
GraphPulse: An Event-Driven Hardware Accelerator

for Asynchronous Graph Processing

Shafiur Rahman

Computer Science and Engineering

University of California, Riverside

Riverside, USA

mrahm008@ucr.edu

Nael Abu-Ghazaleh

Computer Science and Engineering

University of California, Riverside

Riverside, USA

nael@cs.ucr.edu

Rajiv Gupta

Computer Science and Engineering

University of California, Riverside

Riverside, USA

gupta@cs.ucr.edu

Abstract—Graph processing workloads are memory intensive
with irregular access patterns and large memory footprint result-
ing in low data locality. Their popular software implementations
typically employ either Push or Pull style propagation of changes
through the graph over multiple iterations that follow the Bulk
Synchronous Model. The performance of these algorithms on
traditional computing systems is limited by random reads/writes
of vertex values, synchronization overheads, and additional over-
heads for tracking active sets of vertices or edges across iterations.
In this paper, we present GraphPulse, a hardware framework
for asynchronous graph processing with event-driven schedul-
ing that overcomes the performance limitations of software
frameworks. Event-driven computation model enables a parallel
dataflow-style execution where atomic updates and active sets
tracking are inherent to the model; thus, scheduling complexity
is reduced and scalability is enhanced. The dataflow nature of
the architecture also reduces random reads of vertex values by
carrying the values in the events themselves. We capitalize on
the update properties commonly present in graph algorithms to
coalesce in-flight events and substantially reduce the event storage
requirement and the processing overheads incurred. GraphPulse
event-model naturally supports asynchronous graph processing,
enabling substantially faster convergence by exploiting available
parallelism, reducing work, and eliminating synchronization
at iteration boundaries. The framework provides easy to use
programming interface for faster development of hardware graph
accelerators. A single GraphPulse accelerator achieves up to 74x
speedup (28x on average) over Ligra, a state of the art software
framework, running on a 12 core CPU. It also achieves an average
of 6.2x speedup over Graphicionado, a state of the art graph
processing accelerator.

Index Terms—Graph Processing, Hardware Accelerator, Event-
driven Model, Domain-specific Architecture

I. INTRODUCTION

Computation on large graphs is an important computational

workload since graph analytics is employed in many domains,

including social networks [10], [15], [22], [38], [52], web

graphs [58], and brain networks [9], to uncover insights from

high volumes of connected data. Iterative graph analytics

require repeated passes over the graph until the algorithm

converges. Since real-world graphs can be massive (e.g.,

YahooWeb has 1.4 billion vertices and 6.6 billion edges),

these workloads are highly memory-intensive. Thus, there has

been significant interest in developing scalable graph analytics

systems. Some examples of graph processing systems include

GraphLab [31], GraphX [16], PowerGraph [17], Galois [37],

Giraph [4], GraphChi [28], and Ligra [49].

Large scale graph processing introduces a number of chal-

lenges that limit performance on traditional computing systems.

First, memory-intensive processing stresses the memory system.

Not only is the frequency of memory operations relative

to compute operations high, the memory footprints of the

graph computations are large. Standard techniques in modern

processors for tolerating high memory latency, such as caching

and prefetching, have limited impact because irregular graph

computations lack data locality. The large memory footprints

also lead to memory bandwidth bottlenecks and exacerbate the

long access latencies. Second, the synchronization overheads

of accessing shared graph states in most computational models

are high due to concurrent updates of vertices. Third, the

overheads of tracking active vertices or edges are substantial.

Such tracking is essential as the computation is irregular

with varying subset of vertices and edges being active in

each iteration. However, due to the large graph sizes, the

book-keeping required can also grow to a substantial size.

Because of the above overheads, we believe that modern

processing architectures are not well suited for graph processing

applications at scale.

The end of Dennard scaling restricts the ability of software

frameworks to scale performance by utilizing larger processors

due to the Dark Silicon effect. This incentivizes the push

towards custom hardware accelerators built for specific appli-

cation domains that can be orders of magnitude more efficient

in terms of performance and power. A large portion of the

industry workloads are a small set of repetitive tasks that

can benefit greatly from specialized units to execute them.

The integration of reconfigurable accelerators in the cloud

has gained momentum as evinced by the Microsoft Catapult

Project [42] and Amazon F1 FPGA instance [3].

Motivated by the above observations, we propose a new

scalable hardware graph processing framework called Graph-

Pulse. GraphPulse alleviates several performance challenges

faced in traditional software graph processing, while bringing

the benefits of hardware acceleration to graph computa-

tions [19]. GraphPulse centers around the idea of event-driven

computation. It expresses computations as events, typically

generated when the value of a vertex changes to update

908

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00078



TABLE I
COMPARISON ON GRAPH PROCESSING MODELS.

PULL PUSH GraphPulse : Features

Random Reads High Low : Events Carry Data

Random Writes High Low : Event Coalescing + Incremental Algs

Parallelism Scope BSP Iteration BSP Iteration Round : Extends Across Multiple Iterations

Synchronization Global Barrier Global Barrier None Needed : Asynchronous Algorithms

Tracking Active Sets Of Vertices Needed Of Edges Optional Not Needed : Events Represent Active Sets

Atomic Vertex Updates None Atomic All Atomic None Atomic : Event Scheduling

vertices on all outgoing edges. Managing event generation

and communication to outgoing neighbors incurs substantial

overheads in software frameworks. Different techniques, such

as bucketing in Julienne [14] and GraphIt [63] or topology

aware priority scheduling in Galois [37], are employed in

software to reduce the overhead of managing and ordering the

contributions from vertices. By supporting data carrying events

as hardware primitives, and routing them within the accelerator,

these overheads are largely eliminated, making the GraphPulse

model more efficient than software implementations. Previous

works showed promising results with similar hardware routing

techniques in transactional memory accelerators [11], graph

accelerators [1], DES accelerators [33], [43], [44], hardware

message passing [40] etc.

Table I summarizes the overheads of the Push and Pull

models for graph processing as well as the features in our

approach to mitigate them. Since events carry incoming vertex

contributions, one of the primary sources of the random memory

accesses is eliminated such that memory accesses are only

necessary during vertex updates. Moreover, synchronization is

simplified by having the accelerator serialize events destined to

the same vertex; thus, synchronization overhead of traditional

graph processing is reduced. At any point in time, the events

present in the system naturally correspond to the active

computation and thus the bookkeeping overhead of tracking the

active subset of the graph is also masked. Finally, scalability

to handle large graphs is achieved by partitioning larger graphs

into slices that are processed by the accelerator one at a time

(or simultaneously using multiple accelerators though this

solution is not explored in this paper). Additional background

on conventional graph processing is given in Section II.

Many graph algorithms are iterative where each iteration

processes an updated set of active vertices till the termination.

For example, a PageRank iteration updates the ranks of active

vertices and propagates them to neighboring vertices that are

updated in the following iteration. The computation terminates

when the updates of rank values become smaller than a

set threshold. Many important classes of graph algorithms

are amenable to independent updates, i.e. updates arriving

at a vertex along one incoming edge can be processed

independent of updates arriving at the same vertex along other

incoming edges. This property enables the algorithms to execute

asynchronously across multiple iterations, without having to

orchestrate iterations via synchronizing barriers. The above

update property also allows us to coalesce in flight events

aimed at the same vertex and thus reduce the event storage

and processing overheads incurred. The event-based model in

GraphPulse naturally supports asynchronous graph processing,

achieving substantial performance benefits due to increased

parallelism and faster convergence [56], [62].

It becomes readily apparent that, when an event is generated

for each outgoing edge of every updated vertex, the event

population will soon overwhelm the on chip memory resources

and thus necessitate expensive spills to memory. To address this

problem, we develop novel queuing structures that coalesce all

events aimed at the same vertex into a single event by exploiting

the independent update property of the applications. Section III

overviews some of the important issues underlying event-based

processing, while Section IV presents the GraphPulse design.

We also introduce additional optimizations to prefetch the out-

going edge data and to parallelize the generation of the outgoing

events in Section V. With these optimizations, GraphPulse is

able to outperform Ligra on a 12-core Xeon CPU by up to a

factor of 74× (28× on average), and Graphicionado [18], a

state of the art graph processing accelerator by 6.2× on average

for our benchmarks. Analyzing its energy consumption, we see

that it achieves 280× better energy-efficiency than the software

framework. Our experimental study and evaluation results are

presented in Section VI.

GraphPulse is related to a number of prior works. The

architecture operates on unordered data-driven algorithms with

local computation operators and unstructured topology [41].

The asynchronous execution model uses an autonomous

scheduling approach where the scheduling of active vertices is

not restricted by any specific constraint. Other autonomously

scheduled data-driven graph-analytics implementations, such

as Galois, require priority scheduling or transactional se-

mantics (commit/rollback) for work-efficient parallelism [37].

Chronos [1], a hardware accelerator capable of handling

asynchronous graph-analytics, also assigns virtual priority

ordering (timestamps) on memory read-write objects and

uses hardware-assisted commit mechanism to extract massive

parallelism speculatively while ensuring transaction safety.

