Tripoline: Generalized Incremental Graph Processing
via Graph Triangle Inequality

Xiaolin Jiang" Chengshuo Xu* Xizhe Yin"
University of California, Riverside University of California, Riverside University of California, Riverside
xjian049@ucr.edu cxu009@ucr.edu xyin014@ucr.edu

Zhijia Zhao
University of California, Riverside
zhijia@cs.ucr.edu

Abstract

For compute-intensive iterative queries over a streaming
graph, it is critical to evaluate the queries continuously and
incrementally for best efficiency. However, the existing in-
cremental graph processing requires a priori knowledge of
the query (e.g., the source vertex of a vertex-specific query);
otherwise, it has to fall back to the expensive full evaluation
that starts from scratch.

To alleviate this restriction, this work presents a principled
solution to generalizing the incremental graph processing,
such that queries, without their a priori knowledge, can also
be evaluated incrementally. The solution centers around the
concept of graph triangle inequalities, an idea inspired by the
classical triangle inequality principle in the Euclidean space.
Interestingly, similar principles can also be derived for many
vertex-specific graph problems. These principles can help
establish rigorous constraints between the evaluation of one
graph query and the results of another, thus enabling reusing
the latter to accelerate the former. Based on this finding,
a novel streaming graph system, called Tripoline, is built
which enables incremental evaluation of queries without
their a priori knowledge. Built on top of a state-of-the-art
shared-memory streaming graph engine (Aspen), Tripoline
natively supports high-throughput low-cost graph updates.
A systematic evaluation with a set of eight vertex-specific
graph problems and four real-world large graphs confirms
both the effectiveness of the proposed techniques and the
efficiency of Tripoline.

“First three authors contributed equally to this research.

O

This work is licensed under a Creative Commons Attribution International 4.0 License

EuroSys °21, April 26-28, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8334-9/21/04.
https://doi.org/10.1 145/3447786.3456226

17

Rajiv Gupta
University of California, Riverside
gupta@cs.ucr.edu

ACM Reference Format:

Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv
Gupta. 2021. Tripoline: Generalized Incremental Graph Processing
via Graph Triangle Inequality. In Sixteenth European Conference on
Computer Systems (EuroSys "21), April 26-28, 2021, Online, United
Kingdom. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3447786.3456226

1 Introduction

Graphs are widely used in many application domains thanks
to their capability of modeling the complex relationships
among entities. In many real-world application scenarios,
a stream of updates are continuously applied to the graph,
often in batches for better efficiency, known as the streaming
graph scenario. Taking social networks [4] as an example,
new data that carry rich connection information, such as
tweets, are continuously generated, causing updates to the
existing graph. Similar scenarios also occur in the mining
of online shopping activities, where new purchases may
generate new connections between customers (e.g., those
who bought the same product) and between products (e.g.,
those that are bought together). In such common scenarios,
new edges and vertices are continuously added to the graph.
In the streaming graph scenario, to reduce the latency
of query evaluation, it is critical to evaluate the expensive
iterative graph queries incrementally upon graph updates.

State of the Art. Several streaming graph systems have been
proposed recently with support for incremental evaluation
of iterative graph queries. Examples include Kineograph [3],
Tornado [35], Naiad [26], KickStarter [43], Graphbolt [23],
and so on. The basic idea of these systems is to reevaluate
the query each time the graph gets updated, as illustrated
in Figure 1. Instead of reevaluating the query from scratch
(i.e., a full reevaluation), they start the reevaluation directly
on the results of the previous evaluation, performing just
enough calculations based on the newly inserted edges and
vertices to get the results stabilized again. As the new edges
and vertices in each update batch usually represent just a tiny
fraction of the existing graph, the incremental evaluation
usually converges much faster than a full reevaluation.
However, the above approach requires a priori knowledge
of the query to be incrementally evaluated, referred to as

Corrected Version of Record. V.1.1. Published April 30, 2021.

graph streaming inc. eval. of

standing query ¢(r)

updates oao
- must be the
(@/O Q same query!

re-eval.

() —
c
= 7,
= q(r) °
: —
iZ | updates results
re-eval. \
— D

stable results

Figure 1. Streaming Graph Processing with Incremental
Query Evaluation and the Limitation of Existing Solutions.

the standing query. This may not be an issue for queries
without source vertex specification, such as PageRank; but
creates a fundamental challenge for vertex-specific queries,
like breath-first search (BFS), which target specific vertices
of interests (e.g., BFS(vs)). The source vertex of interest may
be unknown until the query arrives. Thus, only the pre-
selected standing queries (e.g., BFS(vs)) can be incrementally
evaluated; queries with other source vertices have to undergo
an expensive full evaluation once they are received. This
limitation significantly compromises the generality of the
existing incremental streaming graph systems.

In this work, we propose a principled way to generalizing
the incremental graph processing such that vertex-specific
queries without their a priori knowledge may also bene-
fit from incremental processing. The key to our solution
is a concept called graph triangle inequality. Similar to the
classic triangle inequality in the Euclidean space, triangle
inequalities with generalized distance and comparison oper-
ators may also be derived for vertex-specific queries in the
graph space. Based on them, we can establish rigorous con-
straints between a user query (whose source vertex can be
any vertex in the graph) and the pre-selected standing query,
thus enabling reusing the results of the latter to accelerate
the evaluation of the former. We refer to this technique as
graph triangle inequality-based incremental processing. For
correctness, the graph query implementation is assumed to
be monotonic and safe under asynchrony (more details are
given in Section 4.3).

To demonstrate the effectiveness of the above generalized
incremental graph processing, we developed a streaming
graph system on top of a state-of-the-art streaming graph
engine called Aspen [7], which offers a compact yet efficient
data structure for high-throughput graph updates. We name
the new system Tripoline to encapsulate its essence: use the
graph triangle inequality as a “trampoline” to fast-forward
the evaluation of queries different from the standing one. By
continuously and incrementally evaluating a small set of pre-
selected standing queries upon graph updates, Tripoline can

18

incrementally evaluate previously unseen queries based on
the results of the standing ones and the triangle inequalities.
We evaluated Tripoline using eight types of vertex-specific
graph queries and four real-world large graphs (more details
in Section 6). The results show that the performance benefits
of Tripoline varies depending on the vertex-specific problems
(and their graph triangle inequalities). Overall, we observed
8.83-30.52% speedups on four types of the evaluated graph
queries, 1.18-1.89x speedups on three types of graph queries,
and limited speedup (1.08X) on one type of graph queries.
In summary, this work makes the following contributions:

o It proposes to leverage graph triangle inequality in the
scheme of incremental graph processing, which, to
our knowledge, for the first time enables generalized
incremental evaluation of vertex-specific queries;

e It introduces the triangle abstraction based on a pair
of generalized distance and comparison operators, and
establishes the specific graph triangle inequalities for
a spectrum of vertex-specific graph queries.

e Finally, it develops Tripoline, a streaming graph system
that supports generalized incremental evaluation for
vertex-specific graph queries. The system has shown
substantial performance improvements on multiple
vertex-specific iterative graph queries.

2 Background

This section introduces the basic graph programming model
and the state of the art of incremental graph processing.

Vertex-Centric Programming. A commonly used model
for programming graph applications is the vertex-centric
programming model. It was first introduced by Pregel [22]
based on the bulk synchronous parallel (BSP) model [41].
The model requires defining a vertex function that computes
some properties of the vertices (a.k.a. vertex values). The
graph computations start from some default initial vertex
values, then apply the vertex function across all (or a subset
of) vertices of the graph, iteration by iteration until the vertex
values become stable (or some threshold is reached).

Figure 2-(a) illustrates a vertex-centric implementation of
the single-source shortest path (SSSP) query, which finds the
shortest distances from a source vertex to all other vertices
in the graph. The vertex function f(v) computes an alterna-
tive distance based on the current value of the vertex, then
compares it with the value of each of its outgoing neighbors.
If the new value is less than the existing one, the neighbor’s
value will be updated. This is known as as the push model *.
As shown in Figure 2-(b), initially, all the vertex values are
set to oo, except the source vertex whose value is set to zero.
Then the vertex function f(v) is evaluated across all the ver-
tices over iterations until all the vertex values stop changing.

!The vertex function can also be implemented using a pull model which
updates the value of the vertex based on its in-neighbors’ values.

fv) {

for each out-neighbor n -ﬂ
alt= dist(v) + w(v, n); Initiall 0 o o o
dist(n) = min{dist(n), alt}; lter-1 0 1 o o
if dist(n) changed ter2 0 1 3 o

Iter-3 0 1 3 4

add n to frontier;

}

(a) vertex function

(b) evaluation from scratch

(c) incremental evaluation

Figure 2. Vertex-Centric Programming and Incremental Query Evaluation using SSSP(v;) as an Example.

To improve the efficiency, an active vertex list (a.k.a. frontier)
can be maintained which only consists of vertices whose
values were changed in the last iteration, so only vertices
in the frontier need to be evaluated in each iteration. In the
case of SSSP, the frontier is initialized with only the source
vertex and will become empty once all the vertex values are
converged. Hereinafter, this work assumes a frontier-based
implementation of the push model.

Incremental Graph Processing. As mentioned earlier, in
the common streaming graph processing scenario [3, 23, 26,
35, 43], the graph is continuously updated with new edges
and vertices, usually in batches for better efficiency. A recent
work [43] also discussed the scenario with edge deletions,
which is orthogonal to the focus of this work. Like many prior
works [3, 35], we assume the growing graph scenarios in
this work. After each batch of insertions, the standing graph
query needs to be reevaluated to reflect the latest results.
Instead of reevaluating the query on the updated graph from
scratch (i.e., view it as a completely new graph), existing
streaming graph systems adopt an incremental graph query
evaluation strategy to improve the efficiency.

