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Abstract—Simultaneous evaluating a batch of iterative graph
queries on a distributed system enables amortization of high
communication and computation costs across multiple queries.
As demonstrated by our prior work on MultiLyra [BigData’19],
batched graph query processing can deliver significant speedups
and scale up to batch sizes of hundreds of queries.

In this paper, we greatly expand the applicable scenarios for
batching by developing BEAD, a system that supports Batching
in the presence of Evolving Analytics Demands. First, BEAD
allows the graph data set to evolve (grow) over time, more vertices
(e.g., users) and edges (e.g., interactions) are added. In addition,
as the graph data set evolves, BEAD also allows the user to add
more queries of interests to the query batch to accommodate
new user demands. The key to the superior efficiency offered
by BEAD lies in a series of incremental evaluation techniques
that leverage the results of prior request to ‘“fast-foward” the
evaluation of the current request.

We performed experiments comparing batching in BEAD with
batching in MultiLyra for multiple input graphs and algorithms.
Experiments demonstrate that BEAD’s batched evaluation of 256
queries, following graph changes that add up to 100K edges to
a billion edge Twitter graph and also query changes of up to
32 new queries, outperforms MultiLyra’s batched evaluation by
factors of up to 26.16x and 5.66 < respectively.

Index Terms—Distributed Graph Processing, Query Batching,
Evolving Graphs, Evolving Query Batch.

I. INTRODUCTION

Graph analytics is employed in many domains (e.g., social
networks [9], web graphs, etc.) to gain insights from large
data graphs. Since real-world graphs are often large, there has
been a growing interest in developing scalable graph process-
ing systems that exploit parallelism on scalable distributed
platforms (e.g., Pregel [11], GraphLab [10], GraphX [6],
PowerGraph [5], PowerLyra [3], ASPIRE [17], [18]).

In a recent paper [12], we presented MultiLyra, a scalable
graph system that simultaneously evaluates a batch of hun-
dreds of iterative graph queries. It achieves high performance
via aggregated communication strategies and query status
tracking policies, both of which amortize the communication
and computation overhead across queries. The idea of batching
is motivated by the practical scenario [20], where online shop-
ping platforms frequently compute a set of interesting graph
queries involving the most important shoppers over a large
input graph that represents the online shopping behaviors of
all the customers. To meet the needs, Yan and others proposed
Quegel [20], which allows for overlapped execution of a small
set of queries. By contrast, our previously proposed system
MultiLyra expanded the batching capability to simultaneously
evaluating hundreds of iterative queries.
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Despite the promises of batched graph query processing, the
existing systems target a static scenario where the input graph
is fixed and the queries of interests are pre-defined. However,
in many real-world scenarios, both the graph and the batch
of queries may evolve. For example, in the scenario of online
shopping, as the system is being used, new customers may join
continuously and the graph representing the online shopping
activities will also continue to grow. Consequently, there is a
need to regularly reevaluate the batch of interesting queries
as the graph grows in size and changes in its structure. In
addition, as the set of customers increases, a need arises to
also grow the set of interesting queries to account for newly
identified important customers. In other words, in the real-
world situation of continuous activity, the system is faced with
Evolving Analytics Demands. While using MultiLyra [12] or
Quegel [20] for such evolving demands are possible by fully
reevaluating the updated batch of queries on the updated graph,
they may incur significant latency that keeps growing as the
graph expands and more interesting queries are identified.

In this paper, we present BEAD — a Batched graph query
processing system for Evolving Analytics Demands. Unlike
MultiLyra and Quegel, BEAD leverages a set of incremental
evaluation techniques to minimize the cost of reevaluation in
the presence of graph growth and/or query additions.

Let Fval(G,Q) — R denote the evaluation of a batch of
queries @ on graph G with results R, a basic functionality
of MultiLyra. BEAD generalizes the capabilities of MultiLyra
by efficiently handling evolving analytics demands. Assume
the initial graph is Gy, the initial query batch is )y, and
their evaluation Fval(Gy, Qo) yields results Ry. Then, the
graph grows with a set of additions A, which may include
new edges and/or vertices. Instead of fully reevaluating Qg
on the new graph Gy + A as in MultiLyra, BEAD exploits
prior results Ry to incrementally evaluate Gy + A, denoted as
Inc(Go+A, Qo, Rp). In addition to the growing graph Go+A,
new queries of interests ¢ are also added to the query batch
occasionally, that is, Qg + 6. Even in this scenario, BEAD
can still manage to leverage prior results Ry to streamline
the full evaluation Eval(Gy + A, Qo + ) to an incremental
evaluation Inc(Gop + A, Qo + J, Ry), without compromising
the correctness of the results.

Figure 1 illustrates how a sequence of requests are handled
by BEAD and how they can be evaluated, though inefficiently,
using MultiLyra. In this example, after the initial evaluation of
queries on the original graph, first reevaluation is required due
to changes in graph (A;), then due to changes in both graph
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Fig. 1. BEAD vs. MultiLyra: Evaluating sequence (Go, Qo), (Go+A1,Qo),
(Go+ A1+ A2,Qo + 01), (Go + A1 + Az + Az, Qo + 1), for results
Ro, R1, Rs, and R3.

and query batch (Ay and §7), and finally due to changes in
the graph (Agz). In Figure 1(a), BEAD efficiently evaluates the
queries by taking advantage of the query results from the prior
evaluation, while in Figure 1(b) MultiLyra evaluates queries on
the corresponding graphs independently from scratch.

Furthermore, in the presence of new user request while the
old is still being processed (i.e., user interruption), instead
of waiting for the previous request to finish, BEAD permits
anytime evaluation of the new request Eval(Go+ A, Qo+ 9)
using the unconverged results from Fval(Gy, Qo), denoted as
~Ry. That is, before the convergence of (Jy on Gg, user may
interrupt the evaluation, make additions to the graph and the
query batch, and carry out new evaluation incrementally.

