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ABSTRACT

We investigate the time evolution of dense cores identified in molecular cloud simulations using dendrograms, which are a
common tool to identify hierarchical structure in simulations and observations of star formation. We develop an algorithm to
link dendrogram structures through time using the three-dimensional density field from magnetohydrodynamical simulations,
thus creating histories for all dense cores in the domain. We find that the population-wide distributions of core properties
are relatively invariant in time, and quantities like the core mass function match with observations. Despite this consistency,
an individual core may undergo large (>40 per cent), stochastic variations due to the redefinition of the dendrogram structure
between time-steps. This variation occurs independent of environment and stellar content. We identify a population of short-lived
(<200 kyr) overdensities masquerading as dense cores that may comprise ∼20 per cent of any time snapshot. Finally, we note
the importance of considering the full history of cores when interpreting the origin of the initial mass function; we find that,
especially for systems containing multiple stars, the core mass defined by a dendrogram leaf in a snapshot is typically less than
the final system stellar mass. This work reinforces that there is no time-stable density contour that defines a star-forming core.
The dendrogram itself can induce significant structure variation between time-steps due to small changes in the density field.
Thus, one must use caution when comparing dendrograms of regions with different ages or environment properties because
differences in dendrogram structure may not come solely from the physical evolution of dense cores.

Key words: stars: formation – ISM: clouds.

1 IN T RO D U C T I O N

Understanding the early progression and end state of star formation
is fundamental to many areas of astronomy, from modelling the
formation of galaxies to studying the assembly of planetary systems.
Stars form in dense molecular cores embedded within gravitationally
contracting filamentary structures (André et al. 2010; Arzoumanian
et al. 2013; Smith, Glover & Klessen 2014; Arzoumanian et al.
2019). On core scales, gravity sets the dominant dense core properties
(Goodman et al. 2009; Lee et al. 2014b; Storm et al. 2016), while
turbulence is thought to regulate the star formation efficiency and
core formation, including properties like core rotation (Padoan,
Haugbølle & Nordlund 2012; Chen & Ostriker 2018). There is also
a population of observed, pressure-confined cores that will likely not
form stars if left untouched, although these objects may later collapse
due to shock interactions (Seo et al. 2015; Keown et al. 2017; Kirk
et al. 2017; Chen et al. 2019). Despite an understanding of this broad
process of star formation, there are still many open questions. These
include the relationship between observed core masses and the initial
mass function (IMF), the time evolution of dense core properties, the
role of the physical environment in the star formation process, and

� E-mail: rsmullen@email.arizona.edu

the formation mechanisms of bound binary (or higher order multiple)
systems, among others.

Previous works have attempted to answer some of these questions
by looking at individual snapshots of observed regions or simulations,
yet few have ever attempted to correlate the evolution of individual
cores with the broad core property distributions reported in the
literature. The interplay between the time evolution of individual
cores and their contribution to distributions of core properties may
be especially important when understanding the connection between
the core mass function (CMF) and stellar IMF (Offner et al. 2014,
and references therein). There is still debate about whether the IMF
directly inherits its shape from the CMF (e.g. Padoan & Nordlund
2002; Hennebelle & Chabrier 2008; Hopkins 2013) or is independent
of core masses (e.g. Bonnell et al. 2001; Bate, Bonnell & Bromm
2003; Clark, Klessen & Bonnell 2007). The IMF is frequently fit with
the form of a power law at high masses and a lognormal distribution
at lower masses as first demonstrated in Chabrier (2003). Subsequent
work has suggested that the IMF is mostly independent of star for-
mation physics such as accretion rate and star formation inefficiency
(Hennebelle 2012; Cunningham et al. 2018), but may depend on
local environmental properties like the global radiation field and local
magnetic fields (Bate 2009; Offner et al. 2009; Dib, Schmeja & Hony
2017; Guszejnov, Hopkins & Krumholz 2017; Lee, Hennebelle &
Chabrier 2017; Cunningham et al. 2018; Ntormousi & Hennebelle
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4518 R. A. Smullen et al.

2019). Thus, it is imperative to know how individual cores may
contribute to the interplay between the CMF and IMF evolution.

A fundamental aspect to properly interpreting both simulation
snapshots and observations of star-forming regions is understanding
what overdensities are identified as cores. Core identification in
both observed star-forming regions and simulations has been a
topic of active investigation for decades. Beginning with the by-eye
identification of structure in molecular clouds from Blitz & Stark
(1986), the field has expanded in two dominant directions. The first
direction is the singular identification of dense clumps, which started
from the watershed segmentation algorithm of Williams, de Geus &
Blitz (1994). This developed into the CLUMPFIND algorithm that has
been utilized extensively. Other core-finding methods that return
singular clumps include the gradient-tracing scheme FellWalker
(Berry 2015), GaussClumps (Stutzki & Guesten 1990), which fits
Gaussians to all peaks in the data, and CUTEX (Molinari et al. 2011),
which looks for curvature changes in the data, among others. The
other method of core identification is using hierarchical structure
methods. Early hierarchical structure methods such as the structure
trees from Houlahan & Scalo (1992) then evolved into the commonly
adopted dendrogram algorithm first presented in Rosolowsky et al.
(2008). Dendrograms connect structures in star-forming regions from
filaments to dense cores and allow a better understanding of the hier-
archical nature of the star formation process (Goodman et al. 2009).

Each core identification algorithm comes with its own often
subtle biases that must be understood in the context of the analysis
performed (e.g. Li et al. 2020). For instance, GaussClumps and
CUTEX only fit elliptical sources, but GaussClumps can easily handle
overlapping sources (Stutzki & Guesten 1990) and CUTEX works well
with large background variations (Molinari et al. 2011). CLUMPFIND

has been found to be sensitive to input parameters but is widely
available (e.g. Berry 2015). FellWalker clumps can sometimes have
artificial splitting due to the cleaning process but tends to be more
robust to noise (Berry 2015). Dendrograms can be sensitive to the
algorithm tuning choices but provide the best understanding of the
physical environment surrounding cores (Rosolowsky et al. 2008).
The above is not a comprehensive list of the benefits and drawbacks of
core identification methods, but it serves to show that every algorithm
in use will work better in some situations as compared to others.

Simulations have become a critical tool to interpret the necessar-
ily incomplete window provided by observations in star-forming
regions, especially as simulations have grown in resolution and
complexity. For instance, Mairs et al. (2014) note the importance of
high-resolution observations in recovering the full mass and detailed
structure of star-forming cores. Observations at moderate resolution
tend to miss mass and structure due to averaging errors (Offner et al.
2012; Mairs et al. 2014). Similarly, Beaumont et al. (2013) reach the
important conclusion that position–position–velocity observations
carry uncertainties of 40 per cent in computed quantities when
compared to a three-dimensional simulation. Effects like gas super-
position along the line of sight, line opacity obscuring core structure,
and mapping observational (PPV) space to physical (PPP) space con-
tribute confusion to an accurate physical interpretation of cores from
observations, because the line-of-sight structure of a core can be eas-
ily miscalculated (e.g. Ostriker, Stone & Gammie 2001; Ballesteros-
Paredes & Low 2002; Shetty et al. 2010; Beaumont et al. 2013).

In this paper, we explore the time evolution of star-forming cores
identified with dendrograms and work to understand the role of the
dendrogram algorithm itself in the properties of identified cores.
We begin by creating an algorithm to link dendrogram structures
through time, which we describe in Section 2. The robustness of this
methodology depends on several tunable parameters, and we explore

the effect of the three major parameters in Section 3. We present
the time evolution of the identified cores, the distributions of core
properties, and other results of note in Section 4, and we then explore
the reasons for the variability we find in Section 5. Finally, Section 6
notes the implications of our findings, including the importance of
full core histories and the limitations of the dendrogram algorithm.
Section 7 summarizes our findings.

2 M E T H O D O L O G Y

In this work, we aim to trace the histories of cores in simulations
of star formation to test the robustness of core parameters measured
throughout a core’s lifetime. Here, we discuss the magnetohydro-
dynamic simulation used in this work, describe our method of
core identification, and present our new core tracking method. We
describe the fiducial choices for our core identification and linking
methodology in this section and test the impact of variations in these
choices in Section 3.

2.1 A note on nomenclature

The meaning of the word ‘core’ is not well defined between works.
Observationally based definitions of cores, collected in Chen et al.
(2019) and references therein, include ‘dense cores’, which are
regions that have a dominant thermal velocity and low virial α

(virialized), ‘starless cores’ that do not have a protostar and are
not virialized, ‘prestellar cores’ that do not have a protostar but are
virialized, and ‘protostellar cores’, which do have protostars and are
virialized. Cores can also be defined in simulations as the material
that accretes on to a star particle (e.g. Bate et al. 2003), or the region
of dense material at a single snapshot (e.g. Ntormousi & Hennebelle
2019).

This paper explores differences between algorithmic, physical, and
phenomenological understandings of dense cores in star formation.
Towards that goal, we use the term leaf for a dense structure inside
contours identified with a dendrogram, the term overdensity for a
physical collection of dense gas in the simulations, and the term core

for the loosely defined, observationally motivated dense structures
that may form stars.

2.2 Simulations

Our simulation initial conditions are identical to those of run W2T2 in
Offner & Arce (2015). These conditions are intended to model a piece
of a local, Gould Belt star-forming region like the Perseus molecular
cloud. For our purposes, the simulation represents a prototypical
turbulent molecular cloud that serves as a test-bed for our core
identification and tracking method; the properties of the cloud itself
have little bearing on our methodology as we are investigating trends
in the evolution of core structure. We outline the initialization and
parameters of the simulation below.