The design of the incremental query evaluation naturally
matches the BSP model in the aforementioned vertex-centric
programming. Consider the example in Figure 2-(c). After a
new edge (vy, v3) is inserted, the reevaluation directly starts
from the converged vertex values of the prior evaluation,
rather than initializing the vertex values with co. To ensure
the correctness, the source vertices of the newly inserted
edges (i.e., v1) need to be inserted into the frontier, which
resumes the iterations until a new stabilization is reached.
As each insertion batch is typically a tiny fraction of the
existing graph, the reevaluation tends to terminate much
faster than a full reevaluation [3, 43].

Despite the promise of incremental graph processing, there
exists a fundamental limitation in the existing design - it
assumes a priori knowledge of the query. The assumption
holds for queries that do not depend on a specific vertex, such
as PageRank, but imposes a major obstacle for vertex-specific
queries, like BFS and SSSP. For the latter, the incremental
evaluation would work only for the pre-selected standing
query, like SSSP(v;); for queries originating at other vertices
in the graph, an expensive full evaluation is required.

In fact, vertex-specific graph queries appear more com-
mon than “whole-graph queries” in real-world applications.

19

First, vertex-specific queries are concerned with the inter-
ests or capture the perspective of a specific vertex, which are
common in online shopping and social networks, such as
generating recommendations for individual customer [47]
and finding the overlap of friends of two specific users [4].
Second, as subproblems, vertex-specific graph queries often
require less time and space than their counterpart whole-
graph queries (e.g., SSSP vs all-pair shortest path). This is
especially critical in the streaming graph scenario, where the
query evaluation needs to keep up with the graph updates.

In summary, incremental graph processing is essential to
the streaming graph systems. However, its existing design
suffers from a fundamental applicability challenge for an
important group of graph queries — vertex-specific queries.
Before presenting our solution, we first introduce the key
principle behind it — graph triangle inequalities.

3 Graph Triangle Inequality

In this section, we first provide an intuition of graph triangle
inequality, then formally define the principle and present
several graph triangle inequalities examples.

3.1 Intuition

Triangle inequality [17], as illustrated in Figure 3, is a basic
principle in Euclidean geometry. It states the fact that, for
any given triangle Axyz, the sum of the lengths of any two
sides must be greater than or equal to the length of the third
side. Prior research [11] has shown the possibility to leverage
triangle inequality to accelerate K-means clustering in the
Euclidean space. Inspired by this, we wondered if similar
principles exist in graph problems, and hence maybe used to
optimize streaming graph processing. In fact, for a spectrum
of vertex-specific graph problems, similar inequalities can be
naturally derived. Next, we first use SSSP as an example to
introduce the graph triangle inequality, because it calculates
distances, which are similar the lengths in the classical tri-
angle inequality, except that the “domain” is a graph, rather
than the Euclidean space.

SSSP Triangle. It is not hard to find that the vertices in a
graph are analogous to the points in the Euclidean space.
The distance between two points in the Euclidean space is
the length of line segment connecting them. Similarly, the
distance between two vertices v; and v, in a weighted graph

for any x, y, and z
xty=z

z

Figure 3. Triangle Inequality in Euclidean Geometry.

is the minimum weight of all paths connecting them:

(1)
where w(p) is the sum of weights on all the edges in path
p. Note that, for undirected graphs, as paths are symmetric,
we have dist(vy, vy) = dist(vz, v1). Based on this analogy, it
is not hard to find that a triangle inequality also holds for
graph distances, as illustrated in Figure 4.

dist(vy, vg) = min{w(p) | p is a path from v; to vy}

dist(u, r) dist(r, x) for any u, r, and x

dist(u, r) + dist(r, x) > dist(u, x)

dist(u, x)

Figure 4. Triangle Inequality in SSSP (dashed lines represent
the shortest paths between two vertices).

In fact, the above triangle inequality in Figure 4 becomes
obvious once one realizes that the shortest path from u to r
can be concatenated with the shortest path from r to x, and
the resulted path is just one of the many paths from u to x,
hence must be no shorter than the shortest path from u to x.

Actually, the above graph triangle inequality based on the
distances between vertices is well-known in the theoretical
graph community [1]. Some prior work [5] has exploited this
principle to approximate distances in web-scale large graphs,
which shares some of the spirit of this work. However, as we
will demonstrate shortly, our work discusses a much broader
definition of “distance” that goes beyond the conventional
one shown in Equation 1. Furthermore, our work exploits the
graph triangle inequality in a different context — streaming
graph processing, where the accuracy of each query result
is always guaranteed — no approximation is allowed.

For brevity, we refer to the above distance-based triangle
inequality as SSSP triangle. Next, we generalize it by defining
a more general definition of “distance” and two abstract
operators for addition and comparison, respectively.

3.2 Triangle Abstraction

Rather than referring to the distance, we define the graph
triangle inequality for a property between two vertices —
property(vy, vy), where (v1, v7) is an ordered pair for directed
graphs and an unordered pair for undirected graphs.

Definition 3.1. Given the property definition between two
vertices property(vy, v2), the graph triangle inequality can
be formally defined by the following equation:

property(vy, v2) @ property(vq, vs) = property(vy,vs) (2)

20

where @ depicts an abstract addition and > represents an
abstract greater than or equal operator.

To demonstrate the generality of the triangle abstraction,
we next present several concrete graph triangle inequalities
that are not based on the distance property.

wide(u, ’”) \\\wide(r, x) for any u, r, and x
A min(wide(u, r), wide(r, x)) <wide(u, x)
wide(u, x)
(a) SSWP Triangle
naro(u, r) naro(r, x) for any u, r, and x
g ; max(naro(u, r), naro(r, x)) > naro(u, x)
naro(u, x)

(b) SSNP Triangle

Figure 5. Triangle Inequalities in SSWP and SSNP (dashed
lines depict the widest/narrowest paths between vertices).

SSWP/SSNP Triangle. SSWP and SSNP are abbreviations for
single-source widest path and single-source narrowest path,
respectively. Both of them play important roles in network
routing [46] and transportation planning [6].

Given a source vertex v, SSWP and SSNP compute the
widest and narrowest path from v to every other vertex in the
graph, respectively. The widest path between two vertices is
the path whose minimum edge weight is the largest, while
the narrowest path between two vertices is the path whose
maximum edge weight is the smallest, as defined below:

wide(vy, v2) = max{minw(p) | path p from v; to vz} (3)

naro(vy, v2) = min{maxw(p) | path p from v; to v2} (4)

where minw(p) and maxw(p) represent the minimum and
maximum edge weight along path p, respectively.

Based on their definitions, it is not difficult to derive the
triangle inequalities for SSWP and SSNP, shown in Figure 5.
The reasonings behind these inequalities are similar to that of
SSSP, except that they are based on different addition @ and
comparison > operators. For example, the inequality holds
for SSWP because the widest paths from u to r and from r
to x can be concatenated, and the width of the concatenated
path must be no larger than the width of the widest path
from u to x as it is just one of the paths from u to x. Similarly,
we refer to the triangle inequalities for SSWP and SSNP as
SSWP triangle and SSNP triangle, respectively, for brevity.

Other Triangles. Due to space limitations, we next briefly
present the triangle inequalities for the other graph problems
that we have considered. These include:

e Single-source reachability (SSR) [18] which finds all
the vertices connected to the source vertex. Figure 6-(a)

rech(u, i")’/,,.,,— \\N\ rech(r, x) for any u, r, and x
rech(u, r) AND rech(r, x) <rech(u, x)
rech(u, x) @
(a) SSR Triangle
level(u, r) level(r, x) for any u, r, and x

level(u, r) + level(r, x) > level(u, x)

level(u, x)

(c) BFS Triangle

©

vite(u, r) \\\vite(r, x) forany u,r, and x

g A vite(u, r) *vite(r, x) <vite(u, x)

vite(u, x)
(b) Viterbi Triangle

nsp(u, r) nsp(r, x) for any u, r, and x

if level(u, r) + level(r, x) = level(u, x)

------------------------------ @ then nsp(u, r) * nsp(r, x) <nsp(u, x)
nsp(u, x)

(d) SSNSP Triangle

Figure 6. Triangle Inequalities in SSR, Viterbi, BFS/Radii, and SSNSP (where a dashed line depicts the connectivity, maximum
probability path, BFS-level, and the shortest paths between two vertices, respectively).

shows its triangle inequality based on the reachability
property defined in Equation 5.

e Viterbi algorithm (Viterbi) [20] which computes the
probability along the Viterbi path (a state path that
maximizes the conditional probability) from the source
vertex. Figure 6-(b) shows its triangle inequality based
on the vite property defined in Equation 6, where w(p)
depicts the total weights of edges in path p.

o Breath-first search (BFS) [25] which computes the level
of each vertex in the BFS tree rooted at the source
vertex. Figure 6-(c) shows its triangle inequality based
on the BFS level property defined in Equation 7, where
nEdges(p) depicts the number edges in path p.

o Radii estimation (Radii) [37] which estimates the graph
radius by running multiple SSSP and selecting the
largest distance among their results. As it is based on
SSSP, its triangle inequality is just that of SSSP.

e Single-source number of shortest path (SSNSP) [33]
which computes not only the BFS levels 2, but also the
number of shortest paths from the source vertex to
all the other vertices. Figure 6-(d) shows its triangle
inequality based on both the BFS level property and
the number of shortest paths property. The latter is
defined in Equation 8, where | - | depicts the set size.

rech(vy. v;) = 1 ifa pat.h from v; to v, exists 5)

0 otherwise
vite(vy, v2) = max{1/w(p) | path p from v; to v, } (6)
level(vy, v2) = min{nEdges(p) | path p from v; to vo} (7)
nsp(vy, v2) = |{the shortest paths from v to v, }| (8)

For brevity, we refer to the above triangle inequalities as
SSR triangle, Viterbi triangle, BFS triangle, and SSNSP triangle,
respectively. Among these triangles, the Viterbi triangle and

%In this case, SSNSP is for unweighted graphs.

