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Abstract

The sensitivity of prolactin (Prl) cells of the Mozambique tilapia (Oreochromis mos-
sambicus) pituitary to variations in extracellular osmolality enables investigations into
how osmoreception underlies patterns of hormone secretion. Through the actions of
their main secretory products, Prl cells play a key role in supporting hydromineral bal-
ance of fishes by controlling the major osmoregulatory organs (ie, gill, intestine and
kidney). The release of Prl from isolated cells of the rostral pars distalis (RPD) occurs
in direct response to physiologically relevant reductions in extracellular osmolality.
Although the particular signal transduction pathways that link osmotic conditions to
Prl secretion have been identified, the processes that underlie hyposmotic induction
of prl gene expression remain unknown. In this short review, we describe two distinct
tilapia gene loci that encode Prl,,, and Prl,g.. From our in silico analyses of prl,,
and prl,z, promoter regions (approximately 1000 bp) and a transcriptome analysis
of RPDs from fresh water (FW)- and seawater (SW)-acclimated tilapia, we propose a
working model for how multiple transcription factors link osmoreceptive processes
with adaptive patterns of prl,,- and prl,;, gene expression. We confirmed via RNA-
sequencing and a quantitative polymerase chain reaction that multiple transcription
factors emerging as predicted regulators of prl gene expression are expressed in the
RPD of tilapia. In particular, gene transcripts encoding poulf1, stat3, creb3I1, pbxipla
and statla were highly expressed; creb3l1, pbxipla and statla were elevated in fish
acclimated to SW vs FW. Combined, our in silico and transcriptome analyses set a
path for resolving how adaptive patterns of Prl secretion are achieved via the integra-

tion of osmoreceptive processes with the control of prl gene transcription.
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1 | INTRODUCTION

Prolactin (Prl) is a pleiotropic hormone released from the pituitary
gland that exhibits more biological activities within vertebrates
than any other pituitary factor.»? Subsequent to its discovery in the
1930s, Prl has been linked with an array of physiological processes
that support reproduction, osmoregulation, growth and develop-
ment. In turn, decades of sustained investigation have focused upon
how the release of Prl from the anterior pituitary is controlled.??
Across vertebrates, it is well established that a suite of hormones
originating from central and peripheral sources participates in the
complex regulation of Prl secretion.?® In addition to hormones
with stimulatory or inhibitory activities, the extracellular osmotic
environment is an important regulator of Prl cells in euryhaline te-
leost fishes.®? This “osmosensitive” mode of regulation underlies
the key role that Prl plays in coordinating teleost osmoregulatory
systems.lo'12

Hydromineral balance in vertebrates, including teleost fishes, is
contingent upon the tight control of solute and water movements at
the macromolecular, cellular and organismal levels. Fishes that in-
habit tide-pools, rivers and estuaries are readily subjected to changes
in salinity that threaten hydromineral balance. When exposed to
abrupt changes in environmental salinity, complex homeostatic con-
trol systems operate to maintain internal osmotic conditions near
established set-points (270-400 mOsm kg™).'® Deviations from ex-
tracellular osmotic set-points are detected by osmosensitive cells,
denoted “osmoreceptors”, which secrete hormones acting through
systemic circulation to regulate organs (e.g. gill, kidney, intestine, uri-
nary bladder and skin) that actively transport solutes and water.**
For more than 40 years, Prl-secreting cells isolated from the ros-
tral pars distalis (RPD) of Mozambique tilapia (Oreochromis mossam-
bicus) have been intensely studied to resolve how perturbations in
hydromineral balance (deviations of extracellular osmolality within
5 mOsm kg™) modulate the release of Prl in fashions that support a
return to homeostasis.'®?%2! The native range of Mozambique tila-
pia includes habitats with variable salinities; thus, as a model system,
tilapia Prl cells allow for links to be made between aspects of cellular
osmoreception and a life-history strategy that imposes substantial

osmoregulatory demands.???°

2 | TILAPIA PROLACTIN CELL: A MODEL
FOR INVESTIGATING THE TRANSDUCTION
OF OSMOTIC STIMULI

Given that a stable internal osmotic environment is indispensable
to molecular and cellular functions across vertebrates, the systems
that mediate osmoreception are likely to be conserved throughout
evolution. One sees this in both mammals and teleost fishes where
stretch-regulated channels control the entry of Ca?" into osmore-
ceptive cells.?® The operation of stretch-regulated channels appar-
ently occurs whether an osmoreceptor is activated by a rise or fall

in extracellular osmolality. A rise in osmolality, for example, is the

primary stimulus by which osmoreceptive vasopressin-secreting
neurones are activated in mammals; reduced cell volume leads to
the generation of action potentials via stretch-inactivated cation
channels.?’” By contrast, tilapia Prl cells are stimulated by a fall in
osmolality via stretch-activated cation channels that are activated
following an increase in cell volume. Tilapia Prl cells are suppressed
by an increase in osmolality. Together, these responses are consist-
ent with Prl promoting survival in over-hydrating conditions such as
freshwater (FW) habitats.

