
2020 IEEE International Conference on Big Data (Big Data)

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 461

BEAD: Batched Evaluation of Iterative Graph

Queries with Evolving Analytics Demands

Abbas Mazloumi, Chengshuo Xu, Zhijia Zhao and Rajiv Gupta

Computer Science & Engineering, Univ. of California Riverside

Abstract—Simultaneous evaluating a batch of iterative graph
queries on a distributed system enables amortization of high
communication and computation costs across multiple queries.
As demonstrated by our prior work on MultiLyra [BigData’19],
batched graph query processing can deliver significant speedups
and scale up to batch sizes of hundreds of queries.

In this paper, we greatly expand the applicable scenarios for
batching by developing BEAD, a system that supports Batching
in the presence of Evolving Analytics Demands. First, BEAD
allows the graph data set to evolve (grow) over time, more vertices
(e.g., users) and edges (e.g., interactions) are added. In addition,
as the graph data set evolves, BEAD also allows the user to add
more queries of interests to the query batch to accommodate
new user demands. The key to the superior efficiency offered
by BEAD lies in a series of incremental evaluation techniques
that leverage the results of prior request to “fast-foward” the
evaluation of the current request.

We performed experiments comparing batching in BEAD with
batching in MultiLyra for multiple input graphs and algorithms.
Experiments demonstrate that BEAD’s batched evaluation of 256
queries, following graph changes that add up to 100K edges to
a billion edge Twitter graph and also query changes of up to
32 new queries, outperforms MultiLyra’s batched evaluation by
factors of up to 26.16× and 5.66× respectively.

Index Terms—Distributed Graph Processing, Query Batching,
Evolving Graphs, Evolving Query Batch.

I. INTRODUCTION

Graph analytics is employed in many domains (e.g., social

networks [9], web graphs, etc.) to gain insights from large

data graphs. Since real-world graphs are often large, there has

been a growing interest in developing scalable graph process-

ing systems that exploit parallelism on scalable distributed

platforms (e.g., Pregel [11], GraphLab [10], GraphX [6],

PowerGraph [5], PowerLyra [3], ASPIRE [17], [18]).

In a recent paper [12], we presented MultiLyra, a scalable

graph system that simultaneously evaluates a batch of hun-

dreds of iterative graph queries. It achieves high performance

via aggregated communication strategies and query status

tracking policies, both of which amortize the communication

and computation overhead across queries. The idea of batching

is motivated by the practical scenario [20], where online shop-

ping platforms frequently compute a set of interesting graph

queries involving the most important shoppers over a large

input graph that represents the online shopping behaviors of

all the customers. To meet the needs, Yan and others proposed

Quegel [20], which allows for overlapped execution of a small

set of queries. By contrast, our previously proposed system

MultiLyra expanded the batching capability to simultaneously

evaluating hundreds of iterative queries.

Despite the promises of batched graph query processing, the

existing systems target a static scenario where the input graph

is fixed and the queries of interests are pre-defined. However,

in many real-world scenarios, both the graph and the batch

of queries may evolve. For example, in the scenario of online

shopping, as the system is being used, new customers may join

continuously and the graph representing the online shopping

activities will also continue to grow. Consequently, there is a

need to regularly reevaluate the batch of interesting queries

as the graph grows in size and changes in its structure. In

addition, as the set of customers increases, a need arises to

also grow the set of interesting queries to account for newly

identified important customers. In other words, in the real-

world situation of continuous activity, the system is faced with

Evolving Analytics Demands. While using MultiLyra [12] or

Quegel [20] for such evolving demands are possible by fully

reevaluating the updated batch of queries on the updated graph,

they may incur significant latency that keeps growing as the

graph expands and more interesting queries are identified.

In this paper, we present BEAD – a Batched graph query

processing system for Evolving Analytics Demands. Unlike

MultiLyra and Quegel, BEAD leverages a set of incremental

evaluation techniques to minimize the cost of reevaluation in

the presence of graph growth and/or query additions.

Let Eval(G,Q) → R denote the evaluation of a batch of

queries Q on graph G with results R, a basic functionality

of MultiLyra. BEAD generalizes the capabilities of MultiLyra

by efficiently handling evolving analytics demands. Assume

the initial graph is G0, the initial query batch is Q0, and

their evaluation Eval(G0, Q0) yields results R0. Then, the

graph grows with a set of additions ∆, which may include

new edges and/or vertices. Instead of fully reevaluating Q0

on the new graph G0 + ∆ as in MultiLyra, BEAD exploits

prior results R0 to incrementally evaluate G0+∆, denoted as

Inc(G0+∆, Q0, R0). In addition to the growing graph G0+∆,

new queries of interests δ are also added to the query batch

occasionally, that is, Q0 + δ. Even in this scenario, BEAD

can still manage to leverage prior results R0 to streamline

the full evaluation Eval(G0 + ∆, Q0 + δ) to an incremental

evaluation Inc(G0 + ∆, Q0 + δ,R0), without compromising

the correctness of the results.

Figure 1 illustrates how a sequence of requests are handled

by BEAD and how they can be evaluated, though inefficiently,

using MultiLyra. In this example, after the initial evaluation of

queries on the original graph, first reevaluation is required due

to changes in graph (∆1), then due to changes in both graph

463

them sends one single activation message to their mirrors to

inform them participating the gather phase.

So far, the first two steps have made an consensus on which

vertices are active in the current iteration. Based on this, the

next three steps perform the GAS operations.

– S3: Gather-Batch. All the active vertices, including both

mirrors and masters, on each machine collect data along their

incoming edges for all the queries in the batch. In addition, the

mirrors send their portion of the locally gathered data to their

masters, via a data message, so that the masters are aware of

all the data they need globally for the Apply-Batch.