We have developed a prototype of BEAD that builds upon
the MultiLyra prototype and compared their performance on
multiple input graphs and multiple kinds of graph queries.
Experiments demonstrate that BEAD’s batched evaluation of
256 queries, following graph changes that add up to 100K
edges to a billion edge Twitter graph and also query changes
of up to 32 new queries, outperforms MultiLyra’s batched
evaluation by factors of up to 26.16x and 5.66x, respectively.

II. RELATED WORK

Most relevant works include Quegel [20], MultiLyra [12],
and SimGQ [16]. First, these three systems do not provide the
capabilities supported by BEAD. Since SimGQ is for shared-
memory, it has limited scalability. Although Quegel evaluates
multiple queries, its employment of expensive indexing pre-
vents it from accepting graph changes which can invalidate
the existing indexing results. Also, Quegel’s applicability
is limited to point-to-point queries [19] as opposed to the
more computation-intensive point-to-all queries targeted by
BEAD, MultiLyra, and SimGQ. Also note that the query
batching in BEAD is different from query evaluation over
streaming graphs [13], [14]. First, BEAD performs continuous
evaluation of a batch of queries, that is, following updates, the
queries must be reevaluated. In contrast, in streaming graphs,
individual queries are evaluated (not batches) and they are
evaluated only upon request (not continuously). Finally, [15]
evaluates a batch of queries but it is specialized for BFS and
[4] executes different queries in different processes making it
inefficient in comparison to BEAD, MultiLyra and SimGQ.
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III. BACKGROUND: BATCHING IN MULTILYRA

Distributed platforms offer scalable processing of large
graphs by partitioning them across machines. MultiLyra [12]
adopts the hybrid-cut graph partitioning strategy first intro-
duced by PowerLyra [3]. For low-degree vertices, it distributes
the vertices along with their edges evenly among machines
(i.e., edge-cut). For high-degree vertices, it distributes their
edges evenly among machines (i.e., vertex-cut) to better bal-
ance the workload. When a high-degree vertex is partitioned
and replicated across multiple machines, one of the replicas is
selected as the master and the rest become the mirrors.

MultiLyra follows the GAS (Gather-Apply-Scatter) model
first introduced in PowerGraph [5] to perform BSP-style
iterative graph computations. For simultaneously processing a
batch of queries, like n SSSP queries: {SSSP(v;1), SSSP(vs),
-+, SSSP(v,,)}, MultiLyra maintains a unified active list such
that a vertex is active if it is active for at least one of the
queries in the batch. For a single active vertex, it integrates the
processing of all queries in the batch to amortize the overhead
across queries. Algorithm 1 summarizes the iterative algorithm
— Line 3 initializes the unified_activeList for a given
batch of queries, Lines 4-10 initialize the activeness statuses of
queries based on the selected tracking mode (discussed later),
vertex values are initialized by Lines 12-14, and Lines 15-21
show the main loop of iterative graph processing. Next we
summarize the basic steps of batched evaluation (S to Ss):

— S1: Exch-Batch. In this step, all the local mirrors that
were scheduled to be active for the current iteration send an
activation message to their masters that reside on the remote
machines, so that the master would be informed to become
active. Note that one single activation message is sufficient
per local mirror to cover all the queries.

— S5 Recv-Batch. All the masters that are either informed
by their local neighbors or through an activation message are
added to the unified_activeList. After that, each of

Algorithm 1 Batching in MultiLyra — The GAS model.

1: function EVAL(G, Q, mode)

2 > Initialize the unified list with source vertices of n queries

3 unified_activeList <— (v1,v2, ..., Un)

4: if mode == IQT then

5: > .S; is a bitset indicating active queries for vertex ¢

6: q_status < (S1, S2, ..., Sn) where S;.set_bit(7)

7: else > mode = FQT
8: > s; is a bit indicating if query ¢ is still unfinished

9: q_status < (81,52, ..., Sn) where s; =1

10: end if

11: > Initialize the vertex values

12: for each vertex v € G do

13: R[v][] < INIT_VAL

14: end for

15: while !unified_activeList.empty() do

16: Exch_Batch(g_status) > Sq
17: unified_activeList, q_status <— Recv_Batch() > So
18: Gather_Batch(g_status, mode) > S3
19: Apply_Batch(g_status, mode) > Sy
20: Scatter_Batch(g_status) > Sy
21: end while
22: return R

23: end function




them sends one single activation message to their mirrors to
inform them participating the gather phase.

So far, the first two steps have made an consensus on which
vertices are active in the current iteration. Based on this, the
next three steps perform the GAS operations.

— S3: Gather-Batch. All the active vertices, including both
mirrors and masters, on each machine collect data along their
incoming edges for all the queries in the batch. In addition, the
mirrors send their portion of the locally gathered data to their
masters, via a data message, so that the masters are aware of
all the data they need globally for the Apply-Batch.

— Sy Apply-Batch. Based on the collected data from the last
step, values of all vertices (except mirrors) are first updated
(depending on the graph applications) for all the queries. Then,
to maintain the consistency across machines, when a vertex
value is updated by at least one of the queries, the vertex
values of all queries are sent to their mirrors in one aggregated
data message to reflect the updates. Along with this message,
one single activation message is also sent to the mirrors for
the following-up scattering step.

— Ss: Scatter-Batch. All active vertices (including mirrors
and masters) whose values have changed at least for one of
the queries during S4 inform (schedule) their out-neighbors
for processing in the next iteration, which may include both
local masters and local mirrors of remote vertices.

The above five steps form the basic version of MultiLyra.
Given an active vertex, it performs integrated processing of all
queries in each GAS phase, thus amortizing the overhead.

