KallaxDB: A Table-less Hash-based Key-Value Store on Storage
Hardware with Built-in Transparent Compression

Xubin Chen', Ning Zheng*, Shukun Xu*, Yifan Qiao", Yang Liu*, Jiangpeng Li*, Tong Zhang'*

T Rensselaer Polytechnic Institute, NY, USA
¥ ScaleFlux Inc., CA, USA

ABSTRACT

This paper studies the design of a key-value (KV) store that can take
full advantage of modern storage hardware with built-in transpar-
ent compression capability. Many modern storage appliances/drives
implement hardware-based data compression, transparent to OS
and applications. Moreover, the growing deployment of hardware-
based compression in Cloud infrastructure leads to the imminent
arrival of Cloud-based storage hardware with built-in transparent
compression. By decoupling the logical storage space utilization
efficiency from the true physical storage usage, transparent com-
pression allows data management software to purposely waste
logical storage space in return for simpler data structures and al-
gorithms, leading to lower implementation complexity and higher
performance. This work proposes a table-less hash-based KV store,
where the basic idea is to hash the key space directly onto the logical
storage space without using a hash table at all. With a substantially
simplified data structure, this approach is subject to significant
logical storage space under-utilization, which can be seamlessly
mitigated by storage hardware with transparent compression. This
paper presents the basic KV store architecture, and develops math-
ematical formulations to assist its configuration and analysis. We
implemented such a KV store KallaxDB and carried out experiments
on a commercial SSD with built-in transparent compression. The
results show that, while consuming very little memory resource, it
compares favorably with the other modern KV stores in terms of
throughput, latency, and CPU usage.

1 INTRODUCTION

This paper presents a key-value (KV) store design solution opti-
mized for a growing family of storage hardware with built-in trans-
parent data compression. Commercial market has witnessed the rise
of storage appliances/devices that implement hardware-based data
compression, transparent to OS and applications. Modern all-flash
arrays (e.g., Dell EMC PowerMAX [12], HPE Nimble Storage [14],
and Pure Storage FlashBlade [25]) come with built-in hardware-
based transparent compression. Commercial SSDs with built-in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAMON 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8556-5/21/06...$15.00
https://doi.org/10.1145/3465998.3466004

transparent compression are emerging (e.g., computational storage
drive from ScaleFlux [30] and Nytro SSD from Seagate [13]). Cloud
vendors have started to integrate hardware-based compression ca-
pability into their storage infrastructure (e.g., Microsoft Corsia [7]
and AWS Graviton2 [2]), leading to imminent arrival of cloud-based
storage hardware with built-in transparent compression.

Beyond transparently reducing storage cost without affecting ap-
plication performance, storage hardware with built-in transparent
compression brings new opportunities to innovate data manage-
ment software. This work shows that such storage hardware can
relieve hash-based KV store from maintaining the costly in-memory
hash table, leading to a new family of memory-efficient table-less
hash-based KV store. The core is to leverage the fact that such
storage hardware decouples the logical storage space utilization
efficiency from the physical storage space utilization efficiency.
When running on conventional storage hardware, KV store is solely
responsible for the physical storage space utilization efficiency (i.e.,
physical storage cost). As a result, it faces a stringent trade-off be-
tween storage cost and implementation complexity: To reduce the
storage cost, KV store must strive to make full use of the logical
storage space and fill each 4KB LBA (logical block address) sector
with KV pairs, which inevitably demands sophisticated and costly
data structures and algorithms. For example, hash-based KV store
uses a memory-hungry hash table to ensure the compact placement
of KV pairs over the logical storage space in order to reduce the
storage cost. The high memory cost of hash-based KV store is one
of the main reasons why its real-world deployment pales in com-
parison with KV stores built upon memory-efficient data structures,
e.g., log-structured merge (LSM) tree [23].

To fundamentally overcome the memory cost barrier of hash-
based KV store, the only option is to hash the key space directly
onto the logical storage space, without using a hash table at all. Nev-
ertheless, KV pairs can no longer be tightly placed over the logical
storage space, leading to substantial space under-utilization (e.g., all
the 4KB LBA blocks have a large amount of empty space left unoccu-
pied). Therefore, when running on conventional storage hardware,
such table-less KV store will suffer from prohibitively high storage
cost and hence is not practically viable. In contrast, once we pad the
unoccupied space with highly compressible content (e.g., all-zero),
storage hardware with built-in transparent compression can largely
retain the physical storage space utilization efficiency. Therefore,
when running on storage hardware with built-in transparent com-
pression, table-less hash-based KV store can eliminate the memory
cost obstacle without sacrificing storage cost. This could, for the
first time, make hash-based approach a viable alternative to its
tree-based counterparts on implementing large-capacity KV store.

DAMON’21, June 20-25, 2021, Virtual Event, China

This paper presents a table-less hash-based KV store architecture,
and develops a set of mathematical formulations to assist its analysis
and configuration. Accordingly, we implement the proposed design
techniques in KallaxDB, and compared it with three state-of-the-art
tree-based KV stores including RocksDB [28], WiredTiger [32], and
KVell [18]. Using the YCSB benchmarks, we carried out experiments
on a commercial PCle Gen3x4 SSD with built-in transparent com-
pression [30]. The results show that, by consuming little memory
resource, KallaxDB compares favorably with the other KV stores
in terms of throughput, latency, and CPU usage. For example, un-
der 400-byte KV size and 400GB dataset and YCSB 50:50 mixed
read/write workload, compared with RocksDB, it achieves 1.6X
higher ops/s, 1.5x shorter read latency, and 2.3x lower CPU utiliza-
tion in terms of cycles per operation. It is our hope that this work
will contribute to attracting more research interest on leveraging
modern storage hardware with built-in transparent compression to
innovate future data management systems.

2 BACKGROUND

To make user applications seamlessly benefit from data compres-
sion, the storage community has integrated the transparent com-
pression capability into the lower-level IO stack (e.g., filesystem,
block layer, or storage hardware). For example, ZFS [4] and Btrfs [29]
support filesystem-level transparent compression, and Red Hat En-
terprise Linux contains a VDO (Virtual Data Optimizer) module that
realizes block-level transparent compression. However, software
solutions consume the host CPU resource and hence suffer from
the performance vs. storage cost trade-off. If we push data com-
pression into the storage hardware layer, systems will be free from
the performance vs. storage cost trade-off. Modern all-flash array
appliances and some latest SSDs [13, 30] can support transparent
compression. Fig. 1 illustrates an SSD with built-in transparent com-
pression: Inside the SSD controller, (de-)compression are carried
out on the IO path by the hardware, and the FTL (flash translation
layer) manages the mapping/indexing of all the variable-length
compressed data blocks. In order to maintain good random IO per-
formance, the compression should be done on the per-4KB basis.

<SW | HW S SSD
EPhess
User Apps : Compression & Flash NAND
& 0S decompression Control [ymd Flash
ontroller

Figure 1: Illustration of an SSD with built-in transparent
compression.

