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Abstract—Graph processing frameworks are typically designed
to optimize the evaluation of a single graph query. However, in
practice, we often need to respond to multiple graph queries,
either from different users or from a single user performing
a complex analytics task. Therefore in this paper we develop
SimGQ, a system that optimizes simultaneous evaluation of a
group of vertex queries that originate at different source vertices
(e.g., multiple shortest path queries originating at different source
vertices) and delivers substantial speedups over a conventional
framework that evaluates and responds to queries one by one.
The performance benefits are achieved via batching and sharing.
Batching fully utilizes system resources to evaluate a batch
of queries and amortizes runtime overheads incurred due to
fetching vertices and edge lists, synchronizing threads, and main-
taining computation frontiers. Sharing dynamically identifies
shared queries that substantially represent subcomputations in
the evaluation of different queries in a batch, evaluates the
shared queries, and then uses their results to accelerate the
evaluation of all queries in the batch. With four input power-law
graphs and four graph algorithms SimGQ achieves speedups of
up to 45.67x with batch sizes of up to 512 queries over the
baseline implementation that evaluates the queries one by one
using the state of the art Ligra system. Moreover, both batching
and sharing contribute substantially to the speedups.

Index Terms—batch of queries, sharing computation, amor-
tizing overhead, power-law graphs, shared-memory parallelism

I. INTRODUCTION

Graph analytics is employed in many domains (e.g., social
networks, web graphs, internet topology, brain networks etc.)
to uncover insights by analyzing high volumes of connected
data. An iterative algorithm updates vertex property values of
active vertices in each iteration driving them towards their
final stable solution. When the solution values of all vertices
become stable, the algorithm terminates. It has been seen that
real world graphs are often large with millions of vertices and
billions of edges. Moreover, iterative graph analytics requires
repeated passes over the graph till the algorithm converges
to a stable solution. As a result, in practice, iterative graph
analytics workloads are data-intensive and often compute-
intensive. Therefore, there has been a great deal of interest in
developing scalable graph analytics systems like Pregel [13],
GraphLab [12], Graphlt [28], PowerGraph [5], Galois [17],
GraphChi [10], Ligra [21], ASPIRE [25].
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While the performance of graph analytics has improved
greatly due to advances introduced by the above systems,
much of this research has focussed on developing highly
parallel algorithms for solving a single iterative graph analytic
query (e.g., SSSP(s) query computes shortest paths from a
single source s to all other vertices in the graph) on differ-
ent computing platforms including shared-memory systems,
distributed clusters, and systems with accelerators like GPUs.
However, in practice the following two scenarios involve
multiple queries: (a) Single-User scenario as in Quegel [26],
where the authors developed an analyzer for online shop-
ping platform that frequently computes shortest-paths between
some important shoppers in a large network extracted from
online shopping data; and (b) Multi-User scenarios as in
Congra [16] and [23] where the same data set is queried
by many users. In both scenarios, machine resources can be
fully utilized delivering higher throughput by simultaneously
evaluating multiple queries on a modern server with many
cores and substantial memory resources.

In this paper we develop SImGQ, a graph analytics system
aimed at evaluating a batch of vertex queries received from
users for different source vertices of a large graph. For exam-
ple, for SSSP algorithm, we may be faced with the following
batch of queries: SSSP(s1), SSSP(sa), -+« -+ SSSP(sp).
Many other important algorithms belong to this category [6],
[7], [11] etc. Our overall approach is as follows. Given an input
graph and batch of vertex queries, we synergistically perform
simultaneous evaluation of all queries in a batch to deliver
results of all queries in a greatly reduced time. Essentially the
synergy in evaluation of queries, that exists due to the sub-
stantial overlap between computations and graph traversals for
different queries, is exploited to amortize the runtime overhead
and computation costs across the simultaneously evaluated
queries. Two techniques, batching and online sharing, are
employed to simultaneously and efficiently evaluate a set of
queries.

(a) Batching for Resource Utilization and Amortizing
Overheads. Batching takes a group of queries, forming the
batch, and simultaneously processes these queries to achieve
higher throughput by fully utilizing system resources and
amortizing runtime overhead (e.g., synchronization) costs
across queries. Some prior works [23], [26] process multi-
ple queries simultaneously. In [23] authors process multiple



queries but the solution is optimized specifically for BFS
queries. Quegel [26] pipelines execution of a few queries
delivering limited performance enhancement as shown in [14].
MultiLyra [14] performs batching on distributed systems and
thus mainly derives benefits from amortizing cost of commu-
nication between machines. In contrast, SImGQ is capable of
evaluating large batches (up to 512 queries) of a general class
of queries on a shared-memory system for high throughputs.
(b) Online Sharing. To amortize computation costs, we
develop a novel strategy that dynamically identifies shared
queries whose computations substantially overlap with the
computations performed by multiple queries in the batch,
evaluates the shared queries, and then uses their results to
accelerate the evaluation of all the queries in the batch. The
shared subcomputations are essentially query evaluations for
a small set of high degree source vertices, different from the
source vertices of queries in the batch, such that they can be
used to accelerate the evaluation of all queries in the batch.

Online sharing has multiple advantages over classical global
indexing methods for optimizing evaluation of queries. First,
indexing entails heavy weight precomputation used to build a
large index that can be used to accelerate all future queries
(e.g., Quegel [26] uses Hub-Accelerator based indexing).
Second, as soon as the graph changes, precomputed index-
ing/profiling information becomes invalid. The online sharing
as performed by SimGQ involves no precomputation and thus
eliminates its high cost while also accommodating changes
to the graph between different batches of queries. Thus, our
approach applies to streaming/evolving graphs.

In SimGQ, the evaluation of the batch of queries is carried
out as follows. We partially evaluate the queries in the batch
for a few iterations till some high degree vertices enter the
frontiers of the queries in the batch. We pause the evaluation of
the batch queries and select a small set of high degree vertices
encountered. Treating selected vertices as source vertices of
queries, we construct a batch of shared queries and then
evaluate this batch. The results of shared queries are then
used to quickly update the solutions of all queries in the
original batch and hence accelerate their advance towards the
final stable solution. Finally, we resume the paused evaluation
of original batch till their stable solutions have been found.
By simultaneously evaluating queries we also amortize the
runtime overheads incurred, such as costs of accessing graph
vertices and edges, synchronization costs, and maintaining
computation frontiers as multiple queries traverse the same
regions of the graph.

