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ABSTRACT

This paper studies the design of a key-value (KV) store that can take

full advantage of modern storage hardware with built-in transpar-

ent compression capability. Manymodern storage appliances/drives

implement hardware-based data compression, transparent to OS

and applications. Moreover, the growing deployment of hardware-

based compression in Cloud infrastructure leads to the imminent

arrival of Cloud-based storage hardware with built-in transparent

compression. By decoupling the logical storage space utilization

efficiency from the true physical storage usage, transparent com-

pression allows data management software to purposely waste

logical storage space in return for simpler data structures and al-

gorithms, leading to lower implementation complexity and higher

performance. This work proposes a table-less hash-based KV store,

where the basic idea is to hash the key space directly onto the logical

storage space without using a hash table at all. With a substantially

simplified data structure, this approach is subject to significant

logical storage space under-utilization, which can be seamlessly

mitigated by storage hardware with transparent compression. This

paper presents the basic KV store architecture, and develops math-

ematical formulations to assist its configuration and analysis. We

implemented such a KV store KallaxDB and carried out experiments

on a commercial SSD with built-in transparent compression. The

results show that, while consuming very little memory resource, it

compares favorably with the other modern KV stores in terms of

throughput, latency, and CPU usage.

1 INTRODUCTION

This paper presents a key-value (KV) store design solution opti-

mized for a growing family of storage hardware with built-in trans-

parent data compression. Commercial market has witnessed the rise

of storage appliances/devices that implement hardware-based data

compression, transparent to OS and applications. Modern all-flash

arrays (e.g., Dell EMC PowerMAX [12], HPE Nimble Storage [14],

and Pure Storage FlashBlade [25]) come with built-in hardware-

based transparent compression. Commercial SSDs with built-in
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transparent compression are emerging (e.g., computational storage

drive from ScaleFlux [30] and Nytro SSD from Seagate [13]). Cloud

vendors have started to integrate hardware-based compression ca-

pability into their storage infrastructure (e.g., Microsoft Corsia [7]

and AWS Graviton2 [2]), leading to imminent arrival of cloud-based

storage hardware with built-in transparent compression.

Beyond transparently reducing storage cost without affecting ap-

plication performance, storage hardware with built-in transparent

compression brings new opportunities to innovate data manage-

ment software. This work shows that such storage hardware can

relieve hash-based KV store frommaintaining the costly in-memory

hash table, leading to a new family of memory-efficient table-less

hash-based KV store. The core is to leverage the fact that such

storage hardware decouples the logical storage space utilization

efficiency from the physical storage space utilization efficiency.

When running on conventional storage hardware, KV store is solely

responsible for the physical storage space utilization efficiency (i.e.,

physical storage cost). As a result, it faces a stringent trade-off be-

tween storage cost and implementation complexity: To reduce the

storage cost, KV store must strive to make full use of the logical

storage space and fill each 4KB LBA (logical block address) sector

with KV pairs, which inevitably demands sophisticated and costly

data structures and algorithms. For example, hash-based KV store

uses a memory-hungry hash table to ensure the compact placement

of KV pairs over the logical storage space in order to reduce the

storage cost. The high memory cost of hash-based KV store is one

of the main reasons why its real-world deployment pales in com-

parison with KV stores built upon memory-efficient data structures,

e.g., log-structured merge (LSM) tree [23].

To fundamentally overcome the memory cost barrier of hash-

based KV store, the only option is to hash the key space directly

onto the logical storage space, without using a hash table at all. Nev-

ertheless, KV pairs can no longer be tightly placed over the logical

storage space, leading to substantial space under-utilization (e.g., all

the 4KB LBA blocks have a large amount of empty space left unoccu-

pied). Therefore, when running on conventional storage hardware,

such table-less KV store will suffer from prohibitively high storage

cost and hence is not practically viable. In contrast, once we pad the

unoccupied space with highly compressible content (e.g., all-zero),

storage hardware with built-in transparent compression can largely

retain the physical storage space utilization efficiency. Therefore,

when running on storage hardware with built-in transparent com-

pression, table-less hash-based KV store can eliminate the memory

cost obstacle without sacrificing storage cost. This could, for the

first time, make hash-based approach a viable alternative to its

tree-based counterparts on implementing large-capacity KV store.
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can easily keep their indexes entirely in the host memory. Hence,

KallaxDB serves a read request via a single storage IO. To mini-

mize the read latency and be compatible with typical KV store API,

KallaxDB serves read requests through synchronous IOs.

