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ABSTRACT
Concolic testing combines concrete execution with symbolic ex-

ecution along a path to automatically generate new test inputs

that exercise program paths and deliver high code coverage during

testing. The GKLEE tool uses this approach to expose data races in

CUDA programs written for execution on GPUs. In programs em-

ploying concurrent dynamic data structures, automatic generation

of a data structure with appropriate shape is necessary to cause

threads to follow selected, possibly divergent, paths. In addition,

a single non-conflicting data structure shape must be generated

that simultaneously causes multiple threads to follow their respec-

tive chosen paths. When an execution exposes a bug (e.g., a data

race), the generated data structure shape helps the programmer

understand the cause of the bug. Because GKLEE does not permit

pointers that form the shape of the dynamic data structure to be

made symbolic, it cannot automatically generate data structures

of different shapes and must rely on the user to write code that

constructs them to exercise desired paths. We have developed DS-
GEN for automatically generating non-conflicting dynamic data

structures with different shapes and integrated it with GKLEE to

facilitate uncovering of data races in programs that employ com-

plex concurrent dynamic data structures. In comparison to GKLEE,
DSGEN increases the number of races detected from 10 to 25 by

automatically generating a total of 1,897 shapes in implementa-

tions of four complex concurrent dynamic data structures – B-Tree,

Hash-Array Mapped Trie, RRB-Tree, and Skip List.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS
Concolic Testing, Data Structure Shapes, Symbolic Linking Pointers,

CUDA Programs, Data Races.

ACM Reference Format:
Xiaofan Sun and Rajiv Gupta. 2021. DSGEN: Concolic Testing GPU Imple-

mentations of Concurrent Dynamic Data Structures . In 2021 International
Conference on Supercomputing (ICS ’21), June 14–17, 2021, Virtual Event, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3447818.3460962

ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8335-6/21/06.
https://doi.org/10.1145/3447818.3460962

1 INTRODUCTION
Today Graphics Processing Units (GPU) are being extensively used

in high-performance computing due to their ability to efficiently

support high degree of parallelism. Increasingly general-purpose

parallel applications are being implemented on GPUs, including

those employing variety of concurrent dynamic data structures [1–

3, 23, 26]. The concurrent operations on such structures can lead

to bugs (e.g., data races). Therefore their thorough testing is very

important. Data races in GPU programs can be detected using

static symbolic evaluation based methods [18, 21], dynamic meth-

ods [4, 11, 24], and combined static and dynamic methods [35, 36].

Since static methods are conservative, they lead to false positives.

Dynamic methods typically report true races, assuming dynamic

synchronizations are accurately captured and not missed. How-

ever, uncovering of races is dependent upon selection of suitable

program input and many races present may not be exposed by a

given input. The combined analysis techniques use static analysis

to identify potential races and then limit program instrumentation

to dynamically verify manifestation of some potential races. The

above techniques are effective for programs with simple control

flow and branch predicates that can be readily analyzed using static

analysis or exercised using manually selected inputs.

As GPUs are increasingly being used by general-purpose paral-

lel applications with complex control flow, branch conditions, and

concurrency structure, there is a need for employing more power-

ful automated techniques. Concolic execution is such a technique

that performs symbolic evaluation along a concrete execution path,

systematically and automatically generating new inputs to exercise

and thus test different execution paths for improved code cover-

age [31]. This approach is used by GKLEE [19] to detect data races

in multithreaded CUDA programs. It is built using the KLEE [6]

concolic testing system for single-threaded programs. The concolic

testing loop that generates new inputs is driven by user identified

variables that are made symbolic, leading to derivation of symbolic

constraints for branch conditions that drive computation of new

inputs to exercise different branch outcomes.

While GKLEE is a superior state-of-the-art system, it also has

limitations. In particular, it cannot adequately exercise code imple-

menting and using concurrent dynamic data structures [1–3, 23, 26].
Overcoming this limitation requires addressing the following two

challenges related to the shapes of dynamic data structures.

• Symbolic Pointer-based Dynamic Data Structures – In

such programs, dynamic data structures with different shapes
are needed to exercise different paths. Thus, pointer variables

that act as links to construct the dynamic data structure

and its shape must also be made symbolic and then used to

automatically generate dynamic data structure of suitable
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shape to exercise a given path by a thread. GKLEE does not

support symbolic linked dynamic data structures.

• Non-Conflicting Shape – Since multiple threads are in-

volved in data races, different dynamic data structures gen-

erated to cause multiple threads to traverse their respective

selected paths must be integrated to generate a single non-
conflicting dynamic data structure whose shape simultane-

ously causes all threads to follow their chosen paths.

In this paper, we present DSGEN that addresses the above chal-

lenges and automatically generates dynamic data structures of

suitable shapes that cause multiple threads to exercise GPU kernels

implementing concurrent dynamic data structures. GKLEE’s sym-

bolic VM considers threads one by one and interacts with DSGEN
to continually construct their dynamic data structures to satisfy

constraints involving symbolic linking pointers. The satisfaction of

constraints for individual threads generates data structures with

shapes that cause threads to follow their respective paths. The

satisfaction of constraints for multiple threads requires integrat-

ing the dynamic data structures with different shapes into a single

non-conflicting data structure with the proper shape that simultane-

ously causes all threads to follow their respective paths. Generating

dynamic data structures of suitable shapes causes threads to follow

different combinations of frequently executed convergent paths

and infrequently executed divergent paths, DSGEN enables higher

path coverage and exposes data races that are then detected using

GKLEE’s ability to collect and analyze execution traces.

We have developed a prototype of DSGEN which is integrated

with GKLEE. To demonstrate its capabilities, we use it to generate

dynamic data structures of suitable shapes that uncover data races

in highly parallel GPU implementations of B-Tree [1], Hash-Array

Mapped Trie (HAMT) [2], RRB-Tree [3], and Skip List [23, 26]. In

comparison to GKLEE, DSGEN increases the number of races de-

tected from 10 to 25 by automatically generating a total of 1,897

shapes in the implementations of the above four complex concur-

rent dynamic data structures. Though we demonstrate the use of

DSGEN in expanding the applicability of GKLEE’s data race detec-
tion capability to a new class of programs, the shape exploration

based concolic testing introduced can also be used to uncover other

kinds of input shape sensitive bugs.

2 GKLEE: CAPABILITIES AND LIMITATIONS
GKLEE [19] is a symbolic execution engine for CUDA programs.

The loader packages the symbolic variables, the memory model,

current instruction, threads information, and empty constraints set

into the running state of all GPU threads. A State Queue contains all

the possible running states of all the threads to allow exploration of

all possible paths. The emulation loop of GKLEE execution engine,

during each of its iteration, takes a state from the queue and issues

an instruction from the current running thread resulting in update

of the memory model and addition of new constraints in terms of

symbolic variables. Variables such as blockIdx and threadIdx are
symbolic and in addition user can make program variables symbolic

using GKLEE’s API as follows:
__device__ int a;

klee_make_symbolic(&a, sizeof(int), "a");

Upon reaching a barrier (e.g., a function call to "__syncthreads()"
or the end of a function), the state switches to running the next

thread. After all threads reaching the barrier, race detection is per-

formed and data race report is generated for the user.

GKLEE efficiently explores a potentially large space of execution

states, involving a large number of threads, by leveraging the power

of symbolic analysis. In particular, it embodies two important ideas:

canonical schedule [19] and parametric flows [21]. As demonstrated

by authors of GKLEE, these features greatly contribute to GKLEE’s

scalability. Moreover, these techniques preserve the soundness of

data race detection [19, 21].