The basic version maintains a unified active list, which
does not distinguish the active vertices among queries and
is unaware the completion of queries. This leads to wasteful
computations and communications. To improve the efficiency,
MultiLyra provides two optimized ways of tracking the status
of queries and vertices: Finished Query Tracking - FQT tracks
if any of the queries in the batch has been finished; and
Inactive Query Tracking - 1QT tracks which queries need to be
evaluated in one iteration for each vertex. They can skip the
vertex evaluation for finished or inactive queries, respectively.

Vdata[] = [dq; ,dqz,dqs,dqs, das, dgg s dqz; das]

(@) FQT Q_Status: (U,F,U,U,U, F,U,U)
Data_Msg : [dq; ;dq3,dqs,das, dar, das)
Q_Status[v] :(I,, F, I,, U, I, F, I,, U)

b) 1IQT
®) 1Q {Data_Msg: [dqa,dqg] + 00010001

Fig. 2. Data Message Compression. F' indicates the query has finished, U
indicates the query has not finished and is still running, and I,, indicates that
query is inactive for active vertex v in the current iteration.

Moreover, these two fine-grained tracking methods enable
MultiLyra to support compressed data messages, as shown in
Figure 2. These strategies use one bitset or array of bitsets,
for FQOT or IQT respectively, to hold the statuses of queries
in the running batch (Algorithm 1 lines 4-10) and keeping it
updated along with the active list in Recv_Batch.
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In general, IQT works better for large batches of queries in
the scenario where a high ratio of queries have not finished
but are inactive for many vertices. So the performance benefits
of IQT can easily eclipse its tracking overhead. FQT, on the
other hand, works more efficiently for the small batch sizes.

IV. BEAD: SUPPORTING BATCHING FOR EVOLVING
ANALYTICS DEMANDS

Next we introduce BEAD which generalizes MultiLyra and
adapts its batching strategies to scenarios of evolving analytics
demands — growing graphs and batch of queries.

A. Batching with Graph and Query Updates

As the graph grows by A, it becomes natural that the user
wants to expand the query batch with new interesting queries,
denoted as 4. Given the full evaluation of query batch ()¢ on
graph Gy: Eval(Go, Qo) — Ry, this subsection shows how
BEAD handles expansion of the graph and/or the query batch,
that is, [ﬂC(GO + A, Qo + 5, Ro) — R;.

BEAD carries out the incremental evaluation for the new
query batch Qg + 0 on the evolved graph Gy + A, by using
the existing result Ry. The key lies in the suitable initialization
of the vertex values, query tracking bitsets, and the list
of active vertices. The incremental evaluation can be either
simultaneous or ordered. Each policy has its own advantages.
Next, we discuss the policies supported by BEAD in detail,
then present an integrated algorithm that can be run under
different modes and employ different policies.

Policy I: Simultaneous Evaluation — In this scenario, both
changes in graph and queries (i.e., A and ¢) are considered
simultaneously by BEAD. That is, BEAD evaluates the new
queries § alongside the old queries )y in one evaluation
as a larger batch QQy + § on the larger graph Gy + A, in
a way that the existing Ry can be leveraged. The rationale
for simultaneous evaluation is that considering all changes
together may lead to fewer iterations.

Policy II: Ordered Evaluation — In comparison, this option
considers A and ¢ in an order: either A-first or J-first. In the
case of A-first, BEAD first computes the results of Qg on
Gy + A till convergence, then evaluates Qg+ 6 on G+ A till
convergence. By contrast, J-first ordering does the opposite.
The rationale for using ordered approaches is that, in the case
where A is much more significant than J, computing them
separately allows IQT and FQT to be used for handling A
and 6, respectively.

Algorithm 2 describes the incremental evaluation of BEAD
that directly supports Policy I, but it can be used to emulate
and thus support Policy II as well (shown later).

Expanding Data Structures — The number of values stored
at each vertex is grown by the number of new queries (Line
20), the same happens to the g_status array (Line 28).

Initialization for the New Queries — All the vertex values
corresponding to the new queries are set to the initial value
INIT_VAL (Line 21-22). After that, the source vertices of all
the new queries are also added to the unified_activList to start
the evaluation of new queries (Line 29). In addition, if IQT



Algorithm 2 BEAD: Reevaluating for Both Graph and Query
Updates (Go + A, Qo + 9).
1: function INC(Go, Qo, Ro, A, §, mode)

2: G «+ Go.update(A) > Add new edges and vertices
3: Q1 + Qo.update(d) > Add new queries
4: Ry < Initialize(G1, Q1, Ro, A, §, mode)

S: Vioia < Source vertices of the top three high out-degree € Qo

6: while !unified_activeList.empty() do

7: > Computelteration() performs steps S through Sy

8: Computelteration(g_status, mode)

9: if 6 # ¢ then

10: Update(Vy4, R1,9, Ro)

11: end if

12: Scatter_Batch(g_status) > Sp
13: end while

14: return R

15: end function

16: function INITIALIZE(G1, Q1, Ro, A, §, mode)

17: > Initialize Ry

18: R .set_size(G1.num_vertices())

19: for each vertex v € G and each ¢ € Q1 do

20: Ri[v].set_size(Q1.size())

21: if v € A or g € § then > v Or g are new
22: Ri[v][q]  INIT_VAL

23: else > Otherwise initialize R1 using R
24; R [v]lq] « Rolv]ld

25: end if

26: end for

27: > Initialize unified_activeList with all the affected vertices
28: _status.add_bitset_size_by(d.size())

29: unified_activeList <— source vertices vgq of all ¢ € §

30: if mode == IQT then

31: for each ¢ € § do g_status[vg].set_bit(q)

32: end if

33: for each e € A do

34: v < e.dest()