Ozdal et al. [39] implemented an asynchronous graph analytics

accelerator using a reorder-buffer-like synchronization unit

to detect potential conflicts in hardware and serialize vertex

execution in presence of possible RAW and WAR hazards.

The complexity of such serialization can potentially limit the

parallelization opportunities in many applications. GraphPulse,

on the other hand, can avoid serialization or ordering because

transaction safety is implicitly guaranteed by a coalescing

queue. The specialized execution model and the nature of the

targeted delta-accumulative algorithms [61] let the accelerator

schedule the active vertices without any mutual dependence.

909



Vertex CentricPush Pull

2
3
2
3

2
5
2
5

3
4
3
4

4
2
4
2

4
1
4
1

1
2
1
2

5
3
5
3

1
3
1
3

4
5
4
5

2
3

2
5

3
4

4
2

4
1

1
2

5
3

1
3

4
5

D1 D2 D3 D4 D5D1 D2 D3 D4 D5

X2X2

D1 D2 D3 D4 D5D1 D2 D3 D4 D5

Edge list
(src, dst)

V.cur

V.next

V.cur

2
3

2
5

3
4

4
2

4
1

1
2

5
3

1
3

4
5

D1 D2 D3 D4 D5

X2

D1 D2 D3 D4 D5

Edge list
(src, dst)

V.cur

V.next

V.cur

loop

Edge Centric

2
3

2
5

3
4

4
2

4
1

1
2

5
3

1
3

4
5

D1 D2 D3 D4 D5

X2

D1 D2 D3 D4 D5

Edge list
(src, dst)

V.cur

V.next

V.cur

loop

Edge Centric

X2X2

11 22 33 44 551 2 3 4 5

4 1 4 1 2 5 3 4 24 1 4 1 2 5 3 4 24 1 4 1 2 5 3 4 2

D1 D2 D3 D4 D5D1 D2 D3 D4 D5

Sched

Edge.in

V.next

V.cur

X2

1 2 3 4 5

4 1 4 1 2 5 3 4 2

D1 D2 D3 D4 D5

Sched

Edge.in

V.next

V.cur

loop

X2

1 2 3 4 5

4 1 4 1 2 5 3 4 2

D1 D2 D3 D4 D5

Sched

Edge.in

V.next

V.cur

loop
Sched

D1 D3 D4 D5D2D1 D3 D4 D5D2

11 22 33 44 551 2 3 4 5

2 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 3

X3 X5X3 X5

V.cur

Edge.out

V.next

Sched

D1 D3 D4 D5D2

1 2 3 4 5

2 3 3 5 4 1 2 5 3

X3 X5

V.cur

Edge.out

V.next

loop
Sched

D1 D3 D4 D5D2

1 2 3 4 5

2 3 3 5 4 1 2 5 3

X3 X5

V.cur

Edge.out

V.next

loop

11

22

3344

55

1

2

34

5

Example Graph

RND RD

RND WR

SEQ RD

SEQ WR

RND RD

RND WR

SEQ RD

SEQ WR

1

2

34

5

Example Graph

RND RD

RND WR

SEQ RD

SEQ WR

Memory access patterns

atomic

Fig. 1. Data access patterns: Vertex Ordered (Push and Pull directions) and Edge Centric processing paradigms.

We exploit this flexibility to facilitate locality and memory

bandwidth utilization.

The key contributions of this paper are as follows:

• We propose an event-based graph processing acceler-

ator, GraphPulse, that addresses many inefficiencies

in traditional graph processing frameworks. In addition,

GraphPulse performs asynchronous processing of graphs

that can result in substantial speedups due to greater

exploitation of parallelism and faster convergence.

• We optimize the model by coalescing events to control

event population and achieve efficient memory access

patterns that enable implementation in reconfigurable

hardware or ASIC.

• We enhance the model with prefetcher and streaming

scheduler to achieve high throughput. This design substan-

tially outperforms software frameworks due to its efficient

memory usage and bandwidth utilization.

II. BACKGROUND AND MOTIVATION

Extracting massive parallelism is key to obtaining higher

performance on large graphs. However, it is challenging to

build an efficient parallel graph processing application from

the ground up. Software graph processing frameworks solve

this issue by providing simple primitives to the user for

describing the algorithm specific operations and relying upon

runtime system for complex data management and scheduling.

Decoupling the application logic from low level management

exposes opportunities to integrate many optimization techniques

that are opaque to the application programmer. However,

software frameworks do not fully address locality challenges

originating from the irregular memory access patterns and

synchronization requirements of graph applications.

A. Conventional Computation Models

Graph processing frameworks typically follow either Vertex-

Centric or Edge-Centric paradigm for sequencing their com-

putation. In these frameworks, graph memory contains three

components: 1) a vertex property memory containing the vertex

attributes; 2) a graph structure specifying the relationships, i.e.

edges; and optionally 3) memory for intermediate states of

computation in progress.

The scheduling determines the order in which the vertex

or structural properties in memory are accessed. The memory

access patterns for various approaches are shown in Figure 1. In

the vertex-centric paradigm the vertex computation performed

is designed from the perspective of a vertex, i.e. vertex property

value is updated by a computation based upon property values

of its neighbors [32]. Most vertex-centric computation models

follow one of two approaches: pull or push. In the pull approach,

each vertex reads the properties of all its incoming neighbors

and updates its value. Thus, it involves random reads; many

of which are redundant as the vertex values read may not

have experienced any change and hence do not contribute any

change to their outgoing neighbors. These redundant reads

lead to poor utilization of memory bandwidth and wasted

parallelism due to memory latency. On the other hand, push

approach performs a vertex read-modify-update operation for

each of its outgoing neighbor. These updates must be performed

via atomic operations. Since graph processing algorithms suffer

from poor locality resulting in frequent cache misses, atomic

operations are very inefficient. For example, a Compare-And-

Switch (CAS) operation on an Intel Haswell processor is more

than 15 times slower when data is in RAM vs in L1 cache [48].

In an edge-centric model, the edges are sorted, typically in

the order of their destination vertex ids, and streamed into the

processor. The processors read both source and destination to

perform the vertex update. This approach either suffers from

redundant reads of inactive source vertices or locking overhead

of destination vertices. The memory traffic for reading edges of

a vertex v typically achieves high spatial locality since the edges

are stored in consecutive locations. However, vertex accesses

have poor spatial locality as v can be connected to other

vertices that are scattered in memory; there is a little chance of

vertices being stored in consecutive memory locations. Thus,

vertex traffic suffers significantly due to memory access latency

being on the critical path. Additionally, since the graphs are

large, the reuse distance of a cached memory is also large,

i.e. temporal locality is non-existent. Thus, on-chip caches are

mostly ineffective and compute resources are poorly utilized.

Without maintaining active sets, many vertices will be

read unnecessarily as their values would not have changed

in prior iterations. One could simply process all vertices in

each iteration and forego the need for maintaining active sets,

but this is extremely wasteful because the number of vertices

that are active can vary greatly from iteration to iteration.

To avoid processing of all vertices, software frameworks

typically invest in tracking the active set of vertices. While

this tracking eliminates redundant processing, it unfortunately

910



incurs significant overhead for maintaining the active set in

the form of bitvector or a list.

Efficient tracking of active set in hardware accelerators

is difficult to achieve. The inherent simplicity of the vertex-

ordered scheduling is lost due to scheduling and synchroniza-

tion overheads in the hardware. Additionally, the efficacy of

many performance-optimizing hardware primitives is reduced

due to the irregularities introduced by active set scheduling.

Efficient handling of vertex updates: Since vertex

updates are a crucial bottleneck in a graph-analytics application,

some prior works focus on improving the locality and cost

of scattering updates to the neighbors. Beamer et al. [8] uses

Propagation Blocking to accumulate the vertex contributions

in cache-resident bins instead of applying them immediately.

Later, the contributions are combined and then applied, thus

eliminating the need for locking and improving spatial locality.

Propagation Blocking technique creates perfect spatial locality

but fails to utilize potential temporal locality for vertices having

many incoming updates since updates are binned and spilled to

memory first. Other methods exploit commutative nature of the

reduction (apply) operation seen in many graph algorithms to

relax synchronization for atomic operations. Coup [60] extends

the coherence protocol to apply commutative-updates to local

private copies only and reduce all copies on reads. This reduces

read and write traffic by taking advantage of the fact that

commutative reduction can be unaware of the destination value.

PHI [35] also uses the commutativity property to coalesce

updates in private cache and incorporates update batching to

apply scatter updates in bulk while reducing the on-chip traffic

further. Both PHI and Coup optimize memory updates, but have

no fine grain control over the memory access pattern. Like PHI,

GraphPulse utilizes commutative property to fully coalesce

updates using the specialized on-chip queue. Furthermore,

GraphPulse applies these updates at a dataflow-level abstraction

to reorder and schedule updates for maximizing spatial locality

and bandwidth use.