The canonical schedule fully executes each thread till it reaches a

barrier, before switching execution to another thread. If the program

is race free, the canonical schedule is equivalent to any other sched-

ule. When potentially conflicting memory accesses (read-write or

write-write) among threads are possible, the SMT solver picks con-

crete values for thread ids and data values that cause the conflict to

manifest itself. The precision of the SMT solver ensures the absence

of false alarms.

The idea of parametric flows allows efficient handling of a large

number of threads by partitioning the space of executions into

parametric flow equivalence (PFE) classes such that all intra-warp

races can be detected by considering a pair of threads from the

same parametric flow while all inter-warp races can be detected by

considering one thread each from two different parametric flows.

The SMT solver identifies the specific threads and data values that

causes the data race to manifest. Note that the Grid Size and Block

Size determine the number of thread blocks and threads within each

block. Limits on their sizes play a role when the solver identifies

the values of bid and tid for the racing threads.

Typically in SIMD programs, different threads operate on differ-

ent data items while following the same execution path. In contrast,

when considering concurrent dynamic data structures, multiple

threads frequently follow divergent paths that may access the same

data fields giving rise to data races. Generation of inputs that exer-

cise the complex control flow due to divergent paths, requires the

power of concolic testing. Since GKLEE does not support symbolic

pointer-based linked data structures, it cannot generate different

dynamic data structure shapes. Thus, to enable the complex control

flow to be thoroughly exercised, the burden of creating suitably

shaped data dynamic structures falls on the user.

3 DSGEN OVERVIEW
Since making a thread follow a path is dependent upon the dynamic

data structure and its shape, the objective of concolic testing is to

generate dynamic data structures with different shapes to explore

executions along different paths by multiple threads. To accomplish

this task, our system enables two key functions. First, it allows

pointers that construct the concurrent dynamic data structures to

be made symbolic. Second, it allows the collection of constraints

on data structure shapes that must be satisfied to cause the selected

paths to be followed by respective threads.

Figure 1 provides an overview of the integrated DSGEN and

GKLEE system. GKLEE gives instructions to the Filter module that

passes on the memory accesses of the symbolic concurrent data

structure to the Shape Generator and the branch conditions to the
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Figure 1: DSGEN + GKLEE Prototype.

Scheduler. All other instructions are passed directly to GKLEE’s
execution engine. The Scheduler provides branch coverage infor-

mation for all threads to the Coverage Recorder and selects new

paths to explore. Note that for branch conditions that are symbolic,

both true and false outcomes can be explored by path selection.

The Scheduler also provides constraints that arise from branch con-

ditions to the Shape Constraints Manager. Selection of alternate

paths leads to modification of these constraints. The Data Shape
Generator generates a data structure with a shape that satisfies

constraints and passes it on to GKLEE.
The Shape Constraints Manager also performs another impor-

tant task. It is responsible for ensuring generation of a non-conflicting
data structure. Thus, when data structures produced along paths

followed by different threads differ, the constraints manager must

detect and resolve conflicts among them to produce a single non-
conflicting dynamic data structure shape for all the threads. Reso-

lution of conflicts results in generation of a test case that exercise

the path combination. If conflicts cannot be resolved, the current

combination of paths is abandoned. The search then moves on to

the next combination of paths that is selected according to the

depth-first search strategy.

The functioning of the Data Shape Generator is driven by the

memory accesses. Starting from the previously generated shape, this

module appropriately modifies the data structure. As an example, a

pointer dereferencing operation may lead to the expansion of the

data structure via memory allocation. On the other hand, when

conflicts are to be resolved, the data structure may need to be

Table 1: DSGEN API for dynamic data structures.

klee_make_data_structure (𝑥 , 𝑠𝑖𝑧𝑒 , 𝑛𝑎𝑚𝑒)

klee_set_data_structure (𝑥 , 𝑠𝑖𝑧𝑒 , 𝑛𝑎𝑚𝑒 , 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

klee_set_double_link (𝑛𝑎𝑚𝑒 , offset, size, link, link_size)

klee_set_range (𝑛𝑎𝑚𝑒 , offset, size, min, max)

klee_set_memory_type (name, offset, size, type)

compacted. The actions of this module are at the heart of DSGEN
function and will be presented in detail in Section 4.

Table 1 lists the newly provided APIs that allow the program-

mer to identify the dynamic data structure that is to be automati-

cally generated and whose shapes are to be explored. The function

klee_make_data_structure makes 𝑥 , which is a pointer or an

array of pointers of given 𝑠𝑖𝑧𝑒 , symbolic and assigns a 𝑛𝑎𝑚𝑒 to the

data structure that it provides access to. This indicates to DSGEN
that data structure must be automatically generated, its constraints

collected, and its shapes explored. Thus, as the data structure grows,
all newly created pointer fields must also be marked as symbolic. In
certain situations, a data structure that is not automatically gen-

erated (e.g., generated by the user by a manually written code)

may need to be added to the symbolic data structure and thus

requiring that its pointer fields be made symbolic. The function

klee_set_data_structure provides this functionality. An addi-

tional parameter traverse is provided by the programmer that fully

traverses the data structure to collect the addresses of all contained

pointer fields so that klee_set_data_structure can mark them

also as symbolic. Since doubly-linked data structures are frequently

used, the next API function allows user to express their presence

which simply guides the shape generation. Finally, the last two APIs

simply express a valid range of addresses and the kind of memory

where it resides.

Exploring Execution States. The GKLEE’s VM creates the state

space for exploration as follows. As a thread is being symbolically

executed, if the VM determines that based upon the current sym-

bolic values an outcome of a condition can be either true or false, it

forks off new states for true and false outcomes. Repeated forking

creates a tree structure representing a partitioning of all execu-

tion states – by exploring different paths in the tree, coverage over

program paths is achieved. As is generally the case for concolic test-

ing tools, the features modelled by the symbolic execution model

can be exhaustively explored during testing. However, under the

constraints of the testing time budget, different strategies may be

deployed to prioritize the exploration of state space. GKLEE sup-

ports multiple search strategies, and in this work we relied on

depth-first exploration of state space to identify data races. Note that
the predicates that cause forking of states can be independent of

threads or they can depend upon thread and block ids (denoted as

tid and bid). In the latter case, forking essentially partitions threads

prior to fork into two classes of threads.

When it comes to dynamic linked data structures, GKLEE does

not provide any special support. It handles pointer variables using

the simple methodology used by underlying KLEE system. Unfor-

tunately, this makes input generation when testing functions of

a library implementing concurrent data structures a problem. To
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level = 1;

if (p != NULL)

found = false;

if (p->key[tid] <= x[bid] &&

x[bid] <= p->key[tid+1])

found=true;level++;

if (level==2)

parent = p; pid = tid;

p = p->child[tid];

if(!found)

p = p->next;

if(parent->next != NULL)

if(p->next)

parent->next->child[0] = p->next;

parent->next->child[0] = NULL;
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Figure 2: The Control Flow Graph of cu_skiplist_search.

exercise execution states of such a function, the input to the func-

tion must be an appropriately shaped and sized dynamic linked

data structure. Unfortunately, KLEE is incapable of exploring the

space of different shaped and sized data structures. Driven by the

API already described, DSGEN, through its special treatment of

pointers, is able to explore the execution states that must honor

different constraints on these pointers (such as, pointer being null

or non-null, shape forming pointer-pointee relations, etc.). Since

dynamic data structure can grow arbitrarily large, to constrain the

execution space, two configuration parameters are provided that

limit sizes of arrays used and number of levels of links allowed. Lim-

its on array sizes and number of levels of links limit the size of the

dynamic data structure which translates into limits in lengths of

paths that are explored during depth first exploration of paths.

