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Abstract—Graph processing frameworks are typically designed
to optimize the evaluation of a single graph query. However, in
practice, we often need to respond to multiple graph queries,
either from different users or from a single user performing
a complex analytics task. Therefore in this paper we develop
SimGQ, a system that optimizes simultaneous evaluation of a
group of vertex queries that originate at different source vertices
(e.g., multiple shortest path queries originating at different source
vertices) and delivers substantial speedups over a conventional
framework that evaluates and responds to queries one by one.
The performance benefits are achieved via batching and sharing.
Batching fully utilizes system resources to evaluate a batch
of queries and amortizes runtime overheads incurred due to
fetching vertices and edge lists, synchronizing threads, and main-
taining computation frontiers. Sharing dynamically identifies
shared queries that substantially represent subcomputations in
the evaluation of different queries in a batch, evaluates the
shared queries, and then uses their results to accelerate the
evaluation of all queries in the batch. With four input power-law
graphs and four graph algorithms SimGQ achieves speedups of
up to 45.67× with batch sizes of up to 512 queries over the
baseline implementation that evaluates the queries one by one
using the state of the art Ligra system. Moreover, both batching
and sharing contribute substantially to the speedups.

Index Terms—batch of queries, sharing computation, amor-
tizing overhead, power-law graphs, shared-memory parallelism

I. INTRODUCTION

Graph analytics is employed in many domains (e.g., social

networks, web graphs, internet topology, brain networks etc.)

to uncover insights by analyzing high volumes of connected

data. An iterative algorithm updates vertex property values of

active vertices in each iteration driving them towards their

final stable solution. When the solution values of all vertices

become stable, the algorithm terminates. It has been seen that

real world graphs are often large with millions of vertices and

billions of edges. Moreover, iterative graph analytics requires

repeated passes over the graph till the algorithm converges

to a stable solution. As a result, in practice, iterative graph

analytics workloads are data-intensive and often compute-

intensive. Therefore, there has been a great deal of interest in

developing scalable graph analytics systems like Pregel [13],

GraphLab [12], GraphIt [28], PowerGraph [5], Galois [17],

GraphChi [10], Ligra [21], ASPIRE [25].

* This work is supported in part by National Science Foundation grants
CCF-2002554, CCF-1813173, and CCF-2028714 to the University of Cali-
fornia Riverside, California, USA

While the performance of graph analytics has improved

greatly due to advances introduced by the above systems,

much of this research has focussed on developing highly

parallel algorithms for solving a single iterative graph analytic

query (e.g., SSSP(s) query computes shortest paths from a

single source s to all other vertices in the graph) on differ-

ent computing platforms including shared-memory systems,

distributed clusters, and systems with accelerators like GPUs.

However, in practice the following two scenarios involve

multiple queries: (a) Single-User scenario as in Quegel [26],

where the authors developed an analyzer for online shop-

ping platform that frequently computes shortest-paths between

some important shoppers in a large network extracted from

online shopping data; and (b) Multi-User scenarios as in

Congra [16] and [23] where the same data set is queried

by many users. In both scenarios, machine resources can be

fully utilized delivering higher throughput by simultaneously

evaluating multiple queries on a modern server with many

cores and substantial memory resources.

In this paper we develop SimGQ, a graph analytics system

aimed at evaluating a batch of vertex queries received from

users for different source vertices of a large graph. For exam-

ple, for SSSP algorithm, we may be faced with the following

batch of queries: SSSP (s1), SSSP (s2), · · · · · · SSSP (sn).
Many other important algorithms belong to this category [6],

[7], [11] etc. Our overall approach is as follows. Given an input

graph and batch of vertex queries, we synergistically perform

simultaneous evaluation of all queries in a batch to deliver

results of all queries in a greatly reduced time. Essentially the

synergy in evaluation of queries, that exists due to the sub-

stantial overlap between computations and graph traversals for

different queries, is exploited to amortize the runtime overhead

and computation costs across the simultaneously evaluated

queries. Two techniques, batching and online sharing, are

employed to simultaneously and efficiently evaluate a set of

queries.

(a) Batching for Resource Utilization and Amortizing

Overheads. Batching takes a group of queries, forming the

batch, and simultaneously processes these queries to achieve

higher throughput by fully utilizing system resources and

amortizing runtime overhead (e.g., synchronization) costs

across queries. Some prior works [23], [26] process multi-

ple queries simultaneously. In [23] authors process multiple
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queries but the solution is optimized specifically for BFS

queries. Quegel [26] pipelines execution of a few queries

delivering limited performance enhancement as shown in [14].

MultiLyra [14] performs batching on distributed systems and

thus mainly derives benefits from amortizing cost of commu-

nication between machines. In contrast, SimGQ is capable of

evaluating large batches (up to 512 queries) of a general class

of queries on a shared-memory system for high throughputs.

(b) Online Sharing. To amortize computation costs, we

develop a novel strategy that dynamically identifies shared

queries whose computations substantially overlap with the

computations performed by multiple queries in the batch,

evaluates the shared queries, and then uses their results to

accelerate the evaluation of all the queries in the batch. The

shared subcomputations are essentially query evaluations for

a small set of high degree source vertices, different from the

source vertices of queries in the batch, such that they can be

used to accelerate the evaluation of all queries in the batch.

Online sharing has multiple advantages over classical global

indexing methods for optimizing evaluation of queries. First,

indexing entails heavy weight precomputation used to build a

large index that can be used to accelerate all future queries

(e.g., Quegel [26] uses Hub-Accelerator based indexing).

Second, as soon as the graph changes, precomputed index-

ing/profiling information becomes invalid. The online sharing

as performed by SimGQ involves no precomputation and thus

eliminates its high cost while also accommodating changes

to the graph between different batches of queries. Thus, our

approach applies to streaming/evolving graphs.