The tilapia Prl cell exhibits several attributes that provide dis-
tinct advantages for studying osmoreception. Tilapia Prl cells can
be isolated as a primary culture and studied in vitro because they
comprise > 99% of the RPD.?® Moreover, the tilapia Prl cell model
allows for the simultaneous quantification of gene expression and
hormone secretion with other key parameters linked with osmore-
ception, such as cell volume, intracellular [Caz+] and cAMP levels.'®
Both in vivo and in vitro, prl gene expression and Prl release from
the tilapia pituitary are inversely related to extracellular osmolal-
ity‘20'21'29'32 Hyposmotically driven increases in cell volume, me-
diated by aquaporin 3 (Agp3), are coupled with the rapid influx of
Ca?* through transient receptor potential vanilloid 4 (Trpv4) chan-
nels. The increase in intracellular [Ca2'] activates Prl secretion.>%%”
Moreover, cAMP also accumulates in Prl cells in response to reduced
extracellular osmolality and is dependent on the entry of extracel-
lular Ca?*.384 Although some of the signalling events that occur in
response to hyposmotic stimulation have been well characterised,
other aspects of Prl cell physiology remain unclear, especially how
extracellular osmotic conditions are linked with appropriate prl gene
expression (Figure 1).

The tilapia pituitary secretes two Prls, Prl,zo and Prl ., (previ-
ously referred to as Prl | and Prl Il, respectively), which are encoded
by separate genes and share 30%-40% protein homology with mam-
malian Prl.*>*® Although both Prl,,, and Prl 4 respond to reductions
in extracellular osmolality and exert similar ion-retaining effects,*?
their release is differentially osmosensitive.>! prl mRNA levels are
also differentially osmosensitive, with more robust expression of
prl g relative to prl;,, in response to the same hyposmotic stimu-
lus.3t Interestingly, the salinity acclimation history of fish also influ-
ences the osmotic responsiveness of isolated Prl cells. The baseline
expression of prl;,, and prl;;; mRNAs is 30-fold higher in Prl cells
of fish acclimated to FW vs seawater (SW). Consequently, Prl cells
from FW-acclimated fish are not as responsive to hyposmotic stim-
ulation as Prl cells from SW-acclimated fish with regard to prl mRNA
levels.®2%* We have described additional instances of the distinct
regulation of prl,,, and prl, 4, levels by extracellular osmolality, such
as during autocrine stimulation*® and between O. mossambicus and
its congener, Oreochromis niloticus, with a more narrow salinity toler-
ance.* In the latter study, differences in responses of Prls and prls to
extracellular osmolality between both species may be tied, at least in
part, to the observed inter-specific difference in salinity tolerance.

Previous investigations uncovered additional osmosensitive genes
in tilapia Prl cells such as agp3 and trpv4.3%%" As described above,

these two genes encode proteins essential to the pathway mediating
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FIGURE 1 Depicting the steps involved in the transduction

of a hyposmotic stimulus into prolactin (Prl) release by the tilapia
pituitary, modified from Seale et al.® Prl cells of the rostral pars
distalis (RPD) synthesise and release Prl,,, and Prl, g in response to
a fall in extracellular osmolality. Hyposmotic stimulation leads to an
Aqp3-dependent increase in cell volume that triggers the entry of
Ca®* through stretch-activated Trpv4 channels. Although Ca®" and
cAMP secondary messengers mediate Prl release, it is unknown
how these intracellular signals participate in the transcriptional
regulation of prl;,, and prl, 4o

hyposmotically-induced Prl release. Although agp3 levels are higher in
Prl cells of fish acclimated to FW vs SW,*’ trpv4 is induced by hyperos-
motic conditions.? We reported that osmotic stress transcription factor
1 (ostf1) mRNA levels in Prl cells increased in response to hyperosmotic
stimulation 2%; however, the role of Ostf1 in osmoreception remains to
be clarified.3:32:3747.48 Prl,;, and Prl, 44 exert their actions through two
Prl receptors, denoted Prirl and Prir2.4%°° The expression of both prlr
mRNAs is also osmosensitive, both in the gill, a target of Prl signalling,
and in the pituitary.>"*! For example, we observed that prlr2 expres-
sion is enhanced in Prl cells exposed to hyperosmotic conditions in vivo
and in vitro.3! The two tilapia Prirs activate divergent downstream tar-
gets upon ligand binding; expression of Prir2, but not Prlrl, improves
the tolerance of HEK293 cells to osmotic challenges.”® Importantly,

Fiol etal *°

showed that the osmotic responsiveness of tilapia Prlr2 was
retained when expressed in mammalian cells (HEK293). Thus, several
osmosensitive genes expressed in tilapia Prl cells are up-regulated in

response to hyperosmotic conditions.