As illustrated in Fig. 2, storage hardware with built-in transpar-
ent compression has the following two properties: (a) The storage
hardware can expose an LBA space that is much larger than its
internal physical storage capacity. (b) Since special data patterns
(e.g., all-zero) can be highly compressed, we can leave one 4KB
LBA partially filled with valid data without wasting the physical
storage space. These two properties decouple the logical storage
space utilization efficiency from the physical storage space utiliza-
tion efficiency. This allows data management software to purposely

Xubin Chen, Ning Zheng, Shukun Xu, Yifan Qiao, Yang Liu, Jiangpeng Li, Tong Zhang.

under-utilize the logical storage space to gain performance benefits,
without sacrificing the true physical storage cost.

| >> Exposed LBA space (e.g.,32TB) >§ |

[FTL with transparent compression]

| NAND Flash (e.g., 4TB) |

(a)
4KB
r A A}

L Valid user data | 0’s » 1

SSD

N U -

N _~
< Transparent compression
\ >

‘| Compressed data

(b)

Figure 2: Illustration of the decoupled logical and physical
storage space utilization efficiency enabled by storage hard-
ware with built-in transparent compression.

3 PROPOSED DESIGN SOLUTION
3.1 Basic Idea

Leveraging the decoupled logical vs. physical storage utilization ef-
ficiency on storage hardware with built-in transparent compression,
we propose a table-less hash-based KV store design approach as illus-
trated in Fig. 3. Its basic idea is to directly hash the key space onto
the logical storage space, without going through an intermediate
hash table. In conventional practice, as illustrated in Fig. 3(a), each
key is first hashed to an entry in a hash table that further points to
the KV pair’s location in storage space. Through an intermediate
hash table, the indirect mapping can ensure tight placement of KV
pairs over the logical storage space. In order to serve each KV GET
request with only one IO, the hash table must entirely reside in the
memory, leading to a high and even prohibitive memory cost.

Storage hardware with built-in transparent compression makes
it possible to eliminate the in-memory hash table altogether, as
illustrated in Fig. 3(b). Let K denote the key space, and L denote
the KV store logical storage space that is accessed in the unit of
pages. Each page spans over one or multiple consecutive LBAs. We
use a hash function fg_,; to hash each key K; € K onto one page
L; € L. Without using a hash table, it eliminates the memory cost
obstacle of hash-based KV store. Moreover, by relieving CPU from
managing/searching the hash table, it consumes less CPU resource.
Meanwhile, as illustrated in Fig. 3(b), the proposed approach is sub-
ject to significant under-utilization of the logical storage space (i.e.,
almost all the pages have a large amount of empty space left un-
occupied). Once we fill the unoccupied space with zeros, storage
hardware with built-in compression can maintain a high utilization
efficiency of the physical storage space.

3.2 Implementation of KallaxDB

We implemented a table-less hash-based KV store called KallaxDB
with the architecture as shown in Fig. 4. Except those being logged
in the WAL (write-ahead log), all the KV pairs are kept in two stores:

KallaxDB: A Table-less Hash-based Key-Value Store on Storage Hardware with Built-in Transparent Compression

Key space K
A

Hash tablel | | .o | | | KV pairs are tightly
U) U .
N Moot S placed in L
,/’ ,4‘— S el !
vy V¥ v ¥ v R //

Y
Logical storage space L

(a)

DAMON’21, June 20-25, 2021, Virtual Event, China

Key space K
A

o) . . KV pairs are loosely
/i -~ Unoccupied ‘page placed in L
1 \
'II *’ :II ; sp?ce Vl‘ I_"(e.gh 4_KB) //I,
HNINNEK vl ... | Il

Y
Logical storage space L

(b)

Figure 3: Illustration of the proposed table-less hash-based KV store design approach.

the main hash-based store that holds the vast majority of KV pairs,
and the overflow store that holds the KV pairs that cannot fit into
their destined pages in the main hash-based store. Let [,y denote
the hash-based store page size. If more than size-I,5 amount of KV
pairs are hashed to the same page, we have to spill-over one or
more KV pairs into the overflow store. Let L denote the overall

. 1

1

!] __ Read

: Hash function fi, Request
1

]

1

DRAM

1
Write
Request

|

Y

.
|
|

rehash

Overflow
NUE

Background

SSD with built-in
transparent compression Table-less hash-based store

Figure 4: Illustration of KallaxDB architecture.

logical storage space of the main hash-based store. To improve
the parallelism, we partition LL into n equal-size sections, and each
section IL.j associates with a background write thread. To write a KV
pair with key K; € K into the hash-based store, suppose we have
fxk—1(K;) = L; € Lj, the background write thread associated with
the section IL; carries out a read-modify-write operation (i.e., fetch
the page at L;, modify its content according to the write request,
and write the modified page back to L;). To read a KV pair from
the main hash-based store, we simply calculate the hash to identify
and fetch the page from which we extract the requested KV pair.
KallaxDB implements both the WAL and overflow store in a
log structure: Each incoming KV pair is appended to an on-SSD
segment, and its index (i.e., key and address) is recorded in an
in-memory B+ tree. Once the size of one on-SSD WAL segment
reaches a threshold, this segment will be sealed, and a new on-SSD
WAL segment will be created to receive incoming KV pairs. For KV
pairs that cannot fit into the destined page, KallaxDB keeps them
in the overflow store. The background write threads handle KV
migration from WAL to the main hash-based store and reclaim the

storage space occupied by sealed WAL segments. For segments of
the overflow store, they will be re-scanned in the rehash procedure
(described later), during which the storage space is reclaimed.

In order to keep page overflow probability sufficiently low and
hence make the overflow store small, we must maintain appro-
priate |K]| : |L| ratio, where |K| denotes the number of keys in
the key space K and |L| denotes the number of pages in the hash-
based store logical storage space LL. Therefore, in adaptation to
the runtime varying |K|, we should adjust |L|, for which we must
accordingly change the hash function fx_,; and hence rehash the
entire table-less hash-based store. For each rehash process, let L, ;4
and L., denote the logical storage space of the store before and
after rehash. KallaxDB uses one or multiple background rehash
threads, where each thread rehashes KV pairs in a batch-mode: Let
np, denote the batch size (e.g., 16). During each batch processing,
one rehash thread reads nj pages from L,;4 and extracts all the
KV pairs, and rehashes every KV pair using the new hash function
and accordingly writes the KV pair to its destined page in Lyey. If
multiple KV pairs in the same batch are hashed to the same page
in Lyew, We can coalesce their rehash to a single page write IO. To
maximize the write coalescing, KallaxDB uses the following strat-
egy to generate each hash function: Let L s denote a logical storage
space that is substantially larger than the maximum possible logi-
cal storage space of the hash-based store, and let fx_,1,, denote a
fixed master hash function based on which we drive all the hash
functions throughout the KV store lifetime. Given the target value
of |L|, define Rs = [|Lps|/|L|] and we construct the corresponding
hash function fx_ as | fx—r,,/Rs]. When rehashing the logical
storage space from L,;4 to Ly, each batch processing rehashes all
the KV pairs in a number of consecutive pages over L, ;4. Because
the old and new hash functions only differ at the divisor Rg, the KV
pairs in consecutive pages over LL,,;; will be rehashed to consecutive
pages over Lye,y, which can maximize the write coalescing.