B. Delta-based Accumulative Processing

GraphPulse targets graph algorithms that can be expressed

as a delta-accumulative [61] computation – this includes many

popular graph processing workloads [20], [56], [57], [61],

[62]. In this model, updates aimed at a vertex by different

incoming edges can be applied independently. A vertex whose

value changes, conveys its “change” or delta to its outgoing

neighbors. The neighbors update themselves upon receiving

the delta, and propagate their own delta further. Thus, the

computation is turned into a data flow computation that remains

active as long as necessary until convergence. The continuous

tracking of the active set is inherent to the data flow model.

The updates are broken into two steps:
{

vk
j = vk−1

j ⊕Δvk
j

Δvk+1
j = ∑

n
i=1⊕g〈i, j〉

(

Δvk
i

) (1)

v j is the vertex state. Δv j is the change to be applied to the

vertex using algorithm specific operator ‘⊕’. The two equations

can be visualized as a sequence of recursive operations going

back to the initial conditions v0
j and Δv0

j that are also specific

to the algorithm under consideration. We highlight two key

components in the equation: g〈i, j〉, the propagate function,

which modifies and conveys the change(delta) in the vertex

value to its neighbors; and ‘⊕’, the reduce function, that

both reduces the propagated deltas to compute new delta and

applies it to the current vertex state. To express an iterative

graph algorithm in the incremental form, we make use of the

following two properties:

Reordering Property. The deltas can be applied to the

vertex state in any order. This reordering is allowed when

the propagation function g〈i, j〉 is distributive over ⊕, i.e.,

g(x⊕ y) = g(x) ⊕ g(y); and ⊕ is both commutative and

associative, i.e., x⊕ y = y⊕ x and (x⊕ y)⊕ z = x⊕ (y⊕ z).
Simplification Property. Given an edge i → j, the ‘⊕’

operation is constructed to incrementally update the vertex

value v j when there is a change in vi. Therefore if vi does not

change, it should have no impact on v j. That is,

vk
j ⊕g〈i, j〉

(

Δvk
i

)

= vk
j if Δvk

i = 0

This property is satisfied when g〈i, j〉 (·) is constructed to emit

an Identity value for the reduce operator ⊕ when Δvi = 0.

A wide class of graph algorithms – PageRank, SSSP,

Connected Components, Adsorption, and many Linear Equation

Solvers – satisfy the above properties [61]. However, there are

exceptions. For example, graph coloring cannot be expressed

since the update is a function of all vertex values obtained along

the incoming edges, i.e. they cannot be updated using a value

obtained along a single edge. Delta-based update algorithms

break the iteration abstraction, allowing asynchronous pro-

cessing of vertices and thus substantially increasing available

parallelism, removing the need for barrier synchronization

at iteration boundaries (required by the Bulk Synchronous

Parallel Model [55]), and providing opportunities for combining

multiple delta updates. All these properties are exploited by

GraphPulse to improve performance.

III. GRAPHPULSE DESIGN OVERVIEW

Before introducing the GraphPulse accelerator architecture,

we overview important considerations in the event processing

model (see Algorithm 1). This section also discusses the

mapping of a delta-based graph computation to GraphPulse.

A. Event-Processing Considerations

Computation with Delta/Data Carrying Events. In the

delta-based model, the only data that is passed between vertices

are the delta messages. These messages (implemented as events)

encode the computation and carry the input data needed by the

computation as well, removing the need for expensive reads of

the input set of a vertex computation. Moreover, vertex updates

can be performed asynchronously; in other words, a vertex

can be updated at any time with the delta it has received so

far. Based on these two properties, we develop an event-driven

model to support delta-based graph computation. This approach

completely decouples the communication and control tasks of

the graph computation.

911



Algorithm 1: Event-Driven Graph Processing Model

for Incremental PageRank

Data: Graph Structure G(V,E)
Result: Vertex Properties V

1 V [:]←− InitialVertexProperty()
2 Queue ←− InitialEvents({vi ∈V})
3 while Queue is not empty do
4 (u,δ )←− pop(Queue)
5 temp ←−V [u]
6 V [u]←− Reduce(V [u],δ )
7 Δu ←− (V [u]− temp)
8 if abs(Δu)> THRESHOLD then // (Term. cond.)

9 foreach outgoing edge Eu,v of vertex u do
10 δv ←− Propagate(Δu,Eu,v)

11 if (w,δw) exists in Queue where w = v then
12 δw ←− Reduce(δw,δv) // Coalesce

13 else
14 Queue ←− insert(v,δv)

1616 return V

3 Δ3 3 Δ3 
1 Δ1 1 Δ1 

2 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 3 Edge.out

X2 X5X2 X5 V.next

D1 D2 D3 D4 D5D1 D2 D3 D4 D5 V.cur

∙ ∙ ∙ ∙ 
∙ ∙ ∙ ∙ 
4 Δ4 4 Δ4 

5 Δ5 5 Δ5 
2 Δ2 2 Δ2 

3 Δ3 3 Δ3 

3 Δ3 3 Δ3 
5 Δ5 5 Δ5 

pop

RND WRRND WR

RND RDRND RD

SEQ RDSEQ RD

atomic

push

Fig. 2. Data access pattern in event-driven approach with a FIFO event-queue.

We define an event as a lightweight-message that carries a

delta as its payload. Multiple events carrying deltas to the same

vertex can be combined using a reduce operator specific to the

application to reduce the event population and, subsequently,

event storage and processing overheads. Execution of a vertex

program can only be triggered by an event. A set of initial

events is created at the beginning as part of the application

initialization. When a processor receives an event for a vertex,

it executes two tasks: 1) update of the vertex state using the

reduce operation, and then 2) generate a new set of events

using the propagate function described in Section II-B. The

newly generated events are collected in an event queue from

which they are scheduled to other processors to start execution

of new vertex programs.

Figure 2 shows a view of the computation model. At any

time, the event queue has a set of pending events. The event

at the head of the queue is issued to a processor which read-

modify-writes the vertex value, then reads the corresponding

adjacency list to prepare and insert new events into the event

queues. The memory accesses are still in random order and

require locking for parallel operation since two or more events

to the same vertex may be issued from the queue; our optimized

design mitigates both of these limitations.

Coalescing Inflight Events. As discussed in Section II-B,

the reordering property of the propagation parameter allows

the architecture to combine multiple events to the same

destination while still in the queue using the reduce function

without affecting program correctness; we call this operation

event coalescing. Event coalescing is critical for a practical

asynchronous design because every event in the queue can

cause the generation of new events for every outgoing neighbor

or destination vertex, unless a termination condition is met.

Consequently, for every event consumption, new events are

produced and the number of events in the system will rapidly

grow. For designing an event-driven processor with limited

storage, we require the event coalescing capability to ensure

control over the rate of event generation.

Implicit Atomic Updates. In parallel execution, processors

may attempt to update the same vertex’s state simultaneously,

necessitating locking or atomic updates. In Graphpulse, all the

vertex memory accesses are associated with an event, and an

event only modifies a single vertex value. With the guarantee

that, via coalescing, no more than one event is in-flight for

any vertex, safety for atomic access is naturally ensured. Our

implementation completely coalesces all events targeted to a

vertex into one before it is scheduled preventing race conditions

that can otherwise arise in presence of concurrent updates.

Isolating Control Tasks from Computation. All memory

accesses to vertex and edge data are isolated to the algorithm

specific task processing logic. The control tasks, which pri-

marily consist of scheduling of vertex operations, are naturally

encapsulated using the events abstraction, and do not require

any accesses to the graph data to schedule their computation.

Coupled with the guarantee of memory consistency, this

isolation makes the vertex scheduling logic extremely simple

and the datapath highly independent and parallelizable. Also,

the memory interfaces designed are simple and efficient

since there are only simple memory accesses to the vertex

properties. This model reduces memory accesses compared

to the classical graph processing approaches including Vertex-

Centric Push/Pull and the Edge-Centric paradigms.

Active Set Maintenance. The events resident in the queue

encapsulate the entire active computation, which provides an

alternative way to manage active sets using hardware structures.

Vertices that are inactive will have no events updating them;

and the set of unprocessed events indicate a set of vertices that

are to be activated next. Most existing graph frameworks use

bitmaps or vertex-lists to maintain an active set which entails

significant management overhead. The event maintenance task

is decoupled from the primary processing path in our model

which results in greater parallelization opportunities. Efficient

fine-grained control over the event-flow, thereby the scheduling

of vertices, can be achieved via hardware support.

