
VRGQ: Evaluating a Stream of Iterative Graph Queries via Value Reuse

Xiaolin Jiang

xjian049@ucr.edu

Computer Science Department

Univ. of California Riverside

Chengshuo Xu

cxu009@ucr.edu

Computer Science Department

Univ. of California Riverside

Rajiv Gupta

gupta@cs.ucr.edu

Computer Science Department

Univ. of California Riverside

Abstract

While much of the research on graph analytics over large

power-law graphs has focused on developing algorithms for

evaluating a single global graph query, in practice we may be

faced with a stream of queries. We observe that, due to their

global nature, vertex specific graph queries present an opportu-

nity for sharing work across queries. To take advantage of this

opportunity, we have developed the VRGQ framework that

accelerates the evaluation of a stream of queries via coarse-

grained value reuse. In particular, the results of queries for a

small set of source vertices are reused to speedup all future

queries. We present a two step algorithm that in its first step

initializes the query result based upon value reuse and then in

the second step iteratively evaluates the query to convergence.

The reused results for a small number of queries are held in a

reuse table. Our experiments with best reuse configurations

on four power law graphs and thousands of graph queries of

five kinds yielded average speedups of 143×, 13.2×, 6.89×,

1.43×, and 1.18×.

1 Introduction

Graph analytics is employed in many domains (e.g., social

networks, web graphs) to uncover insights by analyzing high

volumes of connected data. Real world graphs are often large

(e.g., Twitter - TT has 2 billion edges and 52.6 million vertices)

and iterative graph analytics requires repeated passes over

the graph till the algorithm converges to a stable solution. As

a result, in practice, iterative graph analytics workloads are

highly data- and compute-intensive. Therefore, there has been

a great deal of interest in developing scalable and efficient

graph analytics systems such as Pregel [10], GraphLab [9],

PowerGraph [3], Galois [13], GraphChi [7], Ligra [15], AS-

PIRE [18, 19] and others.

While the performance of graph analytics has improved

greatly due to advances introduced in aforementioned sys-

tems, much of this research has focussed on developing highly

parallel algorithms for solving a single iterative graph ana-

lytic query. For example, SSSP(s) query computes shortest

paths from a single source s to all other vertices in the graph.

However, in practice the query evaluation system may need to

respond to multiple queries for different source vertices. The

queries may be generated by a single user or multiple users.

In this work we develop a general framework, VRGQ, aimed

at evaluating a stream of vertex queries received from users

for different source vertices of a large graph. For example, for

SSSP algorithm, we may be faced with the following stream

of queries: SSSP(s1); SSSP(s2); · · · · · · SSSP(sn).

We observe that different queries typically traverse the

majority of the graph and thus present an opportunity for

reuse across multiple queries. For example, the same shortest

subpaths may contribute to solutions of many queries and

hence reusable across them. Our approach for reuse is as

follows. Given an input graph and type of vertex query, we

precompute the results of queries for a small number of source

vertices and save them in a table for coarse-grained value

reuse to optimize the evaluation of all future queries. Note

that an iterative algorithm updates vertex property values of

active vertices in each iteration driving them towards their

final stable solution. When all vertex values become stable, the

algorithm terminates. Our proposed reuse strategy is designed

to update property values of all vertices in a single reuse step

such that a good number of vertex values arrive at their final

stable solutions and thus the active vertex sets of subsequent

iterations are greatly reduced.

In the development of VRGQ we consider the following

factors. First, because the reuse step incurs significant cost as

it updates property values of all vertices, to limit its cost reuse

is performed only once during the evaluation of a query by

both the presented algorithms. Second, to maximize the bene-

fits of reuse, reuse should be performed as early as possible

and therefore we develop an algorithm that performs reuse

right at the start. In particular, we have developed the 2Step

algorithm where the Step 1 of the algorithm safely initializes

the values of all vertices with the benefit of the precomputed

results of other source vertex queries and then Step 2 simply

iterates till the algorithm converges. Experiments with four

power law graphs show that 2Step delivers varying amounts

11

processed twice as vertex 7 is activated twice. At first acti-

vation val(7\1) is 25 which is not stable and during second

activation val(7\1) is 23 which is the final stable value. Sec-

ond, introduction of shortcuts increases the number of edges

in the graph. Hence there is an increase in the size of memory

footprint as well as number of irregular memory accesses.

To overcome the above limitations we developed the 2Step

algorithm for evaluating a query Q(s). At the start of the com-

putation, the Step 1 of the algorithm initializes the values

of vertices using the results for another query, say Q(r). By

performing reuse exactly once right at the start, the benefits

of reuse are maximized and its overhead is minimized. Then,

in Step 2 the algorithm iterates applying conventional up-

dates to all vertices till the algorithm converges. Instead of

transforming the graph by adding shortcuts, in this approach

we store results of evaluating a small number of queries in a

reuse table and select a suitable Q(r) for reuse. By using a

reuse table, the footprint of the graph is not increased and its

locality of graph accesses is not worsened. Moreover accesses

of values from the reuse table exhibit good spatial locality.

The reuse table is designed to contain both the forward and

backward results of query Q(r). This ensures that when Q(s)
reuses results of query Q(r), it makes use of stable value of

val(r \ s) which maximizes the stable values produced via

reuse. When reuse table contains results of multiple queries

for different source vertices, to limit the cost of reuse 2Step

selectively reuses results of a small subset of most promising

source vertices in the reuse table. Thus, 2Step, while control-

ling the cost of reuse, maximizes production of stable values.