We implemented SimGQ by modifying the state-of-the-
art Ligra [21] system. Our experiments with multiple input
power-law graphs and multiple graph algorithms demonstrate
best speedups ranging from 1.53 x to 45.67 x with batch sizes
ranging up to 512 queries over the a baseline implementation
that evaluates the queries one by one using the state of the
art Ligra system. Moreover, we show that both batching and
sharing techniques contribute substantially to the speedups.

The remainder of the paper is organized as follows. In
section 2 we first provide an overview of SImGQ and then

present our algorithms in detail. In section 3 we evaluate
SimGQ. In section 4 we discuss related work. Finally, we
conclude in section 5.

II. SIMGQ: EVALUATING A BATCH OF QUERIES

When a group of iterative graph queries are evaluated as a
batch, following opportunities for speeding up their evaluation
arise that are ignored when evaluating the queries one by one.

(d) Phase II Contd. Update Batch(A,B) Results Using SSET

Results.
12

(e) Phase III. Resume Batch(A,B) Evaluation till
Termination.

Fig. 1: Overview of Sharing Among a Batch of Queries



First, it is easy to see that during batched evaluation, we can
share the iteration overhead across the queries. This overhead
includes the cost of iterating over the loop, synchronizing
threads at the barrier, as well as fetching vertex values and
edge lists of active vertices to update vertex values and the
computation frontier. Second, synergy or overlap between
computations performed by the queries can be exploited to
reduce the overall computation performed. In particular, we
can identify and evaluate shared queries whose results can be
used to accelerate the evaluation of all the queries in the batch.
The computation performed by the shared queries substantially
represent subcomputations that are performed by many queries
in the batch. This is because different queries typically traverse
the majority of the graph and consequently present an op-
portunity to share a subcomputation across multiple queries.
By evaluating the shared queries once, we can speedup the
evaluation of the entire batch of queries. Note that the shared
queries must be identified dynamically because they may vary
from one batch to another.

A. Overview of SINMGQ

Next we provide an overview of SimGQ via an illustrating
example. Figure 1 shows how a batch of two queries can be
synergistically evaluated by identifying and evaluating shared
queries first. While in the example we use a directed graph,
our approach works equally well for undirected graphs with a
minor adjustment. As in other works, each undirected edge is
represented by a pair of directed edges with equal weight.

Initialization Step. Since all queries in a given batch are to
be evaluated simultaneously, each vertex is assigned a vector
to hold data values for all queries in the batch — each position
in the vector corresponds to a specific query in the batch. In
Figure la we aim to solve a batch of two SSSP queries for
source vertices A and B marked in red. Each node is annotated
with a pair of initial values for the two queries, A first and
then B. Initial value 0 is assigned to source vertices and value
oo to all non-source vertices for each of the SSSP queries.

Phase I: Identifying Shared Queries. Simultaneously
starting from the source vertices, we start traversing the graph
updating the shortest path lengths for the processed vertices
along the frontier as shown in red in Figure 1b. The evaluation
of the batch continues and once good candidate vertices
for shared queries SSET are found, the evaluation of the
batch is paused. Let us assume that after one iteration we
identify SSSP(C) (C marked in green) as a good shared query
candidate for the two queries in the batch in our example.
Thus, we pause the evaluation of the batch queries and proceed
to the next step to process the identified shared queries.

Phase Il. Accelerating Batch Queries Using Shared
Queries. In this step we evaluate the shared queries first,
that is we evaluate them till their stable results have been
computed. For example, in Figure 1c we evaluate the shared
query SSSP(C). Once the shared queries have been evaluated,
their results are used to rapidly update the partial results of
all the original batch queries as shown in Figure 1d. Note that

at this point the results of all vertices except B and E have
already reached their final stable values. That is, the evaluation
of batch queries has greatly advanced or accelerated.

Phase lll. Completing the Evaluation of Batch
Queries. In this final step we resume the evaluation of batch
queries from the frontier at which the evaluation was paused
earlier. In our example, the resumption of evaluation takes
place at vertices B and E and finally the algorithm terminates
after updating the results at vertices E and H. Note that if the
acceleration performed in Phase II is effective, the combined
cost of Phase I and Phase III would be significantly less than
the cost of evaluating the batch without employing sharing
affected via Phase II

While the above example provides an overview of our
approach, many algorithm details and heuristic criteria need to
be developed. For example, there are different ways to select
shared queries (queries on vertices with high centrality or
high degree, queries on vertices that are reachable by most
source vertices in the batch etc.). Since our work focuses on
power-law graphs that have small diameter and skewed degree
distribution, high degree vertices are the best candidates for
global queries that in general traverse nearly the entire graph.
Our algorithm first marks a set of high degree vertices as
potential shared vertices. At runtime, a heuristic is used to
select a small subset of shared vertices that are not only
marked, but also have been encountered more frequently
during partial evaluation of batch queries. After evaluating the
shared queries, we use the results to quickly update the results
of all batch queries. In subsequent subsections we present a
push-style evaluation of a batch of queries assisted by our idea
of using shared queries.