Initialization and Termination. After loading a graph, we

bootstrap the computation as follows. We define an Identity

parameter that, when passed to the reduce operator with another

value, leaves the latter unchanged (e.g., 0 is identity for the

sum() operation). We set the vertex memory to the identity

parameter for the graph. The initial events, that are set with

the initial target value of the vertices, populate the event

queue. The first event of a vertex is guaranteed to trigger

912



TABLE II
FUNCTIONS FOR MAPPING ALGORITHM TO GRAPHPULSE

propagate(δ ) reduce V j,init ΔV j,init

PR-Delta α ·Ei, j ·δ/N(src) + 0 1−α
Adsorption αi ·Ei, j ·δ + 0 β j · I j

SSSP Ei, j +δ min ∞ 0 (j=r); ∞

BFS 0 min ∞ 0 (j=r); ∞

Conn. Comp. δ max -1 j

Status
Event

Queues

Event 
Scheduler

Event Emit Event Issue

 New Event Insertion

Memory R/W

Vertex Properties Structure Data

Graph Memory

Vertex Properties Structure Data

Graph Memory

Event 
Processors

EPEP EPEP

EPEP EPEP

Event 
Processors

EP EP

EP EP

Fig. 3. Overview of GraphPulse Design

a change and then propagate it to other vertices to bootstrap

the computation. The event population eventually declines as

the computation converges; an update event may not generate

new events if the update magnitude is below a threshold (e.g.,

in PageRank). Eventually, the event queue becomes empty

without replenishment and the application terminates when

there is no more event to schedule. We also provide the ability

to specify a global termination condition for better control with

some applications (see Section IV-C).

B. Application Mapping

To implement a delta-based accumulative graph computation

in our model shown in Algorithm 1, the user must define

several functions described next – Table II shows the reduction

and propagation functions, and the initialization values for five

graph applications.

Reduce function expresses the reduction operation that

accumulates incoming neighbors’ contributions to a vertex,

and coalesces event deltas in queue. It takes a delta value and

current vertex state to update state = state⊕delta.

Propagate function expresses the source vertex’s propaga-

tion function (g(x)) that generates contributions for the outgoing

neighbors. It uses the change in state to produce outgoing delta,

Δout = g〈E.src,E.dst〉 (ΔV ).
Initialization function defines the initial vertex states

to an identity value for the reduction operator. Also, the initial

event delta is set such that Reduce(Identity, delta)

results in the intended initial state of the target vertex.

Terminate function defines a local boolean termination

condition in the framework that checks for changes in the

vertex state. Propagation for an event stops when the local

termination condition is valid and the vertex state is unmodified.

The program stops if all events have terminated locally.

Programming Interface. Due to the simple programming

abstraction, user effort is modest. The user can define program

logic in HDL using custom functional modules and pipeline

latency, or use some common functional modules in Graph-

Pulse (e.g., Min, Max, Sum). The user also creates the array

of initial events and vertex states, which are written to the

accelerator memory and registers by the host CPU.

IV. GRAPHPULSE ARCHITECTURE

GraphPulse is an event-based asynchronous graph process-

ing accelerator that leverages the decoupled nature of event-

driven execution. The event processing datapath exposes the

computational parallelism and exploits available memory band-

width and hardware resources. The accelerator takes advantage

of low-latency on-chip memory and customizable communi-

cation paths to limit the event management and scheduling

overheads. The following insights from Section III-A guide

the datapath design:

1) Vertex property reads and updates are isolated and

independent, eliminating the need for atomic operations.

When sufficient events are available for processing, the

throughput is only limited by the memory bandwidth.

2) To sustain many parallel vertex operations, it should be

possible to insert, dequeue, and schedule events with

high throughput.

3) Since no explicit scheduling is needed, the number of

parallel vertex processing tasks can be easily scaled to

process increasingly larger graphs.

We next describe a baseline implementation guided by these

considerations, and then describe the optimizations we incor-

porate to improve its performance.

A. Abstractions for Events

Figure 3 overviews the architecture of GraphPulse. The

primary components of the accelerator are Event Queues, the

Event Scheduler, Event Processors, the System Memory, as

well as the on-chip network interconnecting them. The event

processors directly access the memory using an efficient high-

throughput memory crossbar interface. For scalability our goal

is to leverage the bandwidth to support high degree of memory

parallelism and simultaneously present many parallel requests

to memory. Because events are the unit of computation, we

aim to fit all active events in on-chip memory to avoid having

to spill and fetch events. However, for larger graphs, this is

not possible, and we use a partitioning approach to support

them (see Section IV-F). We consider a configuration with 256

event processors for our baseline.

B. Event Management

Event Queue stores the events representing the active vertex

set of the graph. Events are stored as a tuple of destination

vertex ID and payload (delta). Schedulers drain events from

the queue in sequence giving them to the processors, while

newly generated events are fed back to the queue. Since events

are generated for all edges, the volume of events grows rapidly,

which represents an obstacle for efficient processing. Moreover,

due to the asynchronous processing, multiple activations of

a vertex can coexist that then generate multiple set of events

over the vertex edges. Figure 4 shows the total number of

913



0 5 10 15 20
Iterations

0

2

4

6

#
E
v
e
n
ts

1e7

Fig. 4. Total events produced (blue) and remaining after coalescing (orange).

4 Δ4 4 Δ4 
5 Δ5 5 Δ5 

2 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 32 3 3 5 4 1 2 5 3 Edge.out

X2 X3X2 X3 V.next

D1 D2 D3 D4 D5D1 D2 D3 D4 D5 V.cur

∙ ∙ ∙ ∙ 
∙ ∙ ∙ ∙ 
∙ ∙ ∙ ∙ 

2 Δ2 2 Δ2 
3 Δ3 3 Δ3 

3 Δ3 3 Δ3 

4 Δ4 4 Δ4 
5 Δ5 5 Δ5 

poppop

pushpush

(coalesce)

SEQ WRITESEQ WRITE

SEQ READSEQ READ

Fig. 5. Data access pattern in event-driven approach with coalescing & sorting.

events produced during each iteration and the number of

events remaining after coalescing for PageRank running on

the LiveJournal social network graph [6] (∼5M nodes, ∼69M

edges). We see that over 90% of the events are eliminated

via coalescing multiple events destined to the same vertex.

Dramatic reduction in the number of events also reduces the

numbers of computations and memory accesses. The queue is

modeled as a group of collector bins dedicated to a subset of

vertices to simplify and scale event management. We set up the

mapping of vertices to bins such that a block of vertices close

in memory map to the same bin. Thus, when events from a bin

are scheduled, the set of vertices activated over a short period

of time are closely placed in memory and thus the memory

accesses exhibit high spatial locality. The ordering approach

transforms the inefficient random read/writes into sequential

read/writes as shown in Figure 5.

Events are deposited in the bin and the coalescer iterates

over the events and applies the Reduce methods over matching

events. Following coalescing passes, only a small fraction of

unique events remain. However, buffering uncoalesced events

significantly increases pressure on the event queues, increases

congestion and requires large memory. Therefore to address this

limitation, in Section IV-D, we present an in-place coalescing

queue that combines events during event insertion.

C. Event Scheduling and Termination

The event scheduler dequeues a batch of events in parallel

from the collectors. It arbitrates and forwards new events to

the idle processors via the interconnection network. Scheduler

drains events from one bin at a time, and iterates over all bins

in a round-robin manner (other application-informed policies

are possible). We call one complete pass over all bins a round.

The scheduler allocates events to any idle processor through

an arbiter network. The processing cycle for an event begins

with the event scheduler dequeueing an event from the output

buffer of the event queue when it detects an idle processor.

The event is sent via the on-chip routing network to the target

processor. Upon receiving an event, the processor starts the

vertex program that can cause memory reads and updates of the

vertex state. After processing the event, the processor produces

all output events to propagate update of its state to directly

impacted vertices along outgoing edges. The events produced

are sent to the event queues mapped to the impacted vertices.

Global Termination Condition. The scheduler maintains

an accumulator to store the local progress from the processors

after they perform updates. The default behavior is to terminate

when no events remain. However, for applications that can

propagate events indefinitely, an optional termination condition

provides a way to stop the execution based on a user defined

condition such as a convergence threshold. For example,

PageRank terminates when the sum of changes in score of all

vertices are lower than a threshold. Here, processors pass the

deltas as local progress updates to the scheduler where they are

summed. A pass over the queue means all active vertices are

accessed once, and the global accumulator represents global

progress, which can be used for termination condition.

D. In-Place Coalescing Queue

To avoid rapid growth of event population, we explore an

in-place coalescing queue that combines events during event

insertion, compressing the storage of events destined to the

same vertex. If no matching event exists, the event is inserted

normally. Conversely, if an event exists, we simply combine

the deltas based on the reduction function for the application.

We use multiple bins inside the queue, with each bin

structured like a direct-mapped cache (Figure 6(a)). The bins

are split into rows and columns, and only one vertex ID maps

to a bin-row-column tuple so that there is no collision. Vertex

ID isn’t stored since the events are direct mapped. Vertices are

mapped in column-bin-row order so that clusters in the graph

are likely to spread over multiple bins. The number of rows is

based on the on-chip RAM block granularity (usually 4096)

and multiple memory blocks are operated side-by-side to get a

wider read/write interface that can hold power-of-two number

of columns. Each bin consists of a Simple Dual-Ported RAM

block (with one read and one write port).