Forward-Backward Reuse Table Our objective is to per-

form reuse first, i.e. apply reuse updates and then run the

original iterative algorithm to completion. Moreover, we want

to ensure maximal production of stable values. We observe

that both these objectives can be met if we enhance the infor-

mation contained in the reuse table such that it contains both

forward and backward information for a given reuse vertex r

as described below:

• FWDTABLE [r] [d] (∀ d ∈ ALLVERTICES) represents

the property values (e.g., shortest path) computed for

query Q(r) on graph Graph.

• BWDTABLE [s] [r] (∀ s ∈ ALLVERTICES) represents

the property values (e.g., shortest path) computed for

query Q(r) on edge-reversed graph GraphR – which is

obtained by reversing the direction of each edge in the

original Graph.

Now let us see how the precomputed values can be used

right away at the start of evaluation of query Q (v). Given a

vertex d, its value can be initialized using the precomputed

results of a reuse source vertex r in the table as follows:

REUSEFUNC (d,BWDTABLE[v][r],FWDTABLE[r][d])

The REUSEFUNC function for five algorithms is given in

Table 1. For example, for SSSP,

BWDTABLE[v][r]+FWDTABLE[r][d]

is the shortest path from v to d via r and thus it is the best

estimate we can obtain for d.value by using the results for

vertex r in the reuse table. If we reuse results for multiple r

vertices in the reuse table then we find the shortest paths via

each of these vertices and then take the minimum across all

the computed shortest paths to initialize d.value. Because the

BWDTABLE contains stable values, reuse produces maximal

number of stable values upon completion of the reuse step.

Let us reconsider the computation of SSSP(1) whose eval-

uation was shown earlier in Figure 1(c). Now let us apply

2Step to this query; however, now the reuse table contains

both forward and backward information for vertex 7 as in

Figure 2. The evaluation now involves reuse followed by iter-

ations. Following reuse, only two iterations are required for

termination. In contrast earlier it took an extra iteration.

Source 1 2 3 4 5 6 7

7
FWD ∞ ∞ 2 5 9 3 0

BWD 23 3 13 10 ∞ 35 0

Iter# 1 2 3 4 5 6 7 Active

Init. 0 ∞ ∞ ∞ ∞ ∞ ∞ {1}

Reuse

d ∈ {3,4,5,6,7}
BwdTable[7][1] + FwdTable[7][d]

0 ∞ 25 28 32 26 23 {1}

P
1 0 20 25 28 32 10 23 {2,6}

2 0 20 25 28 32 10 23 {}

Figure 2: Computing SSSP(1) via 2Step Algorithm by

Reusing results of SSSP(7).

Push-style 2Step Reuse Algorithm In Algorithm 1 we

summarize our 2Step algorithm. As we can see, in Step 1

(lines 4-9) of evaluating the query for a given source vertex s,

we exploit the precomputed results for REUSABLEVERTICES

whose queries were precomputed and used to populate the

reuse table (BWDTABLE, FWDTABLE). The algorithm first

carries out the reuse step and sets the values of all destination

vertices by reusing n most promising reusable source vertices

for which precomputed query results are stored in the reuse

table. To find the n most promising vertices we use function

PRIORITIZE which looks at values in the BWDTABLE and

prioritizes vertices in the increasing or decreasing order (de-

pending upon algorithm characteristic) of BWDTABLE[r][s]

values where r is a reusable source vertex whose results were

precomputed and stored in the reuse table and s is the source

vertex for which the query Q(s) is being evaluated. The de-

tails of function REUSE show how it uses REUSEFUNC (lines

32-35) to perform reuse updates of all the vertex values so

13

Algorithm 1 Backward-Forward Reuse Algorithm.

1: function 2STEP (Q (s), BWDTABLE, FWDTABLE, n)

2: ⊲ Initialize ACTIVE Vertex Set and Vertex Values

3: ACTIVE← INITIALIZE (Q (s))

4: ⊲ Step 1: Reuse

5: Q← PRIORITIZE(s)

6: ⊲ Select reuse vertices and perform Reuse

7: for all r ∈ first n vertices in Q do

8: REUSE (s, r)

9: end for

10: ⊲ Step 2: Iterate

11: while ACTIVE 6= φ do

12: ACTIVE← PROCESS (ACTIVE)

13: end while

14: end function

15:

16: function PRIORTIZE (s)

17: ⊲ Ordering Vertices Used to Populate Reuse Table

18: Build Priority Queue Q by inserting all

19: vertices r ∈ REUSABLEVERTICES such that

20: they are sorted in increasing order of

21: BWDTABLE[r][s] values.

22: return Q

23: end function

24:

25: function REUSE (s, r)

26: ⊲ Only Reuse Valid Values

27: if BWDTABLE[s][r] 6= initialValue then

28: for d ∈ ALLVERTICES do

29: ⊲ Only Reuse Valid Values

30: if FWDTABLE[r][d] 6= initialValue then

31: ⊲ Perform Reuse Update of d

32: REUSEFUNC (d,

33: BWDTABLE[s][r],

34: FWDTABLE[r][d])

35:)

36: end if

37: end for

38: end if

39: end function

40:

41: function PROCESS (ACTIVE)

42: NEWACTIVE← φ

43: for all v ∈ ACTIVE do

44: for each e ∈ Graph.outEdges(v) do

45: ⊲ Apply Conventional Update to e.dest

46: changed← EDGEFUNC (e)

47: if changed then

48: ⊲ Update NEWACTIVE Set

49: NEWACTIVE← NEWACTIVE ∪ {e.dest}
50: end if

51: end forall

52: end forall

53: return NEWACTIVE

54: end function

that remainder of the iterative algorithm does not have to start

from the initialization values of all vertices but rather better

values computed by the reuse step. Once the reuse step has

been completed, then the iterative computation is completed

(see Step 2, lines 10-13) by applying conventional updates to

all vertices using the Process function (lines 41-54).