35: unified_activeList <— unified_activeList U v

36: if mode == IQT then

37: q_status[v].set_all()

38: end if

39: end for

40: if mode == FQT then

41: q_status.set_all();

42: end if

43 return R;

44: end function

45: function UPDATE(V,;4, R1,9, Ro)

46 if any v, € Vo4 has been activated by any q € § then
47: > Send the current data of vy, to other machines

48: ClusterSynced(R1 [vora][])

49: > Update current value of all vertices for queries in §
50: > Using equations in Table I

51: R; < UpdateUsingRo(R1, 0, Ro, vo1d)

52: end if

53: end function

TABLE I
EQUATIONS USED IN UPDATEUSINGRo() (ALGORITHM 2 - LINE 51)
TO UPDATE VERTICES FOR ANY NEW QUERY ¢ € § WHICH REACHES THE
SOURCE VERTEX v,;q OF A QUERY ¢o1q IN Q.

’ Algo. H Update Equation ‘
SSSP R1[v][g]=Min(R1[v][q], R1[veid]lg]+Ro[v][gotal)
SSWP || Ri[v][g]=Max(R1[v][g], Min(R1[vor4l(g], Ro[v](go1al))
Viterbi || R;1[v][g]=Max(R1[v][q]. Ri1[vera][q]X Ro[v][gora))
BFS R1[v][g]=Min(R1[v][q], R1[veid]lg]+Ro[v][gotal)
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is selected, it sets the corresponding bit for each new query —
initializing the statuses of new queries to be active.

Enabling Indirect Incremental Computations — In addition,
BEAD manages to take advantage of old results Ry to achieve
faster convergence for the new queries in §. As shown in
Algorithm 2 (Line 9-11), a new step, called Update, is inserted
to the main loop right before Scatter-Batch, which updates all
vertex data of new queries using the equations from Table I
for faster convergence. In specific, one old query ¢,iq € Qo
is selected and its results are used by the update equations to
improve all the vertex values of a new query q. However, to
apply the update equations, the source vertex of g,;q should
be reachable from the source vertex of q — the source vertex
of qoiq should be activated by the new query in the current
iteration (Line 46). One intuitive heuristic for selecting the
old query q,q4 is selecting the one with the highest out-degree
source vertex who is more likely to be reached by a new query.
In our case, BEAD selects three queries whose source vertices
have the top three out-degrees (Line 5). Finally, before apply
the update equations (Line 51), the results of the selected old
query need to be synchronized across machines (Line 48).

Now we present how Algorithm 2 can be used to emulate
different policies: simultaneous evaluation (i.e., A||d); A-first
evaluation (i.e., A — §); and J-first evaluation (i.e., § — A).

Al|S
EVALUATE Inc(Go + A, Qo + 6, Ro) — R
By Calling Algorithm3::Inc(Go, Qo, Ro, A, 6, IQT)
A—9
EVALUATE Inc(Go + A, Qo, Ro) — Fa
By Calling Algorithm3::Inc(Go, Qo, Ro, A, ¢, IQT)
EVALUATE Inc(Go + A, Qo + 6, R1) — R
By Calling Algorithm3::Inc(G1, Qo, R1, ¢, 6, FQT)
66— A
EVALUATE Inc(Go, Qo + 0, Ro) — Ri
By Calling Algorithm3::Inc(Go, Qo, Ro, ¢, 9, FQT)
EVALUATE Inc(Go + A, Qo + 6, R1) — R
By Calling Algorithm3::Inc(Go, Q1, R1, A, ¢, IQT)

As shown above, by feeding an empty set ¢ alternatively to
Algorithm 2, both ordered evaluations can be realized. Note
that we do not list FQT for A||d, as it does not perform as
well as IQT, for the reasons we mentioned earlier.

B. Interruption Handling

Finally, we consider the situation in which the user presents
a new request while the prior is still being processed. One
way to handle this interruption is waiting for the old request
(say A; and §71) to converge then starting the processing of
the new request (say Ao and d2), which we referred to as
following convergence. Instead of waiting for the old request
to complete, BEAD chooses to merge the processing of both
the old and new requests, such that the total processing time
could be reduced. We refer to this more proactive option
as anytime interruption. Algorithm 3 describes how anytime
interruption works in the presence of a new user request while
the old request is being processed. Right after the new request
interruption is received, BEAD combines the new request with



the old meanwhile leveraging the current intermediate results
of the old request (i.e., ~R1).

Algorithm 3 BEAD: Reevaluating for Anytime Simultaneous
Update (Go + A,Qo + 9).

1: function INTERRUPTHANDLING(G1, Q1,~R1, mode)
2: A’ §' + Userlnterrupt.get_new_request()
: G1 < G1.update(A’) > Add new edges and vertices
Q1 + Q1.update(§’) > Add new queries
> Reinitialize R1 based on prior unfinished results ~R1
R; <+ Initialize(G1,Q1,~R1, Al, &', mode)
: return R;
end function

3
4
5:
6:
7
8:

V. EXPERIMENTS

Experimental Setup - We developed BEAD by integrating
the implementations of incremental evaluation algorithms into
the MultiLyra [12]. Our evaluation covers four common graph
applications - Single Source Shortest Path (SSSP), Single
Source Widest Path (SSWP), Breadth First Search (BFS), and
Viterbi (VT) [8]. Two input graphs include Twitter (TT) [2],
[7] with 2 billion edges and LiveJournal (LJ) [1], [9] with 69
millions of edges. We generated queries by randomly selecting
source vertices. Experiments were run on a cluster of four
homogeneous machines with 32 Intel Broadwell cores and
256GB memory, and CentOS Linux release 7.4.1708.