We run a magnetohydrodynamical (MHD) simulation of a ∼3800
M� (7.5 × 1036 g) gas cloud using the ORION2 code (Klein 1999;
Krumholz et al. 2007; Li et al. 2012). ORION2 is a three-dimensional
adaptive mesh refinement (AMR) MHD grid code that includes
physics such as self-gravity, ideal MHD (Li et al. 2012), and
Lagrangian accreting sink particles (Krumholz, McKee & Klein
2004; Lee et al. 2014a). Our simulations are initialized on a 2563

base grid that corresponds to 5 pc on a side with periodic boundary
conditions in all spatial dimensions. We expect little influence on
core evolution from our choice of boundary condition as compared
to a global molecular cloud simulation.
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The time evolution of cores 4519

These simulations refine the spatial resolution based on the Jeans
number J such that

J ≡ �xi

λJ

< 0.125, (1)

where �xi is the cell size at the current level i and λJ = (πc2
s /Gρ)1/2

is the Jeans length (Truelove et al. 1997). When J > 0.125, finer cells
with size �xi are added, thus resolving the Jeans wavelength with
higher resolution. Our simulations have five refinement levels over
the base grid, which defines our minimum resolution as ∼4034 au
per cell for the 2563 grid at level 0 and the maximum resolution
as ∼126 au per cell for the cells refined to level 5. These sizes
are defined based on the mean gas density in the simulation of
ρ0 = 5 × 10−21 g cm−3 (1300 cm−3) and the mean sound speed
of 18 800 cm s−1. In regions undergoing gravitational collapse, gas is
removed from the grid and replaced with a sink particle if J > 0.25
on the finest level (Krumholz et al. 2004). Sinks accrete mass and
momentum from gas within a radius of four cells at level 5 as well
as interact gravitationally with the surrounding gas.

We generate the cloud initial conditions through a turbulent driving
phase that proceeds without gravity, which produces self-consistent
turbulent gas density and velocity distributions (e.g. Mac Low 1999;
Li et al. 2004; Offner, Klein & McKee 2008). The simulation begins
with a uniform density, uniform temperature of 10 K, and a uniform
magnetic field in the z-direction, Bz = 13.5µG, which corresponds
to an initial thermal pressure to magnetic pressure ratio (plasma
β) of β = 8πρ0c

2
s /B

2
z = 0.1. Then the gas is stirred for two

gas crossing times by perturbing the gas velocities with a random
velocity distribution that corresponds to a flat distribution in Fourier
space with wave numbers k = 1 − 2. At the end of the driving
phase, the gas reaches a turbulent steady state with a turbulent
power spectrum P(k) ∝ k−2 and β = 0.02 (Offner & Arce 2015;
Offner & Liu 2018). Finally, self-gravity is turned on, and we evolve
the simulation for approximately 70 per cent of a global free-fall time
(tff = √

3π/32Gρ0 � 1.5 Myr).
We adopt a barotropic equation of state of the form p =

ρc2
iso[1.0 + (ρ/ρc)γ−1], where ciso is the sound speed for 10 K

gas, ρc is the critical density at which the gas transitions from
isothermal to adiabatic, and γ = 5/3 is the adiabatic index. We
choose an effective critical density that is comparable to the Jeans
density on the maximum AMR level, ρc = 7 × 10−15 g cm−3. This
value is smaller than the expected critical density for dense gas, ρc

� 10−14 g cm−3 (Masunaga, Miyama & Inutsuka 1998), in order
to produce some warming when the maximum gas densities are
reached. This lower critical density acts to eliminate contiguous
small-scale fragmentation, which would otherwise occur within
isothermal filaments at high resolution (Kratter, Murray-Clay &
Youdin 2010) and roughly approximates the influence of radiative
feedback, which is expected to heat the gas once protostars form
(Offner et al. 2009).

The time evolution of the dense gas is shown in Fig. 1. The density
thresholds used in this plot correspond to the densities of the AMR
refinement thresholds (computed from equation 1). The simulations
end with about 70 M� of mass in 25 sink particles. The fraction
of mass in the densest gas shows more variability because of mass
accretion on to the sink particles. Most of the dense cores are formed
in one large filament that spans the majority of the volume.

2.3 Structure identification

Dendrograms are a common tool used to identify dense structures
in both simulations and observations of star-forming regions; many

Figure 1. Time evolution of dense gas in our simulation. The blue coloured
lines indicate the total mass above a given density across time, while the
purple line shows the mass of sink particles across time. The lowest density
shown, 5 × 10−21 g cm−3, corresponds to a number density of approximately
1300 nH2 cm−3, while the highest density of 2 × 10−17 g cm−3corresponds
to a molecular hydrogen density of 5 × 106 cm−3.

previous works have used them to find and identify properties of
bound clumps and filaments (e.g. Rosolowsky et al. 2008; Goodman
et al. 2009; Beaumont et al. 2013; Burkhart et al. 2013; Lee
et al. 2014b; Seo et al. 2015; Friesen et al. 2016; Storm et al.
2016; Keown et al. 2017; Wong et al. 2017; Chen et al. 2018;
Nayak et al. 2018). Dendrograms also provide a metric to quantify
the structure of molecular cloud emission and associated physical
properties (e.g. Boyden et al. 2016; Koch et al. 2017; Boyden
et al. 2018; Koch et al. 2019). For example, Goodman et al. (2009)
demonstrated that dendrograms produce more physically reasonable
identifications of cores in 3D spectral line data compared to another
previously popular algorithm, CLUMPFIND. As an additional benefit,
dendrograms naturally identify nested features and therefore reflect
the relationship between structures of different sizes in the data. Thus,
we choose dendrograms as our structure identification algorithm to
better quantify the interpretation of this widely adopted method.
However, because of the fundamental similarities between all core
identification methodologies – that cores are identified from peaks
in quantities such as density or emission – the results of this work
should be generally applicable across algorithms.

A dendrogram is a tree algorithm that identifies hierarchical
structures in any input quantity in a two- or three-dimensional grid.
A dendrogram contains leaves (the most refined structure), trunks
(the lowest level structure that may contain refined substructure),
and branches (structures that connect leaves to other branches or
trunks). The dendrogram initialization is commonly defined by three
parameters: the background level cut-off that defines the base of the
tree, the minimum difference (height) between two nested structures
in the quantity being dendrogrammed required to create a new
branch or leaf, and the minimum size of an identified structure. The
dendrogram is built by first identifying the maximum value in the
grid. The algorithm then iteratively searches adjoining cells and uses
the size and density increase criteria to determine if a new branch
or leaf needs to be created. The tree ends when the background
cut-off value is reached. Neighbouring leaves can be children of a
single branch if they are both contained in the spatial bounds of the
branch. A region can contain multiple unconnected trees if an area
surrounding two structures is below the background cut-off. Note
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4520 R. A. Smullen et al.

that dendrograms are inherently relative structures because they are
computed based on the maximum value in a region. This work utilizes
the ASTRODENDRO Python package.1

We carefully consider how we optimize the three parameters
(background cut-off, minimum density increase for new structure
creation, and minimum structure size) that define how a dendrogram
is built.2 The background cut-off will set the fraction of gas in the
simulation included in the dendrogram and impact the total height of
the tree (peak to minimum density, which will likely also impact the
number of structures in a tree) and the number of branches that can be
created. The minimum density increase to create new structure sets a
height at which new branches and leaves are created: a smaller value
allows smaller density increases to be considered as new structure,
while a larger value makes the creation of new structure much more
stringent. Finally, the minimum structure size influences the size and
internal complexity of an identified core. Too large of a size means
that we might group individual compact structures into one leaf, while
too small of a size might overresolve substructure in the star-forming
cores we wish to study (e.g. lumps in a disc-like overdensity).

The background density threshold is a major limitation to the
complexity of the dendrogram. A low background density threshold
connects more of the cloud structure, including filaments, but these
structures would not be readily observable in traditional tracers. On
the other hand, a high-density threshold might prematurely truncate
low-density structure. We use a fiducial density threshold of ρ =
7 × 10−20 g cm−3 (1.8 × 104 cm−3), which is the density needed to
refine a cell from level 0 to level 1. The threshold density chosen
herein roughly corresponds to the minimum density observed in
ammonia emission (n � 104 cm−3 or ρ = 4 × 10−20 g cm−3), so
the structures identified in our dendrograms would be observed
in synthetic observations (Flower, des Forêts & Walmsley 2006).
This creates a dendrogram that contains only a few per cent of the
data by volume and consistently contains the same dense structures
throughout the entire simulation time. As seen in Fig. 1, our fiducial
density encompasses a roughly constant mass (around 100 M�) over
the length of the simulation. Variations of the background density
cut-off are described in Section 3.1.

We next consider the density increase to create a new leaf. This
parameter impacts the inclusion of low-density structures in our
dendrograms. A small density increment produces many nested
structures, and these new structures (typically intermediate branches)
do not add to the understanding of either leaf structure or the
hierarchy. A large density increment leads to very large leaves and
begins to underresolve the dense structures that best resemble dense
cores by combining multiple overdensities into one leaf. We therefore
chose a factor of 3 increase in density as the fiducial density contrast
required to create a new leaf. This choice is further discussed in
Section 3.2.

Finally, we set the fiducial minimum size of a structure to be
125 voxels (three-dimensional cells; at our fiducial grid size, one
voxel is (1000 au)3). The minimum size of 125 voxels is large
enough to encompass compact structures, such as protostellar discs,
without being small enough to allow clumpy substructures to split
into multiple leaves. At our fiducial resolution, this leads to a
minimum leaf size of about (5000 au)3, although most structures
are substantially larger. For comparison, the dendrograms of Friesen
et al. (2016), who investigate the size and mass of embedded clumps

1http://www.dendrograms.org/
2In the ASTRODENDRO package, these variables are named min value,
min delta, and min npix.

in the Serpens South protocluster, have a smallest effective radius
of ∼0.02 pc or ∼4100 au. Typical observed core sizes from works
such as Seo et al. (2015) and Keown et al. (2017) are 10−2–10−1 pc,
so our minimum size resolves structures in our simulation that are
similar to observed cores. The choice of the other two dendrogram
initialization parameters can, in some instances, negate the utility of
the minimum size. If the background density threshold is high and
the density increase is large, small structures will be not be able to be
resolved and every structure will exceed the minimum structure size.
With our fiducial parameters, structure can approach the minimum
size but the majority of leaves have volumes of a few hundred to a
few thousand voxels (core sizes � 0.05 pc).