Insertion and Coalescing. Each bin can accept one new

event per cycle, but the insertion has multi-cycle latency.

Specifically, insertion units are pipelined so that a bin can

accept multiple events in consecutive cycles. In the first cycle

during the insertion of an event, the event in its mapped block

(if one exists) is read using the read port. In the next cycle, the

incoming event is pushed into a combiner function pipeline

along with the existing event (FPA unit in Figure 6(b)). We

use four stages in the pipeline since most common operators

can be designed to have less than 4 cycles latency (e.g., 3

cycles for floating point addition) while maintaining desirable

clock speed. After the operation is finished, the combined event

914



payload

ro
w

bi
n col

Event 
Data

(a)

Insert: 
read existing 

event

Incoming event

Write sum

4-stage FPA Unit

Drain:
 read whole row

Out 
Buffer

(b)

Fig. 6. (a) Direct mapping an event to a queue block; and (b) In-place
coalescing and retrieval using direct mapped event storage (for PageRank).

is sent to the write port. During these 4 cycles, other event

insertions can be initiated for another row, since the read-write

ports are independent and the coalescer is pipelined. When

insertions contend for the same row, the later events are stalled

until the first event is written.

Removal. Events are removed from one bin at a time in a

round-robin fashion. When it’s time to schedule events from a

bin, a full row is read in each cycle and the events are placed in

an output buffer. We prefer wide rows so that many events can

be read in one cycle. Insertion to the same bin is stalled in the

cycles in which a removal operation is active. Often towards

the beginning or the end of an application, the queue is sparsely

occupied. It might waste many cycles sweeping over empty

rows in these situations. We mark the row occupancy using a

bit-vector for each bin. A priority encoder gives fast look-up

capability of occupied rows during sweeping the queue.

Due to coalescing at insertion, only one event exists for a

vertex in the queue. As removal is done by sweeping in one

direction in the bins, we can issue only one event for a vertex

in a given round. After a round is complete, the scheduler

waits until all the cores are idle before rolling over to the

first bin again. This guarantees that race conditions cannot

occur without the need for atomic operations or per vertex

synchronization.

Another advantage of event coalescing is its ability to

combine the effect of propagation across multiple iterations,

which is a virtue of the asynchronous graph processing model.

Figure 7 shows an example: the delta from processing event

A in bin 1 is sent to vertex C mapped to bin 2, where another

event for vertex C already exists. Due to coalescing, vertex

C will pick up the contribution that otherwise would have

been processed in the next iteration. Similarly event E will

compound the effect of A two iterations earlier than usual.

We call this effect lookahead. In Figure 4, we showed that a

significant fraction of the events are eliminated by coalescing.

Figure 8 shows the degree of lookahead contained in these

coalesced events for each round in a 256-bin event queue during

PageRank-Delta running on the LiveJournal graph. Because

of coalescing and asynchronous execution, an event quickly

compounds the effects of hundreds of previous iterations of

events in a single round. Note that, the contributions from

Time

AA BBA B CCC EE FFE F

⊕A⊕A ⊕B⊕B ⊕C⊕C ⊕E⊕E
Event Processors

a a’c+a’a’

c’+a’’

e+c’+a’+a’’

Bins

Fig. 7. Compounding of vertex contributions across iterations.

0 5 10 15 20

Rounds

0

1M

2M

3M

4M

5M

#
E
v
e
n
ts

0

<300

<100

<400

<200

>400

#Lookahead

Fig. 8. Degree of lookahead in events processed in each round.

many vertices should quickly stop propagating in uncoalesced

model because of damping in PageRank, but they carry on here

after being compounded with a bigger valued event. Coalescing

exploits temporal locality for the graph, while binning promotes

spatial locality, without requiring large caches.

The event-driven approach is prohibitively expensive to

implement in software due to the high overhead for generation,

management, queueing, sorting, coalescing and scheduling of

events using message passing in software. However, since

these primitives are directly implemented by the accelerator in

hardware, the overheads are essentially mitigated.

E. Event Processors and Routing Network

The event processors are independent, parallel, and simple

state machines. The processors are connected to the scheduler

using a broadcast network to enable delivery of events from

any bin to any available processor. A memory bus connects

the event processors to the main memory for reading graph

properties. The graph is stored in a Compressed Sparse Row

format in memory. The state machine starts after receiving

a new event from the scheduler. It reads the vertex property

from memory, computes update from the received event using

the reduce() function, and writes update to the memory in

the subsequent steps. It resolves local termination check, and

starts reading from EdgeTable if it is not terminated. Then, it

uses propagate() function to compute new delta using the

neighbor ID. It pushes the new events to a broadcast channel

which connects to the event queues where they are picked

up. After finishing its tasks, the processor generates a local

progress update (also defined by the application) that is passed

to the scheduler along with the processor’s status message for

global progress checking. In our evaluation, we assumed that

event processing logic is specified via a Hardware Description

Language, resulting in specialized processors for the application.

However, the function encapsulation provides a clean interface

to build customizable event processors or use a minimalistic

CPU for the event processors.

915



The baseline GraphPulse configuration consists of 256

processors on a system connected to 4 DRAM memory

controllers and coalescing event queues. The scheduler-to-

processor interconnect for the baseline design is a multi-staged

arbiter network. The processor-to-queue network is a 16x16

crossbar with 16 processors multiplexed into one crossbar port.

The complexity of the network is minimized by a number of

characteristics of the design: (1) we only need unidirectional

dataflow through the network; (2) the datapath communication

can tolerate delays arising due to conflicts enabling us to

use multi-stage networks and to share ports among multiple

processing elements; and (3) our events are fixed in size so

that we do not face complexity of variable size messages. We

note that the optimizations in Section 5 allow us to retain

performance with a much smaller number of cores which

further reduces interconnect complexity.

F. Scaling to Larger Graphs

GraphPulse uses the on-chip memory to store the events

in the coalescer queue. Each vertex is mapped to an entry

in the coalescer, which puts a limit on the size of the active

portion of the graph to be less than the maximum number

of vertices serviced by the coalescer. For large graphs, the

on-chip memory of the accelerator will, in general, not be big

enough to hold all vertices. The inherent asynchronous and

distributed data-flow pattern of GraphPulse model allows it

to correctly process a portion of the graph at a time. Thus,

to handle large graphs, we partition the graph into multiple

slices such that each slice completely fits into the on-chip.

Each slice is processed independently and the events produced

from one slice are communicated to other slices. This can be

achieved using two different strategies: a) on-chip memory can

be shared by different slices sequentially over time while the

inter-slice events are temporarily stored in off-chip memory;

and b) multiple accelerator chips can house all slices while an

interconnection network streams inter-slice events in real-time.

We use the first option to illustrate GraphPulse scalability.

We assume that the graph is partitioned offline into slices

that each fits on the accelerator [25], [50], [51]. Most graph

frameworks employ either a vertex-cut or edge-cut strategy

in partitioning graphs. Since our model is dependent on the

number of vertices, we limit the maximum number of vertices

in each slice while minimizing edges that cross slice boundaries.

We relabel the vertices to make them contiguous within each

slice. When a slice is active, the outbound events to other slices

are stored in off-chip memory. These events are streamed

in later when the target slice is swapped in and activated.

Partitioning necessarily gives rise to increased off-chip memory

accesses and bandwidth demand. However, the events do not

require any particular order for storing and retrieval. We buffer

the events that are outbound to each slice to fill a DRAM page

with burst-write. When a slice is marked for swap-out, the bins

are drained to the buffer and the new active slice’s events are

read in from memory. Both the read and write accesses to the

off-chip memory is very fast since they are sequential and can

be done in bursts. The bins in the queues have their independent

Scratchpad

PrefetcherPrefetcher

Edge Cache

Process Unit

Generation UnitsInput Buffer

Stream 1

Stream 3

Stream 0

Stream 2

Fr
om

 S
ch

ed
ul

er

Graph Memory

To
 Q

ue
ue

Gen. Buffers

Fig. 9. Optimization of event processing and generation.

pipelined insertion units that can insert the swapped-in events in

parallel without delay. Event coalescing occurs during insertion

of events into the bins. Normal operation can proceed as soon

as the first bin is swapped-in, allowing the swap-in/swap-out

process to be pipelined, and masking the switch-over latency.

V. GRAPHPULSE OPTIMIZATIONS

In this section, we discuss optimizations and extensions to

the baseline GraphPulse. Analyzing the performance of the

event execution, we discovered that the event processing time

was dominated by two overheads: (1) memory accesses to

obtain the output vertices needed to identify the targets of the

generated events; and (2) the sequential cost to generate the

outgoing events. In this section, we introduce two optimizations

to alleviate these overheads.

Prefetching: Graph processing applications have notoriously

low computation to memory latency ratio. We implement a

prefetching scheme to prevent starvation and idling of the

event processors. An input buffer is added to the processors

and a small scratchpad memory sits between the processor and

the graph memory to prefetch and store vertex properties for

the events waiting in the input buffer as shown in Figure 9.