21

BFS triangle can be intuitively derived just based on their
definitions and the fact that the paths from u to r and from
r to x can be concatenated to form one path from u to x. For
SSR triangle, the situation is different in that the property of
interest (i.e., reachability) is about the existence of any path
between two vertices. In this case, a logical AND perfectly
fits in the role of the ® operator. The last one, SSNSP triangle
is also special in that it requires a predicate (condition) for
the triangle inequality to hold. As we will show later, the
predicate actually affects the effectiveness of the triangle
inequality in the use of incremental query evaluation.

In summary, the graph triangle inequality, as abstracted
in Equation 2, is generally enough to capture a spectrum of
vertex-specific graph problems.

4 Generalized Incremental Evaluation

In this section, we show that, based on the graph triangle
inequality abstraction, incremental evaluation of queries
without a priori knowledge can be achieved in general.

triangle inequality-based inc. eval.

q

inc. eval. of
standing query ¢(r)

l property(u, 1) N property(r, x)
< > u, @ """"""""""" @

9w property(u, x) Vx,x€V
-»> property(u, r)&@ property(r, x)

any query of
same type!

9w @
E——

results

Figure 7. Triangle Inequality (A)-based Incremental Query
Evaluation for an Arbitrary Query of the Same Type (i.e., a
query starting from a different source vertex but asking for
the same graph property, like SSWP(v;) and SSWP(vy)).

4.1 A-based Incremental Evaluation

The key to our solution is a principled way of “connecting”
the evaluation of a vertex-specific query to the results of
another query evaluation of the same type (e.g., SSWP) based
on their graph triangle inequality.

Execution Model. Figure 7 illustrates the basic idea of our
solution. Assume ¢(r) is the pre-selected standing query (the
selection will be discussed later), where r is the source vertex.
In the programming system, query q() is a user-specified
function that implements the (vertex-specific) querying logic
while r is the parameter to the function.

First, the standing query g(r) is evaluated continuously
and incrementally upon graph updates, like those in the
existing incremental graph processing systems [3, 26, 43].
Meanwhile, the system accepts user queries like g(u) which
is of the same type as g(r), but its source vertex u could be
any vertex in the graph. From the evaluation of g(r), we can
obtain the values of property(r,u) and property(r, x). For
easier explanation, here we assume the graph is undirected
(directed ones will be discussed later), which means that we
can also obtain property(u, r) — the same as property(r, u).
In addition to vertices r and u, consider an arbitrary vertex x
in the graph different from r and u. Together, r, u, and x form
a triangle, just like one of those in Section 3. Then, based
on the addition operator @ in the triangle abstraction (see
Equation 2), we can compute the following value set:

©)

Next, instead of evaluating g(u) from scratch (i.e., using the
default initial values) on the current version of the graph, the
system starts its evaluation directly from A(u, r), and runs
until all the vertex values are converged. Note that, just like
full evaluation, the above incremental evaluation also starts
from the source vertex u (i.e., frontier is initialized with u).

In the above process, the system maintains an in-memory
state consisting of three parts: (i) the streaming graph, (ii)
the evaluation of standing query, and (iii) the evaluation of
user query. As detailed later, in our prototype, the streaming
graph can be incrementally maintained with a compression
tree-based data structure (Aspen [7]), while the results of
query evaluation are kept in a property array of size |V|.

We refer to the above streaming graph execution model as
triangle inequality-based incremental evaluation, or A-based
incremental evaluation ® for short.

In the following sections, we will first extend the proposed
A-based incremental evaluation to directed graphs, then an-
alyze its correctness, benefits and costs, and finally discuss
how the standing query can be selected.

A(u, r) = {property(u,r) ® property(r,x) | x € V}

4.2 Dual-Model Evaluation for Directed Graphs

In the case of directed graphs, property(u, r) may not be the
same as property(r, u), thus not available in the evaluation

3Here, A reads as triangle inequality, not delta (difference).

22

outgoing incoming outgoing outgoing
@‘ P —— ‘m@ @ T — AT >
push push push pull

property(r, x) property(x, r) property(r, x) property(n,, r)

(a) prior work (single-model) (b) this work (dual-model)

Figure 8. Computing property(r, x) and property(x,r) on
Directed Graphs: Prior Work [3, 5] vs. Our Solution.

results of the standing query g(r). In this case, we turn to the
reversed graph problem, denoted as g~ !(r), which computes
the properties from all vertices to r.

Results of g !(r) = {property(x,r) | x € V} (10)

Taking SSSP as an example, SSSP~!(v) is to find the shortest
distance from every vertex in the graph to v.

A straightforward way to evaluate g~1(r), as elaborated
in prior work [3, 5], is to update values of the in-neighbors,
rather than the out-neighbors as in the evaluation of g(r).
Figure 8-(a) illustrates this idea. However, with this solution,
the evaluations of queries g(r) and g~'(r) need to access
both outgoing and incoming edges efficiently (i.e. indices
for both outgoing and incoming neighbors). This not only
doubles the memory consumption of the edge data (two-way
indices rather than one-way), but also increases the cost of
streaming graph maintenance — need to keep both incoming
and outgoing edge representations to date.

To address the above issue, we propose a novel dual-model
query evaluation solution for directed graphs. The solution
enables us to evaluate both queries g(r) and ¢~!(r) on a
graph with only one-way edge representation (outgoing or
incoming edge-based). The key to this solution is the fact
that both push/pull model and incoming/outgoing edges
are relative. From the global view, a push model along the
incoming edges from the perspective of x is equivalent to a
pull model along the outgoing edges from the perspective of
one of x’s neighbors, say n, %, as illustrated in Figure 8-(b).
By adopting both models for the two queries respectively,
a one-way edge representation is sufficient for calculating
both property(r, x) and property(x, r) for any x in V.

We have presented the A-based incremental evaluation
on both indirected and directed graphs. Next, we discuss its
applicability and correctness.

4.3 Applicability and Correctness

First, A-based incremental evaluation targets vertex-specific
queries. For non-vertex-specific queries, such as PageRank
and connected components (CC), because they are already
well-suited to the existing incremental graph computation
models [3, 43], they can be incrementally evaluated without
triangle inequalities (also supported by Tripoline).

Second, to apply A-based incremental evaluation to a type
of vertex-specific query, a graph triangle inequality needs to

40r vice versa if pull model is assumed to be the default model.

be established. Note that the triangle inequality is derived
based on the property of interest rather than the specific
implementation of its queries. Given property(u, =), where =
refers to any vertex in the graph, a triangle inequality among
property(u,r), property(r, x), and property(u, x) often can
be intuitively derived based on the fact that a path from u
to r, then to x is just one of the possible paths from u to x.
Following this intuition, in Section 3, we have demonstrated
the possibility of establishing triangle inequalities for several
commonly seen graph problems.

Though triangle inequality is independent of the query
implementation, some properties of the vertex function f(v)
are still closely relevant to the correctness of the triangle
inequality-based incremental evaluation. Next, we mainly
discuss two such properties: monotonicity and safety under
asynchrony, which are formally defined as below.

Definition 4.1. In vertex-centric programming framework,
vertex function f(v) is monotonic if all vertex values only
change monotonically across iterations.

Definition 4.2. In vertex-centric programming framework,
vertex function f(v) is safe under asynchrony, or async-safe
for short, if the vertex values still converge correctly even
when f(v) is executed asynchronously based on the new
values of its neighbors calculated in the current iteration.

Note that, for vertex-centric graph algorithms, the above
two properties are not rare. In fact, they are in the abstraction
of many existing graph programming frameworks [13, 21, 33,
43]. For example, GraphLab [21] asynchronously executes
graph algorithms for better efficiency, GRAPE [13] relies on
the monotonicity of iterative graph algorithms for automatic
parallelization, Subway [33] leverages the asynchrony and
monotonicity to reduce the data transfer in out-of-memory
graph processing, and most relevantly, KickStarter [43] re-
quires monotonicity to support edge deletions in streaming
graph processing. In the following discussion, we assume
that the vertex function f(v) is monotonic and async-safe.

In the following, for conciseness, we use t;,;;(x) to denote
the initial value of vertex x under the A-based incremen-
tal evaluation of query q(u) (i.e., tinit(x) = property(u,r) ®
property(r, x)), and tcony(x) to denote the correct converged
value of x (i.e., teono(x) = property(u, x)).

Lemma 4.3. In A-based incremental evaluation, if vertex x’s
initial value t;;1(x) > teonu(x), then at least one of its in-
neighbors, say vertex z, must be initialized with value t;,;;(2),
such that tini(2) > teono(2), and z is on the path from source
vertex u to x that yields tcony(x).

Proof. By contradiction, assume that all in-neighbors of x,
denoted as z;, 1 < i < k (where k is the number of neighbors
of x), are initialized with their correct converged values
teonov(2i), 1 < i < k, then the vertex r in the standing query
q(r) is on the paths from u to z; that yield t;ono(2;). Also,
one in-neighbor of x must be on the path from source vertex

23

u to x that yields t;ono(x). Together, we have that r is on one
path from u to x that yields t¢ono(x). Thus, £, (x) = teono (%),
which contradicts the assumption in the lemma. O

Based on Lemma 4.3, we have the following conclusion.

Theorem 4.4. Given a vertex function f(-) that is monotonic
and async-safe, if triangle inequality holds on the property
that f(-) computes, the A-based incremental evaluation yields
the same results as the non-incremental evaluation.