– S4: Apply-Batch. Based on the collected data from the last

step, values of all vertices (except mirrors) are first updated

(depending on the graph applications) for all the queries. Then,

to maintain the consistency across machines, when a vertex

value is updated by at least one of the queries, the vertex

values of all queries are sent to their mirrors in one aggregated

data message to reflect the updates. Along with this message,

one single activation message is also sent to the mirrors for

the following-up scattering step.

– S5: Scatter-Batch. All active vertices (including mirrors

and masters) whose values have changed at least for one of

the queries during S4 inform (schedule) their out-neighbors

for processing in the next iteration, which may include both

local masters and local mirrors of remote vertices.

The above five steps form the basic version of MultiLyra.

Given an active vertex, it performs integrated processing of all

queries in each GAS phase, thus amortizing the overhead.

The basic version maintains a unified active list, which

does not distinguish the active vertices among queries and

is unaware the completion of queries. This leads to wasteful

computations and communications. To improve the efficiency,

MultiLyra provides two optimized ways of tracking the status

of queries and vertices: Finished Query Tracking - FQT tracks

if any of the queries in the batch has been finished; and

Inactive Query Tracking - IQT tracks which queries need to be

evaluated in one iteration for each vertex. They can skip the

vertex evaluation for finished or inactive queries, respectively.

V.data[] = [dq1
,dq2

,dq3
,dq4

,dq5
,dq6

,dq7
,dq8

]

(a) FQT

{

Q Status : 〈U, F, U, U, U, F, U, U〉

Data Msg : [dq1
,dq3

,dq4
,dq5

,dq7
,dq8

]

(b) IQT

{

Q Status[v] :〈Iv , F, Iv , U, Iv , F, Iv , U〉

Data Msg : [dq4
,dq8

] + 00010001

Fig. 2. Data Message Compression. F indicates the query has finished, U
indicates the query has not finished and is still running, and Iv indicates that
query is inactive for active vertex v in the current iteration.

Moreover, these two fine-grained tracking methods enable

MultiLyra to support compressed data messages, as shown in

Figure 2. These strategies use one bitset or array of bitsets,

for FQT or IQT respectively, to hold the statuses of queries

in the running batch (Algorithm 1 lines 4-10) and keeping it

updated along with the active list in Recv Batch.

In general, IQT works better for large batches of queries in

the scenario where a high ratio of queries have not finished

but are inactive for many vertices. So the performance benefits

of IQT can easily eclipse its tracking overhead. FQT, on the

other hand, works more efficiently for the small batch sizes.

IV. BEAD: SUPPORTING BATCHING FOR EVOLVING

ANALYTICS DEMANDS

Next we introduce BEAD which generalizes MultiLyra and

adapts its batching strategies to scenarios of evolving analytics

demands – growing graphs and batch of queries.

A. Batching with Graph and Query Updates

As the graph grows by ∆, it becomes natural that the user

wants to expand the query batch with new interesting queries,

denoted as δ. Given the full evaluation of query batch Q0 on

graph G0: Eval(G0, Q0) → R0, this subsection shows how

BEAD handles expansion of the graph and/or the query batch,

that is, Inc(G0 +∆, Q0 + δ,R0) → R1.

BEAD carries out the incremental evaluation for the new

query batch Q0 + δ on the evolved graph G0 + ∆, by using

the existing result R0. The key lies in the suitable initialization

of the vertex values, query tracking bitsets, and the list

of active vertices. The incremental evaluation can be either

simultaneous or ordered. Each policy has its own advantages.

Next, we discuss the policies supported by BEAD in detail,

then present an integrated algorithm that can be run under

different modes and employ different policies.

Policy I: Simultaneous Evaluation – In this scenario, both

changes in graph and queries (i.e., ∆ and δ) are considered

simultaneously by BEAD. That is, BEAD evaluates the new

queries δ alongside the old queries Q0 in one evaluation

as a larger batch Q0 + δ on the larger graph G0 + ∆, in

a way that the existing R0 can be leveraged. The rationale

for simultaneous evaluation is that considering all changes

together may lead to fewer iterations.

Policy II: Ordered Evaluation – In comparison, this option

considers ∆ and δ in an order: either ∆-first or δ-first. In the

case of ∆-first, BEAD first computes the results of Q0 on

G0+∆ till convergence, then evaluates Q0+δ on G0+∆ till

convergence. By contrast, δ-first ordering does the opposite.

The rationale for using ordered approaches is that, in the case

where ∆ is much more significant than δ, computing them

separately allows IQT and FQT to be used for handling ∆
and δ, respectively.

Algorithm 2 describes the incremental evaluation of BEAD

that directly supports Policy I, but it can be used to emulate

and thus support Policy II as well (shown later).

Expanding Data Structures – The number of values stored

at each vertex is grown by the number of new queries (Line

20), the same happens to the q status array (Line 28).

Initialization for the New Queries – All the vertex values

corresponding to the new queries are set to the initial value

INIT VAL (Line 21-22). After that, the source vertices of all

the new queries are also added to the unified activList to start

the evaluation of new queries (Line 29). In addition, if IQT

464

Algorithm 2 BEAD: Reevaluating for Both Graph and Query
Updates (G0 +∆, Q0 + δ).