Table 1: Functions for Reuse Updates for Four Algorithms.

d.value← VRFUNC (d, BWDTABLE[s][r], FWDTABLE[r][d])

SSWP(s): d.value←
max(d.value,min(BWDTABLE[s][r], FWDTABLE[r][d]))

Viterbi(s): d.value←
max(d.value,BWDTABLE[s][r] ∗ FWDTABLE[r][d])

SSSP(s): d.value←
min(d.value,BWDTABLE[s][r]+ FWDTABLE[r][d])

BFS(s): d.value←
min(d.value,BWDTABLE[s][r]+ FWDTABLE[r][d])

SSNP(s): d.value←
min(d.value,max(BWDTABLE[s][r], FWDTABLE[r][d]))

3 Experimental Evaluation of VRGQ

Next we evaluate VRGQ that is based upon the presented

2Step algorithm and report the speedups achieved, reduction

in number of active edges processed, and extent to which

stable values are produced.

We implemented our algorithms using Ligra [15] that pro-

vides a shared memory abstraction for vertex algorithms

which is particularly good for graph traversal. Graph algo-

rithms used include – Single Source Widest Path (SSWP),

Viterbi [8], Single Source Shortest Path (SSSP), Breadth First

Search (BFS), and Single Source Narrowest Path (SSNP). Ex-

periments were performed on a 64 core (8 sockets × 8 cores)

machine with AMD Opteron 2.3 GHz processor 6376, 512

GB memory, and running CentOS Linux release 7.4.1708.

Table 2: Input graphs used in experiments.

Graphs #Edges #Vertices

Twitter (TT) [2] 2.0B 52.6M

Twitter (TTW) [6] 1.5B 41.7M

LiveJournal (LJ) [1] 69M 4.8M

PokeC (PK) [16] 31M 1.6M

We use four directed and edge-weighted power-law input

graphs with relatively small diameter that are listed in Table 2

– TT, TTW, LJ, PK. We use the default weight generation tool

provided by Ligra. Ligra generated weights range from 1 to

the log(n)+1 (where, n = |vertices|). For the four graphs we

tested, log(n) ranged from 20 to 25. We also varied the upper

bound of the range to 64 and 128, but the results were similar.

14

Table 3: Coverage Characteristics of Reuse Table with 5

REUSABLEVERTICES.

Hmin Hmax ALL→ REUSABLE #Queries

TT 1 4 81.9%→ 81.7% 20K (5K/hop)

TTW 1 4 96.1%→ 95.8% 20K (5K/hop)

LJ 2 5 87.2%→ 83.2% 20K (5K/hop)

PK 2 5 86.8%→ 85.1% 20K (5K/hop)

Table 4: NoReuse: Average execution times in Seconds

across 20,000 queries.

G SSWP Viterbi SSSP BFS SSNP

TT 7.04s 9.28s 8.41s 0.42s 18.03s

TTW 3.10s 3.91s 3.62s 0.28s 11.02s

LJ 0.21s 0.29s 0.22s 0.04s 0.58s

PK 0.07s 0.14s 0.09s 0.02s 0.09s

Table 5: 2Step: Speedups for three Reuse Table configurations: 5 out of 20; 2 out of 10; and 1 out of 5.

Overall the 1 out of 5 configuration performs the best in 3 of 5 benchmarks as it minimizes the reuse overhead.

G Hops SSWP Viterbi SSSP BFS SSNP

T
T

1 66.5 : 155.9 : 249.0 9.51 : 10.2 : 10.5 1.97 : 1.85 : 1.72 2.12 : 2.20 : 2.14 16.2 : 17.3 : 18.0

2 52.1 : 125.7 : 266.2 6.61 : 6.82 : 6.96 1.57 : 1.48 : 1.40 1.15 : 1.22 : 1.24 16.1 : 15.3 : 16.1

3 48.2 : 106.5 : 205.1 3.81 : 3.94 : 3.90 1.49 : 1.42 : 1.35 0.95 : 1.38 : 1.27 16.0 : 14.8 : 15.5

4 43.9 : 95.9 : 199.9 3.20 : 3.24 : 3.28 1.49 : 1.41 : 1.36 0.95 : 0.95 : 1.01 11.8 : 12.1 : 12.4

T
T

W

1 82.4 : 94.6 : 157.6 9.61 : 9.48 : 10.9 1.83 : 1.75 : 1.67 1.69 : 2.01 : 2.10 14.4 : 15.3 : 15.7

2 71.0 : 69.3 : 125.6 6.83 : 7.44 : 7.34 1.39 : 1.33 : 1.30 0.99 : 1.14 : 1.03 14.8 : 14.2 : 15.2

3 71.0 : 79.0 : 125.3 4.47 : 3.97 : 4.82 1.38 : 1.35 : 1.26 0.87 : 1.00 : 0.94 12.4 : 15.3 : 14.5

4 47.7 : 51.7 : 111.6 3.01 : 3.76 : 3.86 1.32 : 1.27 : 1.21 0.83 : 0.93 : 0.97 11.8 : 13.9 : 13.0