While dendrograms can be computed for any scalar quantity, we
choose to compute dendrograms on the three-dimensional density
grid. The large dynamic range of physical density in our simulations
means that a logarithmic scaling better traces the physical structures.
Therefore, to define structures in our simulations, we compute a
dendrogram with periodic (wrapping) boundary conditions on the
log of the density field at each simulation snapshot. The dendrogram
routine can only search a uniform grid, so we must apply a covering
grid to our AMR simulations. Covering grids interpolate the AMR
data on to a fixed grid of size 256 × 2i in each dimension where 256
is the base size of the simulation and i is the level for which we want
to create the grid. We define our dendrogram on a level 2 covering
grid with each cell having a side length of 1.5 × 1016 cm, or about
0.005 pc ≈ 1000 au. Our choice of fiducial resolution is discussed in
Section 3.3.

Our choice of parameters leads to dendrograms containing about
80 leaves in all but the earliest time-steps when gravitating structure
has barely started to collapse. An example of the dendrogram
computed with these fiducial parameters at an intermediate time-step
(40 per cent tff) is shown in Fig. 2. Many of the leaves (>50 per cent)
are isolated and not part of a larger structure that contains further
refinement due to our choice of background density cut-off; however,
these leaves tend to be of relatively low density, and most will likely
not form stars as they are temporary structures (see further discussion
in Section 4.4). Most leaves (>80 per cent) do not form sink particles
by the end of the simulation, and leaves containing one sink particle
are about 2–3 times more common than leaves hosting multiple sink
particles. Sink-hosting leaves can decrease in peak density after sink
formation due to accretion of high-density gas on to the sink particle.

With the dendrogram defined, we output a catalogue of impor-
tant leaf parameters at each time-step (density, position, velocity,
magnetic fields, etc.) using the full AMR grid that falls within the
volume of the uniform-grid leaf surface. This catalogue is then used
to perform the linking algorithm defined in the next section.

2.4 Linking structures through time

Once the 3D structures are constructed for every time-step, we link
them through time. We take a two-step approach by first linking
structures between consecutive time-steps and then by reconstructing
a structure’s full path through time.

2.4.1 Pair-wise linking

To match structures between time-steps, we use a geometric search
that relies upon simulation outputs being frequent enough that
structures do not move significantly (more than about half of their
size) between outputs. Beginning with an individual leaf (la) at time-
step ta, we search for all leaves at time-step tb where the centre of
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The time evolution of cores 4521

Figure 2. An example of the dendrogram computed with fiducial parameters at an intermediate time-step. The right-hand panel shows the tree coloured by the
volume of the leaf. Black stars denote the presence of sink particles in the leaf. The x-axis has no physical meaning; the structures have been roughly sorted by
peak density. The left-hand panel shows the x − y projection of the leaves. Pink circles denote the location of sink particles with sizes scaled by the mass of the
sink.

mass of la is within the surface of a leaf at tb. We then reverse the
search such that we look for the centre of mass of a time tb leaf to
be within the surface of a time ta leaf. We do allow for an offset of
the centre of mass from the boundary of the leaf in two dimensions
because of the possibility of dendrogram contours being defined
differently between consecutive time-steps as discussed below. The
choice of this offset is described in Section 3.4, but our fiducial
value is set to 10 grid cells at level 2. A leaf at one time-step can be
associated with multiple leaves at the next time-step, and we describe
the consequences of this further below. This search is then continued
between all consecutive pairs of time-steps (i.e. ta↔tb, tb↔tc,
etc.).

There are four cases that result from the pair-wise linking as shown
in Fig. 3. Leaves can be uniquely identified with a single structure
between ta → tb and tb → ta. This is most common and leads to
a single path between time-steps (panels ‘standard’ and ‘offset’).
However, multiple leaves can be found at one time-step that map
back to a single leaf at the adjacent time-step. If the single leaf is
at an earlier time-step and the multiple leaves are at a later time-
step, this is a ‘split’. If the single leaf is at a later time-step and
the multiple leaves are at an earlier time-step, this is a ‘merger’.
In our simulations, splits and mergers are most frequently due to
dendrogram leaf boundaries being drawn to encompass multiple
nearby overdensities, not actual physical merging or fragmentation.
Physical evolution can happen but is difficult to disentangle from the
changes in dendrogram contours.

In the 170 output time-steps of our simulation, we link 11 000 leaf
pairs: 10 500 of those are securely linked, meaning that we identify
the same linked pair looking forward and backward. We find ∼200
splits and mergers. About 60–70 per cent of linked pairs have no
offset, and the average offset of the remaining linked pairs is about
10 cells (∼0.05 pc).

We initially incorporated the velocity information, specifically
the leaf centre-of-mass velocity (which includes the contribution
from any sink particles that may be present in the leaf), into our
algorithm to help inform the direction of motion to uniquely track
a leaf through time and reduce the number of nearby, unassociated
leaves linked. However, because of variability in the computation of
dendrogram structures between time-steps, the leaf centre of mass

Figure 3. A cartoon of the cases that result from the pair-wise linking. Blue
colours indicate earlier times and the purple colours indicate later times. The
top is the ‘standard’ linking where the centre of mass at one time-step (filled
circle) is found within the volume at the other time-step (open contour). The
‘offset’ linking allows there to be a small offset (�) between the leaf centre
of mass and the leaf volume at consecutive time-steps, which typically arises
from dendrogram contours being redrawn to include more material. ‘Splits’
and ‘mergers’ are cases in which a leaf at one time-step can be associated
with more than one leaf at a consecutive time. Note that, while this cartoon
is shown in 2D, the linking in our data is done in 3D.

does not always move in predictable patterns. Therefore, the addition
of velocity information does not improve our linking. To demonstrate
this issue, we present two examples of leaf behaviour in Fig. 4. The
error bars in the upper panels have been doubled in length to be
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4522 R. A. Smullen et al.

Figure 4. Two examples of leaf behaviour illustrated by sink-hosting leaves.
The left column shows an ideal behaviour where the leaf structure evolves
smoothly, while the right column shows a leaf that undergoes significant
dendrogram structure variations in time. The upper panels show the x − z

positions of a leaf through time. The black line shows the centre of mass of
the leaf through time, while the red line shows the position of the sink particle
in the leaf. The error bars on the black line show the ‘expected’ position of
the leaf at the next time-step given the velocity of the centre of mass of the
leaf. The bottom panels show a selection of the projected leaf contours at
the times indicated by coloured points in the top panel. The solid circles
denote the centre of mass of the leaf and the star indicates the position of
the sink particle. The lower right panel demonstrates a common barrier to
velocity-based linking: the dendrogram leaf contours can change significantly
between time-steps, offsetting the centre of mass of the leaf from the expected
position.

more visible. The left-hand panels shows what a well-behaved leaf
looks like: the leaf centre of mass at the next time is within the
position expected from the velocity. However, a significant number
(�25 per cent) of our leaves have a history that look more like the
right-hand panels, where at certain times, the dendrogram contours
are redrawn to include more material. This then changes the centre
of mass of the leaf and the expected position of the leaf centre is
wildly offset from the computed location of the centre of mass.
The leaf centres at consecutive time-steps are typically within the
leaf contours, meaning that the less complicated geometric search
discussed above is more reliable for our data. We do encounter a few
pathological cases where a reconstruction cannot be performed in an
automated way, such as when the leaf is shaped like a banana – the
centre of mass lies outside the leaf contour and is therefore computed
to have a large offset to the leaf boundary at the next time-step.

2.4.2 Path reconstruction

The last step to fully trace the histories of overdensities in our
simulations is to transform the pair-wise linking into a coherent
path through time. We use the terminology ‘path’ to denote a single
set of related leaves through time and ‘path family’ to denote a group
of paths that were found to be related to a single starting leaf. For the
analysis presented herein, we work backward in time (from the end
of the simulation to the start) because the most relevant structures

to compare to observations are the compact overdensities found in
well-evolved regions at later times in the integration. Because we
use a fixed starting point in time, cores may be traced at different
evolutionary stages.

We start by selecting a leaf (l0) from the cohort of leaves at the
final time-step (t0). We search through the linked pairs t0↔t1 to find
the leaf at t1 linked to l0. This found leaf is added to the path. We
then check if the leaf at t1 is associated with any other leaves at t0.
We then iteratively repeat this process to search for matches to the
earliest leaf in the path going backward in time.

For the cases where there are mergers (two or more leaves at an
earlier time being associated with only one leaf at a later time), we
add one of the leaves to the current path and then add new paths
to the path family by copying the current path and appending the
other merged leaf. Each path in the path family is then reconstructed
independently.

For the cases where there are splits (two or more leaves at a later
time being associated with only one leaf at an earlier time), we
create a new path and recursively search in the opposite direction
(from early times to late times) to find the path(s) associated with the
new leaf.

Path families can have many component paths because each new
split or merger effectively doubles the number of paths in a path
family. While not always indicative of physical interactions, a large-
number path family does indicate that the structure lives in a crowded
area of the simulation volume.

3 PA R A M E T E R VA R I AT I O N S

All core identification algorithms include tunable parameters, and
the dendrogram algorithm we adopt here is no exception. In ob-
servational studies, the parameters are chosen based on the noise,
sensitivity, and resolution of the data. When analysing simulation
data there is more flexibility in parameter choice. Consequently,
we explore a variety of parameter values to assess the physical
impact of our parameter choices, including background cut-off
density, density increment to create a new structure, grid resolution,
and linking distance �. Thus, in this section, we explore how
variations in these parameters impact our reconstructed path families.
While the minimum leaf volume at constant resolution is also a
tunable parameter, we find negligible impact on the final dendrogram
structure when varying this quantity within reasonable limits.