Proof. Consider an arbitrary vertex x, which is initialized
with t;,;;(x) by A-based incremental evaluation. First, based
on triangle inequality, ;,;:(x) > tcono(X), Where teonq(x) is
the correct converged value of vertex x. If #;,,;(x) = teono (%),
then based on monotonicity, the evaluation will not change
its value, so it will remain correct in the end. Otherwise, if
tinit(x) > teonw(x), by applying Lemma 4.3 on vertex x, we
know there exists one in-neighbor of x, say z, which is on
the path that yields t.on.(x) and its initial value t;,;;(z) >
tconw(2). Similarly, we reapply Lemma 4.3 on vertex z. By
repeating these, we can find a reversed path starting from
vertex x, along which all the vertices have initial values that
are greater than their correct converged values, and they are
on the path from u to x that yields t;op,(x). If the reversed
path can reach the source vertex u, an activation of u will
gradually stabilize all the vertex values along the path with
their correct converged values, including x’s value. Here,
monotonicity ensures that the initial values of these vertices
will be updated with their corresponding correct converged
values (as tinit(x) > teono(x)), while async-safety ensures
that these updates will not alter the converged values even
when they are performed asynchronously. On the other hand,
if the reversed path cannot reach the source vertex, then it
would stay unchanged (the default initial value). O

Besides the theoretical correctness discussion of A-based
incremental evaluation, our experimental evaluation also
confirmed the correctness of results under many different
testing cases (Section 6). Next, we discuss the benefits and
costs of A-based incremental evaluation.

4.4 Cost-Benefit Analysis

To examine the benefits of A-based incremental evaluation,
we discuss how the two basic cases in its initialization: ¢;,;;(x)
= teono(X) and tipi(x) > teono(x), affect the computations.
Figure 9-(a) illustrates the first case t;,;+(X) = teono(X),
where the vertex value will not be changed during iterations
according to monotonicity, thus the vertex will never activate
its out-neighbors (bottom two vertices) °. This means that all
value propagations reaching x stop. In this way, it reduces
the amount of computations. In the second case, as shown
in Figure 9-(b), the initial value of x is not stable, but better
than the default initial value (i.e., t(x) < init). In this case,

SThey may still be activated due to changes of their other in-neighbors.

==} activiation

@@ value changed

(b) t(x) < init

(a) t(x) is stable

Figure 9. Benefits of A-based Incremental Evaluation.

it may “block” some value propagations (e.g., the blue one
which yields a worse value than #;,,;,(x)), but allow others
(e.g., the red one which yields a better value than #;,;(x)).
In both cases, the benefits come from the reduction of
the vertex function evaluations. Thus, the benefits can be
roughly captured by the activation ratio, denoted as Ry¢;:

Ngcr with A-based inc. eval.

(11)

Ract = N,.; without A-based inc. eval.
where N,.; denotes the total number of times that the vertex
function is evaluated. Note that R,.; < 1 because the new
initial values A(u, r) are no worse than the default ones. In
general, the closer A(u, r) are to the stable values, the lower
the R,.; is. In addition, as a side-effect, the reduction of
vertex activations often leads to fewer number of iterations
— faster convergence.

On the other hand, A-based incremental evaluation also
brings overhead. A direct cost comes from calculating the
initial values — {property(u,r) ® property(r,x) | x € V}.
As property(u, r) is fixed for the given standing query ¢q(r)
and user query g(u), the calculation simply traverses results
of q(r) to read property(r, x), x € V, from an array. Due to
spatial locality, this overhead is often negligible (e.g., about
0.3% for SSSP). Besides that, there are indirect costs regarding
the incremental evaluation of standing queries. For example,
for direct graphs, we incrementally evaluate not only g(r),
but also g~1(r). Depending on applications, the evaluation
of ¢71(r) may be counted as an overhead if its results are
not needed. As we will discuss shortly, we may also want
to incrementally evaluate multiple standing queries, whose
costs may also be counted as the overheads depending on
the application (more details in Section 4.5).

In summary, the performance improvements of A-based
incremental evaluation mainly depend on the activation ratio
Rgyct- Even with low R, the incremental evaluation only
introduces limited direct overhead. Next, we discuss a key
factor for R, ; — the selection of standing query.

4.5 Standing Query Selection and Cost Management

The effectiveness of A-based incremental evaluation, roughly
measured by R,.;, depends on which query is selected as
the standing query ¢q(r). A better selection may yield a lower
Ract, thus a higher speedup. Moreover, is it worthwhile to
select multiple standing queries? We address these questions
next. First, we present two basic selection strategies.

24

Triangle-based Selection. As discussed in Section 4.4, the
effectiveness of A-based incremental evaluation depends on
how close the initial values A(u, r) are to the stable values
(in terms of <), hence it is the better to select the standing
query that yields lower values of A(u, r). Based on this, given
user query q(u), we select q(r*), such that,

r* = arg min Z property(u, r) @ property(r, x) (12)
reV vxev
= arg min property(u,r) - |V| & Z property(r,x) (13)
rev

VxeV

However, in practice, we do not know the user query g(u)
— u can be any vertex in V. To find the best ¢(r) overall, we
need to compute the summation in Equation 12 for every
u in V and select the one that minimizes the summation
of those summations. Essentially, this requires collecting
the property(v;, vj) between every pair of vertices in the
graph. Apparently, this is impractical for large graphs ® even
in non-streaming scenarios due to the high time and space
complexities, not to mention the streaming scenarios where
the property values change as the graph is updated.

Topology-based Selection. From the perspective of graph
topology, it may be attempted to select the standing query
q(r) whose source vertex r is closer to the vertex u in the
user query g(u) in terms of the number of hops, because
in this way, u and r share more paths or path segments to
other vertices. Interestingly, we find that this heuristic only
works for some graph problems, such as SSSP and BFS, but
not the others, like SSWP and Viterbi. The reason is that
the heuristic may contradict the triangle inequalities. Take
SSWP as an example, in fact, the more hops that u and r are
away from each other, the larger value wide(u, r) might be,
thus the better value wide(u, r) ® wide(r, x) may possess.

Instead, for graph topology, we focus on the reachability
of r in the standing query g(r) to the other vertices in the
graph. In fact, to effectively leverage the triangle inequality,
there should be at least one path from r to vertex u in the
user query g(u), and to every other vertex x, x € V; other-
wise, property(u, r)® property(r, x) would be as “bad” as the
default initial value (e.g., oo in SSSP). One simple yet reliable
way to approximate the reachability is to select a query with
a high-degree source vertex ’, which is more likely to reach
a larger amount of vertices. Thus, we have the following
heuristic for selecting standing query q(r).

r* = arg max degree(r) (14)

rev
As shown next, in practice, we adopt a solution combining
the triangle-based and topology-based selections to achieve a
balance between complexity and effectiveness. The key to
exploiting this tradeoff is adopting multiple standing queries.

®For small graphs that are affordable for collecting these properties, the
results can be directly cached — no need for incremental evaluation.
"Following the push model, here it refers to the out-degrees.

Selecting Multiple Standing Queries. First, we pre-select
a set of K standing queries offline using the topology-base
selection, that is, queries with the top-K high-degree vertices:

Standing, = {q(r1), q(r2), -+, q(rg)}
Then, at runtime, we pick the best one among the K standing
queries based on the specific user query g(u), according to a
simplified version of Equation 13:

r* = arg min property(u,r) (15)

reStanding g
Equation 15 is based on our experimental finding that, for
the standing queries with top-K high-degree vertices, there
is limited variation for the summation in Equation 13.
In this way, the standing query selection not only becomes
query-specific, but also incurs negligible runtime overhead.

Managing the Costs. However, incrementally evaluating
multiple standing queries may take longer — each time the
graph is updated, it has to ensure that the evaluation of every
standing query reaches stabilization. Here, we present two
ways to alleviate these costs.

First, we evaluate the K standing queries in batch mode.
That is, we maintain a combined frontier for all the active
vertices among the K queries, and for each active vertex v, we
apply the vertex function for the K standing queries together
(those are inactive on v are masked). In this way, both the
graph and vertex value arrays of standing queries can be
accessed in a coalesced manner, thus incurring much less
cost comparing to evaluating each standing query separately.

Second, we can adjust K to exploit the tradeoff between the
maintaining cost of standing queries and the effectiveness of
A-based incremental evaluation. When the user queries are
made relatively more frequently than the graph updates (in
batches), we may afford a larger K, as the overhead can be
amortized by more user queries. In the opposite scenarios,
we may reduce K such that the (incremental) standing query
evaluation can finish quickly, and the following user query
evaluation can start earlier.

So far, we have discussed the major aspects of the proposed
A-based incremental evaluation. Next, we present a new
streaming graph processing system that supports A-based
incremental evaluation for vertex-specific queries.

5 Implementation of Tripoline

Based on the proposed generalized incremental evaluation,
we developed Tripoline, a shared-memory streaming graph
processing system. To our best knowledge, Tripoline is the
first system of this kind that supports incremental processing
of vertex-specific queries requiring no a priori knowledge of
source vertices. Figure 10 illustrates its high-level structure,
which consists of four major components:

o A streaming graph engine that accepts graph updates
and maintains the data structures of the current graph.
As the focus of this work is not to build such an engine,

25

Streaming Graph Engine Standing Query Inc. Eval.

i), Module
% E rigger QJD_
E—
@ results
) o
& L @ @ vertex-centric prog.
results A-based inc. eval.

triangle abstraction

User Query Inc. Eval.

Module Programming Interface

Figure 10. System Architecture of Tripoline.

