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ABSTRACT

Understanding the evolution of self-gravitating, isothermal, magnetized gas is crucial for star formation, as these physical
processes have been postulated to set the initial mass function (IMF). We present a suite of isothermal magnetohydrodynamic
(MHD) simulations using the GIZMO code that follow the formation of individual stars in giant molecular clouds (GMCs),
spanning a range of Mach numbers found in observed GMCs (M ∼ 10–50). As in past works, the mean and median stellar
masses are sensitive to numerical resolution, because they are sensitive to low-mass stars that contribute a vanishing fraction of the
overall stellar mass. The mass-weighted median stellar mass M50 becomes insensitive to resolution once turbulent fragmentation
is well resolved. Without imposing Larson-like scaling laws, our simulations find M50

∝∼ M0M
−3αturb SFE1/3 for GMC mass

M0, sonic Mach number M, virial parameter αturb, and star formation efficiency SFE = M�/M0. This fit agrees well with previous
IMF results from the RAMSES, ORION2, and SPHNG codes. Although M50 has no significant dependence on the magnetic field
strength at the cloud scale, MHD is necessary to prevent a fragmentation cascade that results in non-convergent stellar masses.
For initial conditions and SFE similar to star-forming GMCs in our Galaxy, we predict M50 to be > 20 M�, an order of magnitude
larger than observed (∼ 2 M�), together with an excess of brown dwarfs. Moreover, M50 is sensitive to initial cloud properties
and evolves strongly in time within a given cloud, predicting much larger IMF variations than are observationally allowed. We
conclude that physics beyond MHD turbulence and gravity are necessary ingredients for the IMF.
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1 IN T RO D U C T I O N

Star formation involves many physical mechanisms acting in concert,
including gravity, hydrodynamics, magnetic fields, radiation, and
chemistry. While all of these processes have a role to play, under-
standing the whole picture is difficult without first understanding how
various subsets of these mechanisms work together. Above all, it is
important to explore how star formation arises from the interplay of
gravity and turbulence, which provide the canvas upon which other
physics can be painted.

The simplest and best-studied model of star formation considers
only the equations of isothermal hydrodynamics coupled to gravity,
which models the dense, ∼ 10 K interstellar medium (ISM) found in
molecular clouds in our Galaxy (e.g. Padoan & Nordlund 2002;
Hennebelle & Chabrier 2008; Hopkins 2012). Many numerical
works studying star formation in turbulent molecular clouds in
this framework have found the problem to be ill-posed: numerical
convergence in the mass spectrum of collapsed fragments, which
should map on to the stellar initial mass function (IMF), is typically
not achieved (see e.g. Martel, Evans & Shapiro 2006; Kratter et al.

� E-mail: guszejnov.david@gmail.com (DG); mike.grudic@northwestern.
edu (MYG)

2010; Federrath, Krumholz & Hopkins 2017; Guszejnov et al. 2018b;
Lee & Hennebelle 2018b). Larson (2005) noted that an isothermal,
self-gravitating medium can spontaneously form filamentary struc-
tures that formally collapse to infinite density before they break
apart (e.g. Truelove et al. 1997), so that the collapsed mass cannot
be meaningfully discretized into individually collapsing cores, as
predicted analytically by Inutsuka & Miyama (1992) for an idealized
filament. Even if cores do form, they can sub-fragment indefinitely
in a self-similar fashion (see Guszejnov, Krumholz & Hopkins 2016;
Guszejnov et al. 2018b; for a counter-argument, see André et al.
2019). Thus, it is not clear that isothermal gas physics and gravity
alone can meaningfully predict any IMF, let alone the observed
one.