B. Push-Style Batch Evaluation With Sharing

Now we present a detailed algorithm that evaluates a batch
of vertex queries, employing both batching and sharing, using
Push model (a similar algorithm can be easily designed for
the Pull model). In Algorithm 1, function EVALUATEBATCH
(line 6) simultaneously evaluates a batch of vertex queries for
source vertices 1, 2, ..., Sg, over a directed graph G (V, E).
The algorithm uses M C V as a set of marked high degree
vertices from which a small number of vertices are selected
to form shared queries; different batches of queries yield dif-
ferent shared queries. In our experiments |M| is set to 100 to
provide choices that suit different batches, while up to 5 shared
queries are selected to limit the overhead of sharing (i.e.,
SSET size is 5). The algorithm maintains an ACTIVE vertex
set, the combined frontier for all queries in the batch. Although
ACTIVE tells which vertices are active, it cannot tell which
queries are associated with each active vertex. Therefore, in
addition to ACTIVE, our algorithm maintains two fine-grained
active lists, CURRTRACK and NEXTTRACK, to indicate for
each active vertex all the queries whose frontier the active
vertex belongs to. While CURRTRACK is the information for
active set being processed, NEXTTRACK is the corresponding
information for the active set being formed for the next super



Algorithm 1 Batched Evaluation With Sharing

Algorithm 2 Batched Edge Update Function

1: Given: Directed graph G(V, E);
2: High Degree Set M C V' of Marked Vertices
3: Goal: Evaluate a Batch of Queries
4: QUERYBATCH + { Q1(s1), Q2(s2), ..., Qr(sk) }
5‘
6: function EVALUATEBATCH( QUERYBATCH )
7: [Initialization Step]
8: INITIALIZE RESULTTABLE for QUERYBATCH
9: ACTIVE + { s1,82,...,8k }
10: CURRTRACK « { (si,Q:) : Qi(s;) € QUERYBATCH }
11: NEXTTRACK < ¢
12: ITERATION <« 0
13: > Iterate till Convergence
14: while ACTIVE # ¢ do
15: [Phase I: Iteration < p] [Phase III: Iteration > p]
16: > Process Active Vertices
17: ACTIVE < PROCESSBATCH ( ACTIVE, ITERATION,
CurrTrack, NEXTTRACK, RESULTTABLE )
18: if ITERATION = p then
19: [Phase II]
20: > Identify #SSET as the Most Frequently Visited
Vertices from M as the source of Shared Queries
21: SSET < SELECTSHAREDQS (M, Visits, #SSET)
22: > Evaluate Shared Queries with Sources in SSET
23: SHAREDTABLE < EVALUATEBATCH (SSET)
24: > Update RESULTTABLE using SHAREDTABLE
25: SHAREUPDATEBATCH ( SSET,
SHAREDTABLE, RESULTTABLE )
26: end if
27: CURRTRACK < NEXTTRACK
28: NEXTTRACK < ¢
29: end while
30: return RESULTTABLE
31: end function
32:

33: function PROCESSBATCH ( ACTIVE, ITERATION, CURRTRACK,
NEXTTRACK, RESULTTABLE )

34: NEWACTIVE < ¢

35: for all v € ACTIVE in parallel do

36: for all e € G.outEdges(v) in parallel do

37: > Apply conventional Update on e.dest

38: changed < EDGEFUNCBATCH ( e,
CURRTRACK, NEXTTRACK, RESULTTABLE )

39: if ( ITERATION < p ) and ( e.dest € M ) then

40: Visits[e.dest]++

41: end if

42: > Update Active Vertex Set for next Iteration

43: if changed then

44: NEWACTIVE < NEWACTIVE U {e.dest}

45: end if

46: end forall

47: end forall

48: return NEWACTIVE

49: end function

50:

step of the algorithm. The RESULTTABLE maintains the results
of all the queries for each vertex, and at termination the results
of all queries can be found in it.

Following the initialization step (lines 7-12), in each su-
per iteration (lines 14-29), the vertices in ACTIVE vertex
set are processed in parallel by calling function PROCESS-
BATCH (lines 33-49) . This function updates the value of

1: function EDGEFUNCBATCH (e, CURRTRACK, NEXTTRACK,
RESULTTABLE)

2: > Initialize RETVALUE to false.

3: > Set to true if value of e.dest is changed.

4 RETVALUE < false

5: for all Q;(s;) € QueryBatch do

6: > Only Attemp Update for Queries activated e.source
7: if (e.source, Q;) € CURRTRACK then

8: > Perform Update via e

9: if UPDATEFUNC(e, );, RESULTTABLE) == true then
10: > Schedule e.dest for next Iteration

11: RETVALUE < true

12: NEXTTRACK <— NEXTTRACK U {(e.dest, Q:)}
13: end if

14: end if

15: end for

16: return RETVALUE

17: end function

Algorithm 3 Identify Shared Queries from M

1: Given: High Degree Set M C V of Marked Vertices

2: Vector Visits: Number of Visits of All Vertices € M
3: Constant #SSET: # of Shared Vertices Selected

4: Goal: Select #SSET most frequently visited Vertices in M

5:

6: function SELECTSHAREDQS (M, Visits, #SSET)

7: > Init: Set of Source Vertices for Shared Queries

8: SSET « ¢

9: > Init: Set of (vertex, vertex visits number) pairs

10: VERTVISITSPAIRS + ¢

11: for all v € M do

12: VERTVISITSPAIRS¢— VERTVISITSPAIRSU{ v, Visits[v] }
13: end for

14: > Sort Vertices subject to Number of Visits

15: Sort(VERT VISITSPAIRS, moreVisits())

16: > Select most frequently visited Marked Vertices

17: for #SSET top {v, Visits[v]} € VERTVISITSPAIRS do
18: SSET « SSET U {v}

19: end for
20: return SSET
21: end function

out-neighbors of active vertices in Push style fashion and
generates NEWACTIVE containing the active vertices for next
iteration which it returns to EVALUATEBATCH at the end. The
work performed by the loop at line 14 executes the three
phases of our algorithm. The first p iterations form Phase I,
following which, next in Phase |l first shared queries SSET
are identified by calling SELECTSHAREDQS (line 21) and
then the queries in SSET are evaluated (line 23). Finally,
the evaluation of original batch of queries is accelerated by
updating their results in RESULTTABLE using the results of
SSET queries in SHAREDTABLE (line 25). Finally in Phase
Il the computation of batch queries is resumed and completed
in remaining iterations of the while loop. During Phase | the
algorithm maintains a count of number of visits to each vertex
in M (line 40). These counts are used for selecting vertices to
form SSET, more visits implies greater relevance to queries
in the original batch and hence higher priority for inclusion
in SSET. Following the call to PROCESSBATCH in the p?



iteration (1%! in our experiments), we enter Phase Il at which
point SSET is built. The details of SSET construction are
presented in Algorithm 3.