Based on the above discussions, we can summarize the major
operations of KallaxDB as follows:

Read: To serve a read request with the key Kj, KallaxDB first checks
whether K; locates in WAL by searching the corresponding index.
If not, KallaxDB tries to fetch the KV pair from the main hash-based
store via direct hashing. If still not found, KallaxDB turns to the
overflow store. Due to the small sizes, WAL and overflow store

DAMON’21, June 20-25, 2021, Virtual Event, China

can easily keep their indexes entirely in the host memory. Hence,
KallaxDB serves a read request via a single storage IO. To mini-
mize the read latency and be compatible with typical KV store API,
KallaxDB serves read requests through synchronous IOs.

Write: To serve a write request (insert or update), just like most
other KV stores, KallaxDB logs the write request in WAL, updates
the WAL index, and then immediately responds write completion
to the client. KV pairs are moved from WAL into the hash-based
store (or overflow store) during the background data migration, as
illustrated in Fig. 4.

Background data migration: In the background, KallaxDB migrates
KV pairs from WAL into the hash-based store (via read-modify-
write) or overflow store. Since each section associates one back-
ground write thread, data migration can occur in parallel over all
the n sections. All the background data migrations are realized
through asynchronous IOs in order to better utilize the bandwidth
of the storage hardware. The background write threads also period-
ically check whether there are section files needed to be rehashed
and accordingly push them to the rehash threads.

Background rehash: KallaxDB expands/shrinks the logical storage
space of the main hash-based store by applying a new hash function
to rehash the key space. To avoid the contention between back-
ground write threads and background rehash threads, when one
file in one section is being rehashed, no data will be migrated from
WAL into this file. Only after a file has been completely rehashed,
the new hash function will be used to serve client read requests and
background data migration. Besides, the corresponding overflow
store segment relative to this file will also be re-scanned and KVs
in it will be filled into the new rehashed logical space accordingly.
KallaxDB controls the speed of background rehash by configuring
the batch size and the number of rehash threads.

3.3 Mathematical Formulation

This subsection presents a set of mathematical formulations to
estimate two important KallaxDB operational metrics: (1) overflow
statistics (including the page overflow probability and overflow
store dataset size), and (2) page fill-factor (i.e., how full each page
is filled with valid KV pairs). Accurate predication on these two
metrics are critical for KallaxDB to appropriately configure the
logical storage space of the main hash-based store. To facilitate the
mathematical formulation, we model the KV pair size as independent
and identically distributed random variables throughout the paper.

3.3.1 Overflow Statistics. Let hy,(l) denote the probability den-
sity function of KV pair size, and f,(m,[) denote the probability
density function of the random variable [= Z;’zll I;, where [; is a
random variable following the distribution of hy,(I). The open lit-
erature (e.g., see [17]) has well studied the formulation of fi,(m, 1)
for popular distributions (e.g., Gaussian and uniform distribution).
Under the condition that m KV pairs are hashed to the same page,
let Py r(m) and Ly, ¢ (m) denote the corresponding page overflow
probability and the spilled-over data size, we have

Poop(m) = [feo(m, DL,
(1)
Lovf(m) = ﬁ: (fkv(m’ D-(1- lpg))dl,

Xubin Chen, Ning Zheng, Shukun Xu, Yifan Qiao, Yang Liu, Jiangpeng Li, Tong Zhang.

where [, denotes the page size that is 4KB or a multiple of 4KB. Let
Ppg(m) denote the probability that m KV pairs are hashed to the
same page, we can calculate the average page overflow probability
Ppg_ouf and spilled-over data size Ly o5 f as

F Y1 (Ppg(m) - Poy(m)),

pg_ovf
()

Lpg_oof

Yt (Ppg(m) « Loy (m)).

Recall that K and L denote the key space and logical storage space
of the hash-based store, and |K| and |L| represent the number of
keys and pages in the hash-based store. Hence, we can express
the total amount of data as |K| - E(hg,(1)), where E(hy,(l)) repre-
sents the expectation (or mean) of the KV pair size. Meanwhile, we
can express the total amount of spilled-over data as |[L| - Lyg oo
Accordingly, we can calculate the data overflow ratio as

L|-L
Ropf = M’ 3)
K| - E(hio (1))

which is the ratio between the amount of data spilled-over into the
overflow store and the total amount of data in KV store. Since the
hash value uniformly distributes across all the |L| pages (i.e., one
KV is hashed to a given page with the probability of ﬁ), we can

calculate the probability Ppq(m) as

NAYER 1 \/El=m
Pﬂg<”’)‘(m)(m) (“m) | @

Since the value of |L| is typically very large in practice and
(1- %)m ~e ' for large n, we approximate the Eq. 4 as

e R

For the purpose of illustration, let us consider the following
example: Assume that |K| and |L| are 1 x 10'° and 2 x 10°, re-
spectively, and the KV pair size follows a Gaussian distribution
N (1, 0%), where y is 400 bytes, and o is 25 bytes. Hence, the proba-
bility density function fi.,(m, 1) is N'(m - g, m - ¢%). Meanwhile, we
set the page size [p4 as 4KB. Applying the above formulations, we
can obtain the Ppq(m) and P,,r(m) when m varies between 0 and
15, as shown in Fig. 5. Accordingly, we can calculate that the page
overflow probability Pyy ,yf is 1.9% and data overflow ratio Ry, ¢
is 0.4%.

20% »100%
E E
“210% - 150% %
Q o
o a
0% ! > 0%
0 5 10 15

Figure 5: The probability Pp;(m) that m KV pairs are hashed
to one page, and the corresponding page overflow probabil-
ity Py, r(m), when m varies between 0 and 15.

KallaxDB: A Table-less Hash-based Key-Value Store on Storage Hardware with Built-in Transparent Compression

3.3.2 Page Fill-factor. Let apy iy € [0,100%] denote the page fill-
factor, i.e., the percentage by which one page is filled with valid KV
pairs (and the rest is filled with all zeros). Based on the discussion
and formulation presented above in Section 3.3.1, we can express
the distribution of the page fill-factor as

i(g(m) - fkv(m l)) ©)

m=0
Accordingly, we can calculate the average value of the page fill-
factor as

Apg_fill = Z (Ppg(m) -m- M) @)

m=0 lp 9

Regardless of the specific compression algorithm (e.g., 124 or zlib)
being used by the storage hardware, the physical storage space
utilization degrades as the page fill-factor a,y_f;j; reduces. This is
because, when pages are less filled with KV pairs, the storage hard-
ware will have less amount of valid data to compress in each 4KB
sector. This will lead to a worse KV store data compression ratio.
Hence, from the physical storage cost perspective, we should in-
crease p,_fij, for which we must increase the probability Ppg(m)
according to Eq. 7. Meanwhile, according to Eq. 2, the page over-
flow probability and data overflow ratio will increase when Pp4(m)
increases. This reveals a trade-off between the physical storage cost
and data overflow ratio. According to Eq. 4, Ppg(m) will increase
when either |K| increases and/or |L| decreases. Therefore, we can
dynamically adjust the trade-off by configuring the value of |L| in
response to the runtime value of |K]|.