SkipList Example. Next we illustrate the use of above APIs

and the functioning of our system from the user’s perspective.

For this purpose, we make use of the example that employs con-

current blocked SkipList data structure. The application code in

Listing 1 supports searching of a batch of keys in the SkipList
by calling cu_skiplist_search function and maintains the num-

ber of jumps in the data structure. The control flow graph of the

cu_skiplist_search function is given in Figure 2. Our objective

is to generate inputs to enable testing of this very function.

To cause automatic generation of the SkipList dynamic data

structure, and exploration of different shapes, we mark the root
node of SkipList as a symbolic pointer using the new API func-

tion klee_make_data_structure at line 36. The other non-pointer
fields in the SkipList nodes are marked symbolic using GKLEE’s

1 #define SIZE 1

2 struct Node {

3 int key[SIZE+1];

4 Node* child[SIZE];

5 Node* next;

6 };

7

8 __global__ void

9 cu_skiplist_search(Node* p, int* x) {

10 int bid = blockIdx.x, tid = threadIdx.x;

11 Node* parent = NULL; int pid;

12 int level = 1;

13 __shared__ bool found;

14 while(p != NULL) {

15 found = false;

16 if(p->key[tid]<=x[bid] &&

17 x[bid]<=p->key[tid+1]) {

18 found = true;

19 level++;

20 if (level == 2) { parent = p; pid = tid; }

21 p = p->child[tid]; // find in its child

22 }

23 if (!found) {

24 p = p->next; // find in the same level

25 }

26 }

27 if (parent->next!=NULL) {

28 if (p->next)

29 parent->next->child[0] = p->next;

30 else parent->next->child[0] = NULL;

31 }

32 }

33

34 int main() {

35 Node* root; int k[2];

36 klee_make_data_structure(

37 &root, sizeof(root), "root");

38 klee_make_symbolic(&k, sizeof(int)*2, "k");

39 // grid size=2 and block size=1

40 cu_skiplist_search<<<2, 1>>>(root, k);

41 return 0;

42 }

Listing 1: Skip-List CUDA Implementation.

klee_make_symbolic function at line 38. In addition, symbolic

threadIdx and blockIdx are also maintained by GKLEE to gener-

ate fewer (typically two) threads.

In implementing the function cu_skiplist_search, we have
manually introduced data races. We consider the following two

data races in this function for illustrating DSGEN.

(1) The first read-write race arises between read access of the

pointer field p->child[0] at line 21 and write access of

the pointer field parent->next->child[0] at line 30 that

handles the situation in which a search requires updating

of the linked hierarchy of the parent node at line 30, while

another thread is reading the child field at the same node

concurrently at line 21.
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Figure 3: A Skip-List Shape that does not expose either the
first or second data race.

(2) The second read-write race is between read access of the

pointer field p->child[0] at line 21 and write access of the

pointer field parent->next->child[0] at line 29 where the
updating of child[0] field at line 29 conflicts with reading

of the same node by another thread at line 21.

Note that to test the cu_skiplist_search function the main pro-

gram specifies grid size of 2 and block size of 1, giving us two

threads: Thread a with (𝑏𝑖𝑑 = 0, 𝑡𝑖𝑑 = 0) and Thread b with

(𝑏𝑖𝑑 = 1, 𝑡𝑖𝑑 = 0).
Using two threads and corresponding selected paths, the two

data races may be exposed by some path pairs, not exposed by other

pairs, and different races may be exposed by different path pairs.

For example, neither data race arises for the path pair shown in

Figure 3 which takes a false branch at line 27. However, the first race

is exposed by another path pair shown in Figure 4 where Thread
a executes line 21 and Thread b takes true branch at line 27 but

false branch is taken at line 28 causing line 30 to be executed. By

exploring path pairs we can uncover data races. The paths taken

depend upon the differing shapes of the data structure – for data

structure in Figure 3 the path taken does not cause a read-write race

while for data structure shape in Figure 4 data race arises because

updating of the parent node is required.

Note that if the user were to write the code to construct the

concrete data structure shown in Figure 3, then concolic testing

performed by GKLEE will not be able to alter the outcomes of these

branch conditions and the condition if (parent->next!=NULL)
in B7 will never be true; thus, parent node update will never occur

and the race will not be exposed. Even if, by coincidence, the user

constructs a data structure that satisfies the conditions for discov-

ering the data race, it may not be able to use one data structure to

find all the races in different paths with different conditions such

as if (p->next!=NULL) or not. On the other hand, when the user

makes the data structure symbolic using the DSGEN’s API, DSGEN
is able to generate the new shape shown in Figure 4 that causes the

desired path to be followed and making condition in B7 to evaluate

to true and generate two different shapes depends on the condition

in B8. This triggers parent node updating and exposes the data

races that are identified using the collected traces.

While concolic testing is meant to explore different paths, it cannot
achieve exploration of paths without making pointer based linked data
structure symbolic. This is because the path conditions in basic blocks
B7 and B8 depend upon the shape of the dynamic data structure. Only
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Figure 4: A Skip-List Shape that exposes the first data race
but not the second race.
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by Thread b of Figure 4.

by making the dynamic data structure and its pointer fields symbolic,
and exploring different shapes, can the desired paths be exercised.
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Next let us see how path exploration is carried out by a thread

in DSGEN. In particular, in Figure 5 we show part of the path

search space (full space is too large to show) where some of the

neighboring paths that will be explored via depth first search are

shown. The predicate outcomes along the path are shown and data

structure shapes generated are also given. For example, the symbolic

execution of the path highlighted in red corresponds to the path

followed by Thread b in Figure 4 and it leads to generation of the

data structure shape shown at the bottom of the figure. Note that we

mainly focus of predicates on lines 14, 16, 17. This is because these

predicatesmainly influence the choice of shape for the dynamic data

structure while the other omitted predicates have their outcomes

determined by the chosen shape.

4 DATA SHAPE GENERATION ALGORITHM
Data shape generation algorithms that we present automatically

generate suitable dynamic data structures with shapes that exercise

desired paths, same or divergent. The algorithm has two steps: gen-

erating data structures for each thread separately (Section 4.1); and

compacting the generated data structures into one non-conflicting

data structure (Section 4.2).

There are two types of situations encountered during compaction.

The first and simpler situation is one in which the per thread data

structures can be compacted such that parts of the newly formed

data structure come either from one thread’s data structure or the

other thread’s data structure, or they were present in both per

thread data structures. We refer to this as taking the union of the

data structures. This form of compaction is a simple combining of

two data structures without violation of any constraints and it will

be illustrated when generating a shape that exposes the first race

as shown in Figure 4. The second and more complex situation is

one in which adjustments to data structure shapes are made during

the compaction process as will be illustrated when generating a

shape that exposes the second race of our example. Note that the
compaction of per thread data structures, always preserves paths fol-
lowed by threads. After succeeding or failing to generate a test input
that exercises the current path combination, concolic execution

considers another path combination.

4.1 Generating a Data Structure that Causes a
Given Thread to Follow a Selected Path

The dynamic data structure generation described in this section is

inspired by the method proposed in [33] which initially assumes

that the pointer variable that provides access to the data structure

is simply null. Then, as it scans the code along the desired path,

it collects constraints on the shape of the dynamic data structure,

and solves them to create the data structure of the desired shape.

This approach is employed by DSGEN to create a concolic testing

framework capable of exploring different data structure shapes and

handling execution of multiple threads.