1: function INC(G0, Q0, R0,∆, δ,mode)
2: G1 ← G0.update(∆) . Add new edges and vertices
3: Q1 ← Q0.update(δ) . Add new queries
4: R1 ← Initialize(G1, Q1, R0,∆, δ,mode)
5: Vold ← Source vertices of the top three high out-degree ∈ Q0

6: while !unified activeList.empty() do
7: . ComputeIteration() performs steps S1 through S4

8: ComputeIteration(q status, mode)
9: if δ 6= φ then

10: Update(Vold, R1, δ, R0)
11: end if
12: Scatter Batch(q status) . S5

13: end while
14: return R1

15: end function

16: function INITIALIZE(G1, Q1, R0,∆, δ,mode)
17: . Initialize R1

18: R1.set size(G1.num vertices())
19: for each vertex v ∈ G1 and each q ∈ Q1 do
20: R1[v].set size(Q1.size())
21: if v ∈ ∆ or q ∈ δ then . v or q are new
22: R1[v][q]← INIT VAL

23: else . Otherwise initialize R1 using R0

24: R1[v][q]← R0[v][q]
25: end if
26: end for
27: . Initialize unified activeList with all the affected vertices
28: q status.add bitset size by(δ.size())
29: unified activeList ← source vertices vq of all q ∈ δ
30: if mode == IQT then
31: for each q ∈ δ do q status[vq].set bit(q)
32: end if
33: for each e ∈ ∆ do
34: v ← e.dest()
35: unified activeList ← unified activeList ∪ v
36: if mode == IQT then
37: q status[v].set all()
38: end if
39: end for
40: if mode == FQT then
41: q status.set all();
42: end if
43: return R1

44: end function

45: function UPDATE(Vold, R1, δ, R0)
46: if any vold ∈ Vold has been activated by any q ∈ δ then
47: . Send the current data of vh to other machines
48: ClusterSynced(R1[vold][])
49: . Update current value of all vertices for queries in δ
50: . Using equations in Table I
51: R1 ← UpdateUsingR0(R1, δ, R0, vold)
52: end if
53: end function

TABLE I
EQUATIONS USED IN UPDATEUSINGR0() (ALGORITHM 2 - LINE 51)

TO UPDATE VERTICES FOR ANY NEW QUERY q ∈ δ WHICH REACHES THE

SOURCE VERTEX vold OF A QUERY qold IN Q0 .

Algo. Update Equation

SSSP R1[v][q]=Min(R1[v][q], R1[vold][q]+R0[v][qold])

SSWP R1[v][q]=Max(R1[v][q], Min(R1[vold][q], R0[v][qold]))

Viterbi R1[v][q]=Max(R1[v][q], R1[vold][q]×Ro[v][qold])

BFS R1[v][q]=Min(R1[v][q], R1[vold][q]+R0[v][qold])

is selected, it sets the corresponding bit for each new query –

initializing the statuses of new queries to be active.

Enabling Indirect Incremental Computations – In addition,

BEAD manages to take advantage of old results R0 to achieve

faster convergence for the new queries in δ. As shown in

Algorithm 2 (Line 9-11), a new step, called Update, is inserted

to the main loop right before Scatter-Batch, which updates all

vertex data of new queries using the equations from Table I

for faster convergence. In specific, one old query qold ∈ Q0

is selected and its results are used by the update equations to

improve all the vertex values of a new query q. However, to

apply the update equations, the source vertex of qold should

be reachable from the source vertex of q – the source vertex

of qold should be activated by the new query in the current

iteration (Line 46). One intuitive heuristic for selecting the

old query qold is selecting the one with the highest out-degree

source vertex who is more likely to be reached by a new query.

In our case, BEAD selects three queries whose source vertices

have the top three out-degrees (Line 5). Finally, before apply

the update equations (Line 51), the results of the selected old

query need to be synchronized across machines (Line 48).

Now we present how Algorithm 2 can be used to emulate

different policies: simultaneous evaluation (i.e., ∆||δ); ∆-first

evaluation (i.e., ∆ → δ); and δ-first evaluation (i.e., δ → ∆).

∆||δ

EVALUATE Inc(G0 +∆, Q0 + δ,R0) → R
By Calling Algorithm3::Inc(G0, Q0, R0,∆, δ, IQT)

∆ → δ

EVALUATE Inc(G0 +∆, Q0, R0) → R1

By Calling Algorithm3::Inc(G0, Q0, R0,∆, φ, IQT)
EVALUATE Inc(G0 +∆, Q0 + δ,R1) → R
By Calling Algorithm3::Inc(G1, Q0, R1, φ, δ, FQT)

δ → ∆
EVALUATE Inc(G0, Q0 + δ,R0) → R1

By Calling Algorithm3::Inc(G0, Q0, R0, φ, δ, FQT)
EVALUATE Inc(G0 +∆, Q0 + δ,R1) → R
By Calling Algorithm3::Inc(G0, Q1, R1,∆, φ, IQT)

As shown above, by feeding an empty set φ alternatively to

Algorithm 2, both ordered evaluations can be realized. Note

that we do not list FQT for ∆||δ, as it does not perform as

well as IQT, for the reasons we mentioned earlier.

B. Interruption Handling

Finally, we consider the situation in which the user presents

a new request while the prior is still being processed. One

way to handle this interruption is waiting for the old request

(say ∆1 and δ1) to converge then starting the processing of

the new request (say ∆2 and δ2), which we referred to as

following convergence. Instead of waiting for the old request

to complete, BEAD chooses to merge the processing of both

the old and new requests, such that the total processing time

could be reduced. We refer to this more proactive option

as anytime interruption. Algorithm 3 describes how anytime

interruption works in the presence of a new user request while

the old request is being processed. Right after the new request

interruption is received, BEAD combines the new request with

465

the old meanwhile leveraging the current intermediate results

of the old request (i.e., ≈R1).