3 | INSILICO AND IN VITRO
IDENTIFICATION OF TRANSCRIPTIONAL
REGULATORS

Many layers of control are involved in transcriptional regulation, includ-
ing transcription factors (TFs°%°%) that bind DNA at specific TF binding

o i eroncocinos SR

sites (TFBSs) to either activate or repress transcription. TFs may act
alone, or synergistically, in coordinated fashions with other TFs situ-
ated in close proximity to form a TF-module (TFM>%). The composition
and organisation of TFBSs and other cis-regulatory elements within a
gene promoter defines the gene promoter context, which may be pre-
sent within the promoters of multiple genes. This context provides the
major means by which gene transcription is regulated. On the other
hand, different TFs may compete for the same binding site and act in
fashions that are antagonistic to one another, ultimately initiating, re-
pressing or modulating expression of the regulated gene. The interplay
among TFs allows for fine-tuned responses to a wide array of intra- and
extracellular stimuli. Bioinformatics allows for the characterisation of
shared promoter structures to closely examine the regulatory charac-
teristics of genes that respond to common stimuli. Accordingly, in silico
promoter analyses are widely employed to reveal gene-regulatory
networks that are co-regulated without a priori knowledge of their as-
sociations.’*>” Then, RNA-sequencing (RNA-seq) and a quantitative
polymerase chain reaction (QPCR) can be subsequently carried out to
validate the expression of TFs predicted via in silico promoter analysis.
In the case of tilapia RPDs, the expression of putative targets can then
be compared under different physiological conditions (e.g. hypo- vs
hyperosmotic extracellular conditions). In a broader sense, transcrip-
tome analyses in teleost fishes continue to facilitate the identification
of novel genes involved in osmoregulation.*®¢3

In the mammalian kidney, a functional hyperosmotic cis-response
element was identified in cells of the renal medulla exposed to dra-
matic changes in extracellular osmolality.®* This osmotic-response
element (ORE), also called tonicity-responsive enhancer, regulates
genes involved in the accumulation of compatible osmolytes (i.e.
sorbitol, betaine and inositol) to mitigate hyperosmotic stress.
Following the initial characterisation of an ORE in the aldose reduc-
tase gene, which supports the conversion of glucose to sorbitol in
response to hyperosmotic stress, other ORE-containing sequences
that regulate osmolyte accumulation/transport were subsequently
identified. These sequences regulate the Na'/Cl™ coupled betaine
transporter and Na*/myo-inositol cotransporter genes. These hyperos-
motically-induced genes share homologous sequences in their OREs,
which in turn allowed for the functional characterisation of a con-
sensus mammalian ORE.® In a cell line derived from Mozambique
tilapia brain, osmolality/salinity-responsive elements were identified
that mediate transcriptional responses to hyperosmotic stimuli.®’” By
contrast, less is known about the transcriptional regulation of ver-
tebrate genes that are induced by hyposmotic conditions. Hence, a
wider perspective on the molecular mechanisms that operate within
osmoreceptive cells will be gained by characterising the promoter

regions of genes that respond to hyposmotic stimuli.

4 | TRANSCRIPTIONAL REGULATION OF
PROLACTIN IN TILAPIA

Across vertebrates, prl genes are comprised of five exons and four

introns.® Unlike mammalian prl genes that are 10-12 kb long, the
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lengths of teleost prl genes vary between 2.6 and 3.7 kb; the tilapia
prl,gq geNE spans ~ 3.7 kb.584” The varying prl gene lengths are solely
attributed to differently sized introns. Early studies in mice identi-
fied two regulatory regions associated with pituitary prl expression
that interact with pituitary-specific transcription factor 1 (Pit179).
In fishes, sequences upstream of prl genes also possess Pitl bind-
ing sites. Mutational analyses revealed that a Pitl binding site most
proximal to the transcriptional start site (TSS) was sufficient alone to
confer submaximal transcription of the rainbow trout (Oncorhynchus
mykiss) prl gene.”* DNase | footprinting experiments and electro-
phoretic mobility-shift assays identified three regulatory regions
within the 5'-flanking region of the tilapia prl,;, gene homologous

to mammalian binding sites for Pit1.”?