Let us consider the following example: Assume the same KV pair
size distribution as the example in Section 3.3.1, and set the page
size Ipg as 4KB. Fig. 6 shows the calculated data overflow ratio R,, ¢
and page fill-factor @, ;- Fig. 6(a) shows the impact of logical
storage space size || when the key space size |K| fixes as 1 x 101°,
and Fig. 6(b) shows the impact of the key space size |K| when the
logical storage space size |L| fixes as 2 x 10°. This example shows
the importance of appropriately adjusting |L| in adaptation to |K|,
which will be realized through the rehash process.

0.8% @
_0.6% - 150%
EE 0.4% | 155%
0.2% -
0%

1.

pg_fill

0.8%

0.6%*

5 04% |

0.2%
0%

8

Cog_fill

1 Il 65
8.5 9 9.5 10 10.5 11
K| %10°

Figure 6: The data overflow ratio R,,r vs. page fill-factor
apg_fiyt When (a) |L| varies while K| fixes as 1 X 10'°, and (b)
|K| varies while |L| fixes as 2 x 10°.

DAMON’21, June 20-25, 2021, Virtual Event, China

4 EVALUATION
4.1 Experimental Setup

We ran all the experiments on a server with 24-core 2.6GHz Intel
CPU, 64GB DDR4 DRAM, and a 3.2TB SSD with built-in transparent
compression. Manufactured by ScaleFlux [30], this SSD carries
out hardware-based zlib compression on each 4KB block along
the IO path. The per-4KB compression/decompression latency of
the hardware zlib engine is around 5pus, which is more than 10x
shorter than the NAND flash memory read latency (~80us) and
write latency (~1ms). Operating with PCle Gen3x4 interface, this
SSD can achieve up to 3.2GB/s sequential throughput and 650K
(520K) random 4KB read (write) IOPS (IO per second) over 100%
LBA span. In comparison, leading-edge commodity NVMe SSDs
(e.g., Intel P4610) achieve similar sequential throughput and random
4KB read IOPS, but have much worse random 4KB write IOPS (e.g.,
below 300K). This is because built-in transparent compression can
significantly reduce the GC (garbage collection) overhead inside
SSDs. We use the following five YCSB benchmarks [8]: YCSB A (50%
reads, 50% updates), YCSB B (95% reads, 5% updates), YCSB C (100%
reads), YCSB D (95% reads, 5% inserts), YCSB F (50% reads, 50%
read-modify-writes). The hash-based nature of KallaxDB makes
it difficult to directly support the scan-centric benchmark YCSB
E (i.e., 5% inserts and 95% scan). As discussed later in Section 4.6,
we could complement KallaxDB with an auxiliary key-tracing data
structure in order to support scan operations. Recent studies [5]
suggest that KV pair size in real-world workloads is typically no
more than a few hundred bytes. Hence, we focus on the value size
ranging between 100B and 800B.

Table 1: YCSB core workloads.

Workload Description
YCSB A 50% reads, 50% updates
YCSB B 95% reads, 5% updates
YCSB C 100% reads
YCSB D 95% reads, 5% inserts
YCSB F 50% reads, 50% read-modify-writes

4.2 Baseline Comparison

We first carried out a baseline comparison with three KV stores:
(1) RocksDB 6.10 [28], which employs the LSM tree structure and
is widely deployed in production environment. We set its maxi-
mum number of compaction and flush threads as 12 and 4, set the
Bloomfilter as 10 bits per KV pair, and left all the other parameters
as their default settings and did not turn on its block compression.
(2) WiredTiger 3.2 [32], which supports both B-tree and LSM tree
structure and is the default storage engine of MongoDB. We config-
ured it to use B-tree structure in our experiments, set its leaf node
size as 4KB to maximize its performance under YCSB workloads,
and left all the other parameters as their default settings and did not
turn on its page compression. (3) KVell [18], which employs B-tree
structure and uses asynchronous IOs to serve both read and write
requests. Different from WiredTiger, KVell keeps the pointer to each
KV pair in order to avoid sorting KV pairs on storage. KVell does
not support compression on its own, and we left all the parameters
as their default settings.

DAMON’21, June 20-25, 2021, Virtual Event, China

E—— RocksDB XY WiredTiger [__] KVell Bl KallaxDB

200
150 -

5

28 N N

S ¢ 50 N N

£= LN AN ;

0 CSBA VYCSBB YCSBC YCSBD YCSBF
(a) Throughput (higher is better)

3,000F

2 2400}

3 1,800f

C

£ 1,200f

= 600-% N

I Nle Nl =Nl

YCSBA YCSBB YCSBC YCSBD YCSBF
(c) 99-percentile Read Latency (lower is better)

Xubin Chen, Ning Zheng, Shukun Xu, Yifan Qiao, Yang Liu, Jiangpeng Li, Tong Zhang.

F— RocksDB XX WiredTiger | KVell [l KallaxDB

% 3,000f

=)

< 2,000f

gmoo:;
% 400+

> 200 =N §
eI E ANm ENm ENm B

z YCSBA YCSBB YCSBC YCSBD YCSBF

(b) Average Read Latency (lower is better)

500
400
300
200
100

Cycles/op (K)

é@m g@m g[ll i

YCSBA YCSBB YCSBC YCSBD YCSBF
(d) CPU Cycles/op (lower is better)

Figure 7: Baseline comparison with state-of-the-art key value stores under 400GB dataset with 400B value size.

We set the size of key and value as 16 bytes and 400 bytes, respec-
tively. The dataset contains 1 billion KV pairs (i.e., K| = 1 x 10°),
hence the total raw data volume is about 400GB. Regarding the
KallaxDB configuration, the main hash-based store contains 16 sec-
tions (i.e., 16 background write threads), and we set the page size
as 4KB and the total number of pages |L| = 2 x 108 (i.e., the total
logical storage space is about 800GB). According to the formulation
presented in Section 3.3, the page overflow probability Py oo is
1.37% and data overflow ratio R, is 0.38% (i.e., about 1.5GB of KV
pairs are stored in the overflow store). When running YCSB work-
loads, we set the number of clients as 16 for RocksDB, WiredTiger,
and KallaxDB. Since KVell uses asynchronous IOs for both read
and write, our experiments show that using a smaller number of
client threads (e.g., 4) can achieve much better performance, and
accordigly we set the number of client threads as 4 for KVell. Fig. 7
shows the measured results of average operational throughput (i.e.,
ops/s), average read latency, 99-percentile read latency, and CPU
efficiency. This work quantifies the CPU efficiency in terms of Cy-
cles/op [24], which can be estimated as follows: Let Ucpy denote the
measured CPU utilization, fopy and neore denote the CPU clock
frequency and number of CPU cores, and Cyps denote the average
ops/s, we express Cycles/op as (Ucpy - fcpu - neore)/Cops- The
results in Fig. 7 reveal the following observations.