3.1 Background cut-off

The background cut-off influences the tree complexity, leaf structure,
and computational requirements of a dendrogram. Values near the
mean density in the simulation (5 × 10−21 g cm−3) include too
much gas that never participates in the star formation process.
Very large, low-density structures affiliated with the filamentary
structure are commonly identified as leaves. Values at high density
(level 2 refinement density or higher, or around 3 × 10−19 g cm−3

∼ 8 × 104 cm−3) exclude an extremely large portion of the gas
(�99 per cent), including gas at early times that will eventually fall
in to a dense core. The level 2 refinement density corresponds to
a Jeans length of 0.08 pc, which is smaller than typically observed
cores. The dendrogram would be less likely to resolve any structure
larger than this, which includes most of the objects that resemble
observed cores; instead, the algorithm would only identify small
peaks in larger overdensities. For these reasons, and the physical
arguments described in the previous section, we use the fiducial
density of 7 × 10−20 g cm−3.
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The time evolution of cores 4523

Figure 5. A comparison of dendrogram leaves given different density increments. On the left, the purple, green, and orange contours demarcate leaves from
dendrograms with a 2×, 3×, and 5× density increase (contrast) required to create a new leaf, respectively. Contours are shown over a density projection of the
simulation with darker colours indicating denser regions. Red circles show the locations of sink particles and are scaled by sink mass. The right-hand panels
show the full dendrograms for each density increment. The different trees trace out the same dense material, indicating that our results are relatively invariant
of the choice of contrast.

3.2 Density increment

The contrast required to create a new structure in the dendrogram
mainly impacts the low-density structure identified in the tree. We
compare density increases of factors of 2, 3 (our fiducial choice), 4,
5, and 10 and find little difference between the leaves identified,
although the trees themselves are quite different. We show the
comparison of factors of 2, 3, and 5 in Fig. 5. All high-density
structure is contained in all trees; the major differences arise in the
low-density structures. Every sink particle lives in a nearly identical
leaf, meaning that the important structures for star formation are not
impacted greatly by our choices of density contrast parameter.

The trees computed with large density contrasts identify much
less structure because overdensities must be much more significant
to be added to the tree. This means that, in dense regions especially,
two neighbouring overdensities may be enclosed in one leaf. Small
density contrasts can lead to very low density leaves being added
to the tree. These leaves are insignificant temporary perturbations
above the background cut-off and add a level of unnecessary ‘noise’
to the linking process.

Burkhart et al. (2013) perform a similar analysis by varying the
density increase required to create a new structure (δ in that work)
and comparing the resulting dendrograms across a suite of MHD
simulations. They find that dendrogram structure varies significantly
with δ and can provide information about the relative importance of
shocks, self-gravity, and super-Alfvénic turbulence.

3.3 Resolution

The size and shape of structures in the dendrogram are highly
correlated with the resolution of the uniform grid used to compute the
dendrogram. When all other parameters are kept fixed, an increase in
resolution, unsurprisingly, allows for both more refined structures and
physically smaller structures. The algorithm identifies more struc-
tures because each increase in the level of the uniform grid provides
a factor of 8 increase in the number of cells, meaning that there
is more flexibility to define compact structure. Physically smaller
structures are identified because the minimum size of a structure

is fixed at 125 cells; therefore, each increase in level decreases the
minimum required physical volume of a structure by a factor of 8.

We compute our fiducial dendrogram at level 2. 10243 cells in the
volume gives a 1000 au per cell resolution. We also tested level 3
(20483 cells; 500 au per cell) and level 4 (40963 cells; 250 au per
cell) resolution. The memory required for producing a dendrogram
at the full level 4 volume was prohibitive. We therefore use a subset
of the volume of size [2048, 2048, 1536] at level 4 (about 10 per cent
of the volume) that contains 15 of our 24 sink particles and many of
the structures identified at level 2. Other than resolution, we compute
the dendrograms for each case using the same fiducial parameters as
described above in Section 2.3. The comparison volume contains 40
level 2 leaves, 52 level 3 leaves, and 63 level 4 leaves.

The contours of leaves at the three levels are shown in Fig. 6. As
seen in the left-hand panel, the contours at all levels broadly agree.
Only in the densest regions do the leaf volumes differ significantly.
The right-hand panel shows one of these dense regions: a triple
system in a complicated overdensity illustrates how differences in
the resolution can change the leaf structure. The level 2 dendrogram
encloses all triple members in one leaf. The level 3 dendrogram
draws the central binary in one contour but excludes the tertiary
component along the z-direction. The tertiary’s local overdensity
is not large enough to create an independent leaf. The level 4
dendrogram assigns all the small overdensities in the greater
disc-like overdensity to their own leaves.

Fig. 6 suggests that level 4 is too sensitive to substructure: the
overdensity of one physically bound system is often split into
substructures such that we lose information about the bound core.
It is not possible to compute important system quantities such as
gravitational potential or virial parameter without having the full
bound structure contained in a single leaf.

Next, we assess the utility of the level 3 dendrogram. Ideally,
we want to minimize large changes in the density contours while
including all important structure (or sink particles) in a given
overdensity. To this end, we compare the derived leaf parameters
between leaves tracing the same physical structure at level 2 and
level 3 in Fig. 7. The correlation in mass, peak density, and velocity
dispersion is very good (typically within a factor of 3) despite the
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4524 R. A. Smullen et al.

Figure 6. Contours of leaves from trees computed on uniform grids at AMR levels 2 (the fiducial choice in this work), 3, and 4 in purple, green, and orange,
respectively. The contours are shown over a density projection of the simulation with darker colours indicating denser regions. Red circles show the locations
of sink particles and are scaled in size relative to their mass. The black dashed line in the left-hand panel indicates the extent of the comparison volume. As
is seen in the left-hand panel, the contours at all levels broadly agree. The right-hand panel reveals that only in the densest regions do the leaf volumes differ
significantly. This region contains an overdensity that surrounds a bound triple system. The sink particles outlined in white comprise the central binary (5 and
2 M�), while the small circle outlined in black is the tertiary companion (0.8 M�). The tertiary is separated from the central binary by a few thousand au.

Figure 7. A comparison of derived leaf parameters between correlated leaves
at level 2 and level 3. The panels show gas mass, peak density, volume,
and velocity dispersion. Points are coloured by the volume at level 3. The
horizontal axis shows the values of leaves computed on level 2 and the vertical
axis shows the value for the corresponding leaf computed at level 3. The black
dashed line shows the one-to-one correlation, while the dotted lines show a
factor of 3 difference. The correlation in mass, peak density, and velocity
dispersion is very good despite the fact that there is a factor of 8 difference
in the minimum leaf volume.

fact that there is a factor of 8 difference in the minimum volume.
Outliers below the one-to-one correlation in all panels except velocity
dispersion arise from the population of small, low-density leaves
that are identified as independent structures at level 3. These small
overdensities are typically included as part of a larger level 2 leaf

at the lower resolution, but the low density of the structures means
that the mass-weighted parameters such as velocity dispersion are
mostly agnostic about their inclusion. Leaves above the one-to-one
line in the same panels come from ambiguities in the correlation of
leaves across resolution, but they constitute a small fraction of the
total number of leaves shown. Patterns of points forming lines in any
of the panels are indicative of time evolution. Thus, we conclude
that the difference in leaves identified at level 2 and level 3 does not
impact our understanding of dense core evolution.

3.4 Linking distance

While the aforementioned parameters control the construction of the
dendrogram at each time snapshot, the linking distance is the crucial
parameter that controls the history of structures (� in the ‘offset’
panel in Fig. 3). The linking distance is the distance between the
centre of mass of a leaf at one time-step and the surface of the leaf
to which it has been linked. Linking distance will simultaneously
impact the number of paths in a family and the number of time-steps
traced in an individual path. Typical leaf sizes are of order 0.2 pc, so
we test linking distances of 0 cells (no offset; a leaf centre is within the
contour at the neighbouring time), 10 cells (∼104 au; about a typical
leaf radius), 100 cells (∼105 au; about 10 leaf radii), and 200 cells
(∼2 × 105 au). Our goal is to robustly identify leaves with common
histories without permitting too many uncertain connections while,
at the same time, allowing for variations in dendrogram leaf contours.

We present the results of our investigation in Fig. 8. There are min-
imal variations between the 100 cell and 200 cell linking distances,
so we only present the 100 cell results in the figure. For most path
families, specifically those of isolated leaves, linking distance does
not make a difference in the number of paths reconstructed. The
smaller two linking distances, on average, create smaller numbers
of paths in the family. Some of this is due to large variations in
dendrogram contours between time-steps; the changes in the leaf
boundaries can be larger than the linking distance. Linking distance
does have a much stronger impact on the length of a path history,
however. Larger linking distances typically lead to longer paths,
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The time evolution of cores 4525

Figure 8. Comparison of different linking distances. The coloured shapes
represent different linking distances. The top panel shows the number of
paths in a family (the unique combinations of leaf histories identified for
a single starting leaf). The horizontal axis is arbitrary and simply serves to
order the leaves. Vertical lines connect the path families for a single leaf at
different linking distances. Black stars along the bottom indicate the presence
of at least one sink particle in a leaf. The bottom panel shows the maximum
fraction of the total simulation time traced by a path family; ordering matches
the top panel. The choice of linking distance is most significant in dense
environments where there are many leaves in close proximity.

while a linking distance of 0 can sometimes artificially truncate a
path.

The linking distance becomes an important consideration for
leaves in dense environments, which is also where the majority of sink
particles reside, including the many bound multiple systems. In these
environments, leaves can exhibit significant variation in structure
between time-steps, and therefore a very small linking distance will
result in frequent premature truncation of paths. However, because of
the proximity to many dense structures, it is easy to link two nearby,
but not physically interacting, structures, leading to a large increase
in the number of paths in a family.

We adopt 10 grid cells as our fiducial linking distance because
it allows some variation in the dendrogram leaf contours without
leading to linking with many nearby, unassociated leaves. We are still
able to identify paths through a substantial fraction of the simulation
time, but we do not reach the extremely numerous, and less physically
meaningful, path families found with larger linking distances.

4 R ESULTS: C ORE PRO PERTIES AND

E VO L U T I O N

We have identified dense core analogues using dendrograms at
multiple simulation outputs and reconstructed the time evolution of
these leaves. We now study the broad distributions of leaf properties
(such as is frequently done in other work, both observational and
computational) and the time evolution of individual leaves in our
simulations. We summarize our findings below.