Tripoline adopts a state-of-the-art streaming graph
engine called Aspen [7]. Internally, Aspen leverages a
compressed tree-based graph representation to achieve
both high-space efficiency and high-throughput graph
updates, and uses a work-stealing scheduler similarly
to Cilk for parallelism. Also, we extended the current
version of Aspen to support edge weights.

o A standing query evaluation module that continuously
and incrementally evaluates a set of standing queries
upon graph updates; For better efficiency, we imple-
mented the batch mode mentioned in Section 4.5.

o A user query evaluation module that employs A-based
incremental evaluation to fulfill the user requests.

e Finally, a programming interface that not only provides
the conventional vertex-centric programming, but also
offers a triangle abstraction for specifying the triangle
inequality of the specific graph problem. Basically, the
developers need to overwrite the generic addition and
comparison operators @ and >, respectively.

Configuration and Parameters. The above three runtime
modules (colored boxes in Figure 10) are configured to be
executed exclusively (i.e., in serial), though each of them runs
in parallel individually. This configuration maximizes the
resource availability for each task: graph updates, standing
query evaluation, and user query evaluation, respectively.

In our current setup, K standing queries are first selected
based on their reachability to all possible source vertices
in the user queries, for which we choose the top-K high-
degree vertices as an approximation (i.e., the “topology-based
selection” in Section 4.5). With that, the only parameter to
be tuned is K, which depends on the query type and the
memory capacity of the machine (a larger K means results of
more queries need to be kept in memory). When the system
is set up initially, K can be tuned and selected using a few
sample values (as shown later in the evaluation - Table 5). To
ease its deployment, a basic auto-tuner can be added to make
the K selection transparent to the users. Furthermore, the
standing query selection might be further improved based
on the distribution of user queries when it is available.

Table 1. Benchmarks in Tripoline

Bench. Pseudo-code of Vertex function

for each out-neighbor n of s
level(n) = min { level(n), level(s) +1 };
if level(n) changed then add n to frontier;

BFS

for each out-neighbor n of s
dist(n) = min { dist(n), dist(s) + w(s, n) };
if dist(n) changed then add n to frontier;

SSSP

for each out-neighbor n of s
wide(n) = max { wide(n), min { wide(s), w(s, n) } };
if wide(n) changed then add n to frontier;

SSWP

for each out-neighbor n of s
naro(n) = min { naro(n), max { naro(s), w(s, n) } };
if naro(n) changed then add n to frontier;

SSNP

for each out-neighbor n of s
vite(n) = max { vite(n), vite(s) / w(s, n) };
if vite(n) changed then add n to frontier;

Viterbi

for each out-neighbor n of s
rech(n) = true;
if rech(n) changed then add n to frontier;

SSR

for each out-neighbor n of s
dist1(n) = min { dist1(n), dist1(s) + w(s, n) };
Radii s
dist16(n) = min { dist16(n), dist16(s) + w(s, n) };
if any dist+(n) changed then add n to frontier;

for each out-neighbor n of s
if level(n) == level(s) + 1 then
delta(n) += delta(s); add n to frontier;
ssnsp(s) += delta(s);

SSNSP

Note that non-vertex-specific queries (e.g., PageRank and
CC) can also be implemented on Tripoline, in which case, the
system simply maintains them incrementally as the standing
queries, like the existing incremental query evaluation [3, 26].
Similarly, vertex-specific queries with a priori knowledge
can be treated as the standing queries, so that they can be
maintained incrementally and answered directly.

In addition, Tripoline includes a set of built-in benchmarks
for which the vertex functions are designed to satisfy the
desired properties for correctness (see Section 4.3). Table 1
summarizes their vertex functions.

6 Evaluation

This section evaluates Tripoline and the effectiveness of A-
based incremental graph processing.

6.1 Methodology

We compiled the built-in benchmarks of Tripoline using g++
8.3, and ran the experiments on a 32-core Linux server. The
server is equipped with Intel Xeon CPU E5-2683 v4 CPU and
512GB memory, running on CentOS 7.9.

The experiments used a set of four real-world large graphs
whose statistics are listed in Table 2. Like many existing
graph systems, such as PowerGraph [14], PowerLyra [2],
and Tigr [27], Tripoline mainly targets power-law graphs,
which are more common in real-world applications. Thus,

26

Table 2. Statistics of Input Graphs

Graph Type \% [E| Avg. Out-Degree
Orkut undirected 3.IM 234M 76.3
Friendster undirected 68M 2.9B 28.9
LiveJournal directed 4.8M 69M 14.2
Twitter directed 41M 1.5B 35.3

this evaluation focuses on such kind of graphs. Similar to
prior work [23, 35, 43], we assume that a substantial portion
of edges - 50%, 60%, and 70%, has been streamed in, then
the remaining edges of the graph are streamed in batches
of randomly selected edges. By default, we set the update
batch size to 10K. Note that, under the design of Tripoline,
the impact of update batch size is limited to the standing
query evaluation, which has been intensively studied in the
evaluation of Aspen [7]. But, for completeness, we have
included results for different batch sizes (from 1K to 500K).

As to the number of standing queries K, by default, we set
it to 16. To demonstrate the tradeoff between benefits and
costs in adopting multiple standing queries (see Section 4.5),
we also vary the value of K from 1 to 64 and report their
impacts to the standing and user query evaluations.

For each benchmark, we randomly selected 256 non-trivial
user queries (whose source vertices are of degree more than
two). After a batch of graph updates have been applied and
the evaluation of standing queries have been re-stabilized, we
evaluated each of the 256 user queries three times repetitively
and reported the averaged performance. To obtain sufficient
samples, we collected the performance results from the first
five consecutive batches of updates at each preset starting
point (50%, 60%, and 70% portions of edges).

6.2 Speedups

Table 3 lists the speedups of A-based incremental evaluation
of user queries over the non-incremental query evaluation
and the average time of the former. Overall, we observe a
wide range of speedups across benchmarks. The highest
come from the case of Viterbi (17.6-41.5X), while the lowest
are observed on SSNSP (1.0-1.2X). In between, the results
show significant performance improvements in the cases
of SSWP (9.3-36.1x), SSNP (10.2-30.5x), and SSR (5.0-11.7x),
and modest speedups in the remaining cases: SSSP (1.3-2.5X),
BFS (1.0-1.6X), and Radii (1.1-1.2x). This large variation of
speedups clearly indicates that the effectiveness of A-based
incremental evaluation depends on the graph problems, in
particular, their graph triangle inequalities. As mentioned in
Section 4.4, the effectiveness can be measured more directly
by the activation ratio R,.;. Table 4 reports this ratio for
cases where the graph is 60% loaded.

Overall, we find that the results are consistent with the
speedups — lower activation ratios usually correspond higher
speedups. More specifically, we find R, is extremely low
(less than 1%) in the cases of SSWP, SSNP, and Viterbi, which
means more than 99% of the vertex activations are avoided

Table 3. Speedups of A-based Incremental Evaluation over Non-Incremental Evaluation.

Each entry is in the format of average speedup [speedup standard deviation, average time (seconds) with incremental eval.] of 256 user queries.
The highest and lowest speedups for each benchmark are bold.

Graph

SSSp

SSWP

Viterbi

BFS

SSNP

SSR

Radii

SSNSP

OR-50
OR-60
OR-70
FR-50

2.52 [1.88, 0.15
2.42 [1.69, 0.17
2.45 [1.82,0.18
1.34 [0.13, 10.90

31.70 [6.76, 0.01]
33.91 [6.45, 0.01]
34.88 [6.14, 0.01]
29.69 [5.32, 0.40]

40.16 [5.17, 0.01]
37.94 [3.95, 0.01]
39.90 [4.29, 0.01]
35.49 [5.38, 0.46]

1.23 [1.04, 0.12]
1.25 [1.20, 0.13]
1.30 [1.38, 0.15]
1.02 [0.20, 6.62]

26.30 [5.42, 0.01]
29.06 [5.30, 0.01]
30.47 [5.13, 0.01]
17.30 [3.06, 0.45]

10.40 [0.31, 0.01
10.86 [0.27, 0.01
11.70 [0.61, 0.01

9.28 [0.27, 0.47

1.21 [0.05, 2.22]
1.22 [0.06, 2.43]
1.23 [0.05, 2.75]
1.16 [0.05, 50.09]

1.09 [0.18, 0.25
1.09 [0.18, 0.27
1.10 [0.19, 0.29
1.00 [0.03, 8.59

) [[])
1 [[1 1
] [[]]
) [[1]
FR-60 1.34[0.11,12.26] 35.23 [5.86, 0.38] 41.48 [5.31,0.38] 1.02[0.24,7.16] 18.77 [2.96,0.45] 10.44 [0.23, 0.45] 1.18 [0.04, 56.43] 1.00 [0.03, 9.58]
FR-70 1.34[0.18, 13.79] 36.09 [5.76,0.42] 39.95 [3.87,0.45] 1.01[0.11,8.63] 20.56 [3.04,0.45] 11.43[0.30,0.45] 1.16 [0.05, 61.52] 1.00 [0.03, 9.99]
1J-50 1.68 [0.62,0.14] 9.27 [1.88,0.02] 22.91 [4.60,0.02] 1.10 [0.30,0.08] 10.23 [2.08,0.02] 4.94 [0.39, 0.02] 1.14 [0.03, 1.28] 1.03 [0.11, 0.18]
1J-60 1.81[0.87,0.13] 11.56 [2.30,0.01] 26.88 [5.47,0.02] 1.12 [0.36,0.07] 11.53 [2.35, 0.02] 5.50 [0.43, 0.02] 1.16 [0.05, 1.31] 1.03 [0.11, 0.20]
LJ-70 1.74[0.73,0.15] 10.60 [2.00, 0.02] 23.4 [4.60,0.02] 1.12[0.33,0.08] 12.56 [2.49, 0.02] 6.01 [0.46, 0.02] 1.17 [0.04, 1.49] 1.03 [0.11, 0.20]
TW-50 1.97 [1.25,1.24] 13.17 [2.28,0.14] 17.61 [2.41,0.13] 1.49 [0.80,0.85] 12.76 [1.77, 0.13] 7.87 [0.13,0.15] 1.16 [0.07, 11.42] 1.16 [0.32, 2.18]
TW-60 1.95[1.18,1.45] 15.97 [2.55,0.13] 19.14 [2.33,0.13] 1.56 [0.98,0.94] 13.42[1.81,0.14] 8.32 [0.25,0.15] 1.15[0.07, 11.85] 1.18 [0.34, 2.27]
TW-70 2.11[1.84,1.56] 17.23[2.61,0.13] 21.41[2.74,0.13] 1.61[1.12,0.98] 15.94 [2.07, 0.13] 9.21 [0.20, 0.15] 1.19 [0.06, 13.51] 1.20 [0.41, 2.51]
avg. 1.89 23.28 30.52 1.24 18.24 8.83 1.18 1.08
6 15
SSSP-LJ60 SSWP-LJ60 SSNP-LJ60 Viterbi-LJ60
a4 D_lZ a
3 39 3
g 3 g
&2 56 &
3
0 0
User Query ¢(u) User Query g(u) User Query g(u) User Query g(u)
10 2 2
BFS-LJ60 8 SSR-LJ60 Radii-LI60 16 SSNSP-LI60
g’ g6 g’ S,
° ° T 1 °
g : £a 4 Los
2 05 04
0 0 0
User Query ¢(u) User Query ¢(u) User Query q(u) User Query ¢(u)