Operational throughput ops/s: For write-intensive workloads YCSB
A and F (with only 50% reads), KallaxDB achieves the best through-
put. In particular, under workload YCSB A, KallaxDB outperforms
RocksDB, WiredTiger, and KVell by 1.6%, 4.5%, and 1.8X, respec-
tively. Under workload YCSB F, KallaxDB outperforms RocksDB,
WiredTiger, and KVell by 2.6, 5.8X and 1.8X, respectively. For read-
intensive workloads YCSB B, C, and D (with 95% or 100% reads),
KVell achieves the best throughput. This is because KVell serves
read requests in the asynchronous manner, which can invoke a
large IO queue depth (e.g., 64) and hence higher read throughput.

In contrast, the other three KV stores serve read requests in the syn-
chronous manner. As a result, with 16 client threads, they at most
have an IO queue depth of 16, leading to a lower read throughput
than KVell. Nevertheless, as shown in Fig. 7, asynchronous reads
are subject to very long read latency.

Read latency: By serving read requests in the asynchronous man-
ner, KVell essentially trades longer read latency for higher read
throughput. As shown in Fig. 7, the read latency (both average
and 99-percentile) of KVell is significantly longer (e.g., even over
10x) than the other three. KallaxDB achieves the shortest read la-
tency (both average and 99-percentile) consistently across all the
five YCSB workloads. Compared with RocksDB and WiredTiger,
KallaxDB achieves 1.4~2.7X shorter average read latency across all
the five YCSB workloads, because KallaxDB has the smallest read
amplification.

CPU efficiency: As discussed above, because of its asynchronous
nature on serving read requests, KVell achieves the best perfor-
mance under a small number of client threads (e.g., 4 client threads
in this study). Therefore, not surprisingly, KVell has the best CPU
efficiency as shown in Fig. 7, which nevertheless comes at the cost
of very long read latency. Regarding the comparison among the
other three, KallaxDB achieves better CPU efficiency than RocksDB
and WiredTiger consistently across all the five YCSB workloads.
On average, the CPU efficiency of KallaxDB is 2.3~ 3.2X better than
that of RocksDB, and 2.8~ 4.7X better than that of WiredTiger.
Table 2 lists the measured storage space (both logical and phys-
ical) and index memory usage. All experiments run on the same
3.2TB SSD with 400GB user dataset. The storage space usage is mea-
sured using the compression statistics utility commands provided
by ScaleFlux [30] CSD 2000 Drive. The logical storage space is the
total amount of space that each KV store occupied on the file system,
and the physical storage space is the amount of space that each KV

KallaxDB: A Table-less Hash-based Key-Value Store on Storage Hardware with Built-in Transparent Compression

store occupied inside the SSD with built-in transparent compres-
sion. Although KallaxDB occupies almost 2X bigger logical storage
space than the others, its physical storage space is very similar to
the others. Compared with RocksDB and KVell, WiredTiger has a
larger logical space amplification. Among all the four KV stores,
the physical storage space of WiredTiger is noticeably larger than
the other three. As shown in Table 2, KVell consumes much larger
index memory than the others, because it keeps the pointer to each
individual KV pair. With 4KB leaf node size, WiredTiger consumes
about 11.4GB for its B-tree index. RocksDB consumes about 4.4GB
for its index (mainly including index blocks and Bloomfilters). By
eliminating the hash table, KallaxDB consumes the least amount of
index memory (i.e., 1.2GB), which is mainly for storing the index
of its WAL and overflow store.

Table 2: Storage space and index memory usage comparison.

Storage space usage Index

Logical Physical Memory usage
RocksDB 419GB 209GB 4.4GB
WiredTiger 573GB 276GB 11.4GB
KVell 512GB 197GB 34.0GB
KallaxDB 805GB 218GB 1.2GB

4.3 Impact of Dataset and Key-Value Size

We further studied the impact of total dataset size and KV pair
size. Under the value size of 400 bytes, in addition to the 400GB
dataset with 1 billion KV pairs, we considered two other dataset
sizes: (1) 100GB with 250 million KV pairs, and (2) 1TB with 2.5
billion KV pairs. We were not able to run KVell over the 1TB dataset
because its index cannot entirely fit into server’s 64GB memory.
Hence, we focused on the comparison among RocksDB, WiredTiger,
and KallaxDB in this context. We kept the same configurations of
RocksDB and WiredTiger as above. Regarding KallaxDB, we set
the page size as 4KB, and the logical storage space as 200GB (i.e.,
IL| = 5x 107) and 2TB (ie., [L| = 5 x 10%) when dataset size is
100GB and 1TB, respectively. Accordingly, they have the same page
overflow probability (i.e., 1.37%) and data overflow rate (i.e., 0.38%)
as the 400GB case. Fig. 8 shows the YCSB A and B throughput ops/s
and 99-percentile read latency under the three different datasets.
The results show that the performance of KallaxDB is almost in-
dependent from the dataset size. In comparison, dataset size tends
to have a noticeable impact on the performance of RocksDB and
WiredTiger. The indexing complexity of RocksDB and WiredTiger
is proportional to the dataset size, while the indexing of KallaxDB
is independent from the dataset size.

Under the same dataset size of 400GB, we considered two other
value sizes: (1) 100 bytes with total 4 billion KV pairs, and (2) 800
bytes with total 500 million KV pairs. We kept the same configura-
tions of RocksDB and WiredTiger as above. We configure KallaxDB
as follows: In the case of 100-byte value size, the logical storage
space is set to 640GB (i.e., |L| = 1.6 x 108), leading to the page
overflow probability of 4.0% and data overflow rate of 0.31%. In the
case of 800-byte value size, the logical storage space is set to 1TB
(ie., |L| = 2.5 x 10%), leading to the page overflow probability of
1.7% and data overflow rate of 1.0%. Fig. 9 shows the YCSB A and B

DAMON’21, June 20-25, 2021, Virtual Event, China

[]RocksDB [__]WiredTiger [KallaxDB

— 200 200
& 150} M 150

! —

< 100} : 100

3

2 sof 50

2 o 0

£ 100GB 400GB 1TB 100GB 400GB 1TB

800 — M 800
600 600
400+ 400
200} 200

0 0
100GB 400GB 1TB 100GB 400GB 1TB
YCSB A (write-intesive) YCSB B (read-intesive)

Tail Latency (us)

Figure 8: Impact of dataset size on throughput ops/s and 99-
percentile read latency under YCSB A and B.

throughput ops/s and 99-percentile read latency. The performance
of KallaxDB is independent from the value size. In contrast, value
size could have relatively more noticeable impact on the perfor-
mance of RocksDB. For example, under workload YCSB A, the ops/s
and 99-percentile read latency of RocksDB degrade by 16% and 1.5x
as the value size increases from 400B to 800B.