L
J

2 26.2 : 72.7 : 122.2 8.50 : 10.9 : 10.4 1.14 : 1.13 : 1.13 0.96 : 1.04 : 1.09 14.8 : 17.6 : 18.7

3 23.2 : 65.9 : 119.6 5.20 : 6.46 : 6.51 1.12 : 1.13 : 1.14 0.88 : 0.90 : 0.97 11.9 : 14.1 : 15.9

4 25.2 : 57.3 : 105.2 4.53 : 5.71 : 4.80 1.12 : 1.14 : 1.14 0.84 : 0.91 : 0.94 9.34 : 13.3 : 14.2

5 17.8 : 46.1 : 78.7 4.00 : 4.25 : 4.72 1.17 : 1.15 : 1.11 0.82 : 0.90 : 0.95 6.75 : 8.62 : 9.62

P
K

2 38.0 : 89.3 : 138.5 11.5 : 15.6 : 14.5 1.47 : 1.51 : 1.43 1.09 : 1.17 : 1.17 11.3 : 12.6 : 6.23

3 31.2 : 75.6 : 120.2 6.83 : 8.04 : 8.27 1.37 : 1.29 : 1.32 0.95 : 1.02 : 1.04 4.91 : 5.47 : 5.57

4 23.0 : 57.1 : 88.0 5.19 : 4.89 : 5.29 1.50 : 1.48 : 1.37 0.90 : 0.97 : 1.00 8.16 : 9.03 : 5.12

5 20.5 : 52.0 : 78.5 4.05 : 4.52 : 4.19 1.48 : 1.42 : 1.39 0.88 : 0.93 : 0.97 7.40 : 8.03 : 4.28

Average 43.0× : 80.9× : 143.2× 6.05× : 6.82× : 6.89× 1.43× : 1.38× : 1.33× 1.05× : 1.17× : 1.18× 12.0× : 13.2× : 12.8×

For each input graph, we generated 20,000 queries. Table 3

characterizes the coverage of queries and reuse table that are

used in our evaluation. The queries used were for source ver-

tices that are Hmin to Hmax hops from the reuse source vertices

in the reuse table. The reuse table populated with results of

only 5 source vertices allows nearly all possible queries to

take advantage of its contents for reuse (ALL ranging from

81.9% to 96.1%). The hops considered account for nearly all

of these queries (REUSABLE ranging from 81.7% to 95.8%).

For each input graph we used 20,000 queries spread across

the four different hop values considered. For 80% of ver-

tices, Hops ranged from 1 to 4 or 2 to 5 for four graphs. We

randomly picked 5K corresponding to each hop. Thus, the

selected queries maximize diversity in terms of number of

hops between the source vertex and the reusable vertices.

Finally, we use multiple reuse table configurations of the

form n out of m in these experiments, where m is the number

of sources vertices whose full results are stored in the reuse

table and n is the most promising subset number of these that

are actually exploited during reuse. The configurations used

are 5 out of 20; 2 out of 10; and 1 out of 5.

Speedups Table 5 presents the speedups achieved by 2Step

for the three reuse table configurations for all the input graphs

and algorithms considered. The baseline running times with-

out reuse (NoReuse) that are used in computing speedups are

given in Table 4. For power law graphs, the results for 20,000

queries are separated according to the 5,000 queries each

for the four hop values considered. The average speedups

obtained for power-law graphs and table configurations are

substantial, 43× to 143× for SSWP, 6.05× to 6.89× for

Viterbi, 1.33× to 1.43× for SSSP, 1.05× to 1.18× for BFS,

and 12× to 13.2× for SSNP.

The larger power-law graphs (TT and TTW) experience

higher speedups than smaller power-law graphs (LJ and PK).

The number of hops from query source vertex to nearest reuse

table source vertex also impacts performance. By and large,

the smallest hop distance gives the best speedups while the

largest hop distance gives the least speedup. For example, for

SSWP on TTW with the smallest reuse table configuration,

speedups decrease from 157.6× to 111.6× as hop distance

increases from 1 to 4. For SSWP the smallest table configu-

ration gives best speedups, for Viterbi and BFS the speedups

for the two smaller table configurations are fairly close and

significantly better than for the largest table configuration,

and for SSSP mostly the largest table gives best speedups,

though by a small margin. Larger reuse tables may enable

15

Table 6: 2Step: % reduction in processed active edges due to

reuse for table configuration of 2 out of 10.

G Hops SSWP Viterbi SSSP BFS SSNP

T
T

1 99.99 95.28 73.14 29.94 99.99

2 99.99 99.99 82.80 18.89 99.99

3 99.99 89.30 66.84 2.21 99.99

4 99.99 85.60 71.31 3.89 99.99

T
T

W

1 99.99 94.42 68.76 34.06 99.99

2 99.99 99.99 80.48 38.09 99.99

3 99.99 89.67 62.05 2.11 99.99

4 99.99 91.44 70.93 1.67 99.99

L
J

2 99.99 96.66 58.53 5.86 99.99

3 99.99 86.89 50.03 3.04 99.99

4 99.99 94.86 46.84 0.41 99.99

5 99.99 93.94 49.38 0.34 99.99

P
K

2 99.99 98.03 74.59 6.78 99.99

3 99.99 89.56 70.93 9.71 99.99

4 99.99 93.21 69.54 1.10 99.99

5 99.99 91.36 71.88 0.77 99.99

Average 99.99% 93.14% 66.75% 9.93% 99.99%

Table 7: 2Step: Percentage of values that become stable

following reuse for table configuration of 2 out of 10.