Figure 11. Speedup Distributions of 256 User Queries (16 queries in the case of Radii; x-axis is for the user queries while
y-axis is for the speedups of A-based incremental evaluation; the user queries are sorted by the corresponding speedups.)

15

3
25 SSSP-LJ60 SSWP-LI60
S 2] 10
T 15]
a 8
a1 & s
0.5
0 0
5 O & O o S O
VS T 14 58 912 1316 17-20 >20
dist (u, r) wide (u,r)
6 3
5 SSR-LJ60 BFS-LJ60
ol a2
E S
&2 &1 I I
. | .
1 0 1 2 5 6
rech (u, r) level (u,r)

15 25

SSNP-LJ60 20 Viterbi-LJ60
S
é:. 10 E 15
9 ;’.’_ 10
B I I I
0 & o ‘\’ S o 0") N
4-6 79 10-12 13-15 >15 Q 0‘0 Q"» Q"» Q'l/ N
naro (u, r) vite (u, 1)
15 3
Radii-LJ60 SSNSP-LJ60
g ! $?
el el
3 &
505 &1 I
0 0 I I I I
2022 2325 2628 >28 1 2 3 a4 5 6
dist (u, r) level (u,r)

Figure 12. Correlations between Speedups and property(u, r) for Verifying the Standing Query Selection Heuristic.

by incremental evaluation. Our further investigation reveals
an interesting fact: the initial values A(u, r) of incremental
evaluation are nearly all stable values, that is, the “=” part of
the inequality holds - the first case of benefits we discussed
in Section 4.4. There could be multiple reasons causing this
phenomenon. One of them is the min-max nature of the
graph problems. In the cases of SSWP and SSNP, the whole
vertex function is based on the calculation of min and max.

In these cases, it is not hard to prove that, for undirected
graphs or strongly connected components (SCC) of a directed
graph, if property(u, r) # property(r, x), then the inequality
turns to be the equality, thus, the initial values are already
stable. For Viterbi, one key reason for the high stable ratio
could be related to the max-division operation in the vertex
function. The function tries to choose the edge with the
lowest weight to propagate the probability - dividing value

27

Table 4. Vertex Activation Ratio of A-based Incremental
Evaluation over Non-Incremental Evaluation.

Each entry is: average [standard derivation] of 256 user queries

OR-60 FR-60 LJ-60 TW-60
SSSP 44.4% [13.1%] 61.7% [4.8%] 56% [12.2%] 52.8% [11.1%]
SSWP 1.9E-7 [9.0E-8] 1.3E-8 [3.6E-9] 0.79% (8.8%) 4.0E-8 [3.0E-8]

Viterbi 3.5E-7 [8.9E-7] 6.7E-8 [3.2E-7] 0.95% [9.1%] 1.7E-7 [2.8E-7]

]
BFS 82.2% [18.2%] 98% [6.9%] 89.4% [16.5%] 65.8% [22.6%]
SSNP 1.9E-7 [1.4E-7] 1.4E-8 [9.4E-9] 0.78% [8.8%] 3.6E-8 [2.3E-8]
SSR 3.3E-7 [0] 1.7E-8 [0] 0.78% [8.8%] 3.2E-8 [2.8E-9]
Radii 98.9% [3.7%] 91.9% [4.5%] 92.21% [4.06%) 93.9% [6.8%]
SSNSP 98.9% [4.3%] 99.97% [0.2%] 98.58% [4.88%] 94.9% [10.1%]

by the edge weight, and as we know, the lowest edge weight
is one, thus the probability is likely to stay the same simply
because “vite(vy, v;) divided by 1 equals vite(vy, v2)”. Back
to the inequality, as long as there exists a path from u to r
or a path from r to x where the edge weights are all ones,
then the inequality becomes an equality. This effect can
be significantly amplified by the power-law nature of the
graphs, where u, r, and x are only a few hops apart, thus the
conditions are very likely to become true.

At the other end of the stable ratio spectrum, Radii and
SSNSP show the highest stable ratios (over 90%), meaning
that less than 10% of vertex function activations are actually
saved by incremental evaluation. Note that, even though
Radii mainly involves a group of SSSP evaluations, its stable
ratios are much higher than those of SSSP. This is because the
number of vertex activations in Radii is bottlenecked by the
slowest SSSP query — the one with the most number of vertex
activations. For SSNSP, our evaluation involves two rounds:
(i) a BFS round which computes the level of each vertex
and (ii) a counting round which counts the number of paths
corresponding to the lowest levels. The activation ratios
reported in Table 4 are for the second round. In this case,
the main problem comes from the conditional inequality as
shown in Figure 6-(d). Our profiling shows that the condition
is false for 90% of the cases during the initialization, which
substantially limits the effectiveness of A-based incremental
evaluation, resulting in a high activation ratio.

Besides the aggregated speedups shown in Table 3, we
also report the speedups of the 256 individual queries on
graph LiveJournal with 60% edges loaded in Figure 11. From
the results, we can see three patterns roughly. For SSSP,
BFS, and SSNSP, the speedup distributions are mostly biased,
followed by SSWP, SSNP, Viterbi, and Radii, and finally, the
distribution of SSR is almost uniform. The variations, to a
large extent, depend on the property(u, r), which connects
the user query g(u) and standing query g(r). We thus discuss
it together with the standing query selection next.

6.3 Standing Query Selection

Standing query selection is critical to the effectiveness of
A-based incremental evaluation. To examine its impact, we
grouped the speedups by property(u, r) — the heuristic that

28

we use for selecting the standing query (see Section 4.5). The
results are reported in Figure 12. In the cases of SSSP, SSWP,
SSNP, BFS, and SSNSP, there are clear correlations between
property(u, r) and the speedup; for Viterbi, the trend is less
obvious, but still observable; for Radii, no significant enough
correlation is observed; finally, for SSR, as the property is
binary, we will discuss it separately. Note that whether the
trend is increasing or decreasing depends on the comparison
operator >. For SSSP, SSNP, BFS, Radii, and SSNSP, > is >,
while for SSWP and Viterbi, > is <. From this perspective, the
trends align well with our standing query selection heuristic
— the “lower” the property(u, r) is, the higher the speedup is
achieved. Note that, in the case of SSR, the heuristic always
chooses the standing query with property(u, r) = 1, which is
also the one with a higher speedup. For Radii, we used the
maximum distance among 16 SSSP queries, in which case
the “averaging effect” blurs the correlation.

Also, note that, in the cases of SSSP, BFS, and SSNSP, the
speedups are more sensitive to property(u, r) when its value
is low, which explains the biased speedup distributions in
the corresponding graph problems shown in Figure 11.

Besides the selection heuristic, another important factor
to the performance is the number of standing queries — K
(see Section 4.4). A larger K offers more options for selecting
the standing query, thus potentially making the incremental
evaluation more effective; on the other hand, a larger K can
also increase the costs: (i) the time for incremental standing
query evaluation; and (ii) the time for selecting one from the
K standing queries for applying the triangle inequality. For
the latter, as the selection simply accesses K vertex values in
the property arrays of K standing queries and chooses one
based on Equation 12, the runtime cost is negligible. For the
former, we report the standing query evaluation time for K
from 1 to 64 in Table 5 (numbers in brackets).

Table 5 also reports how K affects the speedups. For SSSP,
BFS, and SSNSP, larger K tends to yield higher speedups;
For the others, there are no similar trends, which means that
adding more standing queries does not necessarily increase
the effectiveness of A-based incremental evaluation; for such
cases, a single standing query is sufficient. Note that, when
K increases, the evaluation time of standing queries only
increases sub-linearly, thanks to the batch mode execution.
As to the space cost, the value can be computed by (8 +
2) bytes X Bsize X |V|, where 8 is the size of vertex value
(double/long) and 2 is the two masks (boolean) of vertex
activeness in the prior and current iterations. In general,
users can tune K based on the sensitivity of their graph
problem and the resource constraints.

6.4 Graph Streaming

Next, we briefly report the impact of the graph update batch
size on the standing query evaluation. A detailed evaluation
can be found in Aspen [7]. Table 6 shows the standing query
evaluation time with update batch size varying from 1K to

Table 5. Benefits and Costs of Incrementally Evaluating K
Standing Queries (on graph TW-60).