4.1 Core property distributions versus individual core history

We study both the distribution and individual evolution of the large
sample of leaves in our simulation. Every parameter distribution we
investigate is relatively constant in time. However, the individual
evolution of a leaf can be quite variable. We present an example
of this dichotomy in Fig. 9. The mass distribution does not vary
significantly in time; major variations are only seen at the earliest
times when structure is beginning to collapse due to self-gravity.

Figure 9. Core mass distribution versus individual core evolution. The top
panel shows the distribution of gas mass in the cores across time. The bottom
panel shows the gas mass evolution of a subset of reconstructed paths through
time; dark purple lines show leaves without sink particles, blue lines show
leaves with a single sink particle, and green lines show leaves with multiple
sink particles. While the broad distribution of gas mass is nearly invariant in
time, any individual leaf may have large variations in its reconstructed history.

The bottom panel reveals that a leaf may have a computed gas mass
that can span upwards of an order of magnitude in time, and the
typical evolution does not smoothly vary from time to time. Note
that in these (and all future figures), time is measured relative to the
beginning of the simulation.

To better understand the relative variability in core evolution, we
use a parameter called the coefficient of variation (CV), which is
defined as the standard deviation of a parameter (σ ) divided by
the mean (μ) of that parameter. This quantity allows us to directly
compare leaf properties of varied units and physical scales and has
units of per cent. For our analysis, we consider paths that are tracked
for more than 15 kyr and compute the standard deviation of the total
path. Because of the rapid evolution in both volume and density
of leaves at early times due to the introduction of gravitationally
collapsing structure, we exclude the earliest ∼30 per cent of the
simulation from our computation of the CV.

Table 1 presents the minimum, mean, and maximum variation of
16 different parameters: total mass, gas mass, leaf volume, leaf size,
mean density, oblateness, virial parameter, the Mach number of gas
in the core, the Mach number of the core in the simulation volume, the
Alfvén Mach number of the core, the angular momentum magnitude,
the variation in the angular momentum orientation, the magnetic field
magnitude, the variation in the magnetic field orientation, and plasma
β. The definitions of these parameters are presented in Appendix A.
While there are few substantial trends to remark upon for individual
quantities, for completeness, we report CVs for the entire ensemble of
parameters studied in our analysis. We have separated the paths into

MNRAS 497, 4517–4534 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
7
/4

/4
5
1
7
/5

8
8
1
9
5
8
 b

y
 U

n
iv

e
rs

ity
 o

f T
e
x
a
s
 a

t A
u
s
tin

,  s
o
ffn

e
r@

a
s
tro

.a
s
.u

te
x
a
s
.e

d
u
 o

n
 2

7
 J

u
n
e
 2

0
2
1



4526 R. A. Smullen et al.

Table 1. Coefficient of variance range for different core properties. The CV is defined as the standard deviation divided by the mean of a quantity.

Number of paths in a family
n = 1 1 < n < 10 n ≥ 10
(34) (89) (790)

Quantity Min Mean Max Min Mean Max Min Mean Max
(per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent)

Total mass 9 27 53 12 55 213 9 42 153
Gas mass 9 27 53 10 57 279 13 52 144
Volume 1 17 61 10 68 266 18 67 152
Size 1 31 277 4 52 246 6 27 243
Mean density 2 17 96 3 56 196 12 67 244
Oblateness 1 26 89 16 43 92 15 38 74
Virial α 3 27 75 8 49 214 14 41 254
Internal M 1 10 34 4 24 65 4 22 49
Total M 0 6 20 2 11 40 5 13 28
Alfvén M 2 11 30 6 32 104 11 30 72
∣

∣

∣


j
∣

∣

∣
3 38 154 18 77 242 10 80 189

(Max( 
j )-Min( 
j ))/Mean( 
j ) 0 25 64 5 27 53 11 31 61
∣

∣

∣


B
∣

∣

∣
1 12 56 1 27 54 4 24 60

(Max( 
B)-Min( 
B))/Mean( 
B) 1 17 45 6 29 71 10 31 48
Plasma β 2 16 67 6 51 156 14 43 140

� 19 59 272 31 110 270 36 94 262

Number of sinks at final time-step
n = 0 n = 1 n > 1
(520) (85) (308)

Quantity Min Mean Max Min Mean Max Min Mean Max
(per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent)

Total mass 9 54 213 9 44 213 21 25 110
Gas mass 9 54 279 11 51 207 24 48 157
Volume 1 61 266 7 53 190 28 77 196
Size 1 39 277 6 29 246 13 14 31
Mean density 2 53 185 17 61 196 18 83 244
Oblateness 1 36 89 29 51 92 15 38 59
Virial α 3 49 141 9 44 96 15 28 254
Internal M 1 26 55 5 19 61 4 15 65
Total M 0 14 25 3 11 28 6 11 40
Alfvén M 2 19 104 8 28 72 15 47 57
∣

∣

∣


j
∣

∣

∣
3 64 189 10 56 242 21 109 185

(Max( 
j )-Min( 
j ))/Mean( 
j ) 0 28 64 8 30 61 22 35 53
∣

∣

∣


B
∣

∣

∣
1 20 56 11 22 43 8 33 60

(Max( 
B)-Min( 
B))/Mean( 
B) 1 26 71 12 32 50 13 37 45
Plasma β 2 37 79 3 38 154 14 53 156

� 19 90 272 45 85 241 53 105 262

Length of path history
t < 75 kyr 75 kyr < t < 250 kyr t > 250 kyr

(35) (21) (857)
Quantity Min Mean Max Min Mean Max Min Mean Max

(per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent)
Total mass 9 54 213 10 42 81 9 43 153
Gas mass 9 62 279 10 41 81 11 51 144
Volume 1 60 266 2 36 102 5 67 152
Size 1 29 217 6 44 171 6 29 277
Mean density 2 35 196 3 37 110 5 65 244
Oblateness 1 31 62 9 41 92 10 38 76
Virial α 3 35 254 14 47 141 8 42 144
Internal M 1 14 50 5 14 32 2 22 65
Total M 0 6 18 1 9 17 2 13 40
Alfvén M 2 27 104 4 17 38 7 30 72
∣

∣

∣


j
∣

∣

∣
3 52 232 5 59 154 10 80 242

(Max( 
j )-Min( 
j ))/Mean( 
j ) 0 24 52 8 22 64 7 31 61

MNRAS 497, 4517–4534 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
7
/4

/4
5
1
7
/5

8
8
1
9
5
8
 b

y
 U

n
iv

e
rs

ity
 o

f T
e
x
a
s
 a

t A
u
s
tin

,  s
o
ffn

e
r@

a
s
tro

.a
s
.u

te
x
a
s
.e

d
u
 o

n
 2

7
 J

u
n
e
 2

0
2
1



The time evolution of cores 4527

Table 1 – continued

Number of paths in a family
n = 1 1 < n < 10 n ≥ 10
(34) (89) (790)

Quantity Min Mean Max Min Mean Max Min Mean Max
(per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent)

∣

∣

∣


B
∣

∣

∣
1 17 48 5 15 45 4 25 60

(Max( 
B)-Min( 
B))/Mean( 
B) 1 25 71 7 22 43 8 30 50
Plasma β 2 36 154 3 26 67 15 43 156
� 19 85 270 31 80 166 34 95 272

three bins in each section. Under each bin is the number of individual
paths that fall into the bin. The final line in each table section is �,
which is the spread in CV (maximum CV minus minimum CV) for
the collection of quantities and is designed to show the variation in
variability for each bin.

4.1.1 Size of path family

We first split our full contingent of paths by the number of paths in
a family. Paths with n = 1 are isolated; they typically show the least
variation. However, these paths are, on average, shorter than paths
in other bins that can lead to suppressed variation. Paths with n ≥
10 are typically in very dense environments and are therefore most
susceptible to being linked to multiple nearby leaves. This can cause
variations to be artificially high as physically unassociated cores
(overdensities that do not physically interact in space) are linked in
the same path; the large CV of volume in the non-isolated paths hints
that leaf contour changes (arising from structures bouncing above and
below the structure refinement threshold due to minute changes in
the local density field) may cause the large CVs in other parameters.

4.1.2 Number of sinks

We then group paths by the number of sinks in the leaf at the final
time-step. Paths with n = 0 are starless overdensities. The starless
paths with low CVs are typically short-lived, low-density leaves.
The paths containing multiple sink particles are frequently part of
large path families in dense regions where physically independent
overdensities are identified as related due to a temporary co-location
or dendrogram contour changes that cause multiply linked leaves.

4.1.3 Length of path

Finally, we divide the ensemble of paths by their length. The shortest
paths (<75 kyr) are frequently temporary overdensities and therefore
have little physical evolution over the time they are traced as indicated
by the low CVs. However, there are also short paths with high
variability that belong to a large path family. The longest paths
(lifetimes greater than 250 kyr) have little correlation with the size
of the path family or the presence of stars, so the CVs in the final bin
span a large range.

4.1.4 General trends

The path histories we trace have significant variation – frequently
upwards of 40 per cent in CV. In all three methods of dividing paths
presented in the table, the average CV increases from left to right,
meaning that shorter lived, isolated, starless cores tend to have less

Table 2. Coefficient of variance range for isolated, long-lived, starless cores.

Quantity
Min

(per cent)
Mean

(per cent)
Max

(per cent)

Total mass 10 30 53
Gas mass 10 30 53
Volume 2 18 61
Size 6 45 277
Mean density 3 17 54
Oblateness 9 33 89
Virial α 14 35 75
Internal M 2 12 27
Total M 1 8 20
Alfvén M 4 15 30
∣

∣

∣


j
∣

∣

∣
5 48 154

(Max( 
j )-Min( 
j ))/Mean( 
j ) 8 28 64
∣

∣

∣


B
∣

∣

∣
5 14 56

(Max( 
B)-Min( 
B))/Mean( 
B) 7 21 45
Plasma β 6 21 67

variability. However, the maximum CV does not show the same
trend, indicating that any given path can vary significantly.