During execution, when a memory access to a location marked

as being part of a symbolic data structure is encountered, it is inter-

cepted by GKLEE and passed on to DSGEN for handling. DSGEN
collects relevant constraints, adapts the data structure shape to

satisfy them, and passes the temporary data structure to GKLEE
so it can successfully execute the memory access. To achieve the

above, DSGEN collects two kinds of information – Path Constraints
(PC) and Pointer-Pointee Relations (PPRs) – described below.

• Path Constraints (PCs) These are constraints that must

be satisfied to ensure that the thread follows its selected

path (e.g., branch conditions evaluate appropriately) and

successfully executes pointer-based statements along the

path (e.g., pointers that are dereferenced must not be null).

When new data structure shapes are explored for the same

path, each generated shape must continue to satisfy all of

the path constraints.

• Pointer-PointeeRelations (PPRs)DSGENmust also track

pointer-pointee relationships that are created by statements

executed all the selected path. Each relationship is of the form

(𝑝, 𝑞) such that pointer 𝑝 currently points to 𝑞. Therefore,

pointer-pointee relationships essentially create the shape of

the data structure.

Together, PCs and PPRs allow exploration of shapes to exercise

a given path as well as explore different paths. In particular, when

generating an input to exercise a given path, PPRs are altered to

create different shapes till eventually a shape is found to satisfy all

the PCs, that is, paths followed by the threads are preserved in this

process. When a new path is to be explored, a branch condition

outcome is altered to explore a different path. This also results in

modifying the corresponding PC and then resumption of shape

generation from the point at which branch outcome is altered to

exercise the newly selected path.

The data structure shapes formed by PPRs and the PCs asso-

ciated with the fields belonging to a symbolic data structure, are

the result of DSGEN’s actions that are determined by the kind of

operations encountered: pointer initialization, pointer dereferenc-
ing, pointer assignments, and branch conditions. For example, first

time dereferencing of a pointer typically causes memory allocation

that expands the data structure and generates constraint indicating

that the pointer is no longer null. Pointer assignments generate

constraints causing different symbolic pointers to share the same

address and thus contribute to the formation of data structure shape.

Branch conditions may themselves involve pointer dereferencing,

and branch outcomes may assert that a pointer is null or not null.

An Example. Next we illustrate the above actions using the

execution of two threads along paths from Figure 4 that take the

true branch at line 27 and false branch at line 28 (recall that this

execution exposes the first data race). In Figure 6 the table at the

top gives the PCs and PPRs corresponding to the data structures

generated by the two threads, the generated data structures are

shown next in (a) and (b), and finally (c) shows the integrated data

structure. The matching colors (black, red, blue, green) indicate
the correspondence between PCs+PPRs and relevant portion of the

data structure. The PCs+PPRs are generated as follows:

– (Black) – The subset of constraints and portion of data struc-

ture shown in black represents the status starting with the execu-

tion of line 16 of function cu_skiplist_search in Listing 1. For

Thread 𝑎 path constraints N0.key[0] <= x[bid] and x[bid] <=
N0->key[1] are added by the branch condition at lines 16-17 where

N0 is the local instance of Thread 𝑎’s variable 𝑝 . The black part of

the shape is created. In 𝐵6, the loop goes into the next iteration by

updating the pointer p with its children.
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BB (LN) PCs: Thread 𝑎 BB (LN) PCs: Thread 𝑏

B1 (L16) N0.key[0] <= x[bid] B1 (L17) x[bid] > N4.key[1]

B1 (L17) x[bid] <= N0.key[1] B0 (L14) N4.next ≠ null

B0 (L14) N0.child[0] ≠ null B1 (L16) N5.key[0] <= x[bid]

B1 (L17) x[bid] > N1.key[1] B1 (L17) x[bid] <= N5.key[1]

B0 (L14) N1.next ≠ null B0 (L14) N5.child[0] ≠ null

B1 (L16) N2.key[0] <= x[bid] B1 (L17) x[bid] >= N6.key[1]

B1 (L16) x[bid] <= N2.key[1] B0 (L14) N6.next ≠ null

B7 (L27) N0.next ≠ null B1 (L16) N7.key[0] <= x[bid]

B10 (L30) N3.child[0] = null B1 (L17) x[bid] <= N7.key[1]

PPRs: Thread 𝑎 PPRs: Thread 𝑏

BB (LN) Pointer Pointee BB (LN) Pointer Pointee

B1 (L16) N0.child[0] N1 B1 (L16) N4.next N5

B1 (L16) N1.next N2 B1 (L16) N5.child[0] N6

B10 (L30) N0.next N3 B1 (L16) N6.next N7

k0

key child next

K3

k1 k2

N0

N1 N2

N3

(a) Thread 𝑎 (bid=0, tid=0).

k4 K5

k6 k7

N4

N6 N7

N5
key child next

(b) Thread 𝑏 (bid=1, tid=0).

k0

key child next

K3

k1 k2

N0

N1 N2

N3

k6 k7N6 N7

(c) Integrated for Threads 𝑎 & 𝑏.

Figure 6: A generated shape of Skip-List data structure

– (Red) – After the next iteration’s update of the pointer p at

line 21, the condition p != NULL implies that pointer must not be

null; thus, the path constraint N0.child[0] ≠ null is generated.
Due to dereferencing by access N0.child[0] in branch condition

at line 16, N1 is allocated and PPR between N0.child[0] and N1 is

created. All pointers that do not have concrete addresses are initially

assigned unique integer values as identifiers. The red part of the

shape is created when first dereference of 𝑁 1 is encountered in 𝐵1.

After creating child node N1, path constraint x[bid] > N1.key[1]
is added due to the branch condition’s result.

– (Blue) – In next iteration that explores N1.next, a similar pro-

cess generates path constraint N1.next ≠ null and PPR between

N1.next and N2 where latter is allocated memory due to deref-

erencing via access N1.next in B1. After creating the new shape

N2, the path constraints N2.key[0] <= x[bid] and x[bid] <=
N2.key[1] are generated by the corresponding branch condition.

– (Green) – These constraints are created upon entry to 𝐵9 that

accesses, i.e. dereferences, parent->next->child[0]. The branch
condition in 𝐵7 evaluates to true and 𝐵8 to false in this example.

The path constraint N0.next ≠ null is generated and N0.next is

assigned by dereferencing in 𝐵7 and 𝐵10. A PPR between N0.next
and N3 is created. Then N3.child[0] is assigned with null by

memory write in 𝐵10 creating the path constraint N3.child[0]

= null. The execution of thread 𝑎 has created PCs, PPRs, and

corresponding data structure. Similarly Thread 𝑏 creates its data

structure. Finally, both data structures are integrated as described

in the next section.

4.2 Integrating Data Structures for Different
Threads to Create a Single Non-Conflicting
Data Structure

We have shown in detail how the constraints for Thread 𝑎 are

collected and the data shape in Figure 6(a) is generated. Similar

actions for thread 𝑏 generate the shape in Figure 6(b). Next we

will present the algorithm implemented by DSGEN’s data shape
generator that integrates the two shapes into one non-conflicting

data structure that is shown in Figure 6(c). The per-thread data

structures generated satisfy their respective PCs and now they

must be integrated to satisfy PCs for the threads simultaneously.

Given two threads, 𝑇𝑎 and 𝑇𝑏, their path constraints 𝑃𝐶 (𝑇𝑎)
and 𝑃𝐶 (𝑇𝑏), and pointer-pointee relations 𝑃𝑃𝑅(𝑇𝑎) and 𝑃𝑃𝑅(𝑇𝑏),
we make the following key observations:

• Feasibility – Since the integrated data structure must simul-

taneously satisfy path constraints in 𝑃𝐶 (𝑇𝑎) and 𝑃𝐶 (𝑇𝑏),
presence of a pair of conflicting constraints in 𝑃𝐶 (𝑇𝑎) and
𝑃𝐶 (𝑇𝑏) implies that no such integrated data structure exists.