Algorithm 3 BEAD: Reevaluating for Anytime Simultaneous
Update (G0 +∆,Q0 + δ).

1: function INTERRUPTHANDLING(G1, Q1,≈R1,mode)
2: ∆′, δ′← UserInterrupt.get new request()
3: G1 ← G1.update(∆′) . Add new edges and vertices
4: Q1 ← Q1.update(δ′) . Add new queries
5: . Reinitialize R1 based on prior unfinished results ≈R1

6: R1 ← Initialize(G1, Q1,≈R1,∆′, δ′, mode)
7: return R1

8: end function

V. EXPERIMENTS

Experimental Setup - We developed BEAD by integrating

the implementations of incremental evaluation algorithms into

the MultiLyra [12]. Our evaluation covers four common graph

applications - Single Source Shortest Path (SSSP), Single

Source Widest Path (SSWP), Breadth First Search (BFS), and

Viterbi (VT) [8]. Two input graphs include Twitter (TT) [2],

[7] with 2 billion edges and LiveJournal (LJ) [1], [9] with 69

millions of edges. We generated queries by randomly selecting

source vertices. Experiments were run on a cluster of four

homogeneous machines with 32 Intel Broadwell cores and

256GB memory, and CentOS Linux release 7.4.1708.

We compare BEAD against the MultiLyra baseline under

the following scenarios. A part of the graph (50%, 70% and

90%) is randomly selected from the full graph and chosen as

G0, the first version of the graph. Then, additional portions

of the graph are added to G0 in batches of ∆ to emulate a

growing graph. All the ∆ batches were randomly chosen of

different sizes – 1k, 10k, 100k for LJ and 10k, 100k, and 1000k

edges for TT; Since TT has roughly ten times the number of

vertices as LJ, ∆ sizes chosen for TT are ten times that of LJ.

Additional δ queries are added to Q0 to reflect the growing

batch of queries. These additional randomly chosen δ queries

are added to Q0 in increments of 8, 16 and 32 queries.

As BEAD is built on top of MultiLyra, to be self-contained

and to demonstrate the promises of batching evaluation, we

briefly report the baseline performance (more details in [12]).

A. MultiLyra – Scalability with Batch Sizes

We first show the benefits of batching achieved by MultiLyra

for G0 (50%, 70%, 90%) during the evaluation of a total of 256

SSWP queries. For each G0 (of LJ), we ran the SSWP queries

first one by one (i.e., non-batching which is equivalent to

PowerLyra [3]) and then in batches of 64, 128, and 256 queries

(in IQT mode). Table II shows execution time in seconds and

the speedups of batching over non-batching. The results show

that batching in MultiLyra brings more speedups as the batch

size increases, meanwhile the gains decreases as the batch size

approaches 256 queries (more details in [12]). Also note that

the total number of iterations is reduced dramatically, as the

number of iterations for a batch of queries is determined by

the “slowest” query, rather than the sum of those for all the

queries as in the non-batching case.

TABLE II
TOTAL EXECUTION TIME OF RUNNING 256 SSWP QUERIES USING

MULTILYRA ON LJ TO COMPUTE Eval(G0, Q0)→ R0

WITH VARYING BATCH SIZES.

G0 Batch Size #Iter. Time (s)

50%

1(non-batching) 9286 2759.42 Speedup
64 400 538.48 5.13×
128 200 432.81 6.38×
256 100 431.58 6.39×

70%

1(non-batching) 9420 2462.62 Speedup
64 400 592.93 4.15×
128 200 495.03 4.98×
256 100 457.38 5.38×

90%

1(non-batching) 10060 2713.6 Speedup
64 400 642.39 4.22×
128 200 527.05 5.15×
256 100 483.57 5.61×

B. Graph Updates: BEAD vs. MultiLyra

In this section, we compare the handling of graph updates

∆ by BEAD that incrementally reevaluates batch of queries

Q0, with MultiLyra that must evaluate queries Q0 on graph

G0+∆ from scratch. Table III presents the speedups obtained

by BEAD over MultiLyra for evaluating 256 queries in a single

batch on the updated graph G0+∆, where G0 is 50% and ∆ is

set to 100K edges and 10K edges for TT and LJ, respectively.

Both BEAD and MultiLyra ran in IQT mode. The last column

of Table III reports the execution time for MultiLyra.

Speedups delivered by BEAD range from 6.21× for SSWP

to 26.16× for SSSP on TT and from 3.99× for Viterbi to

5.34× for SSSP on LJ. Note that generally higher speedups are

achieved for the larger TT graph than for the smaller LJ graph.

This indicates that the savings in work achieved by BEAD’s

incremental algorithm are greater for the larger TT graph. The

overall speedup for SSWP on TT is lower than those of the

other three graph algorithms. This is because a few queries in

Q0 take much longer to converge than the rest of the queries

for SSWP – note the very high number of iterations for SSWP

shown in #Iter column in Table III. Consequently, for most

iterations, only a few queries are actually active (25 active

queries after iteration 15), limiting the benefits of batching.

Next, we perform more detailed experiments, for SSSP on

TT and SSWP on LJ, to study the sensitivity of performance

benefits (BEAD over MultiLyra) with respect to a number of

factors, including: (a) Varying ∆ – for TT, this was varied

across 10k, 100k, and 1000k while for LJ it was varied across

1k, 10k, and 100k; (b) Varying the size of G0 – for both

TABLE III
SPEEDUPS OF BEAD OVER MULTILYRA WHEN COMPUTING

Inc(G0 +∆, Q0, R0) GIVEN Eval(G0, Q0)→ R0 , WHERE G0 = 50%.