Each entry is: avg. user query speedup [standing queries eval. time(s)]

#LO 1 2 4 16 64
SSSP 1.43[0.30] 1.43[045] 170 [0.71] 1.95[1.42] 2.36 [4.73]
SSWP 16.28 [0.30] 15.98 [0.47] 15.53 [0.71] 15.97 [1.23] 14.97 [3.51]
Viterbi 18.63 [0.30] 17.87 [0.45] 19.09 [0.69] 19.14 [1.20] 17.84 [3.44]
BFS 1.03[0.32] 1.04[043] 1.23[0.67] 1.56[1.29] 1.86 [4.45]
SSNP 13.44 [0.37] 13.09 [0.45] 13.24 [0.75] 13.42 [1.37] 13.84 [3.92]
SSR 8.39[0.35] 8.60 [0.45] 8.22[0.66] 832[1.36] 8.12[4.05]
Radii 1.11[0.36] 1.13[0.53] 1.16[0.97] 1.15[1.59] 0.84 [4.68]
SSNSP 1.01[1.74] 1.00[0.58] 1.09 [0.91] 1.18[2.10] 1.28 [6.46]

Table 6. Standing Query Evaluation Time under Different
Update Batch Sizes on LJ-60 and FR-60.

Graph Bsize SSSP SSWP Viterbi BFS SSNP SSR Radii SSNSP
1K 0.09 0.08 0.09 0.09 0.09 0.07 0.13 0.17

10K 0.13 0.10 0.10 0.09 0.11 0.08 0.17 0.19

LJ-60 50K 0.15 0.12 0.12 0.11 0.13 0.09 0.20 0.22

100K 0.16 0.14 0.14 0.11 0.16 0.10 0.21 0.22

500K 0.23 0.18 0.19 0.17 0.20 0.14 0.29 0.27

1K 2.09 1.66 1.78 186 1.72 173 2.29 3.77

10K 2.50 1.95 2.00 2.09 187 178 2.73 4.04

FR-60 50K 2.69 2.16 236 230 222 203 3.11 3.52
100K 3.08 2.52 2.60 2.67 244 238 3.30 3.88

500K 4.14 3.52 355 3.70 3.59 333 4.30 4.83

500K. The results show that the evaluation time increases
sub-linearly as the batch size increases. The main reason
for the sub-linear increase is that computations for handling
different new edges are largely shared. For example, many
new edges may appear on the same paths, thus sharing the
activations of vertices along the paths. Moreover, the efficient
data structure (a purely functional tree) ensures fast graph
data accesses for incremental query evaluation.

6.5 Integration into Differential Dataflow

Though Tripoline is implemented based on Aspen [7], the
idea of triangle inequality-based optimization may also be
adopted in other streaming graph systems. To demonstrate
its generality, we examined the potential of adopting it in a
state-of-the-art general-purpose streaming framework, called
Differential Dataflow (DD) [24, 26].

In fact, the latest version of DD also supports inter-query
sharing, called shared arrangements [24]. In earlier versions
of DD, each query ® needs to maintain an indexed state over
the input stream independently. In the context of streaming
graphs, this means that each query needs to maintain its own
indexed graph (for outgoing and/or incoming edges) over a
stream of edge pairs. This creates unnecessary redundancies
when different graph queries want to access the same input
stream (edge-pair stream). Shared arrangements address this
issue by allowing different queries to share the same indexed
state (graph), rather than maintaining its own copy. Note that
shared arrangements are an orthogonal improvement to the

8Here, a query refers to a type of queries in our context.

29

Table 7. Performance of Differential Dataflow with Triangle
Inequality Optimization on L] and TW at 60% and 100%.

(DD-SA: differential dataflow with shared arrangements;
DD-SA-Tri: DD-SA with triangle inequality optimization)

Graph Method BEFS SSSP SSWP
DD-SA 0.97s 6.90s 3.50s

LJ-60 DD-SA-Tri 0.93s 2.68s 0.48s

Speedup [1.04x] [2.57x] [7.29x]

DD-SA 6.91s 42.88s 22.97s

TW-60 DD-SA-Tri 7.23s 10.74s 5.75s
Speedup [0.96x] [3.99x] [3.99x]

DD-SA 1.10s 8.41s 4.63s

LJ-100 DD-SA-Tri 1.11s 3.24s 0.52s
Speedup [0.99%] [2.60x] [8.90x]

DD-SA 10.69s 58.63s 32.68s

TW-100 DD-SA-Tri 10.71s 14.72s 7.74s
Speedup [1.00x] [3.98x] [4.22x]

Table 8. Reduction of reduce Operations for DD-SA with
Triangle Inequality Optimization on LJ-100.

Graph Method BFS SSSP SSWP
DD-SA 9156594 30418846 20622003

LJ-100 DD-SA-Tri 8956638 17570555 6292821
Reduction [1.02x] [1.73x] [3.28X]

proposed triangle inequality optimization—the former shares
the indexed graph data structure across queries while the
latter “shares” the query evaluation state, that is, the vertex
values (e.g., distances of all vertices to the source vertex
in SSSP) across queries. The latter requires to establish the
triangle inequalities to be applicable.

Experiment Setup. We pulled the latest version of DD from
its GitHub repository . To integrate the triangle inequality
optimization, we added a filter to its graph processing
dataflow. The filter applies a predicate to each element of a
collection, and removes those for which the predicate returns
false. In specific, the predicates are constructed based on
triangle inequality A(u, r) > property(u, x) (see Equations 2
and 9). For other operators used in the dataflow (such as
join_map, concat, and reduce), we kept them intact.

Note that the above integration may not be the only way
to adopt triangle inequality optimization into DD. We choose
this design for its simplicity and modularity - it isolates the
modifications to one dataflow operator, leaving other parts
of the graph processing dataflow intact. A more intrusive
integration that yields better performance might be possible,
but requires a redesign of the existing DD to some extent.

Due to space limits, we focus our evaluation on three query
benchmarks (BFS, SSSP, and SSWP) and two graphs (L] and
TW), at 60% and 100% loaded ratios. For each configuration,
we issued 256 queries (the same as the prior experiments)
and collected the average time of query evaluation.

9https://github.com/TimerDatarow/differential—dataflow, Jan 22, 2021.

Performance Results. Table 7 reports the performance with
and without the triangle inequality optimization. Note that
the baseline (DD-SA) is the DD with shared arrangements
enabled. In general, the results are of similar trends as those
reported for Tripoline (see Table 3): (i) for SSSP and SSWP,
the speedups are more significant, ranging from 2.57X to
3.99x for SSSP and 3.99x to 8.90% for SSWP; (ii) by contrast,
the speedups for BFS are limited, actually they are close
to one. In the context of DD, the effectiveness of triangle
inequality optimization can be reflected by the number of
invocations of the downstream reduce operator, which are
shown in Table 8. For SSSP and SSWP, there are significant
reduction in the invocations of reduce operator, while for
BFS, the reduction is very limited. These results align with
the speedups of the three types of queries.

7 Related Work

When encountered with streaming graphs, for the evaluation
of graph queries, the following two approaches have been
considered: general solutions that apply to wide range of
graph problems; and custom solutions that apply to only
specific problems. While these works employ incremental
processing, none of them perform incremental processing in
the scenario of a new query addressed by Tripoline.

General Solutions for Streaming Graphs. These systems
allow users to express a broad range of graph algorithms. For
example, targeting general iterative analytics, Tornado [35]
organizes the computations into a “main loop” and several
branches. The former computes the approximate results,
based on which the latter finish the user query evaluation.
Sharing the high-level design, Kineograph [3] focuses more
on incremental graph analytics over fast-changing streaming
graphs along with push and pull models. Some other general
streaming graph systems include GIM-V [39] which employs
an incremental graph processing based on matrix-vector
operations, and Naiad [26] which incorporates differential
data flow to perform iterative and incremental algorithms.
The high-level system design of Tripoline is inspired by
the above systems. However, the key difference lies in the
generalization of incremental evaluation for queries that are
different from those in the “main loop”.

Besides the above systems, there are also designs of data
structures for supporting high-throughput graph updates,
such as STINGER [9] and Aspen [7]. As mentioned earlier,
the graph update engine used by Tripoline is Aspen.

Fan and others discussed graph computations that can be
incrementally performed [12]. Their work focused on the
theoretical boundness of incremental computation. However,
they assume that the queries for incremental evaluation are
known a priori, whereas this work focuses on incremental
evaluation of queries without a priori knowledge.

Custom Solutions for Streaming Graphs. These works
develop specialized streaming algorithms to solve different

30

graph problems. For example, Ediger and others [8] focuses
on the clustering coefficients in streaming data analytics and
designed an approximation method using bloom filters. A
similar technique is also used to correctly maintain connected
components in social networks [10, 29]. The basic idea is to
use the set intersection of neighborhood vertices to quickly
determine connectivity and construct a spanning tree for
each component. The algorithm relies on multiple concurrent
graph traversals to maximize parallelism. Some other custom
solutions have also been developed for graph clustering [48],
graph partitioning [38, 40], and connectivity checks [30, 36].

Other Related Scenarios and Solutions. Besides the above,
some prior studies [16, 19, 28, 42] focus more on the evolving
nature of graphs and the analysis of multiple snapshots of a
changing graph. In this scenario, the snapshots are available
a priori. For example, Chronos [16] is a storage and execution
engine to process temporal graphs that also uses incremental
processing. Vora and others [42] reorder computations to
to aggregate communications across graph snapshots and
leverage previously computed (potentially partial) results
to perform incremental processing across graph snapshots.
GraphTau [19] maintains a history of vertex values over time
and rectifies inaccuracies by reverting back the values.

Finally, existing static graph systems [2, 14, 15, 21, 22, 31,
32, 34, 37, 44, 45] can process graph snapshots one after the
other. Obviously, this approach would not be able to take
advantage of incremental processing.