Accordingly, rat Pitl specifi-
cally bound to Pitl binding sites in the flanking region of the tilapia
prl,gg gene. The tilapia prl;z, promoter includes two microsatellite
regions consisting of CA/GT repeats found between the putative
binding sites for Pit1.°® Naylor and Clark’® demonstrated that CA/
GT repeats formed left-handed zDNA that repressed prl expression
in rat. Moreover, zDNA regions within the tilapia prl,z; promoter
were associated with differences in prl, g4 expression in fish exposed
to different salinities.”* Truncation analyses of the tilapia prl,gg Pro-
moter in transient expression assays confirmed the functionality of
the promoter in driving transcription and revealed three regulatory
regions, two with stimulatory effects and one with an inhibitory

effect.”?

Collectively, these investigations suggest that regulatory
regions responsible for pituitary prl expression are conserved from
fishes to mammals, thereby suggesting that common transcription
factors drive pituitary prl expression across vertebrate clades. To
shed light into the molecular mechanisms underlying osmotic reg-
ulation of prl genes, we first identified sequences within the pro-
moter regions of tilapia prl genes that may play a role in regulating
transcription in response to hyposmotic stimulation through in silico
analysis of putative TFs with predicted TFBSs and TFMs. We then
identified genes encoding TFs within the RPDs of Mozambique tila-
pia and compared expression levels between fish acclimated to FW

vs SW. The most highly expressed genes were validated by gPCR.

5 | INSILICO MODEL OF PROLACTIN
REGULATION

First, in silico searches were performed to screen for putative regu-
latory elements within the apprximately 3.3-kb promoter regions
of prl,,, and prl 4. Our analysis was guided by the previous iden-
tification of three DNase protection regions, -643 to -593, -160
to -111 and -73 to -46 bp, in tilapia Prl cells.”? We first extracted
the putative regulatory elements for the prl,,, and prl,;, promoters
and identified a suite of TFMs predicted to control the expression
of both genes (Figure 2). We found that only the ~ 0.25 kb regions
flanking the TSSs share similarity; this similarity reflects the use
of general transcriptional machinery factors such as TATA binding
protein factor and CCAAT-enhancer-binding proteins (CEBPs). We
identified a putative noncoding RNA (ncRNA) that overlaps with the

prl,gg promoter (-1.866 to -1.985 kb). ncRNAs are known to play a
role in silencing or modulating transcription by regulating the chro-
matin structure and by enhancing or suppressing TF binding.”>””
Thus, ncRNA may affect the chromatin structure or interfere with
the binding of TFs in the prl g, promoter. In the prl ., promoter,
we identified putative erythroblast transformation specific (ETSF/
ETSF) and CEBP/CEBP TFM sites at -1.9 to -1.935 kb, suggesting
possible competition with the ncRNA for promoter binding. Further
studies are needed to characterise how ncRNAs may interact with
chromatin structure to modulate prl,4, in response to changing sa-
linities. We found that SORY/paired box (PAX) and activator protein
1 family (AP1F)/SMAD are TFMs common to both the prl,,, and
prl,gg Promoters (Figure 2). On the other hand, although CEBP, GATA
and specifity protein 1 (SP1F) binding sites were found in both the
prl;;, and prl 5. promoters, they were in different positions and/or
distinctly associated with other TFs. Lastly, a melanocyte inducing
transcription factor (MITF) binding site was unique to the prl,,, pro-
moter, while brain-derived neurotrophic factor (BRNF)/retinoic acid
receptor (RXR) sites were unique to the prl, 5, promoter (Figure 2).

We identified cAMP-response element-binding protein (CREB)
binding sites at -2.9 kb and -1.8 kb, and a CEBP site at -1.7 kb, of
the prl g, promoter fragment. The prediction that CREB regulates
prl g expression is particularly noteworthy given that cAMP and
Ca?* second messengers play key roles in mediating hyposmotical-
ly-induced Prl release.>**? CREB is a TF that binds to highly con-
served cAMP-response elements (CRE) formed by the sequence,
5'-TGACGTCA-3', and is activated by phosphorylation from various
kinases, including protein kinase A and Ca?*/calmodulin dependent
protein kinases.”® Moreover, the -2.9-kb site is a potential contribu-
tor to the activation of prl, ;4 because it falls within the region (-2.6
to -3.0 kb) previously found to induce transcription by 34%.8 We
also found that predicted zDNA regions of the prl,,, promoter were
separated by 2.9 kb, whereas, in the prl, ;5 promoter, the separation
was only 0.54 kb and the number and orientation of the CA/GT
repeats differed. Together, the differences in predicted promoter
regulation between prl,,, and prl 5, apparently underlie observed
differences in their mRNA expression patterns.30