Write: To serve a write request (insert or update), just like most

other KV stores, KallaxDB logs the write request in WAL, updates

the WAL index, and then immediately responds write completion

to the client. KV pairs are moved from WAL into the hash-based

store (or overflow store) during the background data migration, as

illustrated in Fig. 4.

Background data migration: In the background, KallaxDB migrates

KV pairs from WAL into the hash-based store (via read-modify-

write) or overflow store. Since each section associates one back-

ground write thread, data migration can occur in parallel over all

the 𝑛 sections. All the background data migrations are realized

through asynchronous IOs in order to better utilize the bandwidth

of the storage hardware. The background write threads also period-

ically check whether there are section files needed to be rehashed

and accordingly push them to the rehash threads.

Background rehash: KallaxDB expands/shrinks the logical storage

space of the main hash-based store by applying a new hash function

to rehash the key space. To avoid the contention between back-

ground write threads and background rehash threads, when one

file in one section is being rehashed, no data will be migrated from

WAL into this file. Only after a file has been completely rehashed,

the new hash function will be used to serve client read requests and

background data migration. Besides, the corresponding overflow

store segment relative to this file will also be re-scanned and KVs

in it will be filled into the new rehashed logical space accordingly.

KallaxDB controls the speed of background rehash by configuring

the batch size and the number of rehash threads.

3.3 Mathematical Formulation

This subsection presents a set of mathematical formulations to

estimate two important KallaxDB operational metrics: (1) overflow

statistics (including the page overflow probability and overflow

store dataset size), and (2) page fill-factor (i.e., how full each page

is filled with valid KV pairs). Accurate predication on these two

metrics are critical for KallaxDB to appropriately configure the

logical storage space of the main hash-based store. To facilitate the

mathematical formulation, wemodel the KV pair size as independent

and identically distributed random variables throughout the paper.

3.3.1 Overflow Statistics. Let ℎ𝑘𝑣 (𝑙) denote the probability den-

sity function of KV pair size, and 𝑓𝑘𝑣 (𝑚, 𝑙) denote the probability

density function of the random variable 𝑙 =
∑𝑚
𝑖=1 𝑙𝑖 , where 𝑙𝑖 is a

random variable following the distribution of ℎ𝑘𝑣 (𝑙). The open lit-

erature (e.g., see [17]) has well studied the formulation of 𝑓𝑘𝑣 (𝑚, 𝑙)

for popular distributions (e.g., Gaussian and uniform distribution).

Under the condition that𝑚 KV pairs are hashed to the same page,

let 𝑃𝑜𝑣𝑓 (𝑚) and 𝐿𝑜𝑣𝑓 (𝑚) denote the corresponding page overflow

probability and the spilled-over data size, we have




𝑃𝑜𝑣𝑓 (𝑚) =

∫ ∞

𝑙𝑝𝑔
𝑓𝑘𝑣 (𝑚, 𝑙)𝑑𝑙,

𝐿𝑜𝑣𝑓 (𝑚) =

∫ ∞

𝑙𝑝𝑔

(
𝑓𝑘𝑣 (𝑚, 𝑙) · (𝑙 − 𝑙𝑝𝑔)