In SimGQ, the evaluation of the batch of queries is carried

out as follows. We partially evaluate the queries in the batch

for a few iterations till some high degree vertices enter the

frontiers of the queries in the batch. We pause the evaluation of

the batch queries and select a small set of high degree vertices

encountered. Treating selected vertices as source vertices of

queries, we construct a batch of shared queries and then

evaluate this batch. The results of shared queries are then

used to quickly update the solutions of all queries in the

original batch and hence accelerate their advance towards the

final stable solution. Finally, we resume the paused evaluation

of original batch till their stable solutions have been found.

By simultaneously evaluating queries we also amortize the

runtime overheads incurred, such as costs of accessing graph

vertices and edges, synchronization costs, and maintaining

computation frontiers as multiple queries traverse the same

regions of the graph.

We implemented SimGQ by modifying the state-of-the-

art Ligra [21] system. Our experiments with multiple input

power-law graphs and multiple graph algorithms demonstrate

best speedups ranging from 1.53× to 45.67× with batch sizes

ranging up to 512 queries over the a baseline implementation

that evaluates the queries one by one using the state of the

art Ligra system. Moreover, we show that both batching and

sharing techniques contribute substantially to the speedups.

The remainder of the paper is organized as follows. In

section 2 we first provide an overview of SimGQ and then

present our algorithms in detail. In section 3 we evaluate

SimGQ. In section 4 we discuss related work. Finally, we

conclude in section 5.

II. SIMGQ: EVALUATING A BATCH OF QUERIES

When a group of iterative graph queries are evaluated as a

batch, following opportunities for speeding up their evaluation

arise that are ignored when evaluating the queries one by one.

(a) Initialization for Batch(A,B) of SSSP Queries.( )

(b) Phase I. Evaluate Batch(A,B), Pause and Identify SSET.

(c) Phase II. Evaluate SSET.

(d) Phase II Contd. Update Batch(A,B) Results Using SSET

Results.

(e) Phase III. Resume Batch(A,B) Evaluation till

Termination.

Fig. 1: Overview of Sharing Among a Batch of Queries
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First, it is easy to see that during batched evaluation, we can

share the iteration overhead across the queries. This overhead

includes the cost of iterating over the loop, synchronizing

threads at the barrier, as well as fetching vertex values and

edge lists of active vertices to update vertex values and the

computation frontier. Second, synergy or overlap between

computations performed by the queries can be exploited to

reduce the overall computation performed. In particular, we

can identify and evaluate shared queries whose results can be

used to accelerate the evaluation of all the queries in the batch.

The computation performed by the shared queries substantially

represent subcomputations that are performed by many queries

in the batch. This is because different queries typically traverse

the majority of the graph and consequently present an op-

portunity to share a subcomputation across multiple queries.

By evaluating the shared queries once, we can speedup the

evaluation of the entire batch of queries. Note that the shared

queries must be identified dynamically because they may vary

from one batch to another.

A. Overview of SimGQ

Next we provide an overview of SimGQ via an illustrating

example. Figure 1 shows how a batch of two queries can be

synergistically evaluated by identifying and evaluating shared

queries first. While in the example we use a directed graph,

our approach works equally well for undirected graphs with a

minor adjustment. As in other works, each undirected edge is

represented by a pair of directed edges with equal weight.

Initialization Step. Since all queries in a given batch are to

be evaluated simultaneously, each vertex is assigned a vector

to hold data values for all queries in the batch – each position

in the vector corresponds to a specific query in the batch. In

Figure 1a we aim to solve a batch of two SSSP queries for

source vertices A and B marked in red. Each node is annotated

with a pair of initial values for the two queries, A first and

then B. Initial value 0 is assigned to source vertices and value

∞ to all non-source vertices for each of the SSSP queries.

Phase I: Identifying Shared Queries. Simultaneously

starting from the source vertices, we start traversing the graph

updating the shortest path lengths for the processed vertices

along the frontier as shown in red in Figure 1b. The evaluation

of the batch continues and once good candidate vertices

for shared queries SSET are found, the evaluation of the

batch is paused. Let us assume that after one iteration we

identify SSSP(C) (C marked in green) as a good shared query

candidate for the two queries in the batch in our example.

Thus, we pause the evaluation of the batch queries and proceed

to the next step to process the identified shared queries.

Phase II. Accelerating Batch Queries Using Shared
Queries. In this step we evaluate the shared queries first,

that is we evaluate them till their stable results have been

computed. For example, in Figure 1c we evaluate the shared

query SSSP(C). Once the shared queries have been evaluated,

their results are used to rapidly update the partial results of

all the original batch queries as shown in Figure 1d. Note that

at this point the results of all vertices except B and E have

already reached their final stable values. That is, the evaluation

of batch queries has greatly advanced or accelerated.

Phase III. Completing the Evaluation of Batch
Queries. In this final step we resume the evaluation of batch

queries from the frontier at which the evaluation was paused

earlier. In our example, the resumption of evaluation takes

place at vertices B and E and finally the algorithm terminates

after updating the results at vertices E and H. Note that if the

acceleration performed in Phase II is effective, the combined

cost of Phase I and Phase III would be significantly less than

the cost of evaluating the batch without employing sharing

affected via Phase II.

While the above example provides an overview of our

approach, many algorithm details and heuristic criteria need to

be developed. For example, there are different ways to select

shared queries (queries on vertices with high centrality or

high degree, queries on vertices that are reachable by most

source vertices in the batch etc.). Since our work focuses on

power-law graphs that have small diameter and skewed degree

distribution, high degree vertices are the best candidates for

global queries that in general traverse nearly the entire graph.

Our algorithm first marks a set of high degree vertices as

potential shared vertices. At runtime, a heuristic is used to

select a small subset of shared vertices that are not only

marked, but also have been encountered more frequently

during partial evaluation of batch queries. After evaluating the

shared queries, we use the results to quickly update the results

of all batch queries. In subsequent subsections we present a

push-style evaluation of a batch of queries assisted by our idea

of using shared queries.