G Hops SSWP Viterbi SSSP BFS SSNP

T
T

1 99.99 90.57 41.37 93.04 99.99

2 99.99 85.81 21.58 60.28 99.99

3 99.99 74.70 22.64 42.91 99.99

4 99.99 62.81 28.88 47.31 99.99

T
T

W

1 99.99 90.79 48.76 94.78 99.99

2 99.99 89.38 31.81 72.83 99.99

3 99.99 80.31 31.26 52.97 99.99

4 99.99 79.10 30.86 47.83 99.99

L
J

2 99.99 91.72 21.08 46.24 99.99

3 99.99 84.69 16.61 23.65 99.99

4 99.99 84.72 11.94 16.52 99.99

5 99.99 79.25 13.39 15.69 99.99

P
K

2 99.99 92.99 46.34 66.88 99.99

3 99.99 84.14 41.52 39.41 99.99

4 99.99 71.65 33.97 32.76 99.99

5 99.99 61.77 36.24 27.59 99.99

Average 99.99% 81.52% 29.89% 48.79% 99.99%

more effective reuse but also incur higher reuse overhead.

Thus, depending upon the algorithm characteristics, different

sized reuse tables deliver the best performance for different

benchmarks.

Reduction in Active Edges and Stable Values Produced

Next we present additional data for the benchmarks to better

understand the large degree of difference in speedups ob-

served. Tables 6 and 7 provides reduction in active edges

processed and extent to which reuse step produces stable val-

ues. The reason for varying degrees of speedups can be found

in algorithms characteristics.

First, performance benefit of reuse is very high for SSWP

because in this algorithm no new values are computed – the

resulting property value for each vertex is essentially equal

to the weight of a selected edge. Thus, reuse often produces

stable values as high as 99.99% as shown in Table 7. This

unique characteristic of SSWP resulted in high speedups.

The nature of Viterbi and SSSP is quite similar as both

compute new values, except that one involves real values and

the other integer values. However, on average, Viterbi produces

81.52% stable values while SSSP produces only 29.89%

stable values on average across all four power law graphs.

Thus, average reduction in active edges is 93.14% for Viterbi

which is significantly higher than 66.75% for SSSP across all

power law graphs. This explains why Viterbi achieves higher

speedups than SSSP via reuse even though the values were

not stable following reuse.

Small benefits are expected for BFS as cost of computing

a value for a vertex is similar to cost of generating the value

via reuse. The competing factors of possibly increased work

(when insufficient number of stable values are produced) and

better memory behavior during reuse (because edge-lists are

not accessed and vertices are visited in the order they are

stored) result in small speedups or small slowdowns.

Speedups for Individual Queries So far we have pre-

sented the average execution times and speedups over 20,000

queries for the 2 out of 10 configuration. To demonstrate

that the speedups are achieved across nearly all queries, we

present plots in Figure 3 where for the TT graph, the execution

times of 2Step and NoReuse for each query are plotted. The

plots are given for the SSWP and BFS algorithms that give

maximum and minimum average speedups across all bench-

marks. The scatter plots in Figure 3 show that execution times

for nearly all of the 20K queries are improved by VRGQ (the

only exception is Hops=4 queries for BFS).

4 Populating the Reuse Table

To populate the reuse table we need to identify a small subset

of vertices in the graph, say N, whose backward and forward

query results will be precomputed and stored in the reuse table.

Since an input graph typically contains millions of vertices,

we need to develop a methodology for selecting the N vertex

set. Our selection is aimed at achieving two goals:

• Maximize Reuse – Since all vertices are not equally effec-

tive in the degree of reuse they support, we will include

vertices in N that have high centrality. That is, we will

give preference to vertices that play an influential role in

computation of results of large number of other queries.

• High Coverage – Ideally we would like to choose N such

that, from all other vertices in the graph, at least some

vertices in N can be reached in less than MaxHops. That

16

Figure 3: Performance of individual queries – each scatter plot depicts execution times of 2Step and NoReuse for 20,000 queries

– black dots correspond to 2Step execution times and gray dots are for NoReuse execution times. The plots show that vast

majority of queries benefit from 2Step algorithm.

Table 8: Populating Reuse Table: Overlap in 20 source vertices selected; Runtime costs of using different number of random

queries to select 20 vertices; and Runtime overhead of populating the Reuse Table with full results for the 20 vertices.

G Number of Random Queries Populating

1000 10 20 40 60 Reuse Table

TT
Overlap 20 19 20 20 20

Overhead 6070s (3.8%) 101s (3.1%) 175s (5.1%) 333s (6.2%) 393s (4.7%) 699s

TTW
Overlap 20 19 18 19 19

Overhead 3095s (5.7%) 60s (7.9%) 89s (1.5%) 155s (6.4%) 227s (6.8%) 490s

LJ
Overlap 20 20 18 18 20

Overhead 164s (14.1%) 3.1s (7.3%) 5s (9.7%) 7.4s (6.7%) 13.6s (4.4%) 43s

PK
Overlap 20 17 19 19 19

Overhead 81s (8.5%) 1.3s (0.3%) 2.5s (10.3%) 4.2s (10.2%) 5.6s (7.8%) 16s

is, all queries will encounter reusable vertices. Since

this is not always possible, we attempt to achieve high

coverage, i.e. for most queries reuse is possible.

Our three step methodology for selecting vertex set N such

that it meets the above goals is presented below.