)
𝑑𝑙,

(1)

where 𝑙𝑝𝑔 denotes the page size that is 4KB or a multiple of 4KB. Let

𝑃𝑝𝑔 (𝑚) denote the probability that𝑚 KV pairs are hashed to the

same page, we can calculate the average page overflow probability

𝑃𝑝𝑔_𝑜𝑣𝑓 and spilled-over data size 𝐿𝑝𝑔_𝑜𝑣𝑓 as





𝑃𝑝𝑔_𝑜𝑣𝑓 =

∑∞
𝑚=1

(
𝑃𝑝𝑔 (𝑚) · 𝑃𝑜𝑣𝑓 (𝑚)

)
,

𝐿𝑝𝑔_𝑜𝑣𝑓 =

∑∞
𝑚=1

(
𝑃𝑝𝑔 (𝑚) · 𝐿𝑜𝑣𝑓 (𝑚)

)
.

(2)

Recall that K and L denote the key space and logical storage space

of the hash-based store, and |K| and |L| represent the number of

keys and pages in the hash-based store. Hence, we can express

the total amount of data as |K| · 𝐸
(
ℎ𝑘𝑣 (𝑙)

)
, where 𝐸

(
ℎ𝑘𝑣 (𝑙)

)
repre-

sents the expectation (or mean) of the KV pair size. Meanwhile, we

can express the total amount of spilled-over data as |L| · 𝐿𝑝𝑔_𝑜𝑣𝑓 .

Accordingly, we can calculate the data overflow ratio as

𝑅𝑜𝑣𝑓 =

|L| · 𝐿𝑝𝑔_𝑜𝑣𝑓

|K| · 𝐸
(
ℎ𝑘𝑣 (𝑙)

) , (3)

which is the ratio between the amount of data spilled-over into the

overflow store and the total amount of data in KV store. Since the

hash value uniformly distributes across all the |L| pages (i.e., one

KV is hashed to a given page with the probability of 1

|L |
), we can

calculate the probability 𝑃𝑝𝑔 (𝑚) as

𝑃𝑝𝑔 (𝑚) =

(
|K|

𝑚

) (
1

|L|

)𝑚 (
1 −

1

|L|

) |K |−𝑚
. (4)

Since the value of |L| is typically very large in practice and

(1 − 1

𝑛 )
𝑚 ≈ 𝑒−

𝑚

𝑛 for large 𝑛, we approximate the Eq. 4 as

𝑃𝑝𝑔 (𝑚) ≈

(
|K|

𝑚

) (
1

|L|

)𝑚
𝑒
−

|K|−𝑚
|L| . (5)

For the purpose of illustration, let us consider the following

example: Assume that |K| and |L| are 1 × 10
10 and 2 × 10

9, re-

spectively, and the KV pair size follows a Gaussian distribution

N(𝜇, 𝜎2), where 𝜇 is 400 bytes, and 𝜎 is 25 bytes. Hence, the proba-

bility density function 𝑓𝑘𝑣 (𝑚, 𝑙) isN(𝑚 · 𝜇,𝑚 · 𝜎2). Meanwhile, we

set the page size 𝑙𝑝𝑔 as 4KB. Applying the above formulations, we

can obtain the 𝑃𝑝𝑔 (𝑚) and 𝑃𝑜𝑣𝑓 (𝑚) when𝑚 varies between 0 and

15, as shown in Fig. 5. Accordingly, we can calculate that the page

overflow probability 𝑃𝑝𝑔_𝑜𝑣𝑓 is 1.9% and data overflow ratio 𝑅𝑜𝑣𝑓
is 0.4%.

Figure 5: The probability 𝑃𝑝𝑔 (𝑚) that𝑚 KV pairs are hashed

to one page, and the corresponding page overflow probabil-

ity 𝑃𝑜𝑣𝑓 (𝑚), when𝑚 varies between 0 and 15.
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3.3.2 Page Fill-factor. Let 𝛼𝑝𝑔_𝑓 𝑖𝑙𝑙 ∈ [0, 100%] denote the page fill-

factor, i.e., the percentage by which one page is filled with valid KV

pairs (and the rest is filled with all zeros). Based on the discussion

and formulation presented above in Section 3.3.1, we can express

the distribution of the page fill-factor as

∞∑

𝑚=0

(
𝑃𝑝𝑔 (𝑚) ·

𝑓𝑘𝑣 (𝑚, 𝑙)