It is also important to note that a low variability in one param-
eter does not indicate low variability in all parameters. This is
demonstrated with the parameter � at the bottom of each section.
This quantity shows the maximum difference in the CV of the
16 parameters for each leaf, or the maximum variation in the
variation of our computed properties. The average � in all cases
is over 50 per cent, meaning that the majority of paths have little
correlation in the amount of variability in different quantities. Thus,
the computed properties of observed overdensities identified with
dendrograms may not correlate well with the physical evolution of
the bound core itself.

4.2 Isolated, starless cores

Naively, we might expect the long-lived, isolated, starless cores in
our simulations to show the least variation. Observed lower density
cores can have lifetimes of upwards of 1 Myr, which suggests that
these cores should vary slowly over their lifetime if they are free
from external influence (André et al. 2014). Thus, we analyse these
isolated cores separately; Table 2 shows the coefficient of variance
for the 18 isolated (one path in the family), long-lived (t > 75kyr),
starless leaves. While some vary by only a few per cent, other paths
have variability of CV > 40 per cent for the 15 parameters in the table.
This indicates that these leaves have large computed variability, in
contrast to our naive expectation. The individual leaf evolution tracks
are shown in Fig. 10, where we plot mean density, mass, volume, and
virial parameter. Most leaves show fairly large stochastic variations
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4528 R. A. Smullen et al.

Figure 10. Individual core evolution for the long-lived, isolated, starless
cores in our simulation. We show mean density, gas mass, volume, and virial
parameter in the four panels. Most cores show stochastic variation of the
order of a factor of a few over the course of their lifetimes.

in individual quantities on short time-scales. These variations are
commonly due to changes in the physical structures included in the
dendrogram leaf rather than significant physical evolution. However,
a few of our leaves (namely, those plotted in purple), show relatively
quiescent evolution over their full lifetime, which are akin to the
structures identified in Chen et al. (2019). These quiescent cores
will contribute to the statistics of core property distributions while
not participating in the star formation process, thereby confusing the
mapping of the CMF to the IMF of stars (e.g. Offner et al. 2014).

4.3 Virial evolution of cores

Despite the wide variability in the time evolution of other core
properties identified with dendrograms, the virial evolution of leaves
does trend in the expected direction of lower virial numbers with
time as seen in the lower panel of Fig. 11. This fits the classic
view of star formation where a magnetized core undergoing global
gravitational contraction will eventually become supercritical and
collapse to form a star (Mouschovias & Spitzer 1976). However,
our core tracking algorithm does not find strong evidence that a leaf
with low virial α will form a star as shown in Fig. 11. Note that we
are using the simplified gravitational α (which is frequently used in
observations, e.g. Kirk et al. 2017) and not computing the full virial α
that includes boundary terms. Most leaves (>70 per cent), especially
those hosting sink particles, do finish the simulations with α < 2.
However, a substantial population of the long-lived, starless leaves
have α < 2 as well. Many of these low-α leaves persist for longer
than a local free-fall time (a few hundred kyr) without forming a
star. Thus, virial α is not necessarily the best predictor of future star
formation; other physics, such as pressure or magnetic support, are
important factors in the global evolution of a core.

4.4 Short-lived overdensities

We observe a population of short-lived, low-density peaks arising
from turbulent flows that contribute a level of ‘noise’ to the in-

Figure 11. Core property distribution versus individual core evolution of the
virial parameter. The top panel shows the distribution of the virial parameter
of the cores across time. The bottom panel shows the virial evolution of a
subset of reconstructed paths through time. Colouring is the same as Fig. 9.

terpretation of long-term core evolution, since they do not go on
to collapse and form protostars. These overdensities account for
about 25 per cent of path families identified when tracing paths
forward from an intermediate time-step. We identify this temporary
population of ‘imposter cores’ as having lifetimes less than 200 kyr
and densities less than 1 × 10−18 g cm−3 (2.5 × 105 cm−3), as can
be seen in Fig. 12. The majority of isolated paths occupy a much
lower density and shorter lifetime than the general path population.
Most of the paths in the low-density and short lifetime region also
show the trend that the maximum density (which is typically also
less than 10−18 g cm−3) is higher than the last identified density
(the ending density of the path), suggesting that these leaves are
physically temporary overdensities that decay below the threshold
density required to be identified in the dendrogram. The free-fall
time of these overdensities is about 100 kyr; because the free-fall
time is roughly equivalent to the overdensity lifetime, these objects
are not dominated by gravitational collapse.

The presence of this substantial population of imposter cores could
introduce a bias in the instantaneous CMF. These overdensities have
gas masses of order one solar mass and sizes of roughly a tenth of
a parsec, which is similar to masses and sizes of observed cores and
may therefore masquerade as pre-star-forming cores. Thus, at any
given time, roughly 15–25 per cent of cores identified in a region
may be from this temporary population. We performed a two-sample
Kolmogorov–Smirnov (K–S) test on the computed core properties
of imposter cores compared to all other cores at the same time: we
could not distinguish differences in the distributions of any parameter
except density. For instance, gas mass and virial parameter both have
a p-value of 3 per cent and K–S statistic of 0.4; if the p-value is high
(our preferred cut-off is more than 1 per cent) and the K–S statistic is
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The time evolution of cores 4529

Figure 12. Starting and ending densities of isolated objects. The background
histogram shows the starting and ending peak densities of all paths (top
and bottom, respectively) plotted against the length of the path. The purple
points denote isolated paths. There is a substantial population of low-density
leaves with lifetimes less than 150 kyr (25 per cent of all path families) that
are temporary, non-gravitating overdensities that disperse and fall below the
dendrogram floor.

low (our preferred cut-off is less than 0.6), we cannot claim that the
two samples are drawn from different populations. Indeed, p-values
for our computed parameters except for density are typically above
3–5 per cent and K–S statistics are typically less than 0.5. Thus,
imposter cores are not easily separated from any other population
of cores, so they will complicate the correlation of core and stellar
properties. These temporary overdensities are explored in more detail
in Chen et al. (2020).

4.5 Core mass function

We measure the CMF of our simulation. We show our CMF through
time in Fig. 13 together with mass functions from the literature.
We compute the total core mass, which includes mass from both
gas and sink particles. We compare our CMF to the fiducial CMF
from Guszejnov & Hopkins (2015), the observed CMF from Alves,
Lombardi & Lada (2007), the IMF inferred from observations from
Chabrier (2003), and a lognormal distribution. The CMF in our
simulation agrees well with the observed CMF of the Pipe dark
cloud from Alves et al. (2007) and with other observational CMFs
not plotted here such as those observed in Perseus, Serpens, and
Ophiuchus from Enoch et al. (2008), Aquila from André et al. (2010)
and Könyves et al. (2015), and Vela C from Massi et al. (2019). We
also find a good agreement with a Chabrier (2003) system IMF scaled
by a factor of 6. We do not, however, create the population of low-
mass cores of the Guszejnov & Hopkins (2015) model. We also do
not create the population of low-mass sinks particles seen by other
simulations such as Bate (2012) despite our ability to create sink
particles with masses much less than 1 M� (although this is expected
due to the coarse spatial resolution).

As is seen in the figure, our CMF is relatively invariant through
time. Our peak mass is constant at around 1.4 M� with a range from
about 0.3–10 M�. There is a small apparent bias towards higher
masses at earlier times, which is a by-product of low number statistics

Figure 13. The CMF across time in our simulations. The purple to yellow
colour scale shows our normalized core masses for a selection of time-steps.
We plot the total core mass, which includes mass from both gas and sink
particles. The mass function of our sink particles (which are equivalent to a
protostar and compact disc) is shown in the thick grey line. We also show the
fiducial CMF from Guszejnov & Hopkins (2015), the observed CMF from
Alves et al. (2007), and the IMF inferred from observations from Chabrier
(2003). We plot a lognormal in black.

and the lack of significantly refined structure in our simulations
shortly after gravity is turned on. The constant nature of the CMF
is likely due to two effects. The dendrogram introduces new leaves
when temporary overdensities are significant enough to warrant leaf
creation, leading to the transient population of low-mass ‘cores’
discussed above that balances the small physical growth of persistent
cores and the algorithmic fragmentation of more massive leaves
into smaller structures. The trend of nearly constant CMF across
time in a singular environment is seen in other simulations, such as
Cunningham et al. (2018), where core mass distributions do not show
significant mass evolution after formation. As described above, any
given leaf can occupy a wide range of the total mass space as we
track it through time, but the ensemble of leaves maintains a constant
distribution in time. Thus, the CMF derived from a dendrogram
population does not necessarily correlate with the final IMF of
the region; the stochastic nature of leaf mass evolution makes it
very difficult to compute a relationship between a core mass at any
snapshot and the resultant stellar mass.

We compare the CMF derived from the leaf gas mass to the CMF
derived from more observationally motivated core definitions in-
cluding the leaves that eventually form stars (equivalent to prestellar
and protostellar cores), leaves with α < 2, and leaves that are Jeans
unstable for their mean density. All of these different populations
produce quantitatively similar results, as shown in Fig. 14. The CMFs
all have peaks slightly higher than 1 M�, a spread of about two orders
of magnitude, and are invariant in time. We therefore conclude that
any structures not involved in the traditional star formation process
(e.g. transient overdensities) have little impact on the derived CMF.
Computing the CMF based on different properties in observations
also produce similarly invariant CMFs (e.g. Sokol et al. 2019).

The highly variable masses of identified leaves through time means
that we cannot infer the IMF by looking at a population of cores
identified with dendrograms at a given time snapshot. While there
may be an underlying physical evolution of star-forming cores, the
instantaneous properties of a region identified by a dendrogram
cannot be assured to correlate with that evolution. We reiterate that
our goal in this work is not to measure CMFs in detail but to (i) show
that our results are comparable to observations and (ii) illustrate that
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4530 R. A. Smullen et al.