B. Push-Style Batch Evaluation With Sharing

Now we present a detailed algorithm that evaluates a batch

of vertex queries, employing both batching and sharing, using

Push model (a similar algorithm can be easily designed for

the Pull model). In Algorithm 1, function EVALUATEBATCH

(line 6) simultaneously evaluates a batch of vertex queries for

source vertices s1, s2, ..., sk, over a directed graph G (V,E).
The algorithm uses M ⊂ V as a set of marked high degree

vertices from which a small number of vertices are selected

to form shared queries; different batches of queries yield dif-

ferent shared queries. In our experiments |M | is set to 100 to

provide choices that suit different batches, while up to 5 shared

queries are selected to limit the overhead of sharing (i.e.,

SSET size is 5). The algorithm maintains an ACTIVE vertex

set, the combined frontier for all queries in the batch. Although

ACTIVE tells which vertices are active, it cannot tell which

queries are associated with each active vertex. Therefore, in

addition to ACTIVE, our algorithm maintains two fine-grained

active lists, CURRTRACK and NEXTTRACK, to indicate for

each active vertex all the queries whose frontier the active

vertex belongs to. While CURRTRACK is the information for

active set being processed, NEXTTRACK is the corresponding

information for the active set being formed for the next super
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Algorithm 1 Batched Evaluation With Sharing

1: Given: Directed graph G(V,E);
2: High Degree Set M ⊂ V of Marked Vertices
3: Goal: Evaluate a Batch of Queries
4: QUERYBATCH ← { Q1(s1), Q2(s2), ..., Qk(sk) }
5:

6: function EVALUATEBATCH( QUERYBATCH )
7: [Initialization Step]
8: INITIALIZE RESULTTABLE for QUERYBATCH

9: ACTIVE ← { s1, s2, ..., sk }
10: CURRTRACK ← { (si, Qi) : Qi(si) ∈ QUERYBATCH }
11: NEXTTRACK ← φ
12: ITERATION ← 0
13: � Iterate till Convergence
14: while ACTIVE �= φ do
15: [Phase I: Iteration ≤ p] [Phase III: Iteration > p]
16: � Process Active Vertices
17: ACTIVE ← PROCESSBATCH ( ACTIVE, ITERATION,

CurrTrack, NEXTTRACK, RESULTTABLE )
18: if ITERATION = p then
19: [Phase II]
20: � Identify #SSET as the Most Frequently Visited

Vertices from M as the source of Shared Queries
21: SSET ← SELECTSHAREDQS (M , Visits, #SSET)
22: � Evaluate Shared Queries with Sources in SSET
23: SHAREDTABLE ← EVALUATEBATCH (SSET)
24: � Update RESULTTABLE using SHAREDTABLE

25: SHAREUPDATEBATCH ( SSET,
SHAREDTABLE, RESULTTABLE )

26: end if
27: CURRTRACK ← NEXTTRACK

28: NEXTTRACK ← φ
29: end while
30: return RESULTTABLE

31: end function
32:

33: function PROCESSBATCH ( ACTIVE, ITERATION, CURRTRACK,
NEXTTRACK, RESULTTABLE )

34: NEWACTIVE ← φ
35: for all v ∈ ACTIVE in parallel do
36: for all e ∈ G.outEdges(v) in parallel do
37: � Apply conventional Update on e.dest
38: changed ← EDGEFUNCBATCH ( e,

CURRTRACK, NEXTTRACK, RESULTTABLE )
39: if ( ITERATION ≤ p ) and ( e.dest ∈ M ) then
40: Visits[e.dest]++
41: end if
42: � Update Active Vertex Set for next Iteration
43: if changed then
44: NEWACTIVE ← NEWACTIVE ∪ {e.dest}
45: end if
46: end forall
47: end forall
48: return NEWACTIVE

49: end function
50:

step of the algorithm. The RESULTTABLE maintains the results

of all the queries for each vertex, and at termination the results

of all queries can be found in it.

Following the initialization step (lines 7-12), in each su-

per iteration (lines 14-29), the vertices in ACTIVE vertex

set are processed in parallel by calling function PROCESS-

BATCH (lines 33-49) . This function updates the value of

Algorithm 2 Batched Edge Update Function

1: function EDGEFUNCBATCH (e, CURRTRACK, NEXTTRACK,
RESULTTABLE)

2: � Initialize RETVALUE to false.
3: � Set to true if value of e.dest is changed.
4: RETVALUE ← false
5: for all Qi(si) ∈ QueryBatch do
6: � Only Attemp Update for Queries activated e.source
7: if (e.source, Qi) ∈ CURRTRACK then
8: � Perform Update via e
9: if UPDATEFUNC(e, Qi, RESULTTABLE) == true then

10: � Schedule e.dest for next Iteration
11: RETVALUE ← true
12: NEXTTRACK ← NEXTTRACK ∪ {(e.dest,Qi)}
13: end if
14: end if
15: end for
16: return RETVALUE

17: end function

Algorithm 3 Identify Shared Queries from M

1: Given: High Degree Set M ⊂ V of Marked Vertices
2: Vector Visits: Number of Visits of All Vertices ∈ M
3: Constant #SSET: # of Shared Vertices Selected
4: Goal: Select #SSET most frequently visited Vertices in M
5:

6: function SELECTSHAREDQS (M , Visits, #SSET)
7: � Init: Set of Source Vertices for Shared Queries
8: SSET ← φ
9: � Init: Set of (vertex, vertex visits number) pairs