That is, the feasibility of threads 𝑇𝑎 and 𝑇𝑏 simultaneously

following the chosen paths requires that 𝑃𝐶 (𝑇𝑎) and 𝑃𝐶 (𝑇𝑏)
be conflict-free.
• Adjustment – The integrated data structure cannot in gen-

eral be obtained by taking the union of 𝑃𝑃𝑅(𝑇𝑎)with 𝑃𝑃𝑅(𝑇𝑏).
This is because corresponding fields in 𝑃𝑃𝑅(𝑇𝑎) and 𝑃𝑃𝑅(𝑇𝑏)
may conflict with each other, i.e. have different pointees.

Therefore integration essentially involves adjustment of 𝑃𝑃𝑅s
to make them consistent such that the adjustments do not

violate any constraints in 𝑃𝐶 (𝑇𝑎) and 𝑃𝐶 (𝑇𝑏), i.e., paths
followed are preserved.

Next we present Algorithm 1 that, guided by above observa-

tions, explores different adjustments to 𝑃𝑃𝑅s so they can be made

consistent without violating 𝑃𝐶s. When conflicts among 𝑃𝐶s are

found, the algorithm reports that no integration is possible. More

specifically, Combine takes as its inputs two pointers 𝑥 and 𝑦 that

point to per thread data structures (e.g., those in Figure 6(a) and

(b)) and converts the first pointed to by 𝑥 into an integrated one

(e.g., the one in Figure 6(c)) for the two threads. In Algorithm 1,

given a field 𝑓 𝑙𝑑 in a symbolic data structure, 𝑣𝑎𝑙 (𝑓 𝑙𝑑) provides the
value of a pointer 𝑓 𝑙𝑑 which can be 𝑢𝑛𝑡𝑜𝑢𝑐ℎ𝑒𝑑 (𝜏), 𝑛𝑢𝑙𝑙 , a concrete
address, or a symbolic expression. The 𝑐𝑜𝑛𝑠 (𝑓 𝑙𝑑) denotes the subset
of path constraints that involve 𝑓 𝑙𝑑 . Note that we only focus on

pointer fields because they form the shape of the data structure and

mechanisms for data fields are already supported by GKLEE.
Lets us now consider the functioning of combine(𝑥 ,𝑦) where 𝑥

and 𝑦 are pointers that point to the start nodes of the data structure.

Lines 2-3 test for conflicts among path constraints of 𝑥 and 𝑦, and if

one is found, combining is aborted; otherwise each attribute field of

𝑥 and 𝑦 are considered for combining. Lines 7-11 considers the case

where the attribute of 𝑥 is untouched (i.e., 𝜏 ) and hence the attribute

of 𝑦 is simply adopted by 𝑥 as this combining will not violate

any path constraints. Lines 12-23 consider cases where attribute
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values are not equal and not untouched. For combining, they must

be made equal by adjusting one or both of them. The 𝑎𝑑 𝑗𝑢𝑠𝑡𝑎𝑏𝑙𝑒

returns true or false indicating whether or not an attribute’s PPR

can be adjusted without violating corresponding PCs. Based upon

outcomes 𝐴𝑥 and 𝐴𝑦 , if possible, search for adjustments is carried

out. If the attribute of only 𝑥 or only 𝑦 has adjustable PPRs, then

Algorithm 1: An algorithm for combining two data shapes

generated by different threads

Input: Pointers 𝑥 and 𝑦 that point to two data structures that need

to be compacted into a single non-conflicting data structure.

Output: Pointer 𝑥 that now points to the compacted

non-conflicting data structure

1 Procedure COMBINE(𝑥 , 𝑦):
2 if test_sets_conflict(cons(𝑥 ), cons(𝑦)) then
3 return combining failed

4 foreach 𝑎𝑡𝑡𝑟 ∈ 𝑥 do
5 if (type(𝑥.𝑎𝑡𝑡𝑟 )≠pointer) then
6 continue ▷ non-pointer details omitted
7 if val(𝑥.𝑎𝑡𝑡𝑟 ) = 𝜏 | | val(𝑦.𝑎𝑡𝑡𝑟 ) = 𝜏 then
8 if val(𝑦.𝑎𝑡𝑡𝑟 )≠𝜏 then
9 val(𝑥.𝑎𝑡𝑡𝑟 )←val(𝑦.𝑎𝑡𝑡𝑟 )

10 ppr(𝑥.𝑎𝑡𝑡𝑟 )←ppr(𝑦.𝑎𝑡𝑡𝑟 )

11 cons(𝑥.𝑎𝑡𝑡𝑟 )←cons(𝑥.𝑎𝑡𝑡𝑟 )∪cons(𝑦.𝑎𝑡𝑡𝑟 )
12 else if val(𝑥.𝑎𝑡𝑡𝑟 )≠val(𝑦.𝑎𝑡𝑡𝑟 ) then
13 𝐴𝑥 ← adjustable(ppr(𝑥.𝑎𝑡𝑡𝑟 ), cons(𝑥.𝑎𝑡𝑡𝑟 ))

14 𝐴𝑦 ← adjustable(ppr(𝑦.𝑎𝑡𝑡𝑟 ), cons(𝑦.𝑎𝑡𝑡𝑟 ))

15 if ¬𝐴𝑥 & ¬𝐴𝑦 then
16 return combining failed

17 else if 𝐴𝑦 & ¬𝐴𝑥 then
18 resolve(𝑦.𝑎𝑡𝑡𝑟 , 𝑥.𝑎𝑡𝑡𝑟 )

19 else if 𝐴𝑥 & ¬𝐴𝑦 then
20 resolve(𝑥.𝑎𝑡𝑡𝑟 , 𝑦.𝑎𝑡𝑡𝑟 )

21 else
22 COMBINE(val(𝑥.𝑎𝑡𝑡𝑟 ), val(𝑦.𝑎𝑡𝑡𝑟 ))

23 cons(𝑥.𝑎𝑡𝑡𝑟 )← cons(𝑥.𝑎𝑡𝑡𝑟 ) ∪ cons(𝑦.𝑎𝑡𝑡𝑟 )

24 return combining succeeded

25 Procedure RESOLVE(𝛼, 𝛽):
26 foreach (𝑧.𝑎𝑡𝑡𝑟, 𝑠) ∈ ppr(𝛼) do
27 foreach 𝑝𝑐 ∈ cons(𝛽) do
28 if not has_conflict(ppr(𝛼), 𝑝𝑐) then
29 continue
30 𝑝𝑝𝑟 (𝛼) ← 𝑝𝑝𝑟 (𝛼) - depend((𝑧.𝑎𝑡𝑡𝑟, 𝑠))
31 𝑎𝑐𝑜𝑛𝑠 ← simplify((𝑧.𝑎𝑡𝑡𝑟 ) , cons(𝛼 ) ∪ cons(𝛽))

32 if 𝑎𝑐𝑜𝑛𝑠 ∉ const then
33 (𝑠𝑢𝑐𝑐 , 𝑐)← predict((𝑧.𝑎𝑡𝑡𝑟 ) , cons(𝛼 ) ∪ cons(𝛽))

34 if not 𝑠𝑢𝑐𝑐 then
35 compaction failed

36 𝑝𝑝𝑟 (𝛼) ← 𝑝𝑝𝑟 (𝛼) ∪ 𝑐
37 val(𝑧.𝑎𝑡𝑡𝑟 )←simplify((𝑧.𝑎𝑡𝑡𝑟 ) ,cons(𝛼 ) ∪ cons(𝛽))

38 𝑐𝑜𝑛𝑠 (𝛼) ← cons(𝛼 ) ∪ cons(𝛽)

39 else
40 𝑝𝑝𝑟 (𝛼) ← 𝑝𝑝𝑟 (𝛼) ∪ (𝑧.𝑎𝑡𝑡𝑟, 𝑎𝑐𝑜𝑛𝑠)
41 val(𝑧.𝑎𝑡𝑡𝑟 )← 𝑎𝑐𝑜𝑛𝑠

42 𝑐𝑜𝑛𝑠 (𝛼) ← cons(𝛼 ) ∪ cons(𝛽)

43 break

the adjustment procedure of the adjustable PPRs is carried out via

a call to resolve. If both are adjustable, a recursive call to combine

is used to adjust both attributes which will cause them to have the

same value.