Prefetching is possible since we know the vertices mapped to

each coalescing queue, and we are able to accurately prefetch

their outgoing set while they are scheduled for execution. We

map the events in the queue such that a block of vertices that

are adjacent in graph memory remains adjacent in the queue.

The events in a block are swept and streamed together to the

same input buffer. The predictor inspects a window from the

buffer to prefetch only the required data in cache-line-size

granularity. A carefully sized block (128 in this work) will

cause prefetch of all required addresses from a DRAM page

together, allowing higher bandwidth utilization than possible

via caching alone. Since processors no longer manage data

themselves and the memory latency is separated from their

critical path, we employ fewer processors (8 in the experiments)

to process only the vertices with data available for processing.

We include a small caching buffer with the edge memory

reader to enhance the throughput. Prefetching the outgoing

edges makes it possible to streamline the generation of events

without experiencing expensive memory accesses during event

generation. This substantially reduces the event processing time

and enhances the event processing throughput. A simple N-

block prefetching (N=4) scheme is used for edge memory reads.

Since the degree of a vertex are known during the processing

phase, we pass this information to the generation unit encoded

in the vertex data as a hint for the edge prefetcher to set the

916



limit of prefetching (N) to avoid unnecessary memory traffic

for low degree vertices.

Efficient Event Generation: The memory traffic requirement

for edge data compared to vertex properties is very high for

most graphs: edge data is typically orders of magnitude larger

for most graphs. After an event is processed, update events

are generated to its outgoing edge set. We observed that this

step is expensive and frequently stalls the event processors

limiting processing throughput. The data per edge is small

(4 bytes in most of our graphs and applications). This makes

reading and generation of events for multiple edges in the same

cycle essential for saturating memory bandwidth. Since the

data dependence between the processing and event generation

phase is unidirectional, we decouple the processor into two

units: Processing and Generation (see Figure 9). We increase

the event generation throughput by connecting multiple of

these generation streams to the same processing unit. A group

of streams in one generation unit share the same cache but

multiple ports in the event delivery crossbar. Each generation

stream is assigned one vertex from the processing unit when

idle. Thus, we use parallelism to match the event generation

bandwidth to the event processing bandwidth enabling the

processing units to work at or near capacity.

VI. EXPERIMENTAL EVALUATION

Next we evaluate GraphPulse along a number of dimen-

sions: performance, memory bandwidth requirements, hardware

complexity, and power consumption. First we describe our

experimental methodology.

A. Experimental Methodology

System Modeling. We use a cycle accurate microarhitectural

simulator based on Structural Simulation Toolkit [45] to

model the primary components, the memory controller, and

interconnection network. The event processor models are

designed as state machines with conservative estimation for

latency of the computation units. The memory backend is

modeled with DRAMSim2 [46] for realistic memory access

characteristics. The coalescing engine was modeled as a 4

stage pipelined floating point unit in RTL. The interconnection

network is simulated with input and output queue to ensure

congestion does not create a bottleneck.

Comparison Baselines. We compare the performance of

GraphPulse with a software framework, Ligra [49]. We

chose Ligra as the software baseline because, along with

Galois [37], it is the highest performing generalized software

framework for shared-memory machines [64]. Moreover, Ligra

has an efficient shared memory implementation of one of

the most robust technique for active set management and

versatile scheduling depending on the active set, which is at

the core of our work. We considered frameworks that support

delta-accumulative processing but those were all targeted for

distributed environments and performed much slower than

Ligra. We measure the software performance on a 12-core

Intel Xeon CPU. The relevant configurations for both systems

are given in Table III.

TABLE III
DEVICE CONFIGURATIONS FOR SOFTWARE FRAMEWORK EVALUATION AND

GRAPHPULSE WITH OPTIMIZATIONS.

Software Framework GraphPulse

Compute Unit 12× Intel Xeon Cores
@3.50GHz

8× GraphPulse
Processor @ 1GHz

On-chip
memory

12MB L2 Cache 64MB eDRAM @22nm
1GHz, 0.8ns latency

Off-chip
Bandwidth

4× DDR3
17GB/s Channel

4× DDR3
17GB/s Channel

TABLE IV
GRAPH WORKLOADS USED IN EVALUATIONS.

Graph Nodes Edges Description

Web-Google(WG) [30] 0.87M 5.10M Google Web Graph
Facebook(FB) [54] 3.01M 47.33M Facebook Social Net.
Wikipedia(Wk) [13] 3.56M 45.03M Wikipedia Page Links
LiveJournal(LJ) [6] 4.84M 68.99M LiveJournal Social Net.
Twitter(TW) [27] 41.65M 1.46B Twitter Follower Graph

In addition, we compare the performance with a hardware

accelerator Graphicionado [18], a state of the art hardware-

accelerator for graph processing that uses the Bulk Synchronous

execution model. Since the implementation of Graphicionado is

not publicly available, we modeled Graphicionado to the best of

our ability with the optimizations (parallel streams, prefetching,

data partitioning) proposed by the authors. We also gave

zero-cost for active vertex management and unlimited on-chip

memory to Graphicionado to simplify implementation, making

our speedup vs. Graphicionado conservative. We provision

Graphicionado with a memory subsystem that is identical to

that of GraphPulse.

Workloads. We use five real world graph datasets – Google

Web graph, Facebook social network, LiveJournal social

network, Wikipedia link graph, and Twitter follower network in

our evaluations obtained from the Network Repository [47] and

SNAP network datasets [29] (see Table IV). We evaluate five

graph algorithms – PageRank (PR), Adsorption(AD), Single

Source Shortest Path (SSSP), Breadth-first Search (BFS) and

Connected Components (CC) on each of these graphs. We use

the contribution based PageRank implementation (commonly

referred to as PageRankDelta), which is a delta-accumulative

version of PageRank. PageRankDelta execution was faster than

the conventional PageRank in the Ligra software framework

and Graphicionado for our graph workloads, and therefore we

use it for our baselines as well. Ligra does not provide a native

Adsorption implementation. We created randomly weighted

edges for the graphs and normalized the inbound weights for

each vertex. PageRank-Delta model was modified to consider

edge weights and propagate based on the functions provided

in Table II for Adsorption. Twitter is large and does not fit

within the accelerator memory; thus we split it into three slices

with one slice active at a time using the methodology from

917



Fig. 10. Performance comparison between GraphPulse, Graphicionado [18], and Ligra [49] framework all normalized with respect to the Ligra software
framework. Twitter required partitioning from Section IV-F.

Fig. 11. Total off-chip memory accesses of GraphPulse normalized to
Graphicionado.

Section IV-F.

B. Performance and Characteristics

Overall Performance. Figure 10 shows the performance

of the GraphPulse architecture in comparison to the Ligra

software framework. We observe an average speedup of 28×
(10× to 74×) for GraphPulse over Ligra across the different

benchmarks and applications. The speedup mainly comes from

hardware acceleration, memory friendly access pattern, and

the on-the-fly event coalescing capability. BFS, SSSP and CC

have similar traversal algorithms. However, BFS and SSSP

performance suffers because fewer vertices are active at a

time and vertices are reactivated in different rounds of the

computation in contrast to CC where the full graph is active

for the majority of the computation. The Twitter graph achieves

comparable speedup to the other graphs, despite the fact that

it incurs the overhead of switching between active slices. Our

intuition is that software frameworks incur more overhead for

large power law graphs for a computation like PageRank where

vertices are visited repeatedly; these overheads are not incurred

by GraphPulse as communication is mostly on chip.

Comparing GraphPulse performance to Graphicionado [18],

we found that, on average, GraphPulse is about 6.2× faster.

The Figure also shows the performance of both the baseline and

the optimized version of GraphPulse (with prefetching and

parallel event generation); we see that the two optimizations

dramatically improve performance.

Memory Bandwidth and Locality. GraphPulse imple-

ments a number of optimizations to promote spatial locality

and utilize DRAM burst transfer speed whenever possible.

Figure 11 shows the total number of off-chip memory accesses

Fig. 12. Fraction of off-chip data utilized.

required by GraphPulse normalized to Graphicionado. Even

compared to the efficient data access of Graphicionado,

GraphPulse requires 54% less off-chip traffic on average.

GraphPulse ’s processing model is memory friendly with

events carrying the input data to the computation. Coalescing

and lookahead also contribute heavily to reduce data traffic by

combining computations and memory accesses and stabilizing

many nodes earlier. The effect is particularly apparent in

CC, where many vertices gets stabilized with the very first

event. Finally, Figure 12 shows that in GraphPulse very large

fraction of data brought via off-chip accesses is utilized by the

computation supporting its ability to reduce random memory

accesses.

Event Execution Profile. The average life-cycle of an event

is highly dependent on the graph structure and the algorithm.