We next focused our analysis on the proximal promoter region,
between -1 and -860 bp, of prl 5, because it contains a functional
Pit1 binding site,’® three DNAse protection regions’? and two mi-
crosatellite regions.”* We identified putative TFMs that overlap with
three DNase protection regions reported by Poncelet et al 72 and
identified Pit1/octamer (Oct1) binding sites encompassed by region
Il (Figure 3). Moreover, the BRNF/RXR TFM overlaps with the Pit1/
Oct1 binding sites, and both Brn and Pit1 factors share the POU
(Pit-Oct-Unc) DNA binding domain, which consists of two highly
conserved regions, the POU-specific domain and the POU home-
odomain. The POU domain is derived from the names of three TFs
with well-conserved homeodomains: Pit1; the octamer transcription
factor proteins, Oct-1 and Oct-2; and the neural Unc-86 transcription
factor originally identified in Caenorhabditis elegans.”®° Brn factors
(brain-specific homeobox/POU domain protein, also known as POU

domain transcription factor) are the mammalian TFs most closely
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their respective binding sites relative to the transcriptional start site (TSS). Red arrows on each promoter indicate the TSS. TFMs shown in

horizontal stacks compete for binding to the same region

related to Unc-86 that were isolated after the original POU domain
factors. Brn-3 factors, for example, are expressed in the pituitary
where they play critical roles in the development and function of
the nervous system.882 Brn factors also interact with oestrogen re-
ceptors to regulate gene transcription.®® Tilapia Prl cells respond to
17p-oestradiol (EZ),84 which further potentiates the agonistic activ-
ities of other hormones, such as gonadotrophin-releasing hormone
and prolactin-releasing peptide, on Prl release.®>8¢ All these TFs,
however, cannot simultaneously occupy the same DNA sequence,
hence we hypothesise that BRNF/RXR may repress prl, ¢ transcrip-
tion in the pituitary. RXR is a member of the steroid/thyroid hor-
mone superfamily of nuclear receptors that bind a variety of ligands
including agonists, antagonists and synergists of gene transcription.
In the nucleus, RXR functions as a TF that binds to gene promoter
regions by either forming a homo- or heterodimer with another nu-
clear receptor.®” Because BRNF/RXR may suppress prl transcription
in tilapia, it may operate in Prl cells of tilapia acclimated to SW when
Prl secretion is minimal.%8 When extracellular osmolality decreases
following the transfer of an animal from SW to FW,2! BRNF/RXR
would ostensibly be released from the promoter and allow for bind-
ing of Pit1/Octl TFs, which in turn induce prl expression.

In the DNase protection region I, we identified overlap-
ping binding sites for SORY/PAX3 and ESTF/AP1 TFs. SORY is an
abbreviation generated by Genomatix (see below) to denote the Sry
and Hox7 TFs. The sex-determining sry gene is found on Y chromo-
somes leading to the development of male phenotypes.?’ Hox genes
form a subset of homeobox genes that direct embryonic develop-
ment along the head to tail axis. A number of hormones, includ-
ing E,, also regulate hox expression.”® In this promoter region, we
hypothesise that SORY/PAX3 TFs repress the expression of prl g4,

in gonadal tissues to ensure tight regulation of its expression. The

ETSF1/AP1 TFs are typically activators of gene transcription and
may stimulate prl g, transcription in the tissues where the SORY/
PAX3 TFs are not expressed. The region with the greatest number of
TFBSs as predicted by in silico analyses was consistent with previous
luciferase assays with the prl, ;; promoter where the highest activity
was found at -0.55 kb followed by the -0.8 and -3.4-kb regions.”?
At approximately 0.5 kb of the prl,z;, promoter region, we found
putative binding sites for BRNF/RXR, ETSF/ETSF, OCT1/PIT1 and
interferon regulatory factor family/AP1F. Furthermore, the micro-
satellite regions that encompass the DNase protection region (-643
to =593 bp) also affect prl, 4, transcription.”* Near the DNase region,
closest to the TSS (~60 base pairs upstream), we also found the pre-
B-cell leukemia homeobox (PBXC)/pancreatic duodenal homeobox 1
(PDX1) TFM. Although PDX1, also known as insulin promoter factor
1,is a TF in the ParaHox gene cluster,”! further studies are required
to assign putative roles to both PDX1 and PBXC for the regulation of

prl,gg transcription.