10: VERTVISITSPAIRS ← φ
11: for all v ∈ M do
12: VERTVISITSPAIRS←VERTVISITSPAIRS∪{v,Visits[v]}
13: end for
14: � Sort Vertices subject to Number of Visits
15: Sort(VERTVISITSPAIRS, moreVisits())
16: � Select most frequently visited Marked Vertices
17: for #SSET top {v, Visits[v]} ∈ VERTVISITSPAIRS do
18: SSET ← SSET ∪ {v}
19: end for
20: return SSET
21: end function

out-neighbors of active vertices in Push style fashion and

generates NEWACTIVE containing the active vertices for next

iteration which it returns to EVALUATEBATCH at the end. The

work performed by the loop at line 14 executes the three

phases of our algorithm. The first p iterations form Phase I,

following which, next in Phase II first shared queries SSET

are identified by calling SELECTSHAREDQS (line 21) and

then the queries in SSET are evaluated (line 23). Finally,

the evaluation of original batch of queries is accelerated by

updating their results in RESULTTABLE using the results of

SSET queries in SHAREDTABLE (line 25). Finally in Phase

III the computation of batch queries is resumed and completed

in remaining iterations of the while loop. During Phase I the

algorithm maintains a count of number of visits to each vertex

in M (line 40). These counts are used for selecting vertices to

form SSET, more visits implies greater relevance to queries

in the original batch and hence higher priority for inclusion

in SSET. Following the call to PROCESSBATCH in the pth
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iteration (1st in our experiments), we enter Phase II at which

point SSET is built. The details of SSET construction are

presented in Algorithm 3.

Function PROCESSBATCH loops over each outedge e of

every active vertex, and calls function EDGEFUNCBATCH

(Algorithm 2) to attempt update of e.dest by relaxing edge e
using conventional edge update function UPDATEFUNC. If the

relaxation is successful, i.e. the value of e.dest is changed,

e.dest becomes an active vertex for next iteration. Note that

function EDGEFUNCBATCH does not blindly relax e for all

queries. Instead it looks up CURRTRACK to check which

queries activated e.source in the previous iteration, and only

attempts update of value of e.dest for corresponding queries.

Note that if lines 18-26 are eliminated, the algorithm

will not perform sharing and thus its execution will revert

to simple batched evaluation. We present conventional edge

update function UPDATEFUNC for five algorithms in Table I.

Here CASMIN(a, b) sets a = b if b < a atomically using

compare-and-swap; and CASMAX(a, b) sets a = b if b > a
atomically using compare-and-swap.

Algorithm 4 Accelerate Batch Queries Using Results of

Shared Queries From SSET

1: function SHAREUPDATEBATCH (SSET, SHAREDTABLE, RE-
SULTTABLE)

2: for all Qi(si) ∈ QUERYBATCH do
3: for r ∈ SSET do
4: � Update using r only if r is reachable from si
5: if RESULTTABLE[si][r] �= −1 then
6: for d ∈ ALLVERTICES do
7: � Attempt Update if d is reachable from r
8: if SHAREDTABLE[r][d] �= −1 then
9: � Update d for Query i using r

10: SHAREUPDATEFUNC ( d, r, Qi,
11: SHAREDTABLE, RESULTTABLE )
12: end if
13: end for
14: end if
15: end for
16: end for
17: end function

Finally, Algorithm 4 shows how we accelerate the con-

vergence of the solution of the original batch of queries in

RESULTTABLE using the results of the shared queries in

SHAREDTABLE. Since the cost for looping over all vertices

and applying share updates is significant, we limit the number

of shared vertices with which each query is used to speed up

convergence of property values by choosing a small SSET

size. Let us see how the result of a shared query with source

vertex r can benefit a batch query suppose the reachability is

known to be true. Given a vertex d, its value in query Qi can

take advantage of the shared result of subquery on vertex r
in SHAREDTABLE as follows: SHAREUPDATEFUNC(d, r, Qi,

SHAREDTABLE, RESULTTABLE). The above function for five

benchmarks is given in Table II. For example, for SSSP,

RESULTTABLE[si][r] + SHAREDTABLE[r][d]

is a safe approximation of the shortest path value from source

vertex of qi to d via r, and we can use the estimation to

accelerate the convergence of the value of d.

For undirected graphs, when applying update using result

of shared queries, we can benefit from a more accurate

measurement of the property value from source vertex to

shared vertex. Take SSSP as an example. Given an undirected

graph, SHAREDTABLE[r][si] can be used as the accurate

measurement of the distance from si to r. Compared with RE-

SULTTABLE[si][r] used in Table II, which is an approximation

value, SHAREDTABLE[r][si] can be used to compute a better

estimation of the distance between si and d and therefore give

better acceleration on the evaluation of original batch queries.

C. Applicability

Our sharing algorithm can be applied to batched iterative

graph algorithms where each query in the batch begins at

single source vertex and the property values from these sources

to all other vertices are computed. Sharing of results of

subqueries is effective because they represent overlapping

subcomputations. Graph problems with dynamic programming

solutions have the opportunity to benefit from our sharing algo-

rithm because of the optimal substructure property of dynamic

programming. Examples include monotonic computations like

SSWP, Viterbi, TopkSSSP, and BFS used in our evaluation

as well as other non-monotonic algorithms like Personalized

Page Rank (PPR) [6] used by recommender services like

twitter and Single-Source SimRank (SimRank) [7] queries

that are evaluated to compute similarities of graph nodes. It

does not apply to algorithms with a global solution, i.e. not

originating at source-vertex (e.g., Connected Components).

Sharing will work less effectively for local queries like 2-

Hop queries due to low overlap between them; however, local

queries are inexpensive and can be processed efficiently with

batching alone. Sharing works well on power-law graphs as

they contain high centrality nodes but it is less effective for

high-diameter graphs like road-networks. Only when source

vertices are in proximity of each other can there be significant

reuse in high-diameter graphs.

III. EXPERIMENTAL EVALUATION

A. Experimental Setup

For evaluation we implemented our SimGQ framework

using Ligra [21] which uses the Bulk Synchronous Model [24]

and provides a shared memory abstraction for vertex algo-

rithms which is particularly good for graph traversal. We

evaluate our techniques for evaluation of batches of queries

using four benchmark applications (SSWP – Single Source

Widest Path, Viterbi [11], BFS – Breadth First Search, and

TopkSSSP – Top k Single Source Shortest Paths). We used

four real world power-law graphs shown in Table III in these

experiments – TT [3] and TTW [9] are large graphs with 2.0

and 1.5 billion edges respectively; and LJ [2] and PK [22]

are smaller graphs with 69 and 31 million edges respectively.