Function PROCESSBATCH loops over each outedge e of
every active vertex, and calls function EDGEFUNCBATCH
(Algorithm 2) to attempt update of e.dest by relaxing edge e
using conventional edge update function UPDATEFUNC. If the
relaxation is successful, i.e. the value of e.dest is changed,
e.dest becomes an active vertex for next iteration. Note that
function EDGEFUNCBATCH does not blindly relax e for all
queries. Instead it looks up CURRTRACK to check which
queries activated e.source in the previous iteration, and only
attempts update of value of e.dest for corresponding queries.

Note that if lines 18-26 are eliminated, the algorithm
will not perform sharing and thus its execution will revert
to simple batched evaluation. We present conventional edge
update function UPDATEFUNC for five algorithms in Table I.
Here CASMIN(a, b) sets a = b if b < @ atomically using
compare-and-swap; and CASMAX(a, b) sets a = b if b > a
atomically using compare-and-swap.

Algorithm 4 Accelerate Batch Queries Using Results of
Shared Queries From SSET

1: function SHAREUPDATEBATCH (SSET, SHAREDTABLE, RE-
SULTTABLE)

2 for all Q;(s;) € QUERYBATCH do

3 for » € SSET do

4: > Update using = only if 7 is reachable from s;

5: if RESULTTABLE[s;][r] # —1 then

6.

7

8

for d € ALLVERTICES do
> Attempt Update if d is reachable from 7
if SHAREDTABLE[7][d] # —1 then

9: > Update d for Query ¢ using r

10: SHAREUPDATEFUNC ( d, r, Q;,

11: SHAREDTABLE, RESULTTABLE )
12: end if

13: end for

14: end if

15: end for

16: end for
17: end function

Finally, Algorithm 4 shows how we accelerate the con-
vergence of the solution of the original batch of queries in
RESULTTABLE using the results of the shared queries in
SHAREDTABLE. Since the cost for looping over all vertices
and applying share updates is significant, we limit the number
of shared vertices with which each query is used to speed up
convergence of property values by choosing a small SSET
size. Let us see how the result of a shared query with source
vertex 7 can benefit a batch query suppose the reachability is
known to be true. Given a vertex d, its value in query @); can
take advantage of the shared result of subquery on vertex r
in SHAREDTABLE as follows: SHAREUPDATEFUNC(d, r, Q;,
SHAREDTABLE, RESULTTABLE). The above function for five
benchmarks is given in Table II. For example, for SSSP,

RESULTTABLE[s;][r] + SHAREDTABLE[7][d]

is a safe approximation of the shortest path value from source
vertex of ¢; to d via r, and we can use the estimation to
accelerate the convergence of the value of d.

For undirected graphs, when applying update using result
of shared queries, we can benefit from a more accurate
measurement of the property value from source vertex to
shared vertex. Take SSSP as an example. Given an undirected
graph, SHAREDTABLE[r][s;] can be used as the accurate
measurement of the distance from s; to r. Compared with RE-
SULTTABLE[s;][7] used in Table II, which is an approximation
value, SHAREDTABLE[r][s;] can be used to compute a better
estimation of the distance between s; and d and therefore give
better acceleration on the evaluation of original batch queries.

C. Applicability

Our sharing algorithm can be applied to batched iterative
graph algorithms where each query in the batch begins at
single source vertex and the property values from these sources
to all other vertices are computed. Sharing of results of
subqueries is effective because they represent overlapping
subcomputations. Graph problems with dynamic programming
solutions have the opportunity to benefit from our sharing algo-
rithm because of the optimal substructure property of dynamic
programming. Examples include monotonic computations like
SSWP, Viterbi, TopkSSSP, and BFS used in our evaluation
as well as other non-monotonic algorithms like Personalized
Page Rank (PPR) [6] used by recommender services like
twitter and Single-Source SimRank (SimRank) [7] queries
that are evaluated to compute similarities of graph nodes. It
does not apply to algorithms with a global solution, i.e. not
originating at source-vertex (e.g., Connected Components).
Sharing will work less effectively for local queries like 2-
Hop queries due to low overlap between them; however, local
queries are inexpensive and can be processed efficiently with
batching alone. Sharing works well on power-law graphs as
they contain high centrality nodes but it is less effective for
high-diameter graphs like road-networks. Only when source
vertices are in proximity of each other can there be significant
reuse in high-diameter graphs.

III. EXPERIMENTAL EVALUATION
A. Experimental Setup

For evaluation we implemented our SIimGQ framework
using Ligra [21] which uses the Bulk Synchronous Model [24]
and provides a shared memory abstraction for vertex algo-
rithms which is particularly good for graph traversal. We
evaluate our techniques for evaluation of batches of queries
using four benchmark applications (SSWP - Single Source
Widest Path, Viterbi [11], BFS — Breadth First Search, and
TopkSSSP - Top k Single Source Shortest Paths). We used
four real world power-law graphs shown in Table III in these
experiments — TT [3] and TTW [9] are large graphs with 2.0
and 1.5 billion edges respectively; and LJ [2] and PK [22]
are smaller graphs with 69 and 31 million edges respectively.
Benchmarks are implemented using the PUSH model on a
machine with 32 cores (2 sockets, each with 16 cores) with



TABLE I: Conventional Updates for Five Algorithms.

[ AL \ RESULTTABLE[S; |[e.dest] <~ UPDATEFUNC ( e, Q;, RESULTTABLE ) |
SSWP CASMAX(RESULTTABLE[s; |[e.dest], min(RESULTTABLE[s;][e.src], e.w)))
Viterbi CASMAX(RESULTTABLE[s;][e.dest], RESULTTABLE[s;][e.src] / e.w)

BFS CASMIN(RESULTTABLE[s;][e.dest], RESULTTABLE[s;][e.src] + 1)

SSSP

CASMIN(RESULTTABLE[s;][e.dest], RESULTTABLE[s;][e.src] + e.w)

TopkSSSP

KSMALLEST({RESULTTABLE[s;][e.dest]} U {RESULTTABLE[s;][e.src] + e.w})

TABLE II: Directed Graphs: SHAREUPDATEFUNC for Five Algorithms.