8 Conclusion

This work reveals a fundamental limitation in the existing
streaming graph systems — lack of incremental evaluation for
queries without a priori knowledge. To address the limitation,
this work proposes to leverage the graph triangle inequalities
that can be naturally derived from vertex-specific graph
problems to enable such capabilities. This idea leads to a
generalized incremental processing design for vertex-specific
queries, in which the correctness is ensured by the triangle
inequality and proper design of the vertex functions, and
the efficiency is optimized based on the “distance” between
the user and standing queries. Finally, our evaluation of the
developed system Tripoline confirms the effectiveness of the
proposed techniques for a spectrum of graph problems on
real-world graphs.

Acknowledgements

We thank the reviewers and our shepherd Dr. Christopher
Rossbach for their constructive feedback and help. This ma-
terial is based upon the work supported in part by National
Science Foundation Grants CCF-2028714, CCF-2002554 and
CCF-1813173. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

References

(1]

[10

[t

(11]

(12]

(13]

(14]

[15]

(17]

Markus Blaser. A new approximation algorithm for the asymmetric
tsp with triangle inequality. ACM Transactions on Algorithms (TALG),
4(4):1-15, 2008.

Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and
Haibo Chen. Powerlyra: Differentiated graph computation and parti-
tioning on skewed graphs. ACM Transactions on Parallel Computing
(TOPC), 5(3):1-39, 2019.

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,
Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen.
Kineograph: taking the pulse of a fast-changing and connected world.
In Proceedings of the 7th ACM european conference on Computer Systems,
pages 85-98, 2012.

Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and
Sambavi Muthukrishnan. One trillion edges: Graph processing at
facebook-scale. Proc. of the VLDB Endowment, 8(12):1804-1815, 2015.
Atish Das Sarma, Sreenivas Gollapudi, Marc Najork, and Rina Pan-
igrahy. A sketch-based distance oracle for web-scale graphs. In
Proceedings of the third ACM international conference on Web search
and data mining, pages 401-410, 2010.

Fethi Demim, Kahina Louadj, and Abdelkrim Nemra. Path planning
for unmanned ground vehicle. In 2018 5th International Conference on
Control, Decision and Information Technologies (CoDIT), pages 748-750.
IEEE, 2018.

Laxman Dhulipala, Guy E Blelloch, and Julian Shun. Low-latency graph
streaming using compressed purely-functional trees. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 918-934, 2019.

David Ediger, Karl Jiang, Jason Riedy, and David A Bader. Massive
streaming data analytics: A case study with clustering coefficients. In
2010 IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), pages 1-8. IEEE, 2010.

David Ediger, Rob McColl, Jason Riedy, and David A Bader. Stinger:
High performance data structure for streaming graphs. In IEEE Confer-
ence on High Performance Extreme Computing, pages 1-5. IEEE, 2012.
David Ediger, Jason Riedy, David A Bader, and Henning Meyerhenke.
Tracking structure of streaming social networks. In IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, pages 1691-1699. IEEE, 2011.

Charles Elkan. Using the triangle inequality to accelerate k-means. In
Proceedings of the 20th international conference on Machine Learning
(ICML-03), pages 147-153, 2003.

Wenfei Fan, Chunming Hu, and Chao Tian. Incremental graph com-
putations: Doable and undoable. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pages 155-169, 2017.
Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, and Jiaxin Jiang.
Grape: Parallelizing sequential graph computations. Proceedings of the
VLDB Endowment, 10(12):1889-1892, 2017.

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. PowerGraph: Distributed graph-parallel computation
on natural graphs. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pages
17-30, 2012.

Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,
Michael J Franklin, and Ion Stoica. GraphX: Graph processing in
a distributed dataflow framework. In 11th USENIX Symposium on
Operating Systems Design and Implementation, pages 599-613, 2014.
Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong
Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen.
Chronos: a graph engine for temporal graph analysis. In Proceed-
ings of the Ninth European Conference on Computer Systems, pages
1-14, 2014.

Thomas Little Heath et al. The thirteen books of Euclid’s Elements.
Courier Corporation, 1956.

31

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai.
Sublinear-time decremental algorithms for single-source reachability
and shortest paths on directed graphs. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, pages 674-683, 2014.
Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica.
Time-evolving graph processing at scale. In Proceedings of the Fourth
International Workshop on Graph Data Management Experiences and
Systems, pages 1-6, 2016.

Jiiri Lember, Dario Gasbarra, Alexey Koloydenko, and Kristi Kuljus. Es-
timation of Viterbi path in Bayesian hidden Markov models. METRON,
77(2):137-169, 2019.

Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Car-
los E Guestrin, and Joseph Hellerstein. GraphLab: A new framework
for parallel machine learning. arXiv preprint arXiv:1408.2041, 2014.
Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 135-146, 2010.
Mugilan Mariappan and Keval Vora. Graphbolt: Dependency-driven
synchronous processing of streaming graphs. In Proceedings of the
Fourteenth EuroSys Conference 2019, pages 1-16, 2019.

Frank McSherry, Andrea Lattuada, Malte Schwarzkopf, and Timothy
Roscoe. Shared arrangements: practical inter-query sharing for stream-
ing dataflows. Proceedings of the VLDB Endowment, 13(10):1793-1806,
2020.

Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu
graph traversal. ACM Sigplan Notices, 47(8):117-128, 2012.

Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi. Naiad: a timely dataflow system. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439-455, 2013.

Amir Hossein Nodehi Sabet, Jungiao Qiu, and Zhijia Zhao. Tigr:
Transforming irregular graphs for gpu-friendly graph processing. ACM
SIGPLAN Notices, 53(2):622-636, 2018.

Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On
querying historical evolving graph sequences. Proceedings of the VLDB
Endowment, 4(11):726-737, 2011.

Jason Riedy and Henning Meyerhenke. Scalable algorithms for analysis
of massive, streaming graphs. SIAM Parallel Processing for Scientific
Computing, 2012.

Liam Roditty and Uri Zwick. A fully dynamic reachability algorithm
for directed graphs with an almost linear update time. SIAM Journal
on Computing, 45(3):712-733, 2016.

Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy
Zwaenepoel. Chaos: Scale-out graph processing from secondary stor-
age. In Proceedings of the 25th Symposium on Operating Systems Princi-
ples, pages 410-424, 2015.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pages 472488, 2013.

Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. Subway:
minimizing data transfer during out-of-gpu-memory graph process-
ing. In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1-16, 2020.

Semih Salihoglu and Jennifer Widom. Gps: A graph processing system.
In Proceedings of the 25th International Conference on Scientific and
Statistical Database Management, pages 1-12, 2013.

Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. Tornado: A
system for real-time iterative analysis over evolving data. In Proceed-
ings of the 2016 International Conference on Management of Data, pages
417-430, 2016.

Yossi Shiloach and Shimon Even. An on-line edge-deletion problem.
Journal of the ACM (JACM), 28(1):1-4, 1981.

[37] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing

(38

—

(39]

(40]

[41

—

(42]

(43]

framework for shared memory. In Proceedings of the 18th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
pages 135-146, 2013.

Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for
large distributed graphs. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 1222-1230, 2012.

Toyotaro Suzumura, Shunsuke Nishii, and Masaru Ganse. Towards
large-scale graph stream processing platform. In Proceedings of the
23rd International Conference on World Wide Web, pages 1321-1326,
2014.

Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic,
and Milan Vojnovic. Fennel: Streaming graph partitioning for massive
scale graphs. In Proceedings of the 7th ACM International Conference
on Web Search and Data Mining, pages 333-342, 2014.

Leslie G Valiant. A bridging model for parallel computation. Commu-
nications of the ACM, 33(8):103-111, 1990.

Keval Vora, Rajiv Gupta, and Guoqing Xu. Synergistic analysis of evolv-
ing graphs. ACM Transactions on Architecture and Code Optimization
(TACO), 13(4):1-27, 2016.

Keval Vora, Rajiv Gupta, and Guoqing Xu. Kickstarter: Fast and accu-
rate computations on streaming graphs via trimmed approximations.

32

[44]

[45]

[46]

[47]

[48]

In Proceedings of the 22nd International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
237-251, 2017.

Keval Vora, Guoging Xu, and Rajiv Gupta. Load the edges you need:
A generic I/O optimization for disk-based graph processing. In 2016
USENIX Annual Technical Conference (USENIX ATC’16), pages 507-522,
2016.

Kai Wang, Guoqing Xu, Zhendong Su, and Yu David Liu. Graphg:
Graph query processing with abstraction refinement—scalable and
programmable analytics over very large graphs on a single {PC}. In
2015 USENIX Annual Technical Conference (USENIX ATC’15), pages
387-401, 2015.

Zheng Wang and Jon Crowcroft. Quality-of-service routing for sup-
porting multimedia applications. IEEE Journal on selected areas in
communications, 14(7):1228-1234, 1996.

Kaige Yang and Laura Toni. Graph-based recommendation system.
In 2018 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pages 798-802. IEEE, 2018.

Mindi Yuan, Kun-Lung Wu, Gabriela Jacques-Silva, and Yi Lu. Efficient
processing of streaming graphs for evolution-aware clustering. In
Proceedings of the 22nd ACM international conference on Information &
Knowledge Management, pages 319-328, 2013.

	Abstract
	1 Introduction
	2 Background
	3 Graph Triangle Inequality
	3.1 Intuition
	3.2 Triangle Abstraction

	4 Generalized Incremental Evaluation
	4.1 -based Incremental Evaluation
	4.2 Dual-Model Evaluation for Directed Graphs
	4.3 Applicability and Correctness
	4.4 Cost-Benefit Analysis
	4.5 Standing Query Selection and Cost Management

	5 Implementation of Tripoline
	6 Evaluation
	6.1 Methodology
	6.2 Speedups
	6.3 Standing Query Selection
	6.4 Graph Streaming
	6.5 Integration into Differential Dataflow

	7 Related Work
	8 Conclusion
	References