Benchmarks are implemented using the PUSH model on a

machine with 32 cores (2 sockets, each with 16 cores) with
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TABLE I: Conventional Updates for Five Algorithms.

ALG RESULTTABLE[si][e.dest] ← UPDATEFUNC ( e, Qi, RESULTTABLE )

SSWP CASMAX(RESULTTABLE[si][e.dest], min(RESULTTABLE[si][e.src], e.w)))

Viterbi CASMAX(RESULTTABLE[si][e.dest], RESULTTABLE[si][e.src] / e.w)

BFS CASMIN(RESULTTABLE[si][e.dest], RESULTTABLE[si][e.src] + 1)

SSSP CASMIN(RESULTTABLE[si][e.dest], RESULTTABLE[si][e.src] + e.w)

TopkSSSP KSMALLEST({RESULTTABLE[si][e.dest]} ∪ {RESULTTABLE[si][e.src] + e.w})

TABLE II: Directed Graphs: SHAREUPDATEFUNC for Five Algorithms.

ALG RESULTTABLE[si][d] ← SHAREUPDATEFUNC(d,r,Qi, SHAREDTABLE,RESULTTABLE)

SSWP CASMAX( RESULTTABLE[si][d], min(RESULTTABLE[si][r], SHAREDTABLE[r][d]))

Viterbi CASMAX( RESULTTABLE[si][d], RESULTTABLE[si][r] * SHAREDTABLE[r][d])

BFS CASMIN( RESULTTABLE[si][d], RESULTTABLE[si][r] + SHAREDTABLE[r][d])

SSSP CASMIN( RESULTTABLE[si][d], RESULTTABLE[si][r] + SHAREDTABLE[r][d])

TopkSSSP KSMALLEST({RESULTTABLE[si][d]} ∪ {RESULTTABLE[si][r] + SHAREDTABLE[r][d]})

TABLE III: Input graphs used in experiments.

Graphs #Edges #Vertices

Twitter (TT) [3] 2.0B 52.6M
Twitter (TTW) [9] 1.5B 41.7M
LiveJournal (LJ) [2] 69M 4.8M
PokeC (PK) [22] 31M 1.6M

TABLE IV: BASELINE – Total Execution Times for

Evaluating Randomly Selected Queries One by One in

Seconds on the Ligra [21] System. For first 3 benchmarks

512 queries are used and for TopkSSSP we use 64 queries.

Graph SSWP Viterbi BFS Top 2 & 1 SSSP

TTW 2,989s 3,737s 2,574s 4,073s 2,337s

TT 3,949s 4,902s 3,538s 2,768s 1,574s

LJ 134s 258s 102s 389s 226s

PK 63s 116s 55s 232s 123s

Intel Xeon Processor E5-2683 v4 processors, 512 GB memory,

and running CentOS Linux 7.

For each combination of benchmark application and input

graph, we used 512 randomly generated queries to carry out

the evaluation, expect for TopkSSSP for which we use 64

queries because of runtime cost. The baseline total execution

times when the queries are evaluated one by one is given in

Table IV. Because TTW and TT are far bigger in size than

LJ and PK , the execution times for TT and TTW are higher.

B. Benefits of Sharing and Batching

In this section we present the results of our algorithm, we

refer to them as Batch+Share. In addition, we also collect

execution times of algorithm that uses batching but no sharing,

we refer to this algorithm as Batch. Since the batch size

is an important parameter in this evaluation, we vary batch

sizes from 4 queries (the smallest) to a very large number

of 512 queries. For TTW and TT the maximum batch size

was limited to 256 because our 512 GB machine did not have

sufficient memory to run 512 queries for very large graphs.

For TopkSSSP maximum batch size of 64 was used due to

its high runtimes.

The results of running the above algorithms are presented

in Table V and Figure 2. While Table V presents the total

execution times for 512 queries for batch sizes (number in

parentheses) that yielded the highest speedup for each of the

algorithms, Figure 2 presents average per query execution

times for all batch sizes for TT the largest graph.

The data in this Table V shows that our algorithms yield

speedups of up to 45.67× over the baseline that executes

the queries one by one using the state of the art Ligra

system. For the first two benchmarks of SSWP and Viterbi
the Batch+Share algorithm delivers speedups ranging from

22.11× to 45.67×. In contrast, for the last two benchmarks

of BFS and TopkSSSP the highest speedups observed range

from 1.53× to 6.63×.

The sharing algorithm is more profitable if the result values

of queries fall in a narrow range and hence often overlap. Like

the result of SSWP query is usually an integer between 17

and 25, and the answer of Viterbi is between 0 and 1. In these

cases, sharing produces lots of stable values and reduces the

number of iterations because vertices made stable by sharing

will never be activated again. Sharing is also effective when

the vertex update function is expensive even if it produces few

stable values – TopkSSSP is a representative graph algorithm

from this category. Here sharing reduces the number of updates

by 34% but produces few stable values. BFS does not fall

into any of these two categories and thus, as expected, does

not benefit much from sharing.

Let us consider results in Figures 2 that present the average

per query execution times for varying batch sizes. The trends

for the first three benchmarks show that performance continues

to improve with with increasing batch sizes. For Batch
the improvement is due to greater amortization of runtime

overheads while for Batch+Share the improvement is greater

due to additional benefits of sharing. Further, we observe that

on our machine, once we cross the batch size of 64, the

improvements in performance are relatively small although the

best performances reported in Table V are for batch sizes of

256 and 512 for majority of the cases (i.e., different graphs

and benchmarks). Based upon the trends observed in Figure 2,

for a larger machine with more memory and number of

cores, performance can be expected to scale further for larger

batch sizes. For TopkSSSP while there is less variation with

batch size the difference between Batch and Batch+Share
remains substantial.
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TABLE V: Best Sharing+Batching Execution Times in Seconds for all Queries and

Corresponding (Batch Sizes) and Speedup Over No-Batching Baseline (i.e., times in Table IV).