During integration, combine makes use of the resolve(𝛼, 𝛽)
procedure that removes those 𝑃𝑃𝑅s from 𝛼 node that conflict with

𝑃𝐶s in the 𝛽 node. Given a single PPR 𝑝𝑝𝑟 , depend(𝑝𝑝𝑟 ) returns

all the constraints that can be inferred directly or indirectly from

the left hand side of 𝑝𝑝𝑟 . Also predict(𝑎𝑡𝑡𝑟, 𝑠) identifies a new

predicted value for 𝑎𝑡𝑡𝑟 such that it satisfies all the constraints

in 𝑠 . For example, when making a pointer non-null, predictions

considered include setting the pointer to point to: newly allocated

memory, itself creating a self-loop, or an existing object of the

appropriate type. Note that simplify(𝑐 , 𝛼) is a method that solves 𝑐

as the left hand side of an adjustable PPR using the set of inviolable

constraints 𝛼 to get the new result of right hand side of the PPR,

and has_conflict(𝑝, 𝑐) is another method that detects conflicts

between a PPR 𝑝 and a set of PCs 𝑐 , if 𝑝 does not satisfy PCs in 𝑐 .

Now let us consider an illustration of integration performed

by combine. First set of situations (lines 7-11) arise when at least

one of corresponding pointer fields is untouched, i.e. 𝜏 . Here the

integrated data structure adopts the non 𝜏 value if one exists or

it is 𝜏 when both fields are 𝜏 . This situation alone is sufficient for

integrating the shapes in Figure 6. The following execution call

trace shows the steps of integration:

combine (𝑁 0, 𝑁 4)

11 cons(𝑁 0.child[0])← cons(𝑁 0.child[0]) ∪ cons(𝑁 4.child[0])

22 combine ( val(𝑁 0.next), val(𝑁 4.next) )

9 val(𝑁 3.child[0])← val(𝑁 5.child[0])

10 ppr(𝑁 3.child[0])← ppr(𝑁 5.child[0])

11 cons(𝑁 3.child[0])← cons(𝑁 3.child[0]) ∪ cons(𝑁 5.child[0])

23 cons(𝑁 0.next)← cons(𝑁 0.next) ∪ cons(𝑁 4.next)

Initially combine is called with parameters 𝑁0(𝑇𝑎) and 𝑁4(𝑇𝑏).
The shapes generated by threads 𝑇𝑎 and 𝑇𝑏 are such that data

structures rooted at the two remaining fields, N0.child[0] and

N5.child[0], are untouched 𝜏 in exactly one of the threads. So the

trace follows the true branch at line 7, updating cons(𝑁 0.child[0]))

(line 11) at first. In the next iteration, combine (line 22) is called

for attribute next as data structures for both threads contain valid

pointers and both 𝑃𝑃𝑅(𝑇𝑎) and 𝑃𝑃𝑅(𝑇𝑏) are adjustable. During
the second recursive call to combine, val(𝑁 3.child[0]) (line 9) and

cons(𝑁 3.child[0]) (line 10) will be updated. After handling the sub-

combination in next field, cons(𝑁 0.next) will also be updated (line

23). Therefore their integrated data structure adopts the non 𝜏

values for these fields leading to the integrated data structure in

Figure 6(c). The execution of combine and hence the integration is

complete. Note that the paths followed by the threads are preserved.

Next we consider a more complex situation if the branch at line

28 in Listing 1 takes true path where non-𝜏 values are found in

corresponding fields of data structures generated by the two threads

and PPRs conflicts are involved. In Figure 7, we first show the PCs

and PPRs, and then the two data structures generated are given in

Figures 7(a) and (b). Note that in this example N3.next and N5.next
are untouched (𝜏 ) in both data structures while child[0] fields are
untouched (𝜏 ) in each bottom level node. Thus, their integration of

related fields is non-conflicting.
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BB (LN) PCs: Thread 𝑎 BB (LN) PCs: Thread 𝑏

B0 (L14) N0.child[0] ≠ null B0 (L14) N4.next ≠ null

B0 (L14) N1.next ≠ null B0 (L14) N5.child[0] ≠ null

B7 (L27) N0.next ≠ null B0 (L14) N6.next ≠ null

B9 (L29) N3.child[0] = N1.next

PPRs: Thread 𝑎 PPRs: Thread 𝑏

BB (LN) Pointer Pointee BB (LN) Pointer Pointee

B1 (L16) N0.child[0] N1 B1 (L16) N4.next N5

B1 (L16) N1.next N2 B1 (L16) N5.child[0] N6

B9 (L29) N0.next N3 B1 (L16) N6.next N7

B9 (L29) N3.child[0] N2

k0

key child next

K3

k1 k2

N0

N1 N2

N3

(a) Thread 𝑎 (bid=0, tid=0)

k4 K5

k6 k7

N4

N6 N7

N5

key child next

(b) Thread 𝑏 (bid=1, tid=0)

k0 K3

k1 k2

N0

N1
N2

N3

k7 N7

key child next

(c) Integrated for Threads 𝑎 & 𝑏

combine ( 𝑁 0, 𝑁 4 )

· · ·
22 combine ( val(𝑁 0.𝑛𝑒𝑥𝑡 ), val(𝑁 4.𝑛𝑒𝑥𝑡 ) )

20 resolve ( 𝑁 5, 𝑁 3 )

30 𝛼 ← 𝛼 – depend ( (𝑁 5.𝑐ℎ𝑖𝑙𝑑 [0], 𝑁 6) )
30 𝑁 2← simplify ( (𝑁 5.𝑐ℎ𝑖𝑙𝑑 [0]) , cons(𝑁 3) ∪ cons(𝑁 5) )

40 𝛼 ← 𝛼 ∪ ( 𝑁 5.𝑐ℎ𝑖𝑙𝑑 [0], 𝑁 2 )

23 cons(𝑁 0.𝑛𝑒𝑥𝑡 )← cons(𝑁 0.𝑛𝑒𝑥𝑡 ) ∪ cons(𝑁 4.𝑛𝑒𝑥𝑡 )

· · ·
(d) Execution Call Trace of Algorithm 1.

Figure 7: Example of conflicts solving

On the other hand, the field N3.child[0], that is non-null in
both data structures, requires integration. This integration is carried

by lines 12-23 of the Algorithm 1.

In Figure 7(d), we show a portion of the execution call trace

for integration of 𝑁 3.𝑐ℎ𝑖𝑙𝑑 [0] for two threads. The fields N0.next
and N4.next, in both threads 𝑎 and 𝑏, point to different symbolic

names 𝑁 3 and 𝑁 5 with different addresses. The condition at line 12

evaluates to true as both are valid pointers. Since (N5.child[0],
N6) is adjustable while (N3.child[0], N2) is not, the condition
at line 17 is true and RESOLVE is executed to merge N5.child[0]
into 𝑁 2 by removing PPRs of 𝑁 5.