Figure 13 shows a breakdown of average time spent in different

stages of the processing path for an event. Individual vertex

memory reads have long memory latency. But due to locality

aware scheduling and prefetching in the input buffer, latencies

for the accesses are masked and the average latency for the

vertex memory reads become only few cycles. This indicates

the efficiency of the prefetcher. The process stage takes only

few cycles too because of pipelining and brevity of typical

apply tasks. The Gen Buffer stage shows the time spent in the

input buffer of generation streams after an event is processed

and waiting for generation units to be available. The time

spent on edge memory access appears to be high, but this is

due to the large number of edges that need to be read for

event generation in power-law graphs. Figure 14 shows the

fractions of time the processors and generators spend accessing

memory, processing and stalling. It is noticeable that event

918



Fig. 13. Cycles spent by an event in each execution stage, shown chronologi-
cally from bottom to top.

Fig. 14. Time breakdown for the processor (left-bar) and generation units
(right-bar).

generation units (right-side bar) spend close to 80% of the

cycles reading edge memory. This includes the latency to

both read edges from cache and fetch from main memory.

We observed that the generation units saturate the memory

bandwidth with prefetching and high off-chip utilization. The

processors (left hand bars) stall for about 70% of the cycles

waiting for generators to become available. We observed that

this can be reduced to less than 40% by doubling the ratio

of generation streams at the trade-off of increased routing

complexity.

C. Hardware Cost and Power Analysis

The coalescing event queue consumes the most power since

it closely resembles a cache in design and operation with

the addition of a coalescer pipeline. We model the queue

using 64MB on-chip memory composed of 64 smaller bins

operating independently. 8 scratchpads with 1KB capacity are

placed alongside 8 processing cores (with 8× 4 generation

streams). We use CACTI7 [7] for analysis of power and

area for both memory elements. The dynamic memory access

is estimated conservatively from simulation trace. The total

energy for the whole event queue memory is ∼9 Watts when

modeled in a 22nm ITRS-HP SRAM logic. Although we use

identical systems, GraphPulse accesses 60% less memory

than Graphicionado; we did not include DRAM power.

The event collection network is a 16×16 crossbar attached to

a network of arbiters allowing groups of Generation Streams to

share a port. We modeled a complete RTL design containing the

communication network, coalescer engine, and event processors

using Chisel and synthesized the model. We assumed that

the coalescing pipeline and event processors require floating

point units, which results in worst case complexity and power

consumption estimates (recall that the coalescing logic is

TABLE V
POWER AND AREA OF THE ACCELERATOR COMPONENTS

#
Power(mW)

Area(mm2)

Static Dynamic Total

Queue 64 116 22.2 8825 190
Scratchpad 8 0.35 1.1 11.6 0.21
Network 51.3 3.4 54.7 3.10
Processing Logic - - 1.30 0.44

application dependent). The area of the circuit stands at 3.5mm2

with a 28nm technology (excluding the on chip memory)

and comfortably meets the timing constraint for 1GHz clock.

Power estimates show that custom computation modules and

the communication network consumes less than 60mW. A

breakdown of the power consumption of our evaluated design

is presented in Table V. GraphPulse is 280× more energy

efficient than Ligra due to the low power from the customized

processing and faster overall execution time.

VII. RELATED WORK

Graph Accelerators: Template based graph accelera-

tors process hundreds of vertices in parallel to mask long

memory latency [5], [39]. They use hardware primitives for

synchronization and hazard avoidance. Swarm [23] allows

speculative execution to increase parallelism; however, memory

inefficiencies persist. Spatial Hints [24] uses application-level

knowledge to tag tasks with specific identifiers for mapping

them to processing elements which allows better locality and

more efficient serialization, thus, addressing the inefficiencies of

Swarm. On the other hand, serialization becomes unnecessary

after coalescing in GraphPulse since transaction safety is

implicitly guaranteed by the execution model and architecture.

Graphicionado [18], a pipelined architecture, optimizes

vertex-centric graph models using a fast temporary memory

space. It improves locality using on-chip shadow memory for

vertex property updates. However, GraphPulse substantially

outperforms Graphicionado due to advantages of event-driven

model over conventional models.

PIM-based solutions: These solutions lower memory

access latency and increase performance. Tesseract [2] im-

plements simplified general purpose processing cores in the

logic layer of a 3D stacked memory. GraphPIM [36] replaces

atomic operations in the processor with atomic operation

capability in Hybrid Memory Cube (HMC) 2.0 to achieve

low latency execution of atomic operations. Our approach has

potential to be advantageous on PIM platforms too because

memory accesses are simplified and the complex scheduling

and synchronization tasks are isolated to the logic layer.

Tolerating irregular memory accesses: The propagation

blocking technique for PageRank [8] temporarily holds

contributions in hashed bins in memory, merges contributions

to same vertex, and later replays them to maximize bandwidth

utilization and cache reuse. However, it entails overhead of

maintaining bins. Zhou et al. [65], [66] store contributions

temporarily to memory and combines them using hardware

919



when possible for edge-centric model. Due to large number

of edges there is a substantial increase in random memory

writes to temporary bins and small combination windows

limit combining. To optimize irregular memory accesses,

IMP [59] uses a dynamic predictor for indirect accesses to

drive prefetching. HATS [34] proposes a hardware assisted

traversal scheduler for locality-aware scheduling.

Dataflow architectures: GraphPulse bears some sim-

ilarities to dataflow architectures in that computation flows

with the data [12], [21], [26], [53]. The Horizon architecture

supports light weight context switching among massive number

of threads for tolerating memory latency. It heavily relies on the

compiler [12] but dynamic parallelism in graph applications

is not amenable to similar compiler techniques. The SAM

machine [21] employs a highspeed memory (register-cache)

between memory and execution units is a better match for

graph applications. However, neither of these architectures

address issues in graph processing addressed by GraphPulse.

Specifically, GraphPulse uses data carrying events to eliminate

random and wasteful memory accesses, coalescing strategy

eliminates atomic operations and reduces storage for events,

and event queues improve locality and enable prefetching.

VIII. CONCLUDING REMARKS

In this paper, we presented GraphPulse, an event-based

asynchronous graph processing accelerator. We showed how

the event abstraction naturally expresses asynchronous graph

computations, optimizes memory access patterns, simplifies

computation scheduling and tracking, and eliminates synchro-

nization or atomic operations. GraphPulse achieves an average

of 28× improvement in performance over Ligra running on a 12

core CPU implementation, and an average of 6.2× performance

improvement over Graphicionado [18].

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous shepherd

and additional reviewers for their detailed feedback and help

in improving the paper. This work is supported by grants CCF-

2028714, CCF-2002554 and CCF-1813173 from the National

Science Foundation to the University of California Riverside

and award No. FA9550-15-1-0384 from the Air Force Office

of Scientific Research (AFOSR).

REFERENCES

[1] M. Abeydeera and D. Sanchez, “Chronos: Efficient speculative parallelism
for accelerators,” in Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1247–1262.

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” SIGARCH Comput.

Archit. News, vol. 43, no. 3, pp. 105–117, Jun. 2015.
[3] Amazon AWS. Amazon EC2 F1 Instances. [Online]. Available:

https://aws.amazon.com/ec2/instance-types/f1/
[4] C. Avery, “Giraph: Large-scale graph processing infrastructure on hadoop,”

Proceedings of the Hadoop Summit. Santa Clara, vol. 11, 2011.
[5] A. Ayupov, S. Yesil, M. M. Ozdal, T. Kim, S. Burns, and O. Ozturk,

“A template-based design methodology for graph-parallel hardware
accelerators,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 37, no. 2, pp. 420–430, Feb 2018.

[6] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: Membership, growth, and evolution,”
in Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ser. KDD ’06. New York, NY,
USA: ACM, 2006, pp. 44–54.

[7] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration
in innovative off-chip memories,” ACM Trans. Archit. Code Optim.,
vol. 14, no. 2, pp. 14:1–14:25, Jun. 2017.

[8] S. Beamer, K. Asanović, and D. Patterson, “Reducing Pagerank commu-
nication via propagation blocking,” in 2017 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), May 2017, pp. 820–831.

[9] E. Bullmore and O.Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems,” in Nature Reviews

Neuroscience, 10(3), 2009, pp. 186–198.

[10] P. Burnap, O. F. Rana, N. Avis, M. Williams, W. Housley, A. Edwards,
J. Morgan, , and L. Sloan, “Detecting tension in online communities
with computational Twitter analysis,” in Technological Forecasting and

Social Change, 95, 2015, pp. 96–108.

[11] J. Casper, T. Oguntebi, S. Hong, N. G. Bronson, C. Kozyrakis, and
K. Olukotun, “Hardware acceleration of transactional memory on
commodity systems,” in Proceedings of the Sixteenth International

Conference on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS XVI. New York, NY, USA: Association
for Computing Machinery, 2011, p. 27–38.

[12] J. M. Daper, “Compiling on Horizon,” in Proceedings of the 1988

ACM/IEEE Conference on Supercomputing, ser. Supercomputing ’88,
1988, pp. 51–52.