[JRocksDB [] WiredTiger [KallaxDB

@ 200 150

2

g 150} 100

5 1001 r

o

S 50} 50

=)

o

c 0 0

= 100B 400B 800B 100B 400B 800B
800

—1,200} M

3 600

> L

3 800 400

g

8 400 200

TTS

~ 0 0

100B 400B 800B 100B 400B 800B

YCSB A (write-intesive) YCSB B (read-intesive)
Figure 9: Impact of value size on throughput ops/s and 99-
percentile read latency under YCSB A and B.

Fig. 10 shows the total data write size and write amplification
for YCSB A by running 200 million requests of YCSB A on three
400GB datasets with different value size. Due to the nature of LSM
tree, the write amplification of RocksDB is relatively independent
from the value size. As shown in Fig. 10, its write amplification
remains between 10 and 20. Accordingly, the total data write size of
RocksDB is proportional to the value size. In contrast, the total data
write size of WiredTiger and KallaxDB is relatively independent
from the value size (especially KallaxDB).

DAMON’21, June 20-25, 2021, Virtual Event, China

As a result, their write amplification is inversely proportional
to the value size, as shown Fig. 10.In the case of 100B value size,
KallaxDB has over 3x larger write amplification than RocksDB.
Meanwhile, Fig. 9 shows that KallaxDB noticeably outperforms
RocksDB under 100B value size. This suggests that write amplifica-
tion on its own does not necessarily play an important role on KV
store performance, especially when the system is far from being
I0-bound. For example, even with the write amplification of 35 un-
der 100B value size, KallaxDB has an average write IO throughput
of about 378 MB/s, which is well below the maximum IO bandwidth
of the SSD.

[JRocksDB[__] WiredTiger [l KallaxDB
1500 60

G
=
o
S
=)
w &
S o o

N
o

&2
o
=)

Write Amplification

Write Size (
o o

100B 400B 800B 100B 400B 800B

Figure 10: Total write size and write amplification when run-
ning 200 million requests of YCSB A, where the dataset size
is 400GB and value size is 100B, 400B and 800B, respectively.

4.4 Impact of Page Overflow Rate

We further studied the impact of the page overflow rate on the per-
formance of KallaxDB. Different page overflow rates correspond to
different size of overflow store index, leading to different memory
usage and overall KV store performance. Under the same logi-
cal storage space size of 800GB (i.e., [L| = 2 x 10%) and 400-byte
value size, we considered four different total amount of raw dataset,
including 400GB, 480GB, 560GB, and 640GB. Table 3 compares
these four cases, where Py, o, denotes the page overflow rate
and apy riy; denotes the page fill-factor. As Py o f increases, the
overflow store must host more data and hence will consume more
memory for its index. Meanwhile, when the page overflow rate
increases, the page fill-factor increases and hence the overall data
compression ratio (i.e., the ratio of dataset size over physical space
size) will improve. Results also show that performance impact is
negligible for low page overflow rate. Even with the overflow rate
as high as 18%, the throughput of KallaxDB degrades by only 10.1%,
3.6%, 2.3%, 4.5%, and 8.4% under the five YCSB workloads.

Table 3: Four cases with different page overflow rate.

Dataset size 400GB 480GB 560GB 640GB
Ppg_ovf 1.37% 4.2% 10% 18%

Index memory 0.7G 2.2GB 5.2GB 10GB

Physical space | 218GB 248GB 282GB 319GB
py fill 05 0.6 0.7 0.8
Comp. ratio 1.83 1.94 1.99 2.01

Fig. 11 shows the throughput ops/s of the four cases under the
five YCSB workloads. The results show that the performance of

Xubin Chen, Ning Zheng, Shukun Xu, Yifan Qiao, Yang Liu, Jiangpeng Li, Tong Zhang.

KallaxDB is weakly dependent on the page overflow rate. Even
with the overflow rate as high as 18%, the performance of KallaxDB
degrades by only 10.1%, 3.6%, 2.3%, 4.5%, and 8.4% under the five
YCSB workloads.

E=400GB 480GB 560GB B3 640GB
200

150 -
100+

3
X

AR

R

R

%
R

RRR

KR

>

g
%,

2>

S

%!

2>
2>

%%

008!
o

0%

X

o2

KR
R

(&)
o
T
R
[T

o2

Throughput

(K ops/s)
RNRERRRRRAAAE
NN

R
&S

%

o

CSBB YCSBC YCSBD YCSBF

<

Figure 11: Operational throughput ops/s under four cases
with different page overflow rates.

4.5 Impact of Store Rehash

We studied the impact of store rehash on the performance of KallaxDB,
although rehash occurs rarely (especially when the dataset size has
become relatively stable). The longer time the rehash process takes,
the less impact it will have on the KV store performance. We can
control the rehash latency by configuring the number of back-
ground rehash threads (denoted as n;) and the rehash batch size
(denoted as np). During rehash, each thread fetches and processes
np pages at a time. We can configure the performance impact vs. re-
hash latency trade-off by adjusting n; and/or nj. We carried out
experiments on a dataset with total 600 million KV pairs and value
size of 400B. Before rehash, the logical storage space is 400GB, cor-
responding to a page overflow rate of 4%. After rehash, the logical
storage space is 800GB, corresponding to a page overflow rate of
0.03%. We considered three settings on {n;, np,}: {8, 4}, {16, 4}, and
{16, 16}. Table 4 summarizes the average ops/s and read latency
results when running YCSB A and B with and without rehash.

Table 4: Performance impact of store rehash.

YCSB A YCSB B
Ops/s | Latency | Ops/s | Latency
No rehash 186K 144ps 130K 114ps
{8, 4} 155K 183ps 116K 137us
{16, 4} 127K 215)1s 97K 154s
{16, 16} 107K 250pus 84K 187us

Fig. 12 further shows the operational throughput ops/s of be-
fore/during/after rehash under YCSB A and B. The results clearly
show the performance impact vs. rehash latency trade-off. Because
KallaxDB issues heavier IO traffic under write-intensive work-
loads (e.g., YCSB A) than read-intensive workloads (e.g., YCSB B),
rehash-induced performance impact is more significant under write-
intensive workloads.