G0
Graph Batch

∆
BEAD MultiLyra

Algo. Size Speedup #Iter Exe. Time

SSSP 256 100K 26.16× 11 1141.5s
TT SSWP 256 100K 6.21× 100 2753.6s

(50%) BFS 256 100K 15.00× 7 510.2s
VT 256 100K 18.61× 21 1506.9s

SSSP 256 10K 5.34× 26 337.7s
LJ SSWP 256 10K 4.15× 45 431.6s

(50%) BFS 256 10K 4.00× 11 111.0s
VT 256 10K 3.99× 19 195.0s

466

TT and LJ this was varied across 50%, 70%, and 90%; (c)

Varying batch size – the 256 queries were run in one batch

of 256, 2 batches of 128, and 4 batches of 64; and (d) using

IQT vs FQT. Table IV and Table V present the results for

SSSP on TT and Table VI and Table VII present the results

for SSWP on LJ. The speedups are calculated by comparing

the execution time of each configuration with the execution

time of the corresponding MultiLyra configuration.

Following are our observations from the above experiments.

(a) Sensitivity to Varying ∆ – As the size of changes to

graph increases, the speedup of the incremental evaluation

decreases since more computation is needed to reach conver-

gence. Table IV shows that BEAD on SSSP, for G0 = 50%,

achieves a maximum speedup of 33.37× when ∆ = 10K and

a minimum speedup of 7.86× when ∆ = 1000K. Similar

trend is also observed for SSWP on LJ (see Table VI).

(b) Sensitivity to Varying G0 – Table IV and Table VI show

that BEAD’s speedups decrease when larger portions of the

graph are loaded as G0. Since larger parts of the graph are

more connected for larger G0, it starts longer evaluation waves

through the graph as the graph grows. These tables show the

maximum speedups of: 33.37× for G0 = 50% vs. 25.91× for

G0 = 70% for SSSP on TT; and 4.53× for G0 = 50% vs.

4.34× for G0 = 70% for SSWP on LJ.

(c) Sensitivity to Varying Q0 – We ran 256 queries divided

into varying batch sizes to study impact of varying Q0 size.

Our results from Table IV and Table VI show that although

BEAD’s speedups for different sizes of Q0 vary, the variation

across different ∆ sizes is mostly small and no specific size

of Q0 gives the best speedups across different ∆ sizes.

(d) Sensitivity to IQT / FQT – As mentioned earlier, IQT and

FQT are two modes of evaluation that enable the opportunities

to shrink not only the amount of computations but also the

amount of data communicated between master and mirror

vertices hosted on different machines. To examine if these two

modes are still relevant during BEAD’s incremental evaluation

as the graph grows, we collected the number of messages

communicated, as shown in Table V and Table VII. After

dividing these messages according to their type, Active vs.

Data, it can be seen that 60-84% of the communications are in

form of Data messages which is similar to our observations for

non-incremental MultiLyra communication in [12]. Thus, as in

case of MultiLyra, during incremental evaluation IQT typically

outperforms FQT. The only exception is Table VI where,

for small query batch size and/or small ∆s, FQT performs

slightly better by leveraging its low tracking overhead while

IQT performs better in larger batch sizes and ∆s.

C. Graph and Query Updates: BEAD vs. MultiLyra

In this section, we evaluate BEAD when both the graph and

the batch of queries simultaneously grow. We evaluate all three

policies discussed earlier in Section IV-A: (i) applying graph

change then the query change (∆ → δ), (ii) applying the query

change then graph change (δ → ∆), and (iii) simultaneously

applying both changes (∆‖δ). The initial setup is running an

original batch of 256 queries (Q0) for different algorithms on

50% of TT and LJ (G0). The new batch of queries δ can be

of size varying among 8, 16, and 32, while the graph updates

∆ are set to 100K for TT and 10K for LJ. Table VIII shows

the speedups of BEAD under the three policies. The baseline

execution times were collected by running the same batch of

Q0+δ queries on the updated graph G0+∆ using MultiLyra.

As shown in Table VIII where the best speedups are marked

in red, the ordered evaluation (∆ → δ and δ → ∆) ob-

tains better performance comparing to simultaneous evaluation

(∆‖δ). The reason can be understood as follows. During

the simultaneous evaluation, the new queries (δ) and old

queries (Q0) are merged into a larger batch (Q0 + δ). As

the old queries were started earlier than the new queries, their

vertex values tend to converge earlier. Once their values are

converged, they become the overhead of the following iterative

evaluation, slowing down the progress of the new queries.

Next, we examine how the ordering between the graph updates

and query updates affects performance, i.e. ∆ → δ vs. δ → ∆.

∆-First vs. δ-First Evaluation – As indicated in Table VIII

under columns ∆ → δ and δ → ∆, in general, whether

applying the graph change ∆ at the first place for Q0 or

at second place for Q0 + δ with the availability of stable

results from the previous step only makes limited differences

in performance. However, since the evaluation of sub-batch

δ starts from scratch (despite the use of indirect incremental

computations), it could take more iterations to traverse the

changed graph G0+∆ than the original graph G0. This effect

is more significant when the original graph G0 is relatively

small or the graph change ∆ is relatively large. In our setup,

graph TT is about 29X larger than LJ in terms of the number of

edges, but its update batch size is only 10X larger than that of

LJ. Consequently, as shown in Table VIII, when comparing the

speedups on TT, with the those on LJ, δ-First evaluation works

better on TT, whereas ∆-First evaluation shows superiority on

LJ, the smaller graph. For example, ∆-first evaluation obtains

a maximum speedup of 5.39× for SSSP on TT whereas δ-first

evaluation achieves a maximum speedup of 3.28× for SSSP

on LJ. Note that the speedups after including new queries δ,

in addition to graph updates ∆, are lower than those with

only graph updates (comparing to Table III) because although

queries in Q0 terminate rapidly, the queries in δ being new

take much longer time.