Step 1: Identify High Centrality Candidates using Ran-

dom Queries – We evaluate randomly selected queries and

during each query evaluation we maintain impact counts for

all other vertices in the graph. Each time the value of some

vertex v, causes an update of its out-neighbor, the impact

count of v is incremented. Betweenness centrality quantifies

the number of times a node acts as a bridge along the short-

est path between pairs of nodes. Vertices that have a high

probability to occur on a randomly chosen shortest path be-

tween two randomly chosen vertices have a high betweenness.

High impact counts are treated as an indicator for high cen-

trality. Thus, extremely expensive centrality is avoided. For

each query evaluated, the top N vertices, i.e. vertices with

the highest impact counts, are identified. Since this process

is repeated for multiple queries, say q1, q2 · · · qn, we obtain

multiple candidate sets N(q1), N(q2) · · · N(qn).

Step 2: Selecting top |N |High Centrality Candidates –

Note that the same vertex may appear in multiple sets N(q1),
N(q2) · · · N(qn) obtained in the first step but not necessarily

in all the sets. We select the final set N by both considering

how frequently a vertex appears in different sets and its corre-

sponding impact counts. This is achieved by summing up the

impact counts of all occurrences of a vertex in the above sets

and sorting the final sums to identify the top | N | vertices.

Step 3: Populating the Table – The top centrality candi-

dates identified in the preceding step are processed one by one

to populate the reuse table. By evaluating the query for each

vertex v in both the forward direction on the original graph and

backward direction on the edge reversed graph, the reuse table

is populated with FWDTABLE[v][*] and BWDTABLE[*][v].

17

Table 9: Improvements if instead of using 5 out of 20 we

reuse results of all 20 queries. The minimal improvements

indicate that reusing results of a few queries is enough.

Improvements in SSWP Viterbi SSSP BFS

Vertices Processed 0% 0% 3% 5%

Stable Values 0% 0% 1% 7%

Table 10: Substantial overlap in high centrality vertices for

different benchmarks and graphs for 20 REUSABLE-

VERTICES indicates that same reuse vertices can be used

across different benchmarks.

TT TTW LJ PK

SSWP 20 20 20 20

Viterbi 20 19 18 19

SSSP 20 19 17 16

BFS 19 18 19 16

Cost of populating strategy Finally we would like to de-

scribe the runtime cost of constructing the reuse table of size

20 – we present this cost when using different number of

random queries – 1000, 10, 20, 40 and 60 – in Table 8. Con-

sidering the 20 vertices found using 1000 random queries

as the best selection, we compared its results with sources

vertices selected by using 10, 20, 40 and 60 random queries.

The overlap among the selected vertices is very high – when

using 60 random queries, the overlap is 20 out of 20 for TT

and LJ and it is 19 out of 20 for TTW and PK. Thus, run-

ning 60 random queries is more than sufficient for identifying

high centrality vertices. The runtime overheads for selecting

20 vertices using 60 random queries range for 5.6 to 393

seconds depending upon the size of the power law graph

graph while populating the table with results takes 16 to 699

seconds. Note that while high centrality vertices are being

selected, new queries can be processed in parallel. The cost of

selecting high centrality vertices varies from 0.44s (for PK) to

18.47s (for TT) for power law graphs for 60 random queries

in Table 8. Thus, the overhead of populating the reuse tables

is modest as it has to be done only once.

In Table 9 we show results of our experiment justifying the

selection of 5 out of 20 configuration. If in the reuse step,

instead of reusing results of best 5 we reuse results of all 20,

little to no reductions in vertices processed and increase in

stable values produced are observed as shown in the table. We

also increased the size of the reuse table from 20 to 40 source

vertices. No improvements in vertices processed or stable

values produced were observed for the first three programs

and 1% improvement was seen for BFS.

Heuristic effectiveness Our heuristic for finding high cen-

trality vertices is very effective. To verify this we found high

centrality vertices using the betweenness centrality algorithm

Table 11: Higher Hub populating times in seconds and their

comparison with VRGQ populating times.

Graph→ TT TTW LJ PK

Hub=20 1102s 732s 43s 16s

1.58× 1.49× 1.00× 1.00×

Hub=100 5925s 3390s 211s 77s

8.50× 6.92× 4.90× 4.81×

Table 12: Evaluation of Hub and VRGQ applying reuse on

4K BFS queries with size of 20. The results show that

Hub-based reuse largely results in slowdowns.

Speedups Reuse 1 Reuse 2 Reuse All

Hub=20
PK 0.89× 0.75× 0.35×
TT 0.98× 0.96× 0.75×

Hub=100
PK 0.81× 0.74× 0.12 ×
TT 1.01× 0.95× 0.31 ×

VRGQ
PK 1.06×
TT 1.39×

available in Ligra and compared them with ones found by

our heuristic. We found that top 5 vertices found by the orig-

inal algorithm appear among the top 10 vertices found by

our heuristic. Thus, there is great degree of overlap, though

vertices appear in different order.

Finally, we identified the top 20 vertices in the four power

law graphs by considering the centrality with respect to prop-

erty values of all four algorithms and found that vast majority

of vertices are the same for all algorithms. Table 10 shows

how many of the 20 reuse sources found for SSWP also ap-

pear in the 20 reuse sources found for Viterbi, SSSP and BFS.

The high overlap indicates that structure of the graph is the

determinative factor much more so than the graph algorithm.

Thus, for a given graph, it is possible to find reuse vertices

once and use them for all algorithms.