We compare BEAD against the MultiLyra baseline under
the following scenarios. A part of the graph (50%, 70% and
90%) is randomly selected from the full graph and chosen as
Gy, the first version of the graph. Then, additional portions
of the graph are added to G in batches of A to emulate a
growing graph. All the A batches were randomly chosen of
different sizes — 1k, 10k, 100k for LJ and 10k, 100k, and 1000k
edges for TT; Since TT has roughly ten times the number of
vertices as LJ, A sizes chosen for TT are ten times that of LJ.
Additional ¢ queries are added to g to reflect the growing
batch of queries. These additional randomly chosen § queries
are added to g in increments of 8, 16 and 32 queries.

As BEAD is built on top of MultiLyra, to be self-contained
and to demonstrate the promises of batching evaluation, we
briefly report the baseline performance (more details in [12]).

A. MultiLyra — Scalability with Batch Sizes

We first show the benefits of batching achieved by MultiLyra
for Gy (50%, 70%, 90%) during the evaluation of a total of 256
SSWP queries. For each G (of LJ), we ran the SSWP queries
first one by one (i.e., non-batching which is equivalent to
PowerLyra [3]) and then in batches of 64, 128, and 256 queries
(in IQT mode). Table II shows execution time in seconds and
the speedups of batching over non-batching. The results show
that batching in MultiLyra brings more speedups as the batch
size increases, meanwhile the gains decreases as the batch size
approaches 256 queries (more details in [12]). Also note that
the total number of iterations is reduced dramatically, as the
number of iterations for a batch of queries is determined by
the “slowest” query, rather than the sum of those for all the
queries as in the non-batching case.
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TABLE 11
TOTAL EXECUTION TIME OF RUNNING 256 SSWP QUERIES USING
MULTILYRA ON LJ TO COMPUTE Eval(Go, Qo) — Ro
WITH VARYING BATCH SIZES.

Go Batch Size #Iter. | Time (s)
1(non-batching) 9286 2759.42 | Speedup
50% 64 400 538.48 5.13x%
128 200 432.81 6.38 X
256 100 431.58 6.39%
1(non-batching) 9420 2462.62 | Speedup
70% 64 400 592.93 4.15%
128 200 495.03 4.98x
256 100 457.38 5.38x%
1(non-batching) 10060 2713.6 | Speedup
20% 64 400 642.39 4.22%
128 200 527.05 5.15x%
256 100 483.57 5.61x%

B. Graph Updates: BEAD vs. MultiLyra

In this section, we compare the handling of graph updates
A by BEAD that incrementally reevaluates batch of queries
Qo, with MultiLyra that must evaluate queries )y on graph
Go+ A from scratch. Table III presents the speedups obtained
by BEAD over MultiLyra for evaluating 256 queries in a single
batch on the updated graph Gy+ A, where Gy is 50% and A is
set to 100K edges and 10K edges for TT and LJ, respectively.
Both BEAD and MultiLyra ran in /QT mode. The last column
of Table III reports the execution time for MultiLyra.

Speedups delivered by BEAD range from 6.21x for SSWP
to 26.16x for SSSP on TT and from 3.99x for Viterbi to
5.34x for SSSP on LJ. Note that generally higher speedups are
achieved for the larger TT graph than for the smaller LJ graph.
This indicates that the savings in work achieved by BEAD’s
incremental algorithm are greater for the larger TT graph. The
overall speedup for SSWP on TT is lower than those of the
other three graph algorithms. This is because a few queries in
Qo take much longer to converge than the rest of the queries
for SSWP — note the very high number of iterations for SSWP
shown in #Iter column in Table IIl. Consequently, for most
iterations, only a few queries are actually active (25 active
queries after iteration 15), limiting the benefits of batching.

Next, we perform more detailed experiments, for SSSP on
TT and SSWP on LJ, to study the sensitivity of performance
benefits (BEAD over MultiLyra) with respect to a number of
factors, including: (a) Varying A — for TT, this was varied
across 10k, 100k, and 1000k while for LJ it was varied across
1k, 10k, and 100k; (b) Varying the size of Gy — for both

TABLE III

SPEEDUPS OF BEAD OVER MULTILYRA WHEN COMPUTING
Inc(Go + A, Qo, Ro) GIVEN Eval(Go, Qo) — Ro, WHERE Gg = 50%.

G Graph || Batch A BEAD MultiLyra
o Algo. Size Speedup [ #Iter | Exe. Time
SSSP 256 100K 26.16x | 11 1141.5s
TT SSWPp 256 100K 6.21x | 100 2753.6s
(50%) BFS 256 100K 15.00x | 7 510.2s
VT 256 100K 18.61x | 21 1506.9s
SSSp 256 10K 5.34x | 26 337.7s
LJ SSwp 256 10K 4.15x | 45 431.6s
(50%) BFS 256 10K 4.00x | 11 111.0s
vT 256 10K 3.99x | 19 195.0s




TT and LJ this was varied across 50%, 70%, and 90%; (c)
Varying batch size — the 256 queries were run in one batch
of 256, 2 batches of 128, and 4 batches of 64; and (d) using
IQT vs FQT. Table IV and Table V present the results for
SSSP on TT and Table VI and Table VII present the results
for SSWP on LJ. The speedups are calculated by comparing
the execution time of each configuration with the execution
time of the corresponding MultiLyra configuration.

Following are our observations from the above experiments.

(a) Sensitivity to Varying A — As the size of changes to
graph increases, the speedup of the incremental evaluation
decreases since more computation is needed to reach conver-
gence. Table IV shows that BEAD on SSSP, for Gy = 50%,
achieves a maximum speedup of 33.37x when A = 10K and
a minimum speedup of 7.86x when A = 1000K. Similar
trend is also observed for SSWP on LJ (see Table VI).