D. Interruption Handling

Finally, we evaluate BEAD in the scenario of interruption

– a new request (say ∆2 and δ2) arrives in the middle of the

incremental evaluation for the prior request (say evaluating Q0

+ δ1 on graph G0 + ∆1). For this evaluation, we first ran 256

queries (Q0) for each algorithm on the 50% input graphs (G0)

using BEAD. Then, we let BEAD incrementally evaluate the

first request – the updated query batch Q0+δ1 on the updated

graph G0+∆1, where δ1 = 16 and ∆1 is 100K for TT and 10K

for LJ. After that, in the middle of this evaluation, at the points

when 50%, 75%, and 100% of the evaluation has been done (in

terms of elapsed time), the second request (∆2 and δ2) from

the user interrupts BEAD and asks for updated evaluation, that

467

TABLE IV
SENSITIVITY STUDY OF RUNNING SSSP ON TT USING BEAD WHEN

GRAPH CHANGES: Inc(G0 +∆, Q0, R0) GIVEN Eval(G0, Q0)→ R0 .

Mode
IQT FQT

G0 ∆ # ×Q0 #Iter. Time (s) Speedup Speedup

50%

10K
4 × 64 37 69.46 27.79× 27.77×
2 × 128 19 47.59 33.37× 31.59×
1 × 256 10 41.36 27.60× 27.09×

100K
4 × 64 44 65.11 29.65× 22.58×
2 × 128 22 50.44 31.49× 26.12×
1 × 256 11 43.63 26.16× 25.45×

1000K
4 × 64 72 126.32 15.28× 13.75×
2 × 128 40 121.26 13.10× 10.04×
1 × 256 23 145.30 7.86× 5.26×

70%

10K
4 × 64 40 81.24 24.15× 20.63×
2 × 128 22 60.09 25.91× 21.78×
1 × 256 12 52.08 25.07× 24.47×

100K
4 × 64 52 88.78 22.10× 14.32×
2 × 128 29 68.92 22.59× 17.43×
1 × 256 16 63.52 20.56× 20.27×

1000K
4 × 64 66 122.00 16.08× 14.39×
2 × 128 34 90.33 17.24× 13.24×
1 × 256 17 83.59 15.62× 12.93×

90%

10K
4 × 64 32 84.88 25.64× 20.26×
2 × 128 18 59.22 27.25× 26.68×
1 × 256 9 50.01 27.85× 27.72×

100K
4 × 64 41 89.27 24.38× 15.80×
2 × 128 22 67.45 23.92× 21.21×
1 × 256 12 54.53 25.54× 24.29×

1000K
4 × 64 50 102.26 21.28× 17.56×
2 × 128 26 68.95 23.40× 23.07×
1 × 256 14 61.96 22.48× 20.48×

TABLE V
EXTRA NUMBER OF COMMUNICATIONS NEEDED FOR RUNNING SSSP

ON TT USING BEAD WHEN GRAPH CHANGES TO COMPUTE:
Inc(G0 +∆, Q0, R0) GIVEN Eval(G0, Q0)→ R0 .

Message Type

G0 ∆ # ×Q0 Active Data Total (×106)

50%

10K
4 × 64 20.54% 79.46% 0.04
2 × 128 20.82% 79.18% 0.03
1 × 256 21.08% 78.92% 0.03

100K
4 × 64 20.09% 79.91% 0.57
2 × 128 20.79% 79.21% 0.44
1 × 256 21.22% 78.78% 0.36

1000K
4 × 64 21.54% 78.46% 69.02
2 × 128 21.67% 78.33% 67.06
1 × 256 21.74% 78.26% 65.74

70%

10K
4 × 64 18.72% 81.28% 0.05
2 × 128 19.37% 80.63% 0.03
1 × 256 19.91% 80.09% 0.02

100K
4 × 64 21.16% 78.84% 1.16
2 × 128 21.49% 78.51% 1.08
1 × 256 21.73% 78.27% 1.01

1000K
4 × 64 20.04% 79.96% 32.47
2 × 128 20.01% 79.99% 24.02
1 × 256 19.94% 80.06% 14.80

90%

10K
4 × 64 17.28% 82.72% 0.03
2 × 128 17.47% 82.53% 0.02
1 × 256 17.94% 82.06% 0.01

100K
4 × 64 18.66% 81.34% 0.27
2 × 128 19.03% 80.97% 0.19
1 × 256 19.35% 80.65% 0.14

1000K
4 × 64 18.12% 81.88% 3.44
2 × 128 18.64% 81.36% 2.67
1 × 256 19.02% 80.98% 2.09

TABLE VI
SENSITIVITY STUDY OF RUNNING SSWP ON LJ USING BEAD WHEN

GRAPH CHANGES: Inc(G0 +∆, Q0, R0) GIVEN Eval(G0, Q0)→ R0 .