In resolve, for each PPR(𝑇𝑏) in the 𝛼 node (e.g., (N5.child[0],
N6) in the current function call), each path constraint is tested for

conflicts at line 28. We set N3 = N5 causing PCs and PPRs to be

merged by eliminating the conflicting PPR (N5.child[0], N6). In
general, inferred PPRs, if any, must also be eliminated. The latter

are identified by calling depend function. Next simplify function,

at line 31, solves newly composed set of constraints. Using the

set 𝑐𝑜𝑛𝑠 (𝛼) ∪ 𝑐𝑜𝑛𝑠 (𝛽) which means the new PPR needs to satisfy

both constraints from two threads, we simplify the constructed con-

straint for (𝑧.𝑎𝑡𝑡𝑟 ) which leads to the inference the new pointee of

N5.child[0]. At the line 40, the result (N5.child[0], N2) is ap-

pended to the 𝑝𝑝𝑟 (𝛼) set. Finally, the data structure in Figure 7(c) is

obtained. Note that the paths followed by the threads are preserved.

5 CASE STUDIES
5.1 Experimental Setup
To study the effectiveness of our tool in detecting data races, we

implemented four important data structures and used them to com-

pare DSGEN with original GKLEE. The comparison shows two

advantages of our tool: 1) by automatically creating dynamic data

structures of different shapes, it enables effective concolic testing

that explores many program paths; and 2) our tool can uncover

hidden data races that cannot be uncovered by GKLEE.
Our evaluation is based upon a diverse set of 25 races shown in

Table 2. Both read-write (rw) and write-write (ww) races, between

threads from same and different warps, as well as divergent and

non-divergent paths are included. To enable execution of GKLEE a

simple data structure is manually constructed and provided. While

GKLEE’s path exploration is based upon this single data structure,

DSGEN is able to automatically generate numerous data structure

shapes and achieve higher path coverage and superior data race

detection. Next we discuss the four data structures considered.

Test Concurrent Data Structures. We use CUDA implemen-

tations of the following four widely use concurrent data structures

that are briefly described next:

• B-Tree – Self-Balancing Search Tree B-Tree [1] is a widely
used data structure in databases. GPU accelerates dynamic

queries and batch insertion. In Table 2, races 1-10 correspond

to B-Tree. In the experiments, the Grid Size and Block Size

limits were set to 2 and 16 respectively.

• HAMT–Hash-ArrayMapped Trie [2] is an arraymapped trie

where the keys are hashed to ensure an even distribution of

keys and have a constant key length. It achieves almost hash

table-like speed while using memory much more efficiently.

In Table 2, races 11-15 correspond to HAMT. The Grid Size

and Block Size limits were set to 2 and 8 respectively.

• RRB-Tree – Immutable Radix Balanced Tree [3]. The purpose
of RRB Trees is to improve the performance of the standard

Immutable Vectors by making the Vector Concatenation,

Insertion as well as Split operation much more performant

while not affecting Indexing, Updating and Iteration speeds

of the original Immutable Vectors. In Table 2, races 16-20

correspond to RRB-Tree. The Grid Size and Block Size limits

were set to 2 and 2 respectively.

• Skip List – Probabilistic Ordered Data Structure [23, 26]. A
skip list is a probabilistic data structure that allows O(log𝑛)
search and insertion complexity within an ordered sequence

of 𝑛 elements. In Table 2, races 21-25 correspond to the Skip
List data structure. The Grid Size and Block Size were limited

to 2 and 8 respectively in the experiments.
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Table 2: The Data Races of Used in Evaluation.

Line No.: Function Name RaceId Data Race Type

61-98: sort 1 With Divergence (ww)

61-61: sort 2,3 Without Divergence (ww) and Interwarp (rw)

111-111: split_parent 4 Interwarp (ww)

140-235: node_split 5 With Divergence (ww)

140-239: node_split 6 With Divergence (rw)

271-276: node_insert 7 With Divergence (rw)

281-281: node_insert 8,9 Without Divergence (ww) and Interwarp (rw)

235-305: search_node 10 Global Memory (rw)

53-77: batch_insert 11 Interwarp (rw)

84-84: batch_insert 12 Without Divergence (ww)

84-108: search_node 13 Global Memory (rw)

104-108: search_node 14 With Divergence (rw)

77-106: search_node 15 Global Memory (rw)

27-27: unref 16,17 Without Divergence (ww) and Interwarp (rw)

27-29: unref 18 Interwarp (ww)

135-135: modify 19 Without Divergence (ww)

135-139: modify 20 Global Memory (ww)

32-32: insert 21 Interwarp (rw)

39-39: insert 22 Interwarp (rw)

78-92: create_node 23 Global Memory (rw)

105-105: create_node 24, 25 Global Memory (rw)

Since the implementations of above data structures are based

upon the correct algorithms provided in the noted citations, our

implementations did not create any data races. The data races were

seeded in these implementations to enable comparison of DSGEN
with GKLEE.

Metrics for Comparison. The comparison will be made in

terms of the following:

• The number of races found by GKLEE and DSGEN: There
are four types of data races that are detected by GKLEE: 1)
Intra-warp Races Without Warp Divergence; 2) Intra-warp

Races With Warp Divergence; 3) Inter-warp Races; and 4)

Global memory races.

• The number of paths covered: path coverage in these ex-

periments is defined as number of path combinations exer-

cised by the threads for the inputs generated by concolic

testing.

• The number inputs generated and different data struc-
tures generated are collected as this compares the power

of concolic testing employed by DSGEN vs. GKLEE. The
number of adjustments performed in generating these data

structures are also reported.

• We also provide the number of execution steps and run-
time for finding the races. An execution step is the execution
of an LLVM instruction using one of the simulated CUDA

threads. Execution time is the running time taken. When

racing threads are found, they occupy different positions

in thread blocks. We also present the number of thread
positions exercised by the generated concrete inputs.

5.2 Experimental Results

Effectiveness: Paths Explored and Races Exposed. The ef-
fectiveness of race detection is demonstrated by the results pre-

sented in Table 3 and Figure 8. We first note that all 25 races intro-

duced in Table 2 were successfully identified by DSGEN, while only
10 were found by GKLEE. In particular, as shown in Table 3, GKLEE

detected 2 out of 10 races in B-Tree, 2 out of 5 races in HAMT, 3
out of 5 races in RRB-Tree, and 3 out of 5 races in Skip List.

As indicated in Table 3, GKLEE could only explore 126, 47, 6,

and 64 path combinations using the default data structure shapes

provided while DSGEN explored 2667, 282, 16, and 256 path com-

binations using 1629, 122, 16, and 130 different automatically gen-

erated data structures. This shows that manually generating data

structure shapes to cover large number of path combinations would

require inordinate amount of effort as the programmer would have

to manually generate a large number of data structure shapes.

We further note that DSGEN found all the races using a small

subset of generated data structures – 8 out of 1629, 4 out of 122, 4

out of 16, and 4 out of 130. These data structures explored 39, 13, 4,

and 7 path combinations in all and can be reported to the user along

with the concrete inputs that expose the data race. Figure 8 further

shows the subset of paths covered by 8, 4, 4, and 4 of the gener-

ated data structure shapes that were responsible for uncovering all

the data races. The specific data race ids and corresponding path

combinations are also marked on the graph. Figure 10 gives the

corresponding plot for GKLEE. We also give #Adjustmentswhich is

the total number of adjustments performed during the integration

of per thread data structures. The data shows that integrated data

structure cannot always be obtained by the union of per thread data

structures and thus adjustments are needed to produce additional

data structure shapes that can help uncover data races.