Figure 14. The core mass function for different core definitions. Solid
lines show an average CMF across time, while the shaded regions show
the minimum and maximum bins across time. Blue shows the CMF of all
leaves in the simulation (which is what is shown in Fig. 13). The other colours
show core selections that might be more physically motivated: purple shows
cores that have masses greater than the local Jeans mass, and green shows
cores that have virial α < 2. All mean CMFs overlap except at the lowest
mass end, where some of the low-mass cores do not satisfy the stricter Jeans
or Virial criteria.

the apparent similarities between observed CMFs and IMFs may not
derive from a simplistic evolution of the former to the latter.

5 R E S U LT S : IN S I G H T S FRO M M E T H O D O L O G Y

It is imperative to understand the impact of the dendrogram algorithm
on cores identified in both simulations and observations due to the
algorithm’s wide popularity in the literature. In this section, we
discuss the insights into the use of dendrograms gained from this
work.

We have used dendrograms to identify dense structures in our
simulations of a star-forming region, but we have also demonstrated
a limitation of dendrograms: because dendrograms identify relative

variations in structure, leaf structure may vary significantly between
time-steps due to small variations in the local density structures.
Dendrograms are built beginning from the maximum value, so any
variations in that maximum may cascade into substantial changes in
the resultant dendrogram architecture.

An example of this phenomenon is shown in Fig. 15. The left
and right columns depict neighbouring time-steps. Despite very
little physical evolution between time-steps (a ∼5 per cent change
in the peak density), the dendrogram identifies leaf structure quite
differently. This translates to a nearly order of magnitude variation
in the volume of the sink-hosting leaf and substantial variation in the
computed properties of the leaf.

The two leaves in the right-hand panel that are part of the sink-
hosting subtree (the two leftmost leaves in the dendrogram) are not
physically interacting over the course of the simulation. They are
simply nearby overdensities. However, because of the variations in
the dendrogram structure, our algorithm identifies these two leaves
as belonging to the same path family. Thus, one of the major
failings of tracking overdensities identified via dendrogram through
a simulation to study core evolution is that it becomes difficult to
disentangle physical evolution from ‘algorithmic’ artefacts. In other
words, there is no easy, automated way to differentiate between
physical structure change and dendrogram structure change.

Figure 15. The dendrograms of a small volume in consecutive time-
steps. The left and right columns depict different time-steps. The upper
panels show the dendrogram structure coloured by leaf volume. The starred
leaf in each panel is the leaf containing the dominant overdensity in the
middle panels. The middle panels show the leaf contours over a grey-scale
density projection of the simulation. Dotted contours show the trunk, dashed
contours show branches, and solid contours show leaves. Despite very little
physical evolution between time-steps, the dendrogram identifies different
tree structure, leading to significantly different leaf morphologies. The bottom
panel shows the impact of the different leaf structure on computed leaf
properties for the leaf starred in the upper panels. Critical quantities such
as mass show significant differences between the two times that can only be
attributed to the redefinition of the leaf contours.

The change in consecutive dendrograms arises because of small
variation in the relative properties of structures (typically intermedi-
ate density structure). Fig. 16 aims to illustrate the issue. Structures 1,
2, and 3 are shown at two consecutive times. The physical properties
of the structures (peak and width, in this cartoon) do not change
between the top (earlier time) and bottom (later time). However,
their relative locations with respect to one another do change. The
structures have moved closer to one another and therefore the saddle
point between them has become shallower. This causes the nodes
(horizontal lines) to be at different heights at the two different times.
At the earlier time, the node is low enough that both structures 2 and
3 exceed the density increase criterion (indicated by the pink vertical
lines), while at the later times, the node is at a high enough density
that the individual density peaks are not significant enough to allow
substructure to be identified.

To further explain the example presented from this work, the
second leaf in the right-hand panel of Fig. 15 is just above the
density refinement criterion at its physical location in that time-step.
However, the peak density in that region drops by 4 per cent in the
left-hand panel, which then leads to the overdensity not being quite
‘peaky’ enough to satisfy the density refinement when compared
with the maximum peak. This is not a problem unique to our density
refinement criterion: any density refinement chosen will exhibit these
artefacts to some degree due to the relative nature of dendrogram
structure identification. Even observationally, these issues may be
seen: differences in resolution or noise levels in observations of the
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The time evolution of cores 4531

Figure 16. Cartoon explanation of the origin of algorithmic structure
variation in time. Structures 1 (blue), 2 (purple), and 3 (green) are shown
at two consecutive times. The physical properties of the structures (peak
and width) do not change between the top (earlier time) and bottom (later
time). However, their relative locations with respect to one another do change:
structures 2 and 3 move closer to one another, thereby increasing the density
of the saddle point between them. This causes the nodes (horizontal black
lines) to be at different heights at the two different times. At the earlier time,
both structures 2 and 3 exceed the density increase criterion (indicated by the
pink vertical lines), while at the later times, the individual density peaks of 2
and 3 are not significant enough to allow for substructure to be identified.

same region may lead to changes in the computed hierarchy. Any
variation between consecutive observations in the region around a
peak dendrogram can lead to variations in the contour drawn by the
dendrogram.

6 D ISCUSSION

6.1 Interpreting the IMF from the CMF

One natural question we can ask in this work is how the instantaneous
core masses correlate with the stars they form, which can provoca-
tively be described as translating a CMF into an IMF. We plot this
in Fig. 17, where we show the total sink mass at the end against
the initial masses of leaves that merge into the final overdensity.
First, there is a wide array of scatter in the initial leaf masses that
does not correlate well with the final sink mass; some of this scatter
may result from the lack of feedback in our simulations, which is
expected to create overmassive sink particles, and some may arise
from the fact that a protostar can accrete from outside the initially
bound gas core. This observation is consistent with other works for
low- to intermediate-mass stars such as Smith, Clark & Bonnell
(2009) and Mairs et al. (2014). Second, the sum of all component
leaf masses seems to be a very important consideration, especially
when considering the growth of systems containing multiples.

The young, typically singular, sink particles fall above the 1:1
correlation in Fig. 17, indicating that the nascent overdensity is the
primary reservoir of gas that accretes on to the protostar by the
final snapshot of the simulation. Older sinks and systems containing
multiple sinks frequently have individual leaf masses below the 1:1
line. Because protostellar outflow feedback is expected to reduce
stellar masses by at least a factor of 3 compared to the case without
feedback (Offner et al. 2014; Offner & Chaban 2017), we also
indicate the 3:1 sink:leaf mass ratio with a dot–dashed line. For
the most massive multiple systems, the component leaves (which

Figure 17. Sink mass at the final time plotted against leaf mass. Squares
show leaves containing one star at the final time, while circles show leaves
containing multiple stars. Points are coloured by the length of the path, and
we have truncated the paths to have an earliest age of 250 kyr after the gravity
turned on. Systems that consist of multiple paths are connected by a vertical
line. The sum of the leaf masses is indicated by the horizontal marker. The
dashed line shows the 1:1 correlation, while the dot–dashed line shows the
trend if the sink mass is reduced by the factor of ∼3 arising from the lack of
protostellar feedback in the simulations. For instance, the rightmost system
(currently at 15 M�) would likely have a mass of about 5 M� if feedback
was included in these simulations. Additionally, the inherent variability in
leaf snapshots can cause a clearly unphysical mass budget for a protostellar
system.

constitute the idealistic ‘gas reservoir’ for the protostars) still do
not lie above the aforementioned feedback relation, but the sum
of the leaf masses puts these systems into a comparable space as
other systems. For instance, if the expected reduction in mass due to
feedback was included, the rightmost system in Fig. 17 would likely
have a total sink mass of ∼5 M� and a combined leaf (core/reservoir)
mass of ∼6 M�; however, all component leaves for that system that
would be measured in a CMF have masses �3 M�. The leaves would
then appear to contain sufficient mass to form the stars, but we caution
that this, and even the simple 3:1 relationship, is an oversimplification
of the nature of protostellar feedback and its cumulative effect on the
surrounding gas.

It is important to note that the systems containing multiple stars
do not form from multiple leaves containing single stars merging
together; rather, the bound multiple forms in one leaf, and the
subsequent accretion of gas overdensities may help trigger the
formation of new stars. This result is similar to that seen in Padoan
et al. (2019), who see little correlation between core mass (or even
extended mass around a core) and stellar mass for high-mass stars.
This observation supports binary formation models such as turbulent
fragmentation in a single core (e.g. Offner et al. 2010) or disc
fragmentation (e.g. Kratter et al. 2010) as opposed to dynamical
capture (e.g. Bate et al. 2003).

6.2 Other ways to identify cores

There are a few ways one may attempt to overcome the limitations of
core identification and comparison using density dendrograms. We
discuss the advantages and limitations of these ideas.

One could try to overcome the impositions of the dendrogram
algorithm itself. Custom merging strategies are possible in ASTRO-
DENDRO; a ‘pruning’ strategy will allow peaks near the density
refinement criterion to remain more stable and thereby overcome
some of the relative structure variation shown in Section 5. However,
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4532 R. A. Smullen et al.

this solution is subject to human bias due to the addition of another
tunable parameter. It is unclear how to create a custom merger
strategy in a way that is agnostic to the human-desired structure
without introducing more bias.

In principle, one could also create contours at absolute density
levels instead of relying on a relative measure. By using an absolute
density contour, the leaf structure should slowly vary from time-
step to time-step and may therefore better identify bound cores. One
could then create a hierarchical structure tree that is similar to a
dendrogram, but the nature of hierarchy would be more difficult to
determine due to the fact that many density peaks would be broken
into a single nested hierarchy. Additionally, this type of hierarchy
would destroy the physical utility of dendrograms in studying the
relation of physical structures in a region and again relies on an
arbitrary density threshold, which we advocate against.

Core identification in simulations might also be better done in 2D
synthetic observation space instead of 3D density grids because there
will be fewer variations in integrated intensity between time-steps.
However, this method is best suited to isolated cores and may suffer
from false overdensities in emission created by chance alignments
(e.g. Beaumont et al. 2014).