6 | IN VITRO IDENTIFICATION OF
TRANSCRIPTION FACTORS FROM PRL
CELLS

To confirm the expression of transcripts encoding the TFs described
above, and to assess their expression in response to environmental
salinity, we then analysed the transcriptome of tilapia RPDs col-
lected from animals acclimated to either FW or SW. Consistent with
previous studies,?? the expression of prl,z4 was higher in fish ac-
climated to FW vs SW (1 460 057 and 705 155 counts per million,
respectively). We specifically targeted transcripts corresponding to
TFs identified by our in silico analysis, and of the 192 TFs identified
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PollIl and general TF binding
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FIGURE 3 DNA sequence and regulatory elements of the proximal prl, 4, promoter (-0.88 kb). Nucleotide positions are indicated above
the sequence. Both DNA strands are shown for regions -1 to =220 and -551 to -660 bp; only the coding strand is shown for the remainder
of the sequence. The transcriptional start site (TSS) is indicated by the red bent arrow; the first exon of the prl, ;; gene is highlighted in
yellow and the translation start site is highlighted in green. The dark purple box marks the region (-1 to -40 bp) where general transcription
factors (TFs) are predicted to bind. Previously identified DNase protection regions’? are indicated by grey boxes. The underlined red regions
represent microsatellite repeat regions (zDNA). Coloured boxes indicate putative TF-modules (TFMs) and their respective binding sites.
TFMs shown above and below the sequence are predicted for the (+) and (=) strands, respectively. The purple box from -142 to -151 bp
represents the overlap of the predicted sites for SORY/PAX3 and ETSF/AP1F on the (-) strand. Additional TFMs are colour coded to indicate

their corresponding binding sequences

within tilapia RPDs, 51% corresponded to TFs predicted to bind
to prl,,, and prl 5, promoter regions. Conversely, all TFs predicted
to bind the prl,,, and prl ;. promoter regions by our in silico ap-
proach were confirmed to be present in tilapia RPDs. Table 1 lists
the TFs with highest copy number within each TF family predicted
to bind prl promoter regions based on the in silico map shown in
Figure 2. The vast majority (186 of 192) of TF transcripts identi-
fied had higher copy numbers in SW- vs FW-acclimated fish. Of the

TFs also predicted to possess binding sites on the promoter regions

of prl;,, and prl 4, only the myeloblastosis viral oncogene homolog
1 (mybl1) gene transcript was up-regulated in FW-acclimated fish
(Table 1). In addition to Pit1 (poulf1), CREB and signal transducer
and activator of transcription (STAT) have also been implicated
in the control of Prl cells (Table 1). Relative expression levels of
poulfl, stat3, creb3l1, pbxipla and statla were assessed by qPCR
(Figure 4). Although there were no differences in poulfl and stat3
expression in the RPDs of FW- vs SW-acclimated tilapia, patterns

of elevated expression in SW fish were confirmed for creb3l1,
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pbxipla and statla (Figure 4C-E). CREB proteins that bind to the
CRE region are typically activated by protein kinases elevated in
response to cAMP and/or Ca®*. Although both of these second
messengers play a role in hyposmotically-induced Prl release,®”*
they are also involved in the inhibition of Prl.”? It is worth noting
that, although FW-acclimated tilapia exhibit higher prl MRNA levels
than SW-acclimated counterparts, fish that are acclimated to SW
induce a greater increase in prl gene expression in response to a hy-
poosmotic stimulus. The differing osmosensitivity based upon ac-
climation history may presumably occur because of the much lower
mRNA levels of prl in SW** and is corroborated by the observation
that many of the TFs responsive to Ca?* and cAMP, especially CREB,
are up-regulated in SW. With greater expression in SW, multiple TFs
apparently suppress prl genes. Inasmuch as the Janus kinase/STAT
pathway is a known mediator of Prl signalling, the presence of two
STAT isoforms among the genes with the highest copy numbers in
the RPD transcriptome is consistent with the autocrine effects of
Prl,,, and Prl 45 on tilapia Prl cells.® Leptin similarly works through
STAT signalling; this cytokine rises with SW acclimation and is a po-
tent regulator of Prl release and gene expression and cellular gly-
colysis in tilapia.”®>? From our previous studies,’ it is apparent that
the regulation of Prl release is multi-faceted, with a large number
of agonists and inhibitors adding complexity to the physiological
regulation of this pleiotropic hormone. With the unveiling of both
the in silico regulatory model and the in vitro transcriptome of TFs,
it is increasingly evident that osmotic regulation of the prl gene is
complex. Although the high number of TFs up-regulated in SW-
acclimated fish may suggest that prls are under inhibitory control,
further investigation on the regulation and function of the most
predominant TFs is warranted. Further analyses are required to
unravel the responses of TFs associated with the prl promoter to
changes in salinity in vivo and the interactions of predicted TFs,
TFMs and zDNA regions that underlie osmotic regulation of prl,,,
and prl, 4, expression and their dependency on cAMP and Ca®* sec-
ond messengers.