[13] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25,
Dec. 2011.

[14] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in Proceedings

of the 29th ACM Symposium on Parallelism in Algorithms and Architec-

tures, ser. SPAA ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 293–304.

[15] M. D. Domenico, A. Lima, P. Mougel, and M. Musolesi, “The anatomy
of a scientific rumor,” Scientific Reports, vol. 3, 2013.

[16] J. Gonzalez, R. Xin, A. Dave, D. Crankshaw, M. Franklin, and I. Stoica,
“GraphX: Graph processing in a distributed dataflow framework,” in
USENIX OSDI, 2014, pp. 599–613.

[17] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:
Distributed graph-parallel computation on natural graphs.” in OSDI,
vol. 12, no. 1, 2012, p. 2.

[18] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics,” in 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), Oct 2016, pp. 1–13.

[19] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in Proceedings of the

37th Annual International Symposium on Computer Architecture (ISCA),
2010, pp. 37–47.

[20] M. Han and K. Daudjee, “Giraph unchained: Barrierless asynchronous
parallel execution in pregel-like graph processing systems,” PVLDB,
vol. 8, no. 9, pp. 950–961, 2015.

[21] H. Hum and G. Gao, “Efficient support of concurrent threads in a
hybrid dataflow/von Neumann architecture,” in Proceedings of the IEEE

International Symposium on Parallel and Distributed Processing, ser.
IEEE IPDPS ’91, 1991, pp. 190–193.

[22] H. Isah, P. Trundle, , and D. Neagu, “Social media analysis for product
safety using text mining and sentiment analysis,” in 14th UK Workshop

on Computational Intelligence (UKCI), 2014.

[23] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A
scalable architecture for ordered parallelism,” in 2015 48th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
Dec 2015, pp. 228–241.

[24] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez,
“Data-centric execution of speculative parallel programs,” in The 49th

Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-49. IEEE Press, 2016.

[25] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

920



[26] J. T. Kuehn and B. J. Smith, “The horizon supercomputing system:
architecture and software,” in Supercomputing ’88:Proceedings of the

1988 ACM/IEEE Conference on Supercomputing, Vol. I, 1988, pp. 28–34.
[27] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social

network or a news media?” in Proceedings of the 19th International

Conference on World Wide Web, ser. WWW ’10. New York, NY, USA:
ACM, 2010, pp. 591–600.

[28] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi : Large-scale graph
computation on just a PC,” in USENIX OSDI, 2012, pp. 31–46.

[29] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[30] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–123,
2009.

[31] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine learning
and data mining in the cloud,” Proceedings of the VLDB Endowment,
vol. 5, no. 8, pp. 716–727, 2012.

[32] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
A survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Comput. Surv., vol. 48, no. 2, pp. 25:1–25:39, Oct.
2015.

[33] J. Model and M. C. Herbordt, “Discrete event simulation of molecular
dynamics with configurable logic*,” in 2007 International Conference

on Field Programmable Logic and Applications, 2007, pp. 151–158.
[34] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,

“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, Oct 2018, p. 1–14.
[35] A. Mukkara, N. Beckmann, and D. Sanchez, “PHI: Architectural support

for synchronization- and bandwidth-efficient commutative scatter updates,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO ’52. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1009–1022.

[36] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM:
Enabling instruction-level PIM offloading in graph computing frame-
works,” in 2017 IEEE International Symposium on High Performance

Computer Architecture (HPCA), Feb 2017, pp. 457–468.
[37] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure

for graph analytics,” in ACM SOSP, 2013.
[38] D. Omand, J. Bartlett, and C. Miller, “Introducing social media

intelligence (SOCMINT),” in Intelligence and National Security, 27.6,
2012, pp. 801–823.

[39] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and
O. Ozturk, “Energy efficient architecture for graph analytics accelerators,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA), June 2016, pp. 166–177.
[40] D. Petrović, T. Ropars, and A. Schiper, “Leveraging hardware message

passing for efficient thread synchronization,” ACM Trans. Parallel

Comput., vol. 2, no. 4, Jan. 2016.
[41] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,

R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,”
SIGPLAN Not., vol. 46, no. 6, p. 12–25, Jun. 2011.

[42] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger,
“A reconfigurable fabric for accelerating large-scale datacenter services,”
SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 13–24, Jun. 2014.

[43] S. Rahman, N. Abu-Ghazaleh, and W. Najjar, “PDES-A: a parallel
discrete event simulation accelerator for FPGAs,” in Proceedings of

the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete

Simulation, 2017, pp. 133–144.
[44] S. Rahman, N. Abu-Ghazaleh, and W. Najjar, “PDES-A: Accelerators

for parallel discrete event simulation implemented on FPGAs,” ACM

Trans. Model. Comput. Simul., vol. 29, no. 2, Apr. 2019.

[45] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and
B. Jacob, “The structural simulation toolkit,” SIGMETRICS Perform.

Eval. Rev., vol. 38, no. 4, pp. 37–42, Mar. 2011.

[46] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Computer Architecture Letters,
vol. 10, no. 1, pp. 16–19, Jan 2011.

[47] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
[48] H. Schweizer, M. Besta, and T. Hoefler, “Evaluating the cost of atomic

operations on modern architectures,” in 2015 International Conference on

Parallel Architecture and Compilation (PACT), Oct 2015, pp. 445–456.
[49] J. Shun and G. Blelloch, “Ligra: a lightweight graph processing

framework for shared memory,” in Proceedings of the ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP),
2013, pp. 135–146.

[50] G. M. Slota, K. Madduri, and S. Rajamanickam, “PuLP: Scalable multi-
objective multi-constraint partitioning for small-world networks,” in 2014

IEEE International Conference on Big Data (Big Data). IEEE, Oct
2014, p. 481–490.

[51] G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri, “Partitioning
trillion-edge graphs in minutes,” in 2017 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). IEEE, May 2017, p.
646–655.

[52] L. Takac and M. Zabovsky, “Data analysis in public social networks,” in
Proceedings of the International Scientific Conference and International

Workshop Present Day Trends of Innovations, 2012.
[53] M. R. Thistle and B. J. Smith, “A processor architecture for Horizon,”

in Proceedings of the 1988 ACM/IEEE Conference on Supercomputing,
ser. Supercomputing ’88, 1988, pp. 35–41.

[54] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of Facebook
networks,” Phys. A, vol. 391, no. 16, pp. 4165–4180, Aug 2012.

[55] L. G. Valiant, “A bridging model for parallel computation,” Communica-

tions of the ACM, vol. 33, no. 8, pp. 103–111, 1990.
[56] K. Vora, S. C. Koduru, and R. Gupta, “Aspire: Exploiting asynchronous

parallelism in iterative algorithms using a relaxed consistency based
dsm,” in Proceedings of the 2014 ACM International Conference on

Object Oriented Programming Systems Languages & Applications, ser.
OOPSLA ’14. New York, NY, USA: ACM, 2014, pp. 861–878.

[57] K. Vora, G. Xu, and R. Gupta, “Load the edges you need: A generic
i/o optimization for disk-based graph processing,” in 2016 USENIX

Annual Technical Conference (USENIX ATC 16). Denver, CO: USENIX
Association, 2016, pp. 507–522.

[58] Yahoo! Research. YAHOO! Webscope Program. [Online]. Available:
http://webscope.sandbox.yahoo.com/

[59] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect memory
prefetcher,” in Proceedings of the 48th International Symposium on

Microarchitecture (MICRO), 2015.
[60] G. Zhang, W. Horn, and D. Sanchez, “Exploiting commutativity to reduce

the cost of updates to shared data in cache-coherent systems,” in 2015

48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), Dec 2015, p. 13–25, citation Key: COUP.
[61] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchronous graph

processing framework for delta-based accumulative iterative computation,”
CoRR, vol. abs/1710.05785, 2017.

[62] Y. Zhang, X. Liao, H. Jin, L. Gu, and B. B. Zhou, “FBSGraph:
Accelerating asynchronous graph processing via forward and backward
sweeping,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 5, pp. 895–907,
2018.

[63] Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil,
S. Amarasinghe, and J. Shun, “Optimizing ordered graph algorithms with
GraphIt,” in Proceedings of the 18th ACM/IEEE International Symposium

on Code Generation and Optimization, ser. CGO 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 158–170.

[64] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“GraphIt: A high-performance graph dsl,” Proc. ACM Program. Lang.,
vol. 2, no. OOPSLA, pp. 121:1–121:30, Oct. 2018.

[65] S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and energy-
efficient graph processing on FPGA,” in 2016 IEEE 24th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), May 2016, pp. 103–110.
[66] S. Zhou, R. Kannan, H. Zeng, and V. K. Prasanna, “An FPGA framework

for edge-centric graph processing,” in Proceedings of the 15th ACM

International Conference on Computing Frontiers, ser. CF ’18. New
York, NY, USA: ACM, 2018, pp. 69–77.

921