Mode
IQT FQT

G0 ∆ # ×Q0 #Iter. Time (s) Speedup Speedup

50%

1k
4 × 64 155 118.96 4.53× 4.57×
2 × 128 81 103.98 4.16× 4.15×
1 × 256 45 107.77 4.00× 4.03×

10k
4 × 64 155 119.92 4.49× 4.56×
2 × 128 81 102.14 4.24× 4.36×
1 × 256 45 103.75 4.15× 4.21×

100k
4 × 64 155 126.93 4.24× 4.09×
2 × 128 81 109.28 3.96× 3.31×
1 × 256 45 126.77 3.40× 2.81×

70%

1k
4 × 64 178 136.75 4.34× 4.24×
2 × 128 130 168.99 2.86× 2.89×
1 × 256 73 171.02 2.67× 2.55×

10k
4 × 64 178 142.20 4.17× 4.14×
2 × 128 130 167.32 2.89× 2.90×
1 × 256 73 178.26 2.57× 2.53×

100k
4 × 64 178 137.46 4.31× 4.26×
2 × 128 130 168.05 2.88× 2.87×
1 × 256 73 175.88 2.60× 2.33×

90%

1k
4 × 64 265 233.74 2.75× 2.93×
2 × 128 140 218.56 2.41× 2.16×
1 × 256 87 201.21 2.40× 2.10×

10K
4 × 64 265 233.71 2.75× 2.87×
2 × 128 140 226.76 2.32× 2.04×
1 × 256 87 203.87 2.37× 2.03×

100K
4 × 64 265 255.06 2.52× 2.47×
2 × 128 140 229.02 2.30× 2.06×
1 × 256 87 227.71 2.12× 1.76×

TABLE VII
EXTRA NUMBER OF COMMUNICATIONS NEEDED FOR RUNNING SSWP

ON LJ USING BEAD WHEN GRAPH CHANGES TO COMPUTE:
Inc(G0 +∆, Q0, R0) GIVEN Eval(G0, Q0)→ R0 .

Message Type

G0 ∆ # ×Q0 Active Data Total (×106)

50%

1K
4 × 64 39.78% 60.22% 0.36
2 × 128 39.76% 60.24% 0.34
1 × 256 39.68% 60.32% 0.31

10K
4 × 64 37.98% 62.02% 0.38
2 × 128 38.77% 61.23% 0.35
1 × 256 39.14% 60.86% 0.32

100K
4 × 64 15.85% 84.15% 24.31
2 × 128 15.82% 84.18% 24.18
1 × 256 15.78% 84.22% 24.09

70%

1K
4 × 64 35.91% 64.09% 0.26
2 × 128 35.96% 64.04% 0.26
1 × 256 35.77% 64.23% 0.25

10K
4 × 64 34.66% 65.34% 0.27
2 × 128 35.32% 64.68% 0.27
1 × 256 35.43% 64.57% 0.25

100K
4 × 64 26.93% 73.07% 0.43
2 × 128 30.34% 69.66% 0.35
1 × 256 32.49% 67.51% 0.29

90%

1K
4 × 64 34.93% 65.07% 0.45
2 × 128 35.02% 64.98% 0.45
1 × 256 35.01% 64.99% 0.45

10K
4 × 64 34.30% 65.70% 0.47
2 × 128 34.70% 65.30% 0.46
1 × 256 34.84% 65.16% 0.45

100K
4 × 64 15.34% 84.66% 16.08
2 × 128 15.33% 84.67% 15.99
1 × 256 15.32% 84.68% 15.94

468

TABLE VIII
SPEEDUPS OF BEAD OVER MULTILYRA ON SIMULTANEOUS GRAPH AND QUERY UPDATES:

COMPUTING Inc(G0 +∆, Q0 + δ, R0) GIVEN Eval(G0, Q0)→ R0 , WHERE G0 = 50% AND Q0 = 256.

BEAD
∆→δ δ→∆ ∆‖δ

G Algo. ∆ δ Speedup Speedup Speedup MultiLyra

TT

SSSP 100K
8 5.39× 5.28× 2.67× 1241.6s
16 4.94× 5.02× 2.50× 1303.0s
32 3.88× 4.02× 2.25× 1429.1s

SSWP 100K
8 5.57× 5.66× 5.01× 2891.6s
16 5.42× 5.39× 4.84× 2887.0s
32 5.33× 4.98× 4.30× 3131.8s

BFS 100K
8 5.10× 5.39× 2.89× 543.7s
16 4.02× 4.21× 2.28× 562.7s
32 3.24× 3.46× 2.08× 571.4s

VT 100K
8 4.13× 4.25× 2.33× 1571.4s
16 3.39× 3.55× 1.99× 1576.7s
32 2.67× 2.79× 1.80× 1725.8s

BEAD
∆→δ δ→∆ ∆‖δ

G ∆ δ Speedup Speedup Speedup MultiLyra

LJ

10K
8 3.19× 3.28× 2.18× 343.3s
16 2.92× 2.74× 1.86× 363.5s
32 2.65× 2.60× 1.85× 399.9s

10K
8 3.23× 3.25× 2.66× 456.6s
16 3.20× 3.09× 2.43× 471.5s
16 2.96× 2.76× 2.28× 469.4s

10K
8 2.73× 2.65× 1.80× 112.6s
16 2.69× 2.53× 1.65× 121.3s
32 2.40× 2.38× 1.51× 125.4s

10K
8 2.88× 2.73× 2.15× 211.4s
16 2.52× 2.50× 1.82× 214.0s
32 2.16× 2.03× 1.74× 221.0s

TABLE IX
PERFORMANCE OF BEAD UNDER USER INTERRUPTIONS

COMPUTING Inc(G0 +∆1 +∆2, Q0 + δ1 + δ2, R0) IN TWO REQUESTS

GIVEN Eval(G0, Q0)→ R0 , WHERE G0 = 50%.