Hub Accelerator vs. VRGQ The Hub Accelerator [5] is

used to speedup the evaluation of graph queries. At a high

level it is similar to VRGQ as both rely upon precomputations

and then use the results of precomputations to speedup subse-

quent query evaluations. However, VRGQ computes point-to-

all (i.e., queries involving single source and all destinations)

while the Hub Accelerator computes point-to-point queries

(i.e., queries involving a single source and destination pair).

We implemented the Hub Accelerator in Ligra and adapted

it to compute point-to-all queries by reusing the Hub Accel-

erator results for all destinations. Next we show that VRGQ

is far more effective than Hub Accelerator both because its

precomputation is relatively inexpensive and the speedups

obtained are higher.

The reason why the Hub Accelerator precomputation is

more expensive than our precomputation for populating the

reuse table is as follows. For the Hub network to be effec-

tive it is typically chosen to have large number of vertices

18

(e.g., in [5] the authors consider Hub sizes of 5K to 15K

vertices) and then shortest paths among all these vertices

are precomputed. In addition, the shortest path from each

non-Hub vertex to the closest core-Hub vertex must also be

precomputed. In contrast, the 2Step algorithm of VRGQ only

precomputes results for a handful of high centrality vertices

to populate the reuse table. Table 11 compares the precom-

putation costs of Hub Accelerator precomputation with reuse

table precomputation. Table 11 first presents Hub Accelerator

precomputation times in seconds and then the factor by which

the cost of Hub Accelerator precomputation exceeds that of

reuse table precomputation of VRGQ. We present this data

for Hub sizes of 20 and 100 for all four graphs. We observe

that Hub Accelerator precomputation is several times more

expensive that VRGQ precomputation for Hub size of 100 and

even for Hub size of 20 for the difference can be substantial

for large graphs.

We also compare speedups for evaluating four thousand

BFS queries by applying reuse with Hub Accelerator and

VRGQ in Table 12. These four thousand queries were chosen

from 20K queries used in earlier experiments, we randomly

chose 1000 queries each from the 5000 queries for each of

the four hop values. With Hub size of 20, the same as the

number of reusable-vertices for VRGQ, the Hub Accelera-

tor only experiences slowdowns as shown in Table 12. If

we reuse all precomputed results, due to high reuse cost, we

get significant slowdown. We therefore tried reuse of only 1

or 2 vertices from the Hub but this too did not produce any

speedups although it reduced the slowdowns. When Hub size

was increased to 100, for the TT graph, a slight speedup of one

percent was finally achieved though the precomputation cost

is dramatically increased. In contrast VRGQ achieves average

speedup of 1.39× for TT on BFS queries. To be consistent, in

VRGQ, we reused only one source vertex selected from 20

queries. For Hub Accelerator [5], each vertex can have mul-

tiple corehubs. The result in Table 12 shows that if reuse all

corehubs we only achieve slowdowns. If we select a specific

corehub vertex by distance, then VRGQ and Hub Accelerator

will select the same vertex for reuse. Hence there is no ad-

vantage of using a selected corehub over VRGQ. Moreover,

Hub Accelerator was designed for point-to-point queries and

hence its reuse table contains partial results. As a result, the

reuse performed is costly and ineffective.

From the above results we conclude that the limitation

of the Hub Accelerator approach is that it cannot deliver

speedups for point-to-all queries. When small Hub sizes are

used only slowdows are observed and when large Hub sizes

are used the precomputation cost becomes very high. In con-

trast, VRGQ gives speedups with small number of reuseable-

vertices while incurring low precomputation cost. Finally

our 2Step algorithm requires minimal change to the origi-

nal algorithms as it simply initializes the vertex values using

reuse-table (not default initialization values) and then stan-

dard iterative algorithm is run.

5 Other Related Work on Optimizing Evalua-

tion of Multiple Graph Queries

VRGQ reuses results of a few queries for achieving speedups

in the evaluation of numerous other queries. We have

adapted this concept and applied it in other scenarios as well.

SimGQ [21] reuses the results of dynamically identified shar-

ing queries to speed up the simultaneous evaluation of a batch

of queries. Tripoline [4] uses this idea to create a generalized

streaming graph model where continuously updated results

of a small number of standing queries are used to rapidly

evaluate arbitrary user queries.

There are two recent works, Quegel [23] and PnP [20],

that evaluate a stream of graph queries. However, both these

works are aimed at evaluating point-to-point queries (e.g.,

shortest path from a single source to a single destination).

Quegel derives improved throughput by evaluating queries in

a pipelined fashion and taking advantage of the Hub [5] pre-

computation. PnP [20] is similar to other graph frameworks

in that speedups are achieved by evaluating a single query

faster using new dynamic optimizations.

There are other recent works [11, 14, 17, 22–24] that eval-

uate multiple queries simultaneously. Congra [14] handles

each query independently using a separate process. Thus, it

is unable to take advantage of value reuse opportunity across

queries. CGraph [24] and Seraph [22] are out-of-core systems

that evaluate multiple queries. However, their benefits are

achieved via sharing of the graph as opposed to the result val-

ues. In [17] a specialized system that processes multiple BFS

queries is presented. Finally, MultiLyra [11] and BEAD [12]

simultaneously evaluate queries on distributed systems.

6 Conclusion

We have developed VRGQ that incorporates the 2Step iter-

ative algorithm for evaluating a sequence of graph queries

on individual vertices. The key feature of this framework is

that during evaluation of any query, coarse-grained reuse of

previously computed results for selected vertices is performed

to accelerate query evaluation. The VRGQ system is different

from related works in a key way. It takes advantages of results

computed for a very small number of queries to optimize the

execution of all future queries via coarse-grained reuse.