(b) Sensitivity to Varying G — Table IV and Table VI show
that BEAD’s speedups decrease when larger portions of the
graph are loaded as Gy. Since larger parts of the graph are
more connected for larger Gy, it starts longer evaluation waves
through the graph as the graph grows. These tables show the
maximum speedups of: 33.37x for Gy = 50% vs. 25.91x for
Go = T0% for SSSP on TT; and 4.53x for Go = 50% vs.
4.34x for Gy = 70% for SSWP on LJ.

(c) Sensitivity to Varying (o — We ran 256 queries divided
into varying batch sizes to study impact of varying Qg size.
Our results from Table IV and Table VI show that although
BEAD’s speedups for different sizes of (g vary, the variation
across different A sizes is mostly small and no specific size
of Qo gives the best speedups across different A sizes.

(d) Sensitivity to IQT / FQT — As mentioned earlier, /QT and
FQT are two modes of evaluation that enable the opportunities
to shrink not only the amount of computations but also the
amount of data communicated between master and mirror
vertices hosted on different machines. To examine if these two
modes are still relevant during BEAD’s incremental evaluation
as the graph grows, we collected the number of messages
communicated, as shown in Table V and Table VII. After
dividing these messages according to their type, Active vs.
Data, it can be seen that 60-84% of the communications are in
form of Data messages which is similar to our observations for
non-incremental MultiLyra communication in [12]. Thus, as in
case of MultiLyra, during incremental evaluation IQT typically
outperforms FQT. The only exception is Table VI where,
for small query batch size and/or small As, FQT performs
slightly better by leveraging its low tracking overhead while
IQT performs better in larger batch sizes and As.

C. Graph and Query Updates: BEAD vs. MultiLyra

In this section, we evaluate BEAD when both the graph and
the batch of queries simultaneously grow. We evaluate all three
policies discussed earlier in Section IV-A: (i) applying graph
change then the query change (A — 4), (ii) applying the query
change then graph change (6 — A), and (iii) simultaneously
applying both changes (A||§). The initial setup is running an
original batch of 256 queries (Q)o) for different algorithms on
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50% of TT and LJ (Gy). The new batch of queries § can be
of size varying among 8, 16, and 32, while the graph updates
A are set to 100K for TT and 10K for LJ. Table VIII shows
the speedups of BEAD under the three policies. The baseline
execution times were collected by running the same batch of
Qo + 0 queries on the updated graph G + A using MultiLyra.

As shown in Table VIII where the best speedups are marked
in red, the ordered evaluation (A — 6 and § — A) ob-
tains better performance comparing to simultaneous evaluation
(Al]|d). The reason can be understood as follows. During
the simultaneous evaluation, the new queries (§) and old
queries ((Qo) are merged into a larger batch (Qy + 6). As
the old queries were started earlier than the new queries, their
vertex values tend to converge earlier. Once their values are
converged, they become the overhead of the following iterative
evaluation, slowing down the progress of the new queries.
Next, we examine how the ordering between the graph updates
and query updates affects performance, i.e. A — § vs. § — A.

A-First vs. §-First Evaluation — As indicated in Table VIII
under columns A — § and § — A, in general, whether
applying the graph change A at the first place for @y or
at second place for QQp + § with the availability of stable
results from the previous step only makes limited differences
in performance. However, since the evaluation of sub-batch
0 starts from scratch (despite the use of indirect incremental
computations), it could take more iterations to traverse the
changed graph G+ A than the original graph G¢. This effect
is more significant when the original graph G is relatively
small or the graph change A is relatively large. In our setup,
graph TT is about 29X larger than LJ in terms of the number of
edges, but its update batch size is only 10X larger than that of
LJ. Consequently, as shown in Table VIII, when comparing the
speedups on TT, with the those on LJ, §-First evaluation works
better on TT, whereas A-First evaluation shows superiority on
LJ, the smaller graph. For example, A-first evaluation obtains
a maximum speedup of 5.39x for SSSP on TT whereas §-first
evaluation achieves a maximum speedup of 3.28x for SSSP
on LJ. Note that the speedups after including new queries §,
in addition to graph updates A, are lower than those with
only graph updates (comparing to Table III) because although
queries in )y terminate rapidly, the queries in § being new
take much longer time.

D. Interruption Handling

Finally, we evaluate BEAD in the scenario of interruption
— a new request (say Ao and J3) arrives in the middle of the
incremental evaluation for the prior request (say evaluating Qg
+ 01 on graph G + A;). For this evaluation, we first ran 256
queries ((Q)q) for each algorithm on the 50% input graphs (Gg)
using BEAD. Then, we let BEAD incrementally evaluate the
first request — the updated query batch Qg+ d;1 on the updated
graph Go+Aq, where §; = 16 and A is 100K for TT and 10K
for LJ. After that, in the middle of this evaluation, at the points
when 50%, 75%, and 100% of the evaluation has been done (in
terms of elapsed time), the second request (Ao and d5) from
the user interrupts BEAD and asks for updated evaluation, that



TABLE IV
SENSITIVITY STUDY OF RUNNING SSSP ON TT USING BEAD WHEN
GRAPH CHANGES: Inc(Go + A, Qo, Ro) GIVEN Eval(Go, Qo) — Ro.

TABLE V
EXTRA NUMBER OF COMMUNICATIONS NEEDED FOR RUNNING SSSP
ON TT USING BEAD WHEN GRAPH CHANGES TO COMPUTE:
InC(G() + A, Qo, R()) GIVEN E’Ual(G(), Q()) — Rp.