[ ALG [ RESULTTABLE[s;][d] +— SHAREUPDATEFUNC(d,r,Qi, SHAREDTABLE,RESULTTABLE) |
SSWP CASMAX( RESULTTABLE[S;][d], min(RESULTTABLE[s;][r], SHAREDTABLE[7][d]))
Viterbi CASMAX( RESULTTABLE[S;]|[d], RESULTTABLE[s;|[r] * SHAREDTABLE|[r][d])

BFS CASMIN( RESULTTABLE[s;][d], RESULTTABLE[s;][r] + SHAREDTABLE[r][d])

SSSP

CASMIN( RESULTTABLE[s;][d], RESULTTABLE[s;]|[r] + SHAREDTABLE[r][d])

TopkSSSP

KSMALLEST({RESULTTABLE[s;][d]} U {RESULTTABLE[s;][r] + SHAREDTABLE[r][d]})

TABLE III: Input graphs used in experiments.

[ Graphs [[ #Edges | #Vertices |
Twitter (TT) [3] 2.0B 52.6M
Twitter (TTW) [9] 1.5B 41.7M
Livedournal (LJ) [2] 69M 4.8M
PokeC (PK) [22] 31IM 1.6M

TABLE IV: BASELINE - Total Execution Times for
Evaluating Randomly Selected Queries One by One in
Seconds on the Ligra [21] System. For first 3 benchmarks
512 queries are used and for TOpkSSSP we use 64 queries.

[ Graph || SSWP | Viterbi | BFS | Top 2 & 1 SSSP |

TTW 2,989s 3,737s | 2,574s | 4,073s 2,337s
TT 3,949s 4902s | 3,538s | 2,768s 1,574s
LJ 134s 258s 102s 389s 226s
PK 63s 116s 55s 232s 123s

Intel Xeon Processor ES-2683 v4 processors, 512 GB memory,
and running CentOS Linux 7.

For each combination of benchmark application and input
graph, we used 512 randomly generated queries to carry out
the evaluation, expect for TOpkSSSP for which we use 64
queries because of runtime cost. The baseline total execution
times when the queries are evaluated one by one is given in
Table IV. Because TTW and TT are far bigger in size than
LJ and PK , the execution times for TT and TTW are higher.

B. Benefits of Sharing and Batching

In this section we present the results of our algorithm, we
refer to them as Batch+Share. In addition, we also collect
execution times of algorithm that uses batching but no sharing,
we refer to this algorithm as Batch. Since the batch size
is an important parameter in this evaluation, we vary batch
sizes from 4 queries (the smallest) to a very large number
of 512 queries. For TTW and TT the maximum batch size
was limited to 256 because our 512 GB machine did not have
sufficient memory to run 512 queries for very large graphs.
For TopkSSSP maximum batch size of 64 was used due to
its high runtimes.

The results of running the above algorithms are presented
in Table V and Figure 2. While Table V presents the total
execution times for 512 queries for batch sizes (number in

parentheses) that yielded the highest speedup for each of the
algorithms, Figure 2 presents average per query execution
times for all batch sizes for TT the largest graph.

The data in this Table V shows that our algorithms yield
speedups of up to 45.67x over the baseline that executes
the queries one by one using the state of the art Ligra
system. For the first two benchmarks of SSWP and Viterbi
the Batch+Share algorithm delivers speedups ranging from
22.11x to 45.67x. In contrast, for the last two benchmarks
of BFS and TopkSSSP the highest speedups observed range
from 1.53x to 6.63x.

The sharing algorithm is more profitable if the result values
of queries fall in a narrow range and hence often overlap. Like
the result of SSWP query is usually an integer between 17
and 25, and the answer of Viterbi is between 0 and 1. In these
cases, sharing produces lots of stable values and reduces the
number of iterations because vertices made stable by sharing
will never be activated again. Sharing is also effective when
the vertex update function is expensive even if it produces few
stable values — TOpkSSSP is a representative graph algorithm
from this category. Here sharing reduces the number of updates
by 34% but produces few stable values. BFS does not fall
into any of these two categories and thus, as expected, does
not benefit much from sharing.

Let us consider results in Figures 2 that present the average
per query execution times for varying batch sizes. The trends
for the first three benchmarks show that performance continues
to improve with with increasing batch sizes. For Batch
the improvement is due to greater amortization of runtime
overheads while for Batch+Share the improvement is greater
due to additional benefits of sharing. Further, we observe that
on our machine, once we cross the batch size of 64, the
improvements in performance are relatively small although the
best performances reported in Table V are for batch sizes of
256 and 512 for majority of the cases (i.e., different graphs
and benchmarks). Based upon the trends observed in Figure 2,
for a larger machine with more memory and number of
cores, performance can be expected to scale further for larger
batch sizes. For TOpkSSSP while there is less variation with
batch size the difference between Batch and Batch+Share
remains substantial.



TABLE V: Best Sharing+Batching Execution Times in Seconds for all Queries and
Corresponding (Batch Sizes) and Speedup Over No-Batching Baseline (i.e., times in Table IV).