However, molecular clouds are observed to have a non-negligible
amount of magnetic support (Crutcher 2012). The introduction of
magnetic fields can suppress the growth of the Jeans instability
(Chandrasekhar & Fermi 1953), support structures against collapse
(Mouschovias & Spitzer 1976), and cushion supersonic shocks
that may form dense structures, generally reducing the rate of star
formation and the degree of fragmentation in molecular clouds (e.g.
Price & Bate 2008; Federrath 2015; see Krumholz & Federrath 2019
and Hennebelle & Inutsuka 2019 for reviews). Due to their ability to
suppress fragmentation, magnetic fields have long been considered
potential candidates for setting the mass scales of stars (e.g. Shu,
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Can MHD set the mass scale of stars? 5073

Adams & Lizano 1987; McKee & Tan 2003; Padoan & Nordlund
2011). However, similar to the non-magnetized case, the ideal
magnetohydrodynamic (MHD) equations governing the evolution
of the gas have no inherent physical scale (Krumholz 2014) of their
own, so any mass scale in stellar masses must be imposed by initial
and boundary conditions. In the non-magnetized case, the initial
conditions are washed out by a turbulent fragmentation cascade,
ultimately imposing no physical mass scale in the IMF (Guszejnov
et al. 2018b). For magnetized gas, recent high-resolution simulations
have claimed convergence (e.g. Haugbølle, Padoan & Nordlund
2018) in the mass function (or more specifically, that the mass
spectrum of sink particles is insensitive to numerical resolution),
while other works with similar numerical resolutions have argued
for non-convergence (i.e. strong resolution dependence; Federrath
et al. 2017).

In this paper, we use numerical MHD simulations, achieving a
dynamic range in mass resolution an order of magnitude higher
than any previous star cluster formation studies and covering a broad
parameter space (see Section 3), to explore the following questions: Is
there a characteristic mass in the initial conditions of ideal isothermal
MHD that is inherited by the mass function of the final fragments?
How does this characteristic mass depend on initial conditions, such
as the sonic and Alfvén Mach numbers? Could this characteristic
mass set the mass scale of stars?

2 M E T H O D S

2.1 Ideal isothermal MHD

2.1.1 MHD equations

An isothermal, magnetized, infinitely conducting, self-gravitating
fluid (well above the dissipation scale) is completely described by
the following closed set of dimensionless equations (see McKee,
Li & Klein 2010 for a more detailed derivation):

∂

∂t̃
(ρ̃) + ∇̃ · (ρ̃ṽ) = 0,

∂

∂t̃
(ρ̃ṽ) + ∇̃ · (ρ̃ṽ ⊗ ṽ) = −∇̃ρ̃ −

15

4π
α−1

th ρ̃∇̃�̃

− 2β−1
(

∇̃ × B̃
)

× B̃,

∇̃2�̃ = 4πρ̃,

∂

∂t̃
B̃ + ∇̃ ×

(

B̃ × ṽ
)

= 0, (1)

where ρ̃ ≡ ρ/ρ0, ṽ ≡ v/cs, t̃ ≡ t cs/L0, ∇̃ ≡ L0 ∇, and B̃ = B/B0

are the normalized fluid density, velocity, time, gradient, and the mag-
netic field, respectively. cs = const is the isothermal sound speed and
�̃ ≡ �

Gρ0L2
0

is the dimensionless gravitational potential. Meanwhile,

αth ≡ 15
4π

c2
s

Gρ0L2
0

is the (thermal) virial parameter, which is equivalent

to the ratio of thermal to gravitational energy in a homogeneous
sphere of radius L0. Meanwhile, β ≡ Pthermal,0/Pmagnetic,0 = 2c2

s /v
2
A, 0

is the characteristic plasma beta, where Pthermal,0 and Pmagnetic,0 are
the characteristic thermal and magnetic pressures of the system,
respectively, while v2

A, 0 ≡ B2
0 /(μ0ρ0) is the Alfvén speed of the fluid

at B0 and ρ0 with μ0 being the vacuum permeability. It is also useful
to introduce the 3D sonic Mach numberM2 ≡ 〈||v||2/c2

s 〉 = 〈||ṽ||2〉.
Note that as defined above, ρ0, cs, B0, and L0 are simply arbitrary

normalization units: for convenience in our study here, we will take

these to be the mean initial values of the clouds studied (giving
the usual meaning to the virial parameter, β, and Mach number, in
a cloud-averaged sense). With these definitions, the thermal virial
parameter αth, the plasma β, and the Mach number M each describe
the relative weight of the different processes in the momentum
equation (and are defined by mean cloud properties in the initial
conditions). In other words, the dynamics are entirely determined
by the three dimensionless constants αth, β, and M, for a given
initial condition. The only way to impose a characteristic scale on
the problem (such as a characteristic mass for collapsing cores) is
through these initial conditions.