Mode
1QT FQT Message Type
[ Go [ A [ #XQg [#iter.| Time (s) [ Speedup || Speedup [ Go | A [#XQo ]| Active | Data [Total (x10°)]

4 x 64 37 69.46 27.79 x 27.77x 4 x 64 20.54% | 79.46% 0.04

10K 2 x 128 19 47.59 33.37x 31.59x 10K 2 x 128 20.82% | 79.18% 0.03

1 x 256 10 41.36 27.60x 27.09x 1 x 256 21.08% | 78.92% 0.03

4 x 64 44 65.11 29.65x 22.58x 4 x 64 20.09% | 79.91% 0.57

50% | 100K | 2 x 128 22 50.44 31.49x 26.12x 50% 100K 2 x 128 20.79% | 79.21% 0.44
1 x 256 11 43.63 26.16 x 25.45x% 1 x 256 21.22% | 78.78% 0.36

4 x 64 72 126.32 15.28% 13.75% 4 x 64 21.54% | 78.46% 69.02

1000K | 2 x 128 40 121.26 13.10x 10.04 x 1000K | 2 x 128 21.67% | 78.33% 67.06

1 x 256 23 145.30 7.86x 5.26x 1 x 256 21.74% | 78.26% 65.74

4 x 64 40 81.24 24.15% 20.63x 4 x 64 18.72% | 81.28% 0.05

10K 2 x 128 22 60.09 2591x 21.78x 10K 2 x 128 19.37% | 80.63% 0.03

1 x 256 12 52.08 25.07x 24.47x 1 x 256 19.91% | 80.09% 0.02

4 x 64 52 88.78 22.10x 14.32x 4 x 64 21.16% 78.84% 1.16

70% | 100K | 2 x 128 29 68.92 22.59x 17.43x 70 % 100K 2 x 128 21.49% | 78.51% 1.08
1 x 256 16 63.52 20.56 x 20.27 % 1 x 256 21.73% | 78.27% 1.01

4 x 64 66 122.00 16.08 x 14.39x 4 x 64 20.04% 79.96% 32.47

1000K | 2 x 128 34 90.33 17.24x 13.24x 1000K | 2 x 128 20.01% | 79.99% 24.02

1 x 256 17 83.59 15.62x 12.93x 1 x 256 19.94% | 80.06% 14.80

4 x 64 32 84.88 25.64 x 20.26 x 4 x 64 17.28% 82.72% 0.03

10K 2 x 128 18 59.22 27.25x 26.68 x 10K 2 x 128 17.47% | 82.53% 0.02

1 x 256 9 50.01 27.85% 27.72% 1 x 256 17.94% 82.06% 0.01

4 x 64 41 89.27 24.38 x 15.80x 4 x 64 18.66% | 81.34% 0.27

90% | 100K | 2 x 128 22 67.45 23.92x 21.21x 90 % 100K 2 x 128 19.03% | 80.97% 0.19
1 x 256 12 54.53 25.54x 24.29x 1 x 256 19.35% | 80.65% 0.14

4 x 64 50 102.26 21.28 x 17.56 x 4 x 64 18.12% | 81.88% 3.44

1000K | 2 x 128 26 68.95 23.40x 23.07x 1000K | 2 x 128 18.64% | 81.36% 2.67

1 x 256 14 61.96 22.48x 20.48 x 1 x 256 19.02% | 80.98% 2.09

TABLE VI TABLE VII

SENSITIVITY STUDY OF RUNNING SSWP ON LJ USING BEAD WHEN
GRAPH CHANGES: Inc(Go + A, Qo, Ro) GIVEN Eval(Go, Qo) — Ro.

EXTRA NUMBER OF COMMUNICATIONS NEEDED FOR RUNNING SSWP
ON LJ USING BEAD WHEN GRAPH CHANGES TO COMPUTE:
Inc(Go + A, Qo, Ro) GIVEN Eval(Go, Qo) — Rp.

Mode
1QT FQT Message Type
[Go | A [#XQg [#ter.| Time (s) | Speedup || Speedup [ Go | A [#XQo [ Active [ Data |Total (x10%)]
4x64 [ 155 11896 4353% 457X 4 x 64 || 39.78% | 60.22% 0.36
1k | 2x 128 || 81 | 103.98 4.16x 4.15x 1K | 2 x 128 || 39.76% | 60.24% 0.34
1x256 || 45 | 107.77 4.00x 4.03x 1 x 256 || 39.68% | 60.32% 0.31
4x64 | 155 11992 7.49% 436x 4 x 64 || 37.98% | 62.02% 0.38
50% | 10k | 2 x 128 || 81 | 102.14 4.24% 4.36x 50% | 10K | 2 x 128 || 38.77% | 61.23% 0.35
1 x256 || 45 | 103.75 4.15x 4.21x 1 x 256 || 39.14% | 60.86% 0.32
4x64 | 155 | 12693 424 209 4% 64 | 1585% | 84.15% 2431
100k | 2 x 128 || 81 | 109.28 3.96% 3.31x 100K | 2 x 128 || 15.82% | 84.18% 24.18
1x25 || 45 | 126.77 3.40x 2.81x 1 x 256 || 15.78% | 84.22% 24.09
4x 64 [[I78 [ 13675 434% 424% 4% 64 |[ 3591% | 64.09% 0.26
1k | 2x 128 || 130 | 168.99 2.86% 2.89x 1K | 2 x 128 || 3596% | 64.04% 0.26
1x25 || 73 | 171.02 2.67x 2.55x 1 x 256 || 35.77% | 64.23% 0.25
4x64 || 178 | 14220 IT7x 414% 4% 64 || 34.66% | 65.34% 027
70% | 10k | 2 x 128 || 130 | 167.32 2.89% 2.90x 70% | 10K | 2 x 128 || 3532% | 64.68% 0.27
1x25 || 73 | 178.26 2.57x 2.53x 1 x 256 || 3543% | 64.57% 0.25
4x6d4 || 178 13746 43Tx 426X 4x 64 || 2693% | 13.07% 0.43
100k | 2 x 128 || 130 | 168.05 2.88x 2.87x 100K | 2 x 128 || 30.34% | 69.66% 0.35
1x25 || 73 | 175.88 2.60% 2.33% 1 x 256 || 32.49% | 67.51% 0.29
4x 64 [[ 265 23374 275% 2.93% 4% 64 |[3493% | 65.07% 0.45
1k | 2x 128 || 140 | 21856 2.41x 2.16x 1K | 2 x 128 || 35.02% | 64.98% 0.45
1x 256 || 87 | 201.21 2.40x 2.10x 1 x 256 || 35.01% | 64.99% 045
4x 64 [[ 265 | 23371 2.75% 287X 4x 64 || 3430% | 65.70% 0.47
90% | 10K | 2 x 128 || 140 | 226.76 2.32x 2.04x 90% | 10K | 2 x 128 || 34.70% | 65.30% 0.46
1x 256 || 87 | 203.87 2.37x 2.03x 1 X 256 || 34.84% | 65.16% 045
4x 64 || 265 | 25506 2.52% 247X 4% 64 || 1534% | 84.66% 16.08
100K | 2 x 128 || 140 | 229.02 2.30% 2.06x 100K | 2 x 128 || 15.33% | 84.67% 15.99
1x256 || 87 | 22771 2.12x% 1.76x 1 x 256 || 15.32% | 84.68% 15.94
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TABLE VIII