\ Alg. [[ SSWP (512 Queries) [ Viterbi (512 Queries) | BFS (512 Queries) | Top 2 & 1 SSSP (64 Queries) |
TTW
Batch+Share 71T (256) 42.37x 86 (256) 43.42x | 440 (128) 5.84x | 2671 1260 (32) (32) 1.53x 1.86x
Batch 629  (256) 4.75% 729  (256) 5.13% 388 (256) 6.63x | 3652 1876 (32) (8) 1.12x 1.25%
TT
Batch+Share 90 (256) 43.96x | 107 (256) 45.67x | 723 (128) 4.90x | 1605858 (8) (8) T.73% 1.84%
Batch 1034 (64) 3.82x | 1274  (64) 3.85% | 692 (128) 5.12x | 2768 1574 (1) (1) 1.00x 1.00x
LJ
Batch+Share 6 (512) 22.11x 12 (128) 22.27x | 23 (256) 4.36x 237135 (64) (64) 1.64x 1.67x
Batch 37 (256)  3.63x 59  (256)  4.34x 18 (256) 5.63x 375190  (32) (32) 1.04x 1.19x
PK
Batch+Share 2 (512) 28.38x 4 (128) 2807< | Il (5I2) 5.0Ix 11958 (64) (64) 1.95x 2.13x
Batch 20 (512) 3.24% 30 (256) 3.89% 9 (512) 6.40x 196 98  (16) (16) 1.19x 1.26x
TT::SSWP TT::Viterbi TT:BFS TT::Top2-SSSP TT::Top1-SSSP
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Fig. 2: Average Per Query Execution Times of Batch vs. Batch+Share.

TABLE VI: Batch+Share Over Batch Alone: Cost of Phase II, Benefit of Phase II, Speedup Due to Batch+Share Over
Batch Alone. Speedups computed for best Batch+Share configurations for all Queries.

[ SSWP (512 queries) [ Viterbi (512 Queries) |  BFS (512 Queries) | Top 2 & 1 SSSP (64 Queries) |

TTW

Cost _ Benefit  Speedup | Cost Benefit Speedup [ Cost Benefit  Speedup | Cost Benefit Speedup

0.08 0.97 8.92x [ 0.09 0.97 847x | 0.15 0.07 0.93x | 0.040.04 031041 1.37x 1.60x
TT

Cost _ Benefit  Speedup [ Cost Benefit Speedup | Cost Benefit  Speedup | Cost Benefit Speedup

0.06 0.98 12.26x [ 0.06 0.98 12.64x [ 0.11 0.07 0.96x | 0.090.09 0.630.62 216X 2.12X
LJ

Cost  Benefit  Speedup | Cost Benefit Speedup | Cost  Benefit  Speedup | Cost Benefit Speedup

0.12 0.96 6.43x | 0.12 0.92 5.14x | 0.26 -0.03 0.77x ] 0.020.02 043039 1.69x 1.58X
PK

Cost  Benefit  Speedup [ Cost Benefit Speedup | Cost  Benefit  Speedup | Cost Benefit Speedup

0.09 0.98 8.76x | 0.08 0.96 8.22x [ 0.20 -0.08 0.78x | 0.020.02  0.50 0.50 1.94x 1.94x

C. Contributions of Sharing vs. Batching sharing delivers substantial additional speedups over batching

We observed that for SSWP and Viterbi both sharing
and batching are responsible for delivering high performance
while for TOpkSSSP batching does not provide benefit, and
for BFS sharing does not deliver additional performance
improvement. We analyze the cost and benefit of sharing to
show that for first three benchmarks the benefit far outweighs
the cost while for BFS the benefit is smaller than the cost
incurred thus leading to lower speedup with sharing.

Using the execution times of Batch as baseline, Table VI
presents the speedups achieved by Batch+Share. As we can
see from the results, for benchmarks of SSWP and Viterbi,
the speedups range from 5.14x to 12.64x demonstrating that

alone for these benchmarks. For benchmark of TOpkSSSP,
the benefit from sharing is less, but there are still descent
speedups of up to 2.16x due to sharing. On the other hand,
for benchmark of BFS there is even some slowdown.

The Cost and Benefit of sharing are also shown explaining
the above results. The Cost is the time spent in Phase Il
while Benefit is reduction in total time spent on Phase | +
Phase Ill due to sharing based updates performed by Phase
Il. Both the Cost and Benefit are presented as fraction of
execution times of corresponding Batch algorithms. Thus,
the Speedups are related to the Cost and Benefit as follows:
Speedup = 1/(1 + Cost — Benefit). For SSWP, Viterbi,



TABLE VII: Factoring Speedups:
Batching x Sharing = Total Speedup.

\ SSWP \ Viterbi |
TTW

475 x 8.92 =42.37x ‘ 5.13 x 8.47 =43.42x%
TT

3.58 x 12.26 = 43.96x { 3.61 x 12.64 = 45.67x
LJ

344 x 643 =22.11x ‘ 433 x 5.14 =22.27x%
PK

3.24 x 8.76 = 28.38x ‘ 3.52 x 8.22 =28.97x

and TopkSSSP, the Benefit far exceeds the Cost while
for BFS, the Cost exceeds the Benefit hence the observed
speedup results. Finally, Table VII summarizes how the overall
speedups achieved for SSWP and Viterbi can be factored
between batching and sharing showing the importance of
employing both batching and sharing techniques.

The cost of sharing is reasonable because overheads of
sharing come from three sources and all of them are low.
First, we need to maintain a counter of the number of visits
for each marked high degree vertex in Phase I. This overhead
is negligible because we only mark a very small amount of
high degree vertices (e.g., 100 out of millions in the current
setting) and Phase | is very short (e.g., 1 iteration) and thus
has relatively small frontier sizes. Second, we need to solve
the shared queries in Phase Il. Given that it only computes a
small number of shared queries (e.g., only 5 from 100) while
the batch size for original queries can be much larger (up to
512), the cost is amortized well across all queries in a batch
and thus it has little impact on each individual query. Third,
we introduce extra computation cost when applying the result
of shared queries to accelerate the convergence of original
query. Since this step is a linear scan of the array, it leads
to better cache performance due to spatial locality compared
with the usual updates for a query which can be randomly
scattered across the value array in Ligra. Besides, our sharing
algorithm only allows each query to reuse the result of one
shared query and only once, keeping the reuse cost low.