In conclusion, the suite of TFs and their associated TFMs pre-
dicted through in silico analyses and confirmed by RNAseq/qPCR

(A) (8) (©
2.5 2.5 25 -
2.0 A 2.0 A 20 -
E1'5_ 5‘31'5_ §1.5—
3 L, & g
2 1.0 A 1.0 = 1.0
0.5 0.5 _— 0.5
0.0 - T 0.0 - T 0.0 -
FW  SwW FW SW

FW

o i eroncocinos S

highlights the complex nature of prl transcriptional regulation. These
analyses have only begun to unravel how differences between prl,,,
and prl, g, expression are generated in response to a common hypos-
motic stimulus. The contrasting regulation of tilapia prl,,, vs prl, 5o re-
flects differences in how their hormone products mediate processes
related to osmoregulation and growth.’>*! Although Prl,g, is more
robustly synthesised and released in response to a fall in extracellu-
lar osmolality compared with Prl,, the latter exerts somatotrophic
activity.”” Ultimately, the regulatory mechanisms that underlie the
transcription, translation, and secretion of both prls/Prls are funda-
mental to the capacity of euryhaline tilapia to thrive in a range of

environmental salinities.

7 | METHODS

71 | Animals

Mature Mozambique tilapia of both sexes (ranging between 33-
166 g for RNA-seq samples and 150-1200 g for qPCR) were reared
in outdoor tanks with a continuous flow of either FW or SW under
natural photoperiod. SW-acclimated tilapia employed in this experi-
ment were spawned and reared in SW, having never been previously
exposed to FW. FW-acclimated tilapia, on the other hand, were
spawned and reared in FW, having never been previously exposed
to SW. Water temperature was maintained at 24-26°C. Animals were
fed approximately 5% of their body weight per day with Silver Cup
Trout Chow (Nelson and Sons, Murray, UT, USA). All experiments
were conducted in accordance with the principles and procedures
approved by the Institutional Animal Care and Use Committee,
University of Hawaii.

7.2 | Bioinformatics

Among two PRL isoforms of O. mossambicus, only the sequence
of prlgs gene, including the promoter region, was previously

(D) (E)
2.5 2.5 7
* k%
* % -r
2.0 - T 2.0
L =154 o 157
% =
]
S1.0 1 % 1.0 A
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SW FW  SW Fw  SW

FIGURE 4 Gene expression of poulf1 (A), stat3 (B), creb3I1 (C), pbxipla (D) and statla (E) in the rostral pars distalis (RPD) of Mozambique
tilapia acclimated to fresh water (FW) (solid bars) and seawater (SW) (shaded bars). mRNA levels are presented as a fold-change from the FW
group. Data are the mean + SEM (n = 12). *P < 0.05, **P < 0.01 and ***P < 0.001 (Student's t test)
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reported (X92380). In O. niloticus, the prl,,, gene is located at LG4
(LOC100534523) and arrayed tandemly with the upstream prl, 4,
gene (LOC100534522). To obtain the promoter sequence of O. mos-
sambicus prl, ., a genomic fragment (approximately 14.7 kb; predic-
tion based on O. niloticus data) spanning between the O. mossambicus
prl,g5 and prl,,, genes was amplified using a pair of primers designed
in the downstream region of the last exon of the O. mossambicus prl, 4,
gene (X92380; forward) and in the first exon of the O. niloticus prl,,,
(NM_001279792; reverse) gene. The primers used were: (forward)
cggtacccggggatccAAGACATAAAGACCTGGATGACTGACTGCT and
(reverse) cgactctagaggatccTGAGTTTGCTTCCACTGATTCTTCTCT-
GAG, lower-case and capital letters represent nucleotides specific
to the pUC19 vector and those specific to O. mossambicus (forward)
or O. niloticus (reverse), respectively. Genomic DNA template was
prepared from the liver of a female tilapia (32 g) by the salting-out
method. Then, 100 mg of tissue was minced and digested overnight
at 37°C in 2 mL of lysis buffer (0.5 mg mL™ proteinase K, 10 mmol L™
Tris-HCI, 10 mmol L ethylenediaminetetraacetic acid, 100 mmol Lt
NaCl, 0.5% sodium dodecyl sulphate; pH 8.0). Then, the protein por-
tion was precipitated and removed by adding 500 pL of 6 mol L Nacl
to a 1-mL aliquot of lysate. Genomic DNA was harvested by add-
ing one volume of isopropanol to the supernatant. Next, 500 ng of
DNA was subjected to PCR with PrimeSTAR GXL DNA Polymerase
(Takara Bio, Mountain View, CA, USA) using the primers described
above. The amplified genomic fragment was separated by agarose
gel electrophoresis and purified using the UltraClean GelSpin DNA
Extraction Kit (MO BIO Laboratories, Carlsbad, CA, USA). The pu-
rified fragment was cloned into the pUC19 vector using In-Fusion
HD Cloning Plus (Takara Bio) prior to sequencing of the 3' region.
Sequencing was performed at the Advanced Studies in Genomics,
Proteomics and Bioinformatics facility (ASGPB), University of Hawaii
at Manoa. The sequence of the O. mossambicus prl,,, promoter
(3.344 kb) is provided in the Supporting information (Figure S1). The
approximately 3.4-kb promoters of O. niloticus and O. mossambicus
prl,,, share approximately 94% identity. The putative TFBSs, TFs
and TFMs in the prl,,, and prl,z, promoter sequences were identi-
fied and mapped using the MATINSPECTOR and MODELINSPECTOR tools of
the Genomatix Software Suite (MATRIX FAMILY LIBRARY, version 11.0 and
MODULE LIBRARY, version 6.3; Genomatix, Munich, Germany). This soft-
ware version contains binding site descriptions for 9968 transcrip-
tion factors and 839 Homo sapiens, 818 Mus musculus, 618 Xenopus
tropicalis and 612 Danio rerio weight matrices. The promoter module
library used for the MoDELINSPECTOR tool contained 919 regulatory
modules.