Latency (Seconds)
Interruption Points

G Algo. Q0 ∆1:δ1 ∆2:δ2 50% 75% 100%

TT

SSSP 256 100K:16 10K:8 469.94 465.49 489.41
SSWP 256 100K:16 10K:8 667.24 719.30 795.71
BFS 256 100K:16 10K:8 215.06 208.57 231.69
VT 256 100K:16 10K:8 747.49 770.42 787.78

LJ

SSSP 256 10K:16 1K:8 200.12 230.57 236.12
SSWP 256 10K:16 1K:8 144.53 161.26 169.83
BFS 256 10K:16 1K:8 68.63 82.92 85.14
VT 256 10K:16 1K:8 115.24 136.44 138.18

is, Q0+δ1+δ2 on G0+∆1+∆2. The 50% and 75% scenarios

correspond to the anytime interruption strategy used by BEAD

whereas the 100% scenario mimics the following convergence

strategy that can be used alternatively (see Section IV-B).

In Table IX the 100% scenario (i.e., following convergence)

ensures that the precise results R1 are available to the incre-

mental computation of the second request, while in 50% and

75% scenarios only the approximate results ≈R1 are available.

We observe that the immediately starting of the second request

using ≈R1 (i.e., anytime interruption) leads to lower response

latency for the second request. Although using precise results

R1 can reduce the work performed in evaluating the second

request, waiting to compute the second request outweighs this

benefit for the 50% and 75% interruption points.

VI. CONCLUSION

In this paper, we generalized our prior work on MultiLyra

to consider scenarios in which analytics demands of the user

evolve. While MultiLyra delivers high performance by solving

batches of queries simultaneously, BEAD achieves the same

in the presence of changes to the graph and/or query set.

Experiments show that BEAD’s batched evaluation of 256

queries after graph and also query changes on TT, outperforms

MultiLyra by factors of up to 26.16× and 5.66×.

ACKNOWLEDGEMENTS: Supported by NSF grants

CCF-2002554, CCF-1813173, and CCF-2028714 to UCR.

REFERENCES

[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. “Group
formation in large social networks: membership, growth, and evolution,”
In Int. Conf. on Knowledge Discovery and Data Mining, 2006.

[2] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. “Measuring
user influence in twitter: The million follower fallacy,” In International

AAAI Conference on Weblogs and Social Media, 2010.

[3] R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen. “Powerlyra:
Differentiated graph computation and partitioning on skewed graphs,”
ACM Transactions on Parallel Computing, 5(3), 13, 2019.

[4] P. Pan and C. Li. “Congra: Towards Efficient Processing of Concurrent
Graph Queries on Shared-Memory Machines,” In IEEE ICCD, 2017.

[5] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” In
USENIX Symppsium on OSDI, pages 17-30, 2012.

[6] J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, and I.
Stoica. “GraphX: Graph processing in a distributed dataflow framework,”
In USENIX Symposium on OSDI, pages 599-613, 2014.

[7] H. Kwak, C. Lee, H. Park, and S. Moon. “What is Twitter, a social
network or a news media?,” In WWW, pages 591-600, 2010.

[8] J. Lember, D. Gasbarra, A. Koloydenko, and K. Kuljus. “Estimation of
Viterbi Path in Bayesian Hidden Markov Models,” arXiv:1802.01630’18.

[9] J. Leskovec. “Stanford large network dataset collection,”
http://snap.stanford.edu/data/index.html, 2011.

[10] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. “Distributed GraphLab: A framework for machine learning
and data mining in the cloud,” Proc. VLDB Endowment 5, 8 (2012).

[11] G. Malewicz, M.H. Austern, A.J.C Bik, J.C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. “Pregel: a system for large-scale graph processing,”
In ACM SIGMOD Int. Conf. on Management of Data, 1010.

[12] A. Mazloumi, X. Jiang, and R. Gupta. “MultiLyra: Scalable Distributed
Evaluation of Batches of Iterative Graph Queries,” In IEEE Big Data’19.

[13] D.G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, M. Abadi.
“Naiad: a timely dataflow system,” ACM SOSP, pages 439–455, 2013.

[14] X. Shi, B. Cui, Y. Shao, and Y. Tong. “Tornado: A System For Real-
Time Iterative Analysis Over Evolving Data,” SIGMOD, 2016.

[15] M. Then, M. Kaufmann, F. Chirigati, T-A. Hoang-Vu, K. Pham, A.
Kemper, T. Neumann, and H.T. Vo. “The More the Merrier: Efficient
Multi-Source Graph Traversal,” In Proc. of the VLDB Endowment, 2015.

[16] C. Xu, A. Mazloumi, X. Jiang, and R. Gupta. “SimGQ: Simultaneously
Evaluating Iterative Graph Queries,” In IEEE HiPC, 2020.

[17] K. Vora, S-C. Koduru, and R. Gupta. “ASPIRE: Exploiting Asyn-
chronous Parallelism in Iterative Algorithms using a Relaxed Consis-
tency based DSM,” In SIGPLAN OOPSLA, pages 861-878, 2014.

[18] K. Vora, C. Tian, R. Gupta, and Z. Hu. “CoRAL: Confined Recovery
in Distributed Asynchronous Graph Processing,” ACM ASPLOS, 1017.

[19] C. Xu, K. Vora, and R. Gupta. “PnP: Pruning and Prediction for Point-
To-Point Iterative Graph Analytics,” In ACM ASPLOS, 2019.

[20] D. Yan, J. Cheng, M.T. Ozsu, F. Yang, Y. Lu, J.C.S. Lui, Q. Zheng and
W. Ng. “A General-Purpose Query-Centric Framework for Querying Big
Graphs,” In Proc. of the VLDB Endowment, 9(7), pages 564-575, 2016.