To better understand the effectiveness of sharing, we also
collected the stable value percentages — this is the percentage
of vertices reachable from the source vertex whose vertex
values converge as a result of performing share updates.
We collected this data for the Batch+Share configuration.
Since we pause the original computation only after the first
iteration (i.e., p = 1), the percentage of vertices that are stable
prior to sharing updates is negligible (less than 0.01%). The
percentages of values that are stable following sharing updates
are presented in Table VIII. As shown in the table, sharing
greatly benefits SSWP and Viterbi as it causes nearly all the
values (> 99%) to converge. To explain the phenomenon that
Top2SSSP and Top1SSSP has lower stable percentage than
BFS but sharing delivers much more speedups for the former
than the latter, we collected the reduction in number of vertex
updates resulting from sharing. It turns out that the reduction
for Top2SSSP and Top1SSSP (34%) is much higher than
the reduction for BFS (7%).

TABLE VIII: Percentage of Vertex Values that become
Stable due to Sharing Updates.

[ G [ Batch Sizes || SSWP [ Viterbi | BFS [ Top 2 & 1 SSSP |

4 99.99 99.99 28.95 6.93 - 6.93

TTW 8 99.99 99.99 25.14 7.38 - 7.41
16 99.99 99.99 22.07 521-525
4 99.99 99.99 23.71 16.65 - 16.78
TT 8 99.99 99.99 20.57 19.85 - 20.03
16 99.99 99.99 18.14 13.61 - 13.82

4 99.99 99.64 7.64 2.21 - 1.03

LJ 8 99.99 99.64 6.56 2.01 - 1.20
16 99.99 99.64 5.61 2.53 - 1.40

4 99.99 99.63 6.26 0.88 - 1.92

PK 8 99.99 99.63 6.11 1.01 - 2.03
16 99.99 99.63 5.38 324 - 435

Average 99.99 99.80 12.87 6.10 - 6.18

D. Sensitivity of Performance to p Value

All our preceding experiments were performed for p value
of 1, i.e. Phase | lasted one iteration following which Phase
Il was performed and then the updates from Phase Il results
optimized the remainder of time spent in Phase Il till
convergence. We varied the p value from 1 to 3 and compared
the speedups that were obtained by sharing over batching
alone. The results in Table IX show that p value 1 delivers
best overall speedups and the trend is that speedup falls as
p value is increased. The only exceptions are LJ::Viterbi
and PK::Viterbi where p value of 2 slightly outperforms p
value of 1 (5.48x v.s. 5.14x, 8.57x v.s. 8.22x). There is
a performance tradeoff in selecting p value. A smaller p
enables an earlier reuse which leads to earlier convergence of
queries. However, if p is small, limited number of marked high
degree vertices may be visited and considered as candidates
for sharing. We conclude the following from this experiment.
First, executing Phase | for one iteration is sufficient as high
quality SSET nodes have already been encountered. Second,

TABLE IX: Sensitivity to p Value: Cost of Phase II, Benefit
of Phase II, Speedup of Sharing Over Batching Alone on
256 Queries.

[P ] SSWP [ Viterbi ]
TTW

Cost  Benefit Speedup | Cost Benefit Speedup

1 0.08 0.97 8.92x | 0.09 0.97 8.47x

2 0.08 0.81 3.74x | 0.07 0.84 4.21x

3 0.08 0.49 1.70x | 0.08 0.50 1.72x
TT

Cost  Benefit Speedup | Cost Benefit Speedup

1 0.06 0.98 12.26x | 0.06 0.98 12.64 x

2 0.06 0.88 5.61x | 0.05 0.89 6.39%

3 0.06 0.57 2.05x | 0.06 0.59 2.17x
LJ

Cost  Benefit Speedup | Cost Benefit Speedup

1 0.12 0.96 6.43x | 0.12 0.92 5.14x

2 0.13 0.94 5.26x | 0.09 0.91 5.48x

3 0.12 0.88 4.19x | 0.10 0.85 3.89x
PK

Cost  Benefit Speedup | Cost Benefit Speedup

1 0.09 0.98 8.76x | 0.08 0.96 8.22x

2 0.09 0.95 7.25x | 0.07 0.95 8.57x

3 0.09 0.83 391x | 0.08 0.87 4.68x




executing Phase |l early has the added benefit that greater
fraction of overall iterations is optimized by the updates
performed from the results of Phase II.

We observe that p value of 1 causes sharing to deliver much
higher speedups than p value of 2 for SSWP and Viterbi on
large graphs than small graphs. For example, for the TT graph
on Viterbi benchmark, the speedup over batching alone for p
value of 1 is 12.64x while for the second best p value of 2,
is much smaller 6.36x.

E. Dynamic Selection of SSET

One of the key characteristics of our algorithm is that
the vertices in SSET are selected dynamically during the
evaluation of a batch of queries. This has two main advantages.
First, the selection of SSET vertices is customized to the batch
of queries being evaluated. This is important that different
batches may contain queries that are close to, in terms of
number of hops, different high degree vertices and selection
of closer high degree vertices offers greater opportunities of
sharing. Second, our technique can be used to speedup the
evaluation even when only a single batch of queries is to
be evaluated. Note that alternative techniques can be devised
to profile executions of batches to identify SSET vertices
and then use them to implement sharing in future batches.
However, such an approach would lose both of the advantages
of our approach mentioned above.

We next confirm that dynamic custom selection of SSET
vertices for each batch does indeed lead to selection of
different high degree vertices which deliver better speedups.
We performed an experiment in which we split 256 queries
for the two large graphs TTW and TT into four batches of 64
queries each. We identified the SSET vertices using the first
batch and used it to perform sharing in the other three batches.
Table X presents batch running time as follows: time using a
single dynamically selected SSET vertex for the batch — time
using a single dynamically selected SSET vertex in the first
batch. The results show that for TTW::SSWP, TTW::Viterbi,
and TT::SSWP custom/dynamic selection of SSET vertices
for the last three batches delivers better performance (i.e.,
lower execution times) than the speedups that result from
using SSET vertices identified using the first batch. For

TABLE X: Changes in Batch Execution Time (seconds):
Dynamically Selected — From Other Batch