𝑙𝑝𝑔

)
. (6)

Accordingly, we can calculate the average value of the page fill-

factor as

𝛼𝑝𝑔_𝑓 𝑖𝑙𝑙 =

∞∑

𝑚=0

(
𝑃𝑝𝑔 (𝑚) ·𝑚 ·

𝐸
(
ℎ𝑘𝑣 (𝑙)

)

𝑙𝑝𝑔

)
. (7)

Regardless of the specific compression algorithm (e.g., lz4 or zlib)

being used by the storage hardware, the physical storage space

utilization degrades as the page fill-factor 𝛼𝑝𝑔_𝑓 𝑖𝑙𝑙 reduces. This is

because, when pages are less filled with KV pairs, the storage hard-

ware will have less amount of valid data to compress in each 4KB

sector. This will lead to a worse KV store data compression ratio.

Hence, from the physical storage cost perspective, we should in-

crease 𝛼𝑝𝑔_𝑓 𝑖𝑙𝑙 , for which we must increase the probability 𝑃𝑝𝑔 (𝑚)

according to Eq. 7. Meanwhile, according to Eq. 2, the page over-

flow probability and data overflow ratio will increase when 𝑃𝑝𝑔 (𝑚)

increases. This reveals a trade-off between the physical storage cost

and data overflow ratio. According to Eq. 4, 𝑃𝑝𝑔 (𝑚) will increase

when either |K| increases and/or |L| decreases. Therefore, we can

dynamically adjust the trade-off by configuring the value of |L| in

response to the runtime value of |K|.

Let us consider the following example: Assume the same KV pair

size distribution as the example in Section 3.3.1, and set the page

size 𝑙𝑝𝑔 as 4KB. Fig. 6 shows the calculated data overflow ratio 𝑅𝑜𝑣𝑓
and page fill-factor 𝛼𝑝𝑔_𝑓 𝑖𝑙𝑙 . Fig. 6(a) shows the impact of logical

storage space size |L| when the key space size |K| fixes as 1 × 10
10,

and Fig. 6(b) shows the impact of the key space size |K| when the

logical storage space size |L| fixes as 2 × 10
9. This example shows

the importance of appropriately adjusting |L| in adaptation to |K|,

which will be realized through the rehash process.

Figure 6: The data overflow ratio 𝑅𝑜𝑣𝑓 vs. page fill-factor

𝛼𝑝𝑔_𝑓 𝑖𝑙𝑙 when (a) |L| varies while |K| fixes as 1 × 10
10, and (b)

|K| varies while |L| fixes as 2 × 10
9.

4 EVALUATION

4.1 Experimental Setup

We ran all the experiments on a server with 24-core 2.6GHz Intel

CPU, 64GB DDR4 DRAM, and a 3.2TB SSDwith built-in transparent

compression. Manufactured by ScaleFlux [30], this SSD carries

out hardware-based zlib compression on each 4KB block along

the IO path. The per-4KB compression/decompression latency of

the hardware zlib engine is around 5𝜇s, which is more than 10×

shorter than the NAND flash memory read latency (∼80𝜇s) and

write latency (∼1ms). Operating with PCIe Gen3×4 interface, this

SSD can achieve up to 3.2GB/s sequential throughput and 650K

(520K) random 4KB read (write) IOPS (IO per second) over 100%

LBA span. In comparison, leading-edge commodity NVMe SSDs

(e.g., Intel P4610) achieve similar sequential throughput and random

4KB read IOPS, but have much worse random 4KB write IOPS (e.g.,

below 300K). This is because built-in transparent compression can

significantly reduce the GC (garbage collection) overhead inside

SSDs. We use the following five YCSB benchmarks [8]: YCSB A (50%

reads, 50% updates), YCSB B (95% reads, 5% updates), YCSB C (100%

reads), YCSB D (95% reads, 5% inserts), YCSB F (50% reads, 50%

read-modify-writes). The hash-based nature of KallaxDB makes

it difficult to directly support the scan-centric benchmark YCSB

E (i.e., 5% inserts and 95% scan). As discussed later in Section 4.6,

we could complement KallaxDB with an auxiliary key-tracing data

structure in order to support scan operations. Recent studies [5]

suggest that KV pair size in real-world workloads is typically no

more than a few hundred bytes. Hence, we focus on the value size

ranging between 100B and 800B.