SPEEDUPS OF BEAD OVER MULTILYRA ON SIMULTANEOUS GRAPH AND QUERY UPDATES:
COMPUTING Inc(Go + A, Qo + 8, Ro) GIVEN Eval(Go, Qo) — Ro, WHERE Go = 50% AND Qo = 256.

BEAD BEAD
A—d | —A Ao A—6 | d—A Ao
[ G [ Algo. [ A T & [l Speedup [Speedup | Speedup [Multilyra][ G | A [ & [[Speedup | Speedup [ Speedup | MultiLyra |

8 5.39x 5.28% 2.67x 1241.6s 8 3.19x 3.28% 2.18x 343.3s
SSSP | 100K | 16 4.94 x 5.02% 2.50x 1303.0s 10K | 16 2.92x 2.74x 1.86 % 363.5s
32 3.88x 4.02x 2.25% 1429.1s 32 2.65x 2.60x 1.85x 399.9s
8 5.57x 5.66 %X 5.01x 2891.6s 8 3.23x 3.25% 2.66x 456.6s
SSWP | 100K | 16 5.42x 5.39x 4.84x 2887.0s 10K | 16 3.20% 3.09x 2.43x 471.5s
TT 32 5.33x 4.98 % 4.30% 3131.8s Ly 16 2.96x 2.76 x 2.28% 469.4s
8 5.10x 5.39x 2.89x 543.7s 8 2.73%x 2.65% 1.80% 112.6s
BFS 100K | 16 4.02x 4.21x 2.28% 562.7s 10K | 16 2.69 x 2.53x 1.65x 121.3s
32 3.24x 3.46x 2.08x 571.4s 32 2.40x 2.38x 1.51x 125.4s
8 4.13x 4.25% 2.33% 1571.4s 8 2.88 % 2.73% 2.15% 211.4s
VT 100K | 16 3.39x 3.55x 1.99x 1576.7s 10K | 16 2.52x 2.50x 1.82x 214.0s
32 2.67x 2.79x 1.80x 1725.8s 32 2.16x 2.03x 1.74x 221.0s

TABLE IX REFERENCES

PERFORMANCE OF BEAD UNDER USER INTERRUPTIONS
COMPUTING Inc(Go + A1 + Az, Qo + 61 + d2, Ro) IN TWO REQUESTS
GIVEN Eval(Go, Qo) — Ro, WHERE Go = 50%.

Latency (Seconds)

Interruption Points
[ G [ Algo. H Qo [ Aq1:01 [ A2:02 50% [ 75% [ 100%
SSSP || 256 | 100K:16 | 10K:8 | 469.94 | 465.49 | 489.41
TT SSWP || 256 | 100K:16 | 10K:8 667.24 | 719.30 | 795.71
BFS 256 | 100K:16 | 10K:8 215.06 | 208.57 | 231.69
VT 256 | 100K:16 | 10K:8 | 747.49 | 770.42 | 787.78
SSSP || 256 | 10K:16 1K:8 200.12 | 230.57 | 236.12
Ly SSWP || 256 | 10K:16 1K:8 144.53 | 161.26 | 169.83
BFS 256 | 10K:16 1K:8 68.63 82.92 85.14
VT 256 | 10K:16 1K:8 115.24 | 136.44 | 138.18

is, Qo+91+02 on Go+ A1+ As. The 50% and 75% scenarios
correspond to the anytime interruption strategy used by BEAD
whereas the 100% scenario mimics the following convergence
strategy that can be used alternatively (see Section IV-B).

In Table IX the 100% scenario (i.e., following convergence)
ensures that the precise results R; are available to the incre-
mental computation of the second request, while in 50% and
75% scenarios only the approximate results ~R; are available.
We observe that the immediately starting of the second request
using ~R; (i.e., anytime interruption) leads to lower response
latency for the second request. Although using precise results
R; can reduce the work performed in evaluating the second
request, waiting to compute the second request outweighs this
benefit for the 50% and 75% interruption points.

VI. CONCLUSION

In this paper, we generalized our prior work on MultiLyra
to consider scenarios in which analytics demands of the user
evolve. While MultiLyra delivers high performance by solving
batches of queries simultaneously, BEAD achieves the same
in the presence of changes to the graph and/or query set.
Experiments show that BEAD’s batched evaluation of 256
queries after graph and also query changes on TT, outperforms
MultiLyra by factors of up to 26.16x and 5.66.
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