Alg. SSWP (512 Queries) Viterbi (512 Queries) BFS (512 Queries) Top 2 & 1 SSSP (64 Queries)

TTW
Batch+Share 71 (256) 42.37× 86 (256) 43.42× 440 (128) 5.84× 2671 1260 (32) (32) 1.53× 1.86×

Batch 629 (256) 4.75× 729 (256) 5.13× 388 (256) 6.63× 3652 1876 (32) (8) 1.12× 1.25×
TT

Batch+Share 90 (256) 43.96× 107 (256) 45.67× 723 (128) 4.90× 1605 858 (8) (8) 1.73× 1.84×
Batch 1034 (64) 3.82× 1274 (64) 3.85× 692 (128) 5.12× 2768 1574 (1) (1) 1.00× 1.00×

LJ
Batch+Share 6 (512) 22.11× 12 (128) 22.27× 23 (256) 4.36× 237 135 (64) (64) 1.64× 1.67×

Batch 37 (256) 3.63× 59 (256) 4.34× 18 (256) 5.63× 375 190 (32) (32) 1.04× 1.19×
PK

Batch+Share 2 (512) 28.38× 4 (128) 28.97× 11 (512) 5.01× 119 58 (64) (64) 1.95× 2.13×
Batch 20 (512) 3.24× 30 (256) 3.89× 9 (512) 6.40× 196 98 (16) (16) 1.19× 1.26×

Fig. 2: Average Per Query Execution Times of Batch vs. Batch+Share.

TABLE VI: Batch+Share Over Batch Alone: Cost of Phase II, Benefit of Phase II, Speedup Due to Batch+Share Over

Batch Alone. Speedups computed for best Batch+Share configurations for all Queries.

SSWP (512 queries) Viterbi (512 Queries) BFS (512 Queries) Top 2 & 1 SSSP (64 Queries)

TTW
Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup

0.08 0.97 8.92× 0.09 0.97 8.47× 0.15 0.07 0.93× 0.04 0.04 0.31 0.41 1.37× 1.60×
TT

Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup

0.06 0.98 12.26× 0.06 0.98 12.64× 0.11 0.07 0.96× 0.09 0.09 0.63 0.62 2.16× 2.12×
LJ

Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup

0.12 0.96 6.43× 0.12 0.92 5.14× 0.26 -0.03 0.77× 0.02 0.02 0.43 0.39 1.69× 1.58×
PK

Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup

0.09 0.98 8.76× 0.08 0.96 8.22× 0.20 -0.08 0.78× 0.02 0.02 0.50 0.50 1.94× 1.94×

C. Contributions of Sharing vs. Batching

We observed that for SSWP and Viterbi both sharing

and batching are responsible for delivering high performance

while for TopkSSSP batching does not provide benefit, and

for BFS sharing does not deliver additional performance

improvement. We analyze the cost and benefit of sharing to

show that for first three benchmarks the benefit far outweighs

the cost while for BFS the benefit is smaller than the cost

incurred thus leading to lower speedup with sharing.

Using the execution times of Batch as baseline, Table VI

presents the speedups achieved by Batch+Share. As we can

see from the results, for benchmarks of SSWP and Viterbi,
the speedups range from 5.14× to 12.64× demonstrating that

sharing delivers substantial additional speedups over batching

alone for these benchmarks. For benchmark of TopkSSSP,

the benefit from sharing is less, but there are still descent

speedups of up to 2.16× due to sharing. On the other hand,

for benchmark of BFS there is even some slowdown.

The Cost and Benefit of sharing are also shown explaining

the above results. The Cost is the time spent in Phase II

while Benefit is reduction in total time spent on Phase I +

Phase III due to sharing based updates performed by Phase

II. Both the Cost and Benefit are presented as fraction of

execution times of corresponding Batch algorithms. Thus,

the Speedups are related to the Cost and Benefit as follows:

Speedup = 1/(1 + Cost − Benefit). For SSWP, Viterbi,
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TABLE VII: Factoring Speedups:

Batching × Sharing = Total Speedup.

SSWP Viterbi

TTW
4.75 × 8.92 = 42.37× 5.13 × 8.47 = 43.42×

TT
3.58 × 12.26 = 43.96× 3.61 × 12.64 = 45.67×

LJ
3.44 × 6.43 = 22.11× 4.33 × 5.14 = 22.27×

PK
3.24 × 8.76 = 28.38× 3.52 × 8.22 = 28.97×

and TopkSSSP, the Benefit far exceeds the Cost while

for BFS, the Cost exceeds the Benefit hence the observed

speedup results. Finally, Table VII summarizes how the overall

speedups achieved for SSWP and Viterbi can be factored

between batching and sharing showing the importance of

employing both batching and sharing techniques.

The cost of sharing is reasonable because overheads of

sharing come from three sources and all of them are low.

First, we need to maintain a counter of the number of visits

for each marked high degree vertex in Phase I. This overhead

is negligible because we only mark a very small amount of

high degree vertices (e.g., 100 out of millions in the current

setting) and Phase I is very short (e.g., 1 iteration) and thus

has relatively small frontier sizes. Second, we need to solve

the shared queries in Phase II. Given that it only computes a

small number of shared queries (e.g., only 5 from 100) while

the batch size for original queries can be much larger (up to

512), the cost is amortized well across all queries in a batch

and thus it has little impact on each individual query. Third,

we introduce extra computation cost when applying the result

of shared queries to accelerate the convergence of original

query. Since this step is a linear scan of the array, it leads

to better cache performance due to spatial locality compared

with the usual updates for a query which can be randomly

scattered across the value array in Ligra. Besides, our sharing

algorithm only allows each query to reuse the result of one

shared query and only once, keeping the reuse cost low.

To better understand the effectiveness of sharing, we also

collected the stable value percentages – this is the percentage

of vertices reachable from the source vertex whose vertex

values converge as a result of performing share updates.

We collected this data for the Batch+Share configuration.