Table 1: YCSB core workloads.

Workload Description

YCSB A 50% reads, 50% updates

YCSB B 95% reads, 5% updates

YCSB C 100% reads

YCSB D 95% reads, 5% inserts

YCSB F 50% reads, 50% read-modify-writes

4.2 Baseline Comparison

We first carried out a baseline comparison with three KV stores:

(1) RocksDB 6.10 [28], which employs the LSM tree structure and

is widely deployed in production environment. We set its maxi-

mum number of compaction and flush threads as 12 and 4, set the

Bloomfilter as 10 bits per KV pair, and left all the other parameters

as their default settings and did not turn on its block compression.

(2) WiredTiger 3.2 [32], which supports both B-tree and LSM tree

structure and is the default storage engine of MongoDB. We config-

ured it to use B-tree structure in our experiments, set its leaf node

size as 4KB to maximize its performance under YCSB workloads,

and left all the other parameters as their default settings and did not

turn on its page compression. (3) KVell [18], which employs B-tree

structure and uses asynchronous IOs to serve both read and write

requests. Different fromWiredTiger, KVell keeps the pointer to each

KV pair in order to avoid sorting KV pairs on storage. KVell does

not support compression on its own, and we left all the parameters

as their default settings.
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key ranges do not overlap with any other data blocks during com-

paction. Write amplification can also be reduced by separating the

storage of key and value, which has been well demonstrated in

prior work (e.g., Wisckey [20] and HashKV [6]).Luo and Carey [21]

present a comprehensive survey on LSM tree KV stores.

Prior work also has well studied KV store built upon other data

structures. SILT [19] organizes all the KV pairs across several dif-

ferent data structures with different performance vs. cost trade-offs.

Tucana [24] presents a KV store built upon amodified B𝜖-tree, incor-

porating several techniques to improve caching and IO efficiency.

KVell [18] presents a KV store built upon B-tree, which applies

KV-size-based data partition to reduce the impact of background

garbage collection. Prior work [10, 11, 16] also studied the design of

hash-based KV store, which stores KV pairs in log-structure on SSD

and realizes addressing through in-memory hash table. uDepot [16]

holds the hash table entirely in host memory and aims to improve

IO efficiency through a user-space IO stack. FlashStore [10] and

SkimpyStash [11] present techniques to reduce the memory cost of

hash table at the penalty of higher read amplification. NVMKV [22]

implements a hash-based KV store by deeply coupling the SSD FTL

customization and KV store design. In comparison, by taking ad-

vantage of storage hardware with built-in transparent compression,

our proposed design approach fundamentally removes the memory

cost barrier of hash-based KV store.

6 CONCLUSIONS

This paper presents a table-less hash-based KV store customized

for modern storage hardware with built-in transparent compres-

sion capability. By decoupling logical vs. physical storage space

utilization efficiency, such new storage hardware enables KV store

purposely under-utilize the logical storage space in return for sim-

pler data structures and algorithms, which can lead to higher per-

formance and/or lower CPU/memory usage. Following this theme,

the proposed table-less hash-based KV store completely obviates

the in-memory hash table by directly hashing the key space onto

the logical storage space, and meanwhile relies on the transparent

compression in storage hardware to retain the physical storage cost

efficiency. This paper presents a set of mathematical formulations

that can assist its configuration and analysis. Experimental results

show that table-less hash-based KV store compares favorably with

the other modern KV stores in terms of throughput, latency, and

CPU and memory usage.
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