2.1.2 Parameters and mass scales

Here we summarize the main mass scales and physical parameters
that can be derived from the initial conditions, which will inform our
analysis of the characteristic scales/mass relationships discussed in
Section 3.

Due to the dimensionless nature of the system (see equation 1),
all mass scales must be inherited from initial conditions and their
relative magnitude is described by αth, β, and M. In the literature, it
is common to introduce alternate parameters, like the turbulent virial

parameter (see Bertoldi & McKee 1992)

αturb ≡
2Eturb

−Egrav
= αth

1

3
M

2, (2)

the magnetic virial parameter

αB ≡
2Emag

−Egrav
=

2αth

3β
, (3)

and the total virial parameter

α ≡ 2
Eth + Eturb + Erot + Emag

−Egrav

= αth

[

1 +
1

3

(

M
2 + M

2
rot +

2

β

)]

, (4)

where Eth, Eturb, Erot, Emag, and Egrav are the turbulent kinetic,
rotational, thermal, magnetic, and gravitational binding energies
of the gas, while Mrot ≡ vrot/cs and vrot is the average rotational
velocity within the system.

Thermal pressure can prevent the collapse of a fluid element, where
the corresponding mass scale (up to arbitrary order-unity constants)
is the Jeans mass

MJeans

M0
≡

4π

3 ρ0

(

cs√
Gρ0

)3

4π

3 ρ0L
3
0

=
(

4π

15
αth

)3/2

=
(

4π

5

)3/2

α
3/2
turbM

−3.

(5)

Note that we normalize the Jeans mass and other mass scales below
in units of M0 ≡ 4πρ0 L3

0/3, the characteristic mass scale (e.g. total
cloud mass in a spherical cloud), so that we can write it only
in terms of the key dimensionless parameters above. The initial
turbulence also has a characteristic length-scale: the sonic length,
Lsonic, on which the turbulent dispersion becomes supersonic. The
corresponding mass scale is the sonic mass

Msonic

M0
≡

c2
s Lsonic

Gρ0L
3
0

=
4π

15
αthM

−2 =
4π

5
αturbM

−4, (6)

where we used the supersonic linewidth–size relation [σ 2(L) ∝ L].
Another mass scale of an isothermal turbulent flow is the turbulent
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5074 D. Guszejnov et al.

Bonnor–Ebert mass, the maximum gas mass that can support itself
against its own self-gravity plus external pressure in post-shock
compressed gas with ρ̃ ∼ 1 + 1

3M
2 (Padoan, Nordlund & Jones

1997), which scales as

M turb
BE

M0
∼ 2

MJeans

M0

(

1 +
1

3
M

2

)−1/2

=
2
(

4π

5

)3/2
α

3/2
turb

(

1 + 1
3M

2
)1/2

M3
. (7)

The initial magnetic field can also impose a mass scale, below
which magnetic fields provide enough support to prevent collapse
(Mouschovias & Spitzer 1976). This relative magnetic critical mass

is

M�

M0
≡

√
αB ∼

√

2αth

3β
. (8)

It is common to introduce a very similar measure, the normalized

magnetic flux (or mass-to-flux ratio)

μ ≡ c1

√
2

M0

M�

= c1

√

2

αB
∼ c1

√

3β

αth
, (9)

where c1 ≈ 0.4. With this normalization μ = 1 corresponds to the
critical point in the stability of a homogeneous sphere in a uniform
magnetic field (Mouschovias & Spitzer 1976).

Due to their prevalence in the literature, we describe our runs
with the dimensionless parameters αturb, μ, and M (which are
mathematically equivalent to αth, β, and M) in the remainder of
this paper.

2.2 Simulations

2.2.1 Numerical methods

Here we briefly summarize our numerical approach to simulating
star-forming GMCs, but defer a full description and presentation
of numerical tests to an upcoming methods paper (Grudić et al., in
preparation). Similar to our study of non-magnetized isothermal col-
lapse (Guszejnov et al. 2018b), we simulate star-forming clouds with
the GIZMO code1 (Hopkins 2015), using the Lagrangian meshless
finite-mass (MFM) method for magnetohydrodynamics (Hopkins &
Raives 2016), with numerous upgrades and optimizations