4.6 Enhancement to Support Scan

The hash-based nature of KallaxDB makes it difficult to directly sup-
port scan. Hence, above we only considered the five YCSB bench-
marks that do not contain scans. For systems that demand the

KallaxDB: A Table-less Hash-based Key-Value Store on Storage Hardware with Built-in Transparent Compression

n=16, n =16 n=16, n =4 n=8, n=4
= 200 e
v “aai .
2 160 b fhsmesriobndi i
o o H T ™ "
X 120 | ey Prmrere d
2 80 [lll S """"'"-----._:::\,”"
S . Rehash End
3 40 I~ Rehash Start YCSB A
2 i
= 0 1 1 N 1 " 1 1 1 " 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
Time(s)
160
@ L
2 120 Al
o o
¥ ¢ :
= 80 b A .
3 | ’4 S N
< ‘ ATV
% 40 I Rehash Start Rehash End
3 L -YCSB B
§ 0 " 1 1 1 1 1 " 1 1 1 " 1 1 1 L 1 1

0 200 400 600 800 1000 1200 1400 1600 1800
Time(s)

Figure 12: Throughput ops/s of before/during/after rehash
under workloads YCSB A and B.

support of scan, we can complement KallaxDB with an auxiliary
key-tracing store: We use a separate tree-based data structure to
store all the keys that are present in KallaxDB. Upon receiving
a scan request, we first search the auxiliary key-tracing store to
obtain all the matching keys that fall into the scan range. Then we
GET the corresponding KV pairs from KallaxDB to serve the scan
request. We carried out experiments under the settings of 16-byte
key size, 400-byte value size, and 1 billion KV pairs. Let KallaxDB-
AUX denote the implementation of enhancing KallaxDB with the
auxiliary key-tracing store. Table 5 compares the storage space and
index memory usage of KallaxDB and KallaxDB-AUX. The results
show that KallaxDB-AUX does not incur significant storage space
overhead, because of the small key size relative to the value size.

Table 5: Storage and index memory usage comparison.

Storage space Index

Logical Physical Memory
KallaxDB 805GB 218GB 1.2GB
KallaxDB-AUX 812GB 222GB 1.4GB

We ran the scan-intensive YCSB E workload (i.e., 95% scans and
5% inserts) on RocksDB, WiredTiger, KVell, and KallaxDB-AUX.
In YCSB E, on average one scan request spans over 50 KVs. All
the experiments used 16 client threads. Table 6 compares the aver-
age throughput (ops/s), average read latency (z44¢), 99-percentile
read latency (744), and CPU Cycles/op (Cop). By keeping KVs
sorted on storage, WiredTiger and RocksDB achieve much better
scan performance than KVell and KallaxDB-AUX. Since RocksDB
must scan all the levels, it suffers from a higher read amplification
and hence worse scan performance than WiredTiger. Nevertheless,
RocksDB still achieves 11X and 5 higher performance than KVell
and KallaxDB-AUX, respectively.

DAMON’21, June 20-25, 2021, Virtual Event, China

Table 6: Results of the scan-intensive YCSB E workload.

DB type ops/s Tavg Tyail Cop(K)
RocksDB 18.8K | 0.84ms | 1.8ms 942
WiredTiger 25.0K | 0.77ms | 2.0ms 631

KVell 1.7K 4.03ms | 32.7ms 10,814
KallaxDB-AUX 3.6K 3.7ms 6.8ms 3293

Table. 7 further compares the throughput and CPU efficiency
between KallaxDB and KallaxDB-AUX under the other five YCSB
workloads and one update-only workload. Since the auxiliary key-
tracing store is active only during PUT/DELETE requests, we in-
corporate an update-only workload in order to reveal the largest
difference between KallaxDB and KallaxDB-AUX. The results show
that, except the update-only workload, both have almost the same
throughput performance under the other YCBS workloads. Un-
der the update-only workload, KallaxDB-AUX suffers from about
8% throughput performance degradation. The difference between
KallaxDB and KallaxDB-AUX mainly reflects from the CPU effi-
ciency. For the write-intensive workloads, the CPU efficiency of
KallaxDB-AUX degrades by 17% (YCSB A), 15% (YCSB F), and 17%
(update-only), respectively.

Table 7: Throughput and CPU utilization efficiency of
KallaxDB and KallaxDB-AUX.

Throughput (ops/s) | ecpu (Cycles/op)

KallaxDB | AUX | KallaxDB | AUX

YCSB A 184K 183K 118K 117K
YCSB B 131K 131K 77K 58K
YCSB C 129K 127K 79K 52K
YCSB D 129K 130K 77K 57K
YCSB F 184K 182K 115K 115K
Update only | 201K 186K 185K | 217K

5 RELATED WORK

Because LSM tree is relatively memory-efficient and matches well
with the flash memory operational characteristics, KV store built
upon LSM tree has received most attentions in research community
and been widely deployed (e.g., RocksDB [28] and Cassandra [1]).
Most prior work on LSM tree KV store aimed at reducing the write
amplification by modifying the data architecture. PebblesDB [26]
reduces the write amplification by developing a fragmented LSM
tree structure. Dostoevsky [9] reduces the write amplification by
developing a lazy leveling scheme, and also presents a generaliza-
tion of the entire LSM tree design space. TRIAD [3] reduces the
write amplification by dynamically separating hot and cold keys
and deferring the compaction. Skip-Tree [34] reduces the write
amplification by allowing certain KV pairs to skip the level-by-level
compaction. VT-tree [31] reduces the write amplification by using
stitching operation to avoid unnecessary data copies for sequential
data. LSM-trie [33] reduces the write amplification by integrating
exponential data growth pattern with linear data growth pattern.
SlimDB [27] reduces the write amplification by customizing the
data structure for semi-sorted data. X-Engine [15] reduces the write
amplification by identifying and recycling the data blocks whose

DAMON’21, June 20-25, 2021, Virtual Event, China

key ranges do not overlap with any other data blocks during com-
paction. Write amplification can also be reduced by separating the
storage of key and value, which has been well demonstrated in
prior work (e.g., Wisckey [20] and HashKV [6]).Luo and Carey [21]
present a comprehensive survey on LSM tree KV stores.

Prior work also has well studied KV store built upon other data
structures. SILT [19] organizes all the KV pairs across several dif-
ferent data structures with different performance vs. cost trade-offs.
Tucana [24] presents a KV store built upon a modified Be-tree, incor-
porating several techniques to improve caching and IO efficiency.
KVell [18] presents a KV store built upon B-tree, which applies
KV-size-based data partition to reduce the impact of background
garbage collection. Prior work [10, 11, 16] also studied the design of
hash-based KV store, which stores KV pairs in log-structure on SSD
and realizes addressing through in-memory hash table. uDepot [16]
holds the hash table entirely in host memory and aims to improve
IO efficiency through a user-space IO stack. FlashStore [10] and
SkimpyStash [11] present techniques to reduce the memory cost of
hash table at the penalty of higher read amplification. NVMKYV [22]
implements a hash-based KV store by deeply coupling the SSD FTL
customization and KV store design. In comparison, by taking ad-
vantage of storage hardware with built-in transparent compression,
our proposed design approach fundamentally removes the memory
cost barrier of hash-based KV store.