Since we pause the original computation only after the first

iteration (i.e., p = 1), the percentage of vertices that are stable

prior to sharing updates is negligible (less than 0.01%). The

percentages of values that are stable following sharing updates

are presented in Table VIII. As shown in the table, sharing

greatly benefits SSWP and Viterbi as it causes nearly all the

values (> 99%) to converge. To explain the phenomenon that

Top2SSSP and Top1SSSP has lower stable percentage than

BFS but sharing delivers much more speedups for the former

than the latter, we collected the reduction in number of vertex

updates resulting from sharing. It turns out that the reduction

for Top2SSSP and Top1SSSP (34%) is much higher than

the reduction for BFS (7%).

TABLE VIII: Percentage of Vertex Values that become

Stable due to Sharing Updates.

G Batch Sizes SSWP Viterbi BFS Top 2 & 1 SSSP

TTW

4 99.99 99.99 28.95 6.93 - 6.93
8 99.99 99.99 25.14 7.38 - 7.41

16 99.99 99.99 22.07 5.21 - 5.25

TT

4 99.99 99.99 23.71 16.65 - 16.78
8 99.99 99.99 20.57 19.85 - 20.03

16 99.99 99.99 18.14 13.61 - 13.82

LJ
4 99.99 99.64 7.64 2.21 - 1.03
8 99.99 99.64 6.56 2.01 - 1.20

16 99.99 99.64 5.61 2.53 - 1.40

PK

4 99.99 99.63 6.26 0.88 - 1.92
8 99.99 99.63 6.11 1.01 - 2.03

16 99.99 99.63 5.38 3.24 - 4.35

Average 99.99 99.80 12.87 6.10 - 6.18

D. Sensitivity of Performance to p Value

All our preceding experiments were performed for p value

of 1, i.e. Phase I lasted one iteration following which Phase

II was performed and then the updates from Phase II results

optimized the remainder of time spent in Phase III till

convergence. We varied the p value from 1 to 3 and compared

the speedups that were obtained by sharing over batching

alone. The results in Table IX show that p value 1 delivers

best overall speedups and the trend is that speedup falls as

p value is increased. The only exceptions are LJ::Viterbi

and PK::Viterbi where p value of 2 slightly outperforms p

value of 1 (5.48× v.s. 5.14×, 8.57× v.s. 8.22×). There is

a performance tradeoff in selecting p value. A smaller p

enables an earlier reuse which leads to earlier convergence of

queries. However, if p is small, limited number of marked high

degree vertices may be visited and considered as candidates

for sharing. We conclude the following from this experiment.

First, executing Phase I for one iteration is sufficient as high

quality SSET nodes have already been encountered. Second,

TABLE IX: Sensitivity to p Value: Cost of Phase II, Benefit

of Phase II, Speedup of Sharing Over Batching Alone on

256 Queries.

p SSWP Viterbi

TTW
Cost Benefit Speedup Cost Benefit Speedup

1 0.08 0.97 8.92× 0.09 0.97 8.47×
2 0.08 0.81 3.74× 0.07 0.84 4.21×
3 0.08 0.49 1.70× 0.08 0.50 1.72×

TT
Cost Benefit Speedup Cost Benefit Speedup

1 0.06 0.98 12.26× 0.06 0.98 12.64×
2 0.06 0.88 5.61× 0.05 0.89 6.39×
3 0.06 0.57 2.05× 0.06 0.59 2.17×

LJ
Cost Benefit Speedup Cost Benefit Speedup

1 0.12 0.96 6.43× 0.12 0.92 5.14×
2 0.13 0.94 5.26× 0.09 0.91 5.48×
3 0.12 0.88 4.19× 0.10 0.85 3.89×

PK
Cost Benefit Speedup Cost Benefit Speedup

1 0.09 0.98 8.76× 0.08 0.96 8.22×
2 0.09 0.95 7.25× 0.07 0.95 8.57×
3 0.09 0.83 3.91× 0.08 0.87 4.68×
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executing Phase II early has the added benefit that greater

fraction of overall iterations is optimized by the updates

performed from the results of Phase II.
We observe that p value of 1 causes sharing to deliver much

higher speedups than p value of 2 for SSWP and Viterbi on

large graphs than small graphs. For example, for the TT graph

on Viterbi benchmark, the speedup over batching alone for p

value of 1 is 12.64× while for the second best p value of 2,

is much smaller 6.36×.

E. Dynamic Selection of SSET

One of the key characteristics of our algorithm is that

the vertices in SSET are selected dynamically during the

evaluation of a batch of queries. This has two main advantages.

First, the selection of SSET vertices is customized to the batch

of queries being evaluated. This is important that different

batches may contain queries that are close to, in terms of

number of hops, different high degree vertices and selection

of closer high degree vertices offers greater opportunities of

sharing. Second, our technique can be used to speedup the

evaluation even when only a single batch of queries is to

be evaluated. Note that alternative techniques can be devised

to profile executions of batches to identify SSET vertices

and then use them to implement sharing in future batches.

However, such an approach would lose both of the advantages

of our approach mentioned above.

We next confirm that dynamic custom selection of SSET

vertices for each batch does indeed lead to selection of

different high degree vertices which deliver better speedups.

We performed an experiment in which we split 256 queries

for the two large graphs TTW and TT into four batches of 64

queries each. We identified the SSET vertices using the first

batch and used it to perform sharing in the other three batches.