Finally, density may not even be the best tracer of star-forming
cores as cores are highly dynamic and will not be defined by the
same density contour across time. It is likely that a more physically
motivated property such as virial parameter, velocity dispersion,
or gravitational potential could be a better quantity with which to
build hierarchical structures (see, for instance, Mao, Ostriker &
Kim 2020). These properties should be less variable across time
and should therefore provide a more stable core identification. How-
ever, these quantities are more difficult to measure observationally
and will make comparisons between simulations and observations
harder.

In simulations, one can also include tracer particles that will
trace the evolution of gas in a core identification-independent way.
However, interpreting that evolution is non-trivial. Smith et al. (2009)
and others find that a non-negligible fraction of tracer particles in
a bound gas clump will accrete on to a sink particle outside of that
bound clump. Indeed, they find that most of the mass in a sink particle
can be accreted from outside its nascent core. Thus, the meaning of
a core in this context becomes even less apparent, as the star may
contain gas from all around the molecular cloud.

One could employ alternate core identification algorithms used
in the field. All of these other methods (CLUMPFIND, FellWalker,
GaussClumps, etc.), would suffer similar issues because they all
fundamentally rely on the relative positions and heights of peaks to
determine structure. Different algorithms might have different sen-
sitivity to the less dense material surrounding density peaks, but all
algorithms have some way to combine peaks that are thought to not be
independent. In a simple test in which we identified structures in two
consecutive time-steps with dendrograms, CLUMPFIND, FellWalker,
and Reinhold, all core identification algorithms produced structures
that broadly followed the 1:1 trend in volume, but all algorithms had
∼order of magnitude deviations in volume for at least a few structures.
The dendrogram and FellWalker algorithms had the least dispersion
along the 1:1 relation in this test, but the substantial redefinition of
‘core’ boundaries was still observed.

Each of the methods discussed above would likely identify the
same dense gas structures, but the variations in core identification
would still likely lead to changes in computed core properties
between methodologies. Further work is needed to explore the
full impact and limitations of these different structure identification
methods in the time domain. However, this work suggests that there

is no unique way to define a core in both simulations and observations
using existing methods.

6.3 Implications of core identification

This work shows that there is no time-stable density contour with
which to define cores. Because of the dynamic nature of core evolu-
tion, a single set of dendrogram parameters will not trace unique core
parameters across the entire lifetime of core formation. Additionally,
we show that a substantial change in the cloud properties (due to time
evolution in this case) are required to see changes in the observed
CMF: over >70 per cent of our simulation snapshots show the same
CMF, despite order unity variations in individual cores. Changes in
the distribution occur at early times. In the context of our simulations,
this is because gravity has had less time to overcome the turbulence
in the gas. In real systems, this would correspond to the time when
the cloud itself was only weakly bound. This trend suggests that
variations in the CMF only coarsely trace the time evolution of
a star-forming region. Thus variations in the CMF from one star-
forming region to should not be attributed solely to differences in
age. Finally, computing a dendrogram in density or intensity on an
observed region introduces an inherent uncertainty in the physical
importance of structures identified. Dendrograms have many tunable
parameters, so disentangling physical structure from algorithmically
imposed structure in an automated fashion is a non-trivial endeavour.

The large variability in the computed core boundaries will likely
be less dramatic in observational space due to the integration of the
signal along a line of sight. The lower density material around the
edges of our identified leaves will not contribute as much signal, so
structures will appear more compact around only the densest part of
the core. However, as Beaumont et al. (2013) and citations therein
show, simulation projections and observation are highly subject to
projection effects, such as non-physical cores being identified due to
a large column of low-density material. Thus, neither physical nor
observational spaces have cores that can be robustly and uniquely
defined across all time.

7 C O N C L U S I O N S

In this work, we have presented an algorithm that links dendrogram
leaves through time in order to study the evolution of dense cores in
MHD simulations. We aim to understand not only the evolution of the
star-forming gas reservoir in our simulations, but also the manner in
which the use of the dendrogram algorithm may bias interpretation
of core properties and evolution. Ideally, the parameters used for
identifying and linking cores are set by the underlying physics. As
is shown in this work, we ultimately conclude that there is no robust
set of density-based parameters that can trace coherent cores through
time. Additionally, we find the following:

(i) The distributions of core properties, such as mass, are relatively
invariant in time. The CMF matches well with observed CMF
distributions such as Alves et al. (2007) and shifted IMFs such as
Chabrier (2003). Most property distributions do not show significant
trends over long time-scales.

(ii) Individual core histories show large variability (>40 per cent)
on short time-scales (<100 kyr) that arise from changes in the
leaf boundaries. This non-monotonic variability persists across
environment (isolated or crowded) and stellar content. Additionally,
a leaf history that shows low variability in one parameter will not
necessarily show low variability in all parameters. There are no
obvious regular trends in time with the exception of virial parameter
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(which tends to decrease to α < 2 as the cores reach the end of the
simulation). There is some evidence for long-term evolution in of
individual paths traced in other properties that may correspond to
physical evolution, but the shorter stochastic variability makes these
trends difficult to quantify.

(iii) The variability exhibited in our analysis of individual core
evolution is at least partially attributable to the dendrogram algorithm
itself. Small changes in the relative structure of the density between
time-steps can propagate to incredibly large changes in the computed
boundaries of structures. In extreme cases, volumes can change by an
order of magnitude between time-steps, leading to nearly 100 per cent
variability in computed core properties. The sensitivity of the
dendrogram to small changes in physical conditions raises concerns
about hierarchies identified in both simulations and observations.
For instance, changes in noise or resolution may lead to different
hierarchies in the same region.

(iv) We find a population of short-lived overdensities in each time-
step that may serve as a substantial source of ‘noise’ for core property
distributions in observations. The overdensities tend to have lower
density (<10−18 g cm−3) and lifetimes less than 200 kyr, and they
account for 15–25 per cent of identified leaves every time-step. These
overdensities have other properties, such as mass and size, that are
comparable to other cores in the simulation that go on to form stars.

(v) Assessing the full history of cores (including events like
mergers) may be important for interpreting the IMF. We find that,
especially for massive multiple star systems, the sum of all initial
leaves associated with the multiple is typically required to agree with
CMF–IMF scaling assumptions even when inefficiency produced by
feedback is taken into account.

(vi) There is no time-stable density contour that defines a star-
forming core. The dynamic nature of core formation and evolution
means that dendrograms will not trace the same structures across
time in a reliable way. Thus, we urge caution when comparing
dendrograms of different ages or environments because differences
in the dendrogram may come from the algorithm itself instead of
physical changes.

In summary, cores identified with dendrograms are subject to
algorithmic limitations that impact the physical interpretation of
‘observed’ core boundaries. And yet, understanding the full time
evolution of star-forming cores is critical to understanding the end
results of star formation, such as interpreting the relationship (or
lack thereof) between the CMF and IMF. We have shown the need
for caution when extrapolating instantaneous observations of star-
forming cores either forward or backward in time, as cores can have
substantial variability both intrinsically and observationally.
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APPENDIX A : C OMPUTED PROPERTIES

We use typical quantities common in star formation studies. However,
for transparency, we define their algorithmic definitions used in this
paper. Volumes have been calculated using the volume of the leaf
on the uniform grid. Quantities are computed on the cell-wise level
using the AMR cells identified within the leaf and then summed to a
single quantity where indicated.

The centre of mass, which is repeatedly used, is defined as μ =
∑

mgasvgas/
∑

mgas. Then, iterating over all sinks in a leaf, it is
modified as μ = (μm + vsinkmsink)/(m + msink).

(i) Mean density:
∑

mcellρcell/
∑

mcell

(ii) Total mass: Mgas + Msink

(iii) Gas mass: Mgas

(iv) Volume: Nuniform cells × Vuniform cells

(v) Size:

(a) Size =
√

(xmax − xmin)2 + (ymax − ymin)2 + (zmax − zmin)2

(vi) Oblateness:

(a) �x = (xmax − xmin)
(b) mag =

√

�x2 + �y2 + �z2

(c) Oblateness = (max[�x, �y, �z] − min[�x, �y, �z])/mag

(vii) Virial parameter:

(a) σ =
√

(
∑

m((vx − μx)2 + (vy − μy)2 + (vz − μz)2))/
∑

m

(b) R = ∑

(m/ρ)1/3

(c) α = 5(σ/
√

3)2R/3GMtot

(viii) Internal Mach number:

(a) cs = √
γP/ρ

(b) M=
√

(
∑

m(((vx −μx)2+(vy −μy)2+(vz−μz)2)/c2
s ))/

∑

m

(ix) Core Mach number:

(a) cs = √
γP/ρ

(b) M = ∑

m(
√

v2
x + v2

y + v2
z/cs)/

∑

m

(x) Alfvén Mach number:

(a) vA =
√

B2/4πρ

(b) MA =
√

(
∑

m(((vx −μx)2+(vy −μy)2+(vz−μz)2)/v2
A))/

∑

m

(xi) Pressure:
∑

mcellPcell/
∑

mcell

(xii) Angular momentum magnitude:

(a) rcor = r − μr

(b) vcor = v − μv

(c) j = ∑

(mvcor × rcor)/
∑

m

(d) Magnitude =
√

j 2
x + j 2

y + j 2
z

(xiii) Angular momentum orientation:

(a) rcor = r − μr

(b) vcor = v − μv

(c) j = ∑

(mvcor × rcor)/
∑

m

(d) mag =
√

j 2
x + j 2

y + j 2
z

(e) Orientation = (max(j) − min(j))/mag

(xiv) B-field magnitude:

(a) B =
[∑

mBx∑
m

,
∑

mBy∑
m

,
∑

mBz∑
m

]

(b) Magnitude =
√

B2
x + B2

y + B2
z

(xv) B-field orientation:

(a) B =
[∑

mBx∑
m

,
∑

mBy∑
m

,
∑

mBz∑
m

]

(b) mag =
√

B2
x + B2

y + B2
z

(c) Orientation = (max(B) − min(B))/mag

(xvi) Plasma β

(a) βcell = 8πP/B2

(b) β = ∑

mcellβcell/
∑

mcell
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