6 CONCLUSIONS

This paper presents a table-less hash-based KV store customized
for modern storage hardware with built-in transparent compres-
sion capability. By decoupling logical vs. physical storage space
utilization efficiency, such new storage hardware enables KV store
purposely under-utilize the logical storage space in return for sim-
pler data structures and algorithms, which can lead to higher per-
formance and/or lower CPU/memory usage. Following this theme,
the proposed table-less hash-based KV store completely obviates
the in-memory hash table by directly hashing the key space onto
the logical storage space, and meanwhile relies on the transparent
compression in storage hardware to retain the physical storage cost
efficiency. This paper presents a set of mathematical formulations
that can assist its configuration and analysis. Experimental results
show that table-less hash-based KV store compares favorably with
the other modern KV stores in terms of throughput, latency, and
CPU and memory usage.

REFERENCES

[1] Apache Cassandra. [n.d.]. . http://cassandra.apache.org/.

[2] AWS Graviton Processor. [n.d.]. . https://aws.amazon.com/ec2/graviton/.

[3] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng
Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017. TRIAD: Creating
Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores.
In Proceedings of USENIX Annual Technical Conference (ATC). 363-375.

[4] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shellenbaum.
2003. The zettabyte file system. In Proceedings of the Usenix Conference on File
and Storage Technologies (FAST), Vol. 215.

[5] Zhichao Cao, Siying Dong, Sagar Vemuri, and David Du. 2020. Characterizing,

modeling, and benchmarking RocksDB key-value workloads at Facebook. In

USENIX Conference on File and Storage Technologies (FAST). 209-223.

Helen HW Chan, Chieh-Jan Mike Liang, Yongkun Li, Wenjia He, Patrick PC Lee,

Lianjie Zhu, Yaozu Dong, Yinlong Xu, Yu Xu, Jin Jiang, et al. 2018. HashKV:

l6

=

Xubin Chen, Ning Zheng, Shukun Xu, Yifan Qiao, Yang Liu, Jiangpeng Li, Tong Zhang.

Enabling Efficient Updates in KV Storage via Hashing. In Proceedings of USENIX

Annual Technical Conference (ATC). 1007-1019.
[7] Derek Chiou, Eric Chung, and Susan Carrie. 2019. (Cloud) Acceleration at

Microsoft. Tutorial at Hot Chips (2019).

[8] Brian Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the ACM Symposium on Cloud Computing (SoCC). ACM, 143-154.

[9] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better space-time trade-offs for

LSM-tree based key-value stores via adaptive removal of superfluous merging.

In Proceedings of the ACM SIGMOD International Conference on Management of

Data. ACM, 505-520.

Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: high throughput

persistent key-value store. Proceedings of the VLDB Endowment 3, 1-2 (2010),

1414-1425.

Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011. SkimpyStash: RAM space

skimpy key-value store on flash-based storage. In Proceedings of the 2011 ACM

SIGMOD International Conference on Management of data. 25-36.

[12] Dell EMC PowerMax. [n.d.]. . https://delltechnologies.com/.

[13] E.F. Haratsch. 2019. SSD with Compression: Implementation, Interface and Use
Case. In Flash Memory Summit.

[14] HPE Nimble Storage. [n.d.]. . https://www.hpe.com/.

[15] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying

Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019. X-Engine: An

optimized storage engine for large-scale E-commerce transaction processing. In

Proceedings of the ACM SIGMOD International Conference on Management of Data.

ACM, 651-665.

Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. 2019. Reaping the

performance of fast NVM storage with uDepot. In USENIX Conference on File and

Storage Technologies (FAST). 1-15.

Harold J Larson. 1995. Introduction to Probability. Addison-Wesley, Reading, MA.

Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell:

the design and implementation of a fast persistent key-value store. In Proceedings

of the ACM Symposium on Operating Systems Principles (SOSP). 447-461.

Hyeontaek Lim, Bin Fan, David G Andersen, and Michael Kaminsky. 2011. SILT:

A memory-efficient, high-performance key-value store. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles. 1-13.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,

Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. WiscKey: Sepa-

rating keys from values in SSD-conscious storage. ACM Transactions on Storage

(TOS) 13,1 (2017), 5.

C. Luo and MJ. Carey. 2020. LSM-based storage techniques: a survey. The VLDB

Journal 29 (2020), 393-418.

Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and Raju Ran-

gaswami. 2015. NVMKV: A Scalable, Lightweight, FTL-aware Key-Value Store.

In USENIX Annual Technical Conference (ATC). 207-219.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351-385.

Anastasios Papagiannis, Giorgos Saloustros, Pilar Gonzalez-Férez, and Angelos

Bilas. 2016. Tucana: Design and implementation of a fast and efficient scale-up

key-value store. In Proceedings of USENIX Annual Technical Conference (ATC).

537-550.

[25] Pure Storage FlashBlade. [n.d.]. . https://purestorage.com/.

[26] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.
PebblesDB: Building Key-Value Stores Using Fragmented Log-Structured Merge
Trees. In Proceedings of the Symposium on Operating Systems Principles (SOSP).
497-514.

[27] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A space-
efficient key-value storage engine for semi-sorted data. Proceedings of the VLDB
Endowment 10, 13 (2017), 2037-2048.

[28] RocksDB. [n.d.]. . https://github.com/facebook/rocksdb.

[29] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-tree
filesystem. ACM Transactions on Storage (TOS) 9, 3 (2013), 1-32.

[30] ScaleFlux Computational Storage. [n.d.]. . http://scaleflux.com.

[31] Pradeep J Shetty, Richard P Spillane, Ravikant R Malpani, Binesh Andrews, Justin
Seyster, and Erez Zadok. 2013. Building workload-independent storage with
VT-trees. In Proceedings of USENIX Conference on File and Storage Technologies
(FAST). 17-30.

[32] WiredTiger. [n.d.]. . https://github.com/wiredtiger/.

[33] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-
based ultra-large key-value store for small data items. In Proceedings of USENIX
Annual Technical Conference (ATC). 71-82.

[34] Yinliang Yue, Bingsheng He, Yuzhe Li, and Weiping Wang. 2016. Building an
efficient put-intensive key-value store with skip-tree. IEEE Transactions on Parallel
and Distributed Systems 28, 4 (2016), 961-973.

[10

[11

[16

e
o)

[19

[20

[21

[22

~
=

[24

	Abstract
	1 Introduction
	2 Background
	3 Proposed Design Solution
	3.1 Basic Idea
	3.2 Implementation of KallaxDB
	3.3 Mathematical Formulation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Baseline Comparison
	4.3 Impact of Dataset and Key-Value Size
	4.4 Impact of Page Overflow Rate
	4.5 Impact of Store Rehash
	4.6 Enhancement to Support Scan

	5 Related Work
	6 Conclusions
	References

