upon precomputations
and then use the results of precomputations to speedup subse-
quent query evaluations. However, VRGQ computes point-to-
all (i.e., queries involving single source and all destinations)
while the Hub Accelerator computes point-to-point queries
(i.e., queries involving a single source and destination pair).
We implemented the Hub Accelerator in Ligra and adapted
it to compute point-to-all queries by reusing the Hub Accel-
erator results for all destinations. Next we show that VRGQ
is far more effective than Hub Accelerator both because its
precomputation is relatively inexpensive and the speedups
obtained are higher.

The reason why the Hub Accelerator precomputation is
more expensive than our precomputation for populating the
reuse table is as follows. For the Hub network to be effec-
tive it is typically chosen to have large number of vertices



(e.g., in [5] the authors consider Hub sizes of 5K to 15K
vertices) and then shortest paths among all these vertices
are precomputed. In addition, the shortest path from each
non-Hub vertex to the closest core-Hub vertex must also be
precomputed. In contrast, the 2Step algorithm of VRGQ only
precomputes results for a handful of high centrality vertices
to populate the reuse table. Table |11 compares the precom-
putation costs of Hub Accelerator precomputation with reuse
table precomputation. Table 11 first presents Hub Accelerator
precomputation times in seconds and then the factor by which
the cost of Hub Accelerator precomputation exceeds that of
reuse table precomputation of VRGQ. We present this data
for Hub sizes of 20 and 100 for all four graphs. We observe
that Hub Accelerator precomputation is several times more
expensive that VRGQ precomputation for Hub size of 100 and
even for Hub size of 20 for the difference can be substantial
for large graphs.

We also compare speedups for evaluating four thousand
BFS queries by applying reuse with Hub Accelerator and
VRGQ in Table 12. These four thousand queries were chosen
from 20K queries used in earlier experiments, we randomly
chose 1000 queries each from the 5000 queries for each of
the four hop values. With Hub size of 20, the same as the
number of reusable-vertices for VRGQ, the Hub Accelera-
tor only experiences slowdowns as shown in Table 12. If
we reuse all precomputed results, due to high reuse cost, we
get significant slowdown. We therefore tried reuse of only 1
or 2 vertices from the Hub but this too did not produce any
speedups although it reduced the slowdowns. When Hub size
was increased to 100, for the TT graph, a slight speedup of one
percent was finally achieved though the precomputation cost
is dramatically increased. In contrast VRGQ achieves average
speedup of 1.39x for TT on BFS queries. To be consistent, in
VRGAQ, we reused only one source vertex selected from 20
queries. For Hub Accelerator [5], each vertex can have mul-
tiple corehubs. The result in Table 12 shows that if reuse all
corehubs we only achieve slowdowns. If we select a specific
corehub vertex by distance, then VRGQ and Hub Accelerator
will select the same vertex for reuse. Hence there is no ad-
vantage of using a selected corehub over VRGQ. Moreover,
Hub Accelerator was designed for point-to-point queries and
hence its reuse table contains partial results. As a result, the
reuse performed is costly and ineffective.

From the above results we conclude that the limitation
of the Hub Accelerator approach is that it cannot deliver
speedups for point-to-all queries. When small Hub sizes are
used only slowdows are observed and when large Hub sizes
are used the precomputation cost becomes very high. In con-
trast, VRGQ gives speedups with small number of reuseable-
vertices while incurring low precomputation cost. Finally
our 2Step algorithm requires minimal change to the origi-
nal algorithms as it simply initializes the vertex values using
reuse-table (not default initialization values) and then stan-
dard iterative algorithm is run.
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5 Other Related Work on Optimizing Evalua-
tion of Multiple Graph Queries

VRGQ reuses results of a few queries for achieving speedups
in the evaluation of numerous other queries. We have
adapted this concept and applied it in other scenarios as well.
SimGQ [21] reuses the results of dynamically identified shar-
ing queries to speed up the simultaneous evaluation of a batch
of queries. Tripoline [4] uses this idea to create a generalized
streaming graph model where continuously updated results
of a small number of standing queries are used to rapidly
evaluate arbitrary user queries.

There are two recent works, Quegel [23] and PnP [20],
that evaluate a stream of graph queries. However, both these
works are aimed at evaluating point-to-point queries (e.g.,
shortest path from a single source to a single destination).
Quegel derives improved throughput by evaluating queries in
a pipelined fashion and taking advantage of the Hub [5] pre-
computation. PnP [20] is similar to other graph frameworks
in that speedups are achieved by evaluating a single query
faster using new dynamic optimizations.

There are other recent works [11, 14, 17,22-24] that eval-
uate multiple queries simultaneously. Congra [14] handles
each query independently using a separate process. Thus, it
is unable to take advantage of value reuse opportunity across
queries. CGraph [24] and Seraph [22] are out-of-core systems
that evaluate multiple queries. However, their benefits are
achieved via sharing of the graph as opposed to the result val-
ues. In [17] a specialized system that processes multiple BFS
queries is presented. Finally, MultiLyra [11] and BEAD [12]
simultaneously evaluate queries on distributed systems.

6 Conclusion

We have developed VRGQ that incorporates the 2Step iter-
ative algorithm for evaluating a sequence of graph queries
on individual vertices. The key feature of this framework is
that during evaluation of any query, coarse-grained reuse of
previously computed results for selected vertices is performed
to accelerate query evaluation. The VRGQ system is different
from related works in a key way. It takes advantages of results
computed for a very small number of queries to optimize the
execution of all future queries via coarse-grained reuse.
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