Table X presents batch running time as follows: time using a

single dynamically selected SSET vertex for the batch → time

using a single dynamically selected SSET vertex in the first

batch. The results show that for TTW::SSWP, TTW::Viterbi,
and TT::SSWP custom/dynamic selection of SSET vertices

for the last three batches delivers better performance (i.e.,

lower execution times) than the speedups that result from

using SSET vertices identified using the first batch. For

TABLE X: Changes in Batch Execution Time (seconds):

Dynamically Selected → From Other Batch

Graph::Alg. Batch 2 Batch 3 Batch 4

TTW::SSWP 14.1 → 14.4 12.9 → 14.1 12.3 → 13.3

TTW::Viterbi 15.1 → 16.4 13.4 → 14.5 14.4 → 14.4

TT::SSWP 17.5 → 18.6 16.2 → 17.5 16.2 → 17.3

TT::Viterbi 18.6 → 18.5 17.5 → 17.6 17.1 → 17.3

TABLE XI: Number of Unique Shared Vertices Selected

Over Four Batches: Min < Actual < Max

Graph::Alg. |SSET | = 1 |SSET | = 3 |SSET | = 5

TTW::SSWP 1 <3 <4 3 <7 <12 5 <9 <20

TTW::Viterbi 1 <3 <4 3 <7 <12 5 <9 <20

TT::SSWP 1 <2 <4 3 <8 <12 5 <9 <20

TT::Viterbi 1 <2 <4 3 <8 <12 5 <9 <20

TTW::Viterbi batches 1 and 4 selected the same vertex and

hence there is no change in execution time. For TT::Viterbi
the nodes selected give nearly the same performance.

Finally, we examined the identities of selected SSET ver-

tices for various batches to study the diversity of SSET

vertices. In Table XI we present actual number of distinct

vertices included in SSETs versus the minimum number (size

of SSET) and maximum number (number of batches × the

size of SSET) of distinct vertices that can be observed. We

found that the number of distinct SSET vertices selected are

well above the minimum, i.e. during evaluation of different

batches often different vertices are selected as SSET vertices.

IV. RELATED WORKS

Multi Query Frameworks. Recently, MultiLyra [14] and

its extensions in BEAD [15] were developed to simultaneously

evaluate a batch of iterative graph queries. There are important

differences between the algorithms developed in this paper and

MultiLyra/BEAD. First, MultiLyra and BEAD are frameworks

for distributed systems and hence its emphasis is on amortizing

communication costs between machines of a cluster while in

this paper we show how batching can be deployed on a single

multicore shared-memory machine to amortize overhead costs.

Second, we show how to dynamically identify shared queries

and exploit them to amortize computation costs of queries in

a single batch. MultiLyra presents a limited algorithm that

profiles multiple batches to find fixed shared queries that it

uses to help speedup future batches. Thus, it cannot be used

to speedup a single batch of queries and it cannot select shared

queries that are customized to the batch being evaluated. Also

in [23] authors show that a batch of BFS queries starting

from different source vertices can be simultaneously evaluated

efficiently. In [8] authors group vertices into multiple batches

to reduce message passing and remote memory access in

computing pruned landmark labels. However, they do not

exploit sharing. Moreover, both works are aimed at solving

a specific application while we present a general system.

Congra [16] schedules a group of concurrent queries to fully

utilize the memory bandwidth while preventing contention

between different queries. It relies upon offline profiling with

different number of threads to determine the scalability and

memory bandwidth consumption of different graph algorithms

on different input graphs. Multiple queries are processed

by creating different processes for different queries where

each process has suitable number of threads. This approach

thus exploits available system resources fully. In contrast,

SimGQ does not require offline profiling but is entirely online,

lightweight, and enjoys additional benefits from sharing and

batching because it does not use multiple processes. Unlike

our sharing of computation across queries, Congra does not

exploit shared computations across multiple queries in a batch

and thus it does not reduce the amount of computation in

terms of number of updates or active vertices scheduled. As

for batching, we group the updates from different queries on

the same vertex together to achieve better cache performance,
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while Congra cannot do so as execution of each query is

decoupled from other queries.

The two other recent works that address the problem

of evaluating multiple graph queries are Quegel [26] and

PnP [27]. However, both these works are aimed at evalu-

ation of point-to-point queries, i.e. queries that compute a

property such as shortest path limited to a single source and

destination vertex pair. Quegel achieves higher throughput by

simultaneous evaluating multiple queries in a pipelined fashion

on a distributed system. Essentially a batch of queries is

simultaneously evaluated by efficiently sharing memory and

computing resources among the queries. PnP [27] is similar to

other graph frameworks in that it speedups the evaluation of a

single iterative query, using dynamic techniques, independent

of other queries evaluated earlier. SimGQ is different from

above systems in two ways. It evaluates general queries and

not point-to-point. It takes advantages of results computed

for a small number of shared queries to speedup all queries.

Wonderland [29] supports both point-to-point and general

queries, however it does not support sharing.

Graph Databases and Query Systems. There has been

a great deal of work on graph based query languages (e.g.,

Gremlin [20]) and query support in graph databases (e.g.,

Neo4J and DEX [1], [4]) that enable graph traversals and joins

via lower-level graph primitives (e.g., vertices, edges, etc.).

However, they are not efficient for iterative graph algorithms

over large graphs. For example, although Neo4J supports

shortest path queries, as shown in [26], Neo4J runs out of

memory for large graphs (e.g., TT used in this paper) and

although it can handle small graphs (e.g., LJ used in this

paper) it runs extremely slowly taking tens of thousands of

seconds in comparison to just few seconds required by our

system. Their strength lies in their ability to program wide

range of queries especially neighborhood queries [18], [19].

In [30] authors present SPath, an indexing method which lever-

ages decomposed shortest paths around neighborhood of each

vertex as basic indexing unit, to accelerate subgraph matching

queries. SPath performs very large amounts of precomputation

(to enable the optimization) before it can begin to answer

queries. In fact the overhead is substantial – comparable to

solving a very large number of queries. SimGQ requires no

precomputation, rather it identifies shared computation for a

batch of queries such that performing the shared computation

once leads to net reduction in execution time.

V. CONCLUSIONS

We developed techniques for simultaneous evaluation of

large batches of iterative graph queries. By employing batch-

ing, the overhead costs of query evaluation are amortized

across the queries. By employing sharing the cost of com-

putations involving shared queries are amortized across the

original batch of queries. Our experiments based upon the state

of the art Ligra system yielded speedups ranging from 1.53×
to 45.67× across four input graphs and four benchmarks. Both

batching and sharing contribute to the substantial speedups.
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