The above data clearly shows that to detect races, many path

combinations need to be explored, and this is only possible by gen-

erating different data structures of different shapes. In absence of

automatic data structure generation ability,GKLEE requires that the
user manually construct different data structure shapes and provide

them to GKLEE. However, constructing data structures that can

expose data races is difficult for the user, especially without know-

ing where the race may happen. For example, the race that goes

undetected by GKLEE for RRB-Tree involved the reference count-

ing during object destruction. In addition, other races are harder

to expose as they involve rare situations requiring data structures

of a particular shape and size. For example, when we analyzed

the behavior of GKLEE for BTree further, we found that the race

conditions are usually hidden by branch conditions that requires

specific node size. Furthermore, some races require conflicting race

conditions that a single data structure cannot satisfy. For example,

Skip List requires a child node size less than 7 to expose race 21

and exactly equal to 7 to expose race 22.

Inputs Generated andRuntimeCosts. Finally, in Table 4 and
Figure 9 we show the runtime cost of DSGEN and GKLEE. The
table shows that concolic testing based upon DSGEN generated far

more inputs than GKLEE: 829 vs. 61, 72 vs. 31, 7 vs. 3, and 256 vs. 64.
This shows the power of DSGEN as only by generating different

data structure shapes can path combinations be explored and thus

many different inputs generated.

For detected races, we also report #Thread Positions which is

the number of different thread positions within thread blocks that

are covered by the concrete inputs that expose data races. The

range represents the minimum and maximum thread positions

covered across all data races while the number in parenthesis is the

maximum number of thread positions available. This shows that
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Table 3:DSGEN vs. GKLEE: Number of Data Races Successfully Detected; and Total Number of Data Structures and Path Com-
binations Explored during Concolic Testing. ForDSGEN the number of data structures that expose data races, the adjustments
made, and the corresponding paths explored by them are shown by the first number.

Data Race Type B-Tree HAMT RRB-Trees Skip List

GKLEE DSGEN GKLEE DSGEN GKLEE DSGEN GKLEE DSGEN

Without Divergence 1 2 0 1 1 2 0 0

With Divergence 0 4 1 1 0 0 0 0

Interwarp 0 3 0 1 1 2 1 2

Global Memory 1 1 1 2 1 1 2 3

Total Data Races Detected 2 10 2 5 3 5 3 5

Data Structure Shapes Generated 1 8+1621 1 4+118 1 4+12 1 4+126

# Adjustments Performed na 1+35 na 0+7 na 0+0 na 1+4

Path Combinations Covered 126 39+2628 47 13+269 6 4+12 64 7+249
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Figure 8: DSGEN vs. GKLEE: Data Structures Generated vs. Path Combinations Explored and Data Races Detected.

Table 4: DSGEN vs. GKLEE: Number of Inputs Generated via Concolic Execution, Execution Steps and Times (seconds).

B-Tree HAMT RRB-Trees Skip List

For Detected Races GKLEE DSGEN GKLEE DSGEN GKLEE DSGEN GKLEE DSGEN

# Thread Positions 17–33 (64) 17–64 (64) 32–32 (32) 2–32 (32) 8–8 (8) 8–8 (8) 17–32 (32) 17–32 (32)

For Exhaustive Exploration GKLEE DSGEN GKLEE DSGEN GKLEE DSGEN GKLEE DSGEN

# of Diff. Inputs 61 829 31 72 3 7 64 256

Total Execution Steps 31,280 67,049 7,582 13,120 516,848 520,668 14,175 52,161

Total Execution Time(s) 4.905 285.583 5.896 21.042 152.950 173.220 1.55 23.26
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Figure 9: DSGEN vs. GKLEE: Cost of Concolic Testing in Terms of Execution Time vs. Number of Execution Steps.
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Figure 10: Path Combinations Explored byGKLEE using the
provided default data structure shape.

although parametric flows represent multiple threads, when data

races are successfully exposed, concrete threads in thread blocks

that are identified can occupy different positions.

The execution steps and execution time in seconds are also given.

As we can see, the runtime cost of using DSGEN was acceptable for

cases considered, typically just a few minutes. The plots in Fig. 9

show how the execution steps correspond to execution time in

seconds for DSGEN. There is no obvious bottleneck data structure

observed during the execution in our benchmarks. Since library

functions being tested have limited execution space, especially con-

sidering the use of parametric flows, we were able to exhaustively

test these functions.

6 RELATEDWORK
There is rich literature on generating test inputs [5, 7, 8, 12, 13, 15–

17, 22, 25, 29, 31, 33, 34]. A number of techniques are aimed at

generating test input for a given path in a single-threaded program

running on a CPU. Godzilla [10] and Gotlieb et al. [12] presented

techniques based on constraint solving, Grechanik et al. [13] and

Petsios et al. [25] employ feedback-directed fuzz testing, Mansour

and Salame [22] developed stochastic search algorithms, and Gupta

et al. [14] developed iterative numerical techniques. However, none

of these approaches deal with dynamic data structures.

Path-based techniques in the presence of pointer-based
dynamic data structures have also been developed by Korel and

Bogdan [16, 17]. Chung and Bieman [8] generate data shapes using

points-to information for statements along a selected path. Vis-

vanathan and Gupta [33] employ a two-phase approach based on

branch constraint solving to generate dynamic data structure struc-

tures – first, data shapes are generated to meet path constraints

and then values for data fields within data structures are generated.

Sai-ngern et al. [29] also handle linked data structures, including

homogeneous and heterogeneous recursive structures. Those meth-

ods are powerful yet they lack support for concurrent dynamic data

structures in multithreaded CPU or GPU programs. Also, they are

not integrated into a concolic testing framework and thus do not

address coverage issues and they lack optimizations enabled via

subpaths sharing across many individual paths.

Symbolic execution and concolic testing. Khurshid et al. [15]
use symbolic execution to test library classes with generated set and

map data structures in Java but does not consider user-defined data

structures. Zhang [34] support symbolic pointers and symbolic data

structures. Burnim et al. [5], in addition, aim to create a worst-case

input. Unlike the above techniques, CUTE [31] supports concolic

unit testing for C programs with data structure generation support.

However, in comparison to DSGEN, the above methods are not

aimed at multithreaded programs and more specifically are not able

to adequately test implementations of concurrent data structures.

Concolic testing ofmultithreaded programs. jCUTE [30] is

a concolic unit testing tool for multithreaded Java programs while

Cloud9 [9] is an extension of KLEE with multithreading support for

POSIX system. However, they require the user to manually create

the data structures. COMPI applies concolic testing to efficiently

test MPI programs [20]. GKLEE extends the above to GPU programs.

As DSGEN’s comparison with GKLEE shows, for good coverage

needed to uncover data races it is essential to automatically search

for suitable data structure shapes that cause concurrent threads to

follow selected paths that expose data races.

7 CONCLUSIONS
We presented DSGEN that expands applicability of concolic test-

ing to CUDA programs involving implementations of concurrent

dynamic data structures. Our approach enables automatic gener-

ation of dynamic data structures of different shapes which cause

different program paths to be exercised by multiple threads. Our

experience shows that DSGEN is effective in testing complex data

structures such as B-Tree, HAMT, RRB-Tree, and SkipList. Though
in this work the constraints on data structure shape are derived only

from executed code, in the future we will consider augmenting the

constraint set with shape specifications obtained via annotations

and/or analysis [27, 28, 32]. Finally, while in this work we incorpo-

rate data structure shape generation in concolic testing framework

for CUDA programs, the same ideas can also be developed to debug

multithreaded programs running on multicores that access shared

dynamic data structures.
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