7.3 | RNA-seq and analyses of the RPD
transcriptome

Fish residing in FW or SW (30 per salinity) were anaesthetised
with 2-phenoxyethanol (0.3 mL Lt Sigma, St. Louis, MO, USA).
Fish were then killed by rapid decapitation, pituitaries extracted

and the RPD dissected. The RPDs were pooled by acclimation

salinity and then transferred to tubes containing 1 mL of Tri-
Reagent (Molecular Research Center, Cincinnati, OH, USA) at 10
RPDs per tube (ie, three replicates per treatment). Total RNA was
isolated from RPDs using Tri-Reagent coupled with on-column
affinity purification, and DNase treatment (Direct-zol minipreps;
Zymo Research Corporation, Irvine, CA) as described previously.”®
RPD total RNA (10 pg) was submitted to North Carolina State
University Genomic Sciences Laboratory (Raleigh, NC, USA) for
mRNA enrichment, cDNA synthesis and Illumina library construc-
tion utilising a Truseq RNA library prep kit v1 (Illumina, San Diego,
CA, USA) in conjunction with kit-provided oligo dt capture of
mRNAs from sample total RNA. lllumina libraries (n = 3; see above)
were prepared for each treatment (FW and SW). Sequencing was
performed on an lllumina MiSeq platform at the Hawaii Institute of
Marine Biology Genetics Core Facility with 100 x 2-bp paired-end
protocol and with a mean cluster yield of 2.6 million paired reads
per library (9.7 Gb total).

FasTac’® and TrimmomaTic?? software were used as quality con-
trol tools to inspect the data and trim adapters or low quality reads.

0100

BOWTIE, version 1. was used to map the reads to the O niloticus

reference genome (OreNil 1.0 Broad Institute!®l). Then, RNA-seq

102

by expectation-maximisation"“ was used to quantify transcripts

103

as counts per million (ie, copy number); EBseq "~ was employed to

analyse differential expression between the two treatments. The

1'°4 was used to identify tilapia TF transcripts from the

BIOMART too
Nile tilapia genome (Ensembl; https://www.ensembl.org/index.

html).

74 | gPCR

RPDs were dissected out from 12 FW and 12 SW-reared tilapia.
Total RNA was extracted using TRl Reagent in accordance with
the manufacturer's instructions. The concentration and purity of
extracted RNA were assessed using a NanoDrop (NanoDrop One;
Thermo Fisher Scientific, Waltham, MA, USA). Total RNA (400 ng)
was reverse-transcribed using a High Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific). The mRNA levels
of reference and target genes were determined by the relative
quantification method using a StepOnePlus real-time PCR system
(Thermo Fisher Scientific). The gPCR reaction mix (15 uL) contained
Power SYBR Green PCR Master Mix (Thermo Fisher Scientific),
200 nmol L' forward and reverse primers and 1 uL of cDNA. Dilution
of experimental cDNA from RPDs ranged from one- to 10-fold. PCR
cycling parameters were: 2 min at 50°C, 10 min at 95°C followed
by 40 cycles at 95°C for 15 seconds and 60°C for 1 minute. Gene
specific primers were designed using PrIMER-BLAST (NCBI, Bethesda,
MD, USA); non-specific product amplification and primer-dimer for-
mation were assessed by melt curve analyses. Primer sequences,
amplification efficiencies and amplicon sizes are provided in the
Supporting information (Table S1). After verification that levels did
not vary across treatments, 18S ribosomal RNA was used to nor-

malise target genes. Data are expressed as a fold-change relative to
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the FW group. Group comparisons were performed by two-tailed
Student's t test. Data were log-transformed when necessary to meet
assumptions of normality (assessed by Shapiro-Wilk test). Statistical
calculations were performed using prism, version 8.0 (GraphPad
Software Inc., San Diego, CA, USA). P < 0.05 was considered statis-
tically significant.
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