[ Graph::Alg. | Batch2 | Batch3 | Batch4 |
[ TTW::SSWP || 141 — 144 | 129 — [41 | 123 — 133 |
[ TTW::Viterbi || 15.1 — 164 | 134 — 145 | 144 — 144 |
TT::SSWP 175 - 186 | 162 — 17.5 162 — 17.3
TT::Viterbi 18.6 — 18.5 175 - 176 | 17.1 - 17.3

TABLE XI: Number of Unique Shared Vertices Selected
Over Four Batches: Min < Actual < Max

[ Graph::Alg. [ [SSET[=1 [ [SSET[=3 [ [SSET[=5 |

TTW::SSWP 1 <3 <4 3 <7 <12 5 <9 <20
TTW::Viterbi 1 <3 <4 3 <7 <12 5 <9 <20
TT::SSWP 1 <2<4 3 <8 <12 5 <9 <20
TT::Viterbi 1 <2<4 3 <8 <12 5 <9 <20

TTW::Viterbi batches 1 and 4 selected the same vertex and
hence there is no change in execution time. For TT::Viterbi
the nodes selected give nearly the same performance.
Finally, we examined the identities of selected SSET ver-
tices for various batches to study the diversity of SSET
vertices. In Table XI we present actual number of distinct
vertices included in SSETSs versus the minimum number (size
of SSET) and maximum number (number of batches x the
size of SSET) of distinct vertices that can be observed. We
found that the number of distinct SSET vertices selected are
well above the minimum, i.e. during evaluation of different
batches often different vertices are selected as SSET vertices.

IV. RELATED WORKS

Multi Query Frameworks. Recently, MultiLyra [14] and
its extensions in BEAD [15] were developed to simultaneously
evaluate a batch of iterative graph queries. There are important
differences between the algorithms developed in this paper and
MultiLyra/BEAD. First, MultiLyra and BEAD are frameworks
for distributed systems and hence its emphasis is on amortizing
communication costs between machines of a cluster while in
this paper we show how batching can be deployed on a single
multicore shared-memory machine to amortize overhead costs.
Second, we show how to dynamically identify shared queries
and exploit them to amortize computation costs of queries in
a single batch. MultiLyra presents a limited algorithm that
profiles multiple batches to find fixed shared queries that it
uses to help speedup future batches. Thus, it cannot be used
to speedup a single batch of queries and it cannot select shared
queries that are customized to the batch being evaluated. Also
in [23] authors show that a batch of BFS queries starting
from different source vertices can be simultaneously evaluated
efficiently. In [8] authors group vertices into multiple batches
to reduce message passing and remote memory access in
computing pruned landmark labels. However, they do not
exploit sharing. Moreover, both works are aimed at solving
a specific application while we present a general system.

Congra [16] schedules a group of concurrent queries to fully
utilize the memory bandwidth while preventing contention
between different queries. It relies upon offline profiling with
different number of threads to determine the scalability and
memory bandwidth consumption of different graph algorithms
on different input graphs. Multiple queries are processed
by creating different processes for different queries where
each process has suitable number of threads. This approach
thus exploits available system resources fully. In contrast,
SimGQ does not require offline profiling but is entirely online,
lightweight, and enjoys additional benefits from sharing and
batching because it does not use multiple processes. Unlike
our sharing of computation across queries, Congra does not
exploit shared computations across multiple queries in a batch
and thus it does not reduce the amount of computation in
terms of number of updates or active vertices scheduled. As
for batching, we group the updates from different queries on
the same vertex together to achieve better cache performance,



while Congra cannot do so as execution of each query is
decoupled from other queries.

The two other recent works that address the problem
of evaluating multiple graph queries are Quegel [26] and
PnP [27]. However, both these works are aimed at evalu-
ation of point-to-point queries, i.e. queries that compute a
property such as shortest path limited to a single source and
destination vertex pair. Quegel achieves higher throughput by
simultaneous evaluating multiple queries in a pipelined fashion
on a distributed system. Essentially a batch of queries is
simultaneously evaluated by efficiently sharing memory and
computing resources among the queries. PnP [27] is similar to
other graph frameworks in that it speedups the evaluation of a
single iterative query, using dynamic techniques, independent
of other queries evaluated earlier. SImGQ is different from
above systems in two ways. It evaluates general queries and
not point-to-point. It takes advantages of results computed
for a small number of shared queries to speedup all queries.
Wonderland [29] supports both point-to-point and general
queries, however it does not support sharing.

Graph Databases and Query Systems. There has been
a great deal of work on graph based query languages (e.g.,
Gremlin [20]) and query support in graph databases (e.g.,
Neo4]J and DEX [1], [4]) that enable graph traversals and joins
via lower-level graph primitives (e.g., vertices, edges, etc.).
However, they are not efficient for iterative graph algorithms
over large graphs. For example, although Neo4] supports
shortest path queries, as shown in [26], Neo4J runs out of
memory for large graphs (e.g., TT used in this paper) and
although it can handle small graphs (e.g., LJ used in this
paper) it runs extremely slowly taking tens of thousands of
seconds in comparison to just few seconds required by our
system. Their strength lies in their ability to program wide
range of queries especially neighborhood queries [18], [19].
In [30] authors present SPath, an indexing method which lever-
ages decomposed shortest paths around neighborhood of each
vertex as basic indexing unit, to accelerate subgraph matching
queries. SPath performs very large amounts of precomputation
(to enable the optimization) before it can begin to answer
queries. In fact the overhead is substantial — comparable to
solving a very large number of queries. SIMGQ requires no
precomputation, rather it identifies shared computation for a
batch of queries such that performing the shared computation
once leads to net reduction in execution time.

V. CONCLUSIONS

We developed techniques for simultaneous evaluation of
large batches of iterative graph queries. By employing batch-
ing, the overhead costs of query evaluation are amortized
across the queries. By employing sharing the cost of com-
putations involving shared queries are amortized across the
original batch of queries. Our experiments based upon the state
of the art Ligra system yielded speedups ranging from 1.53 %
to 45.67 x across four input graphs and four benchmarks. Both
batching and sharing contribute to the substantial speedups.
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