Acknowledgments

This work is supported by National Science Foundation

Grants CCF-2002554, CCF-2028714, and CCF-1813173 to

the University of California Riverside.

References

[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.

Group formation in large social networks: Membership,

growth, and evolution. In ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD), pages

44-54, 2006.

19

[2] M. Cha, H. Haddadi, F. Benevenuto, and P.K. Gummadi.

Measuring user influence in twitter: The million follower

fallacy. In AAAI Conference on Web and Social Media,

10(10-17):30, 2010.

[3] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C.

Guestrin. Powergraph: Distributed graph-parallel com-

putation on natural graphs. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI),

pages 17-30, 2012.

[4] X. Jiang, C. Xu, X. Yin, Z. Zhao, and R. Gupta. Tripoline:

Generalized incremental graph processing via graph tri-

angle inequality. In European Conference on Computer

Systems (EuroSys), pages 1-16, April 2021.

[5] R. Jin, N. Ruan, B. You, and H. Wang. Hub-accelerator:

Fast and exact shortest path computation in large social

networks. CoRR, abs/1305.0507, 2013.

[6] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter,

a social network or a news media? In WWW, pages 591-

600, 2010.

[7] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi :

Large-scale graph computation on just a PC. In USENIX

Symposium on Operating Systems Design and Implemen-

tation (OSDI), pages 31-46, 2012.

[8] J. Lember, D. Gasbarra, A. Koloydenko, and K. Kuljus.

Estimation of Viterbi path in bayesian hidden markov

models. In METRON, 77(2):137-169, 2019.

[9] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,

and J. M. Hellerstein. Distributed GraphLab: A frame-

work for machine learning and data mining in the cloud.

In Proceedings of the VLDB Endowment, 5(8):716-727,

2012.

[10] G. Malewicz, M.H. Austern, A.J.C Bik, J.C. Dehnert, I.

Horn, N. Leiser, and G. Czajkowski. Pregel: a system for

large-scale graph processing. In ACM SIGMOD Interna-

tional Conference on Management of Data (SIGMOD),

pages 135-146, 2010.

[11] A. Mazloumi, X. Jiang, and R. Gupta. MultiLyra: Scal-

able distributed evaluation of batches of iterative graph

queries. In IEEE International Conference on Big Data

(BigData), pages 349-358, 2019.

[12] A. Mazloumi, C. Xu, Z. Zhao, and R. Gupta. BEAD:

Batched evaluation of iterative graph-queries with evolv-

ing analytics demands. In IEEE International Conference

on Big Data (BigData), pages 461-468, 2020.

[13] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight

infrastructure for graph analytics. In ACM Symposium

on Operating Systems Principles (SOSP), pages 456-471,

2013.

[14] P. Pan and C. Li. Congra: Towards efficient processing

of concurrent graph queries on shared-memory machines.

In IEEE International Conference on Computer Design

(ICCD), pages 217-224, 2017.

[15] J. Shun and G. Blelloch. Ligra: a lightweight graph

processing framework for shared memory. In ACM SIG-

PLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), pages 135-146, 2013.

[16] L. Takac and M. Zabovsky. Data analysis in public so-

cial networks. In International Scientific Conference and

International Workshop Present Day Trends of Innova-

tions, pages 1-6, 2012.

[17] M. Then, M. Kaufmann, F. Chirigati, T-A. Hoang-Vu,

K. Pham, A. Kemper, T. Neumann, and H.T. Vo. The

more the merrier: Efficient multi-source graph traversal.

In Proceedings of the VLDB Endowment, 8(4):449-460,

2015.

[18] K. Vora, S-C. Koduru, and R. Gupta. ASPIRE: Ex-

ploiting asynchronous parallelism in iterative algorithms

using a relaxed consistency based DSM. In SIGPLAN

International Conf. on Object Oriented Programming

Systems, Languages and Applications (OOPSLA), pages

861-878, 2014.

[19] K. Vora, C. Tian, R. Gupta, and Z. Hu. CoRAL: Con-

fined recovery in distributed asynchronous graph process-

ing. ACM International Conference on Architectural Sup-

port for Programming Languages and Operating Systems

(ASPLOS), pages 223-236, 2017.

[20] C. Xu, K. Vora, and R. Gupta. PnP: Pruning and predic-

tion for point-to-point iterative graph analytics. In ACM

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-

LOS), pages 587-600, 2019.

[21] C. Xu, A. Mazloumi, X. Jiang, and R. Gupta. SimGQ:

Simultaneously evaluating iterative graph queries. In

IEEE International Conference on High Performance

Computing, Data, and Analytics (HiPC), pages 1-10,

2020.

[22] J. Xue, Z. Yang, Z. Qu, S. Hou, and Y. Dai Seraph: an

efficient, low-cost system for concurrent graph processing.

In ACM Symposium on High-Performance Parallel and

Distributed Computing (HPDC), pages 227-238, 2014.

[23] D. Yan, J. Cheng, M.T. Ozsu, F. Yang, Y. Lu, J.C.S. Lui,

Q. Zheng and W. Ng. A general-purpose query-centric

framework for querying big graphs. In Proceedings of

the VLDB Endowment, 9(7):564-575, 2016.

[24] Y. Zhang, X. Liao, H. Jin, L. Gu, L. He, B. He, and H.

Liu. Cgraph: a correlations-aware approach for efficient

concurrent iterative graph processing. In USENIX Annual

Technical Conference (USENIX ATC), pages 441-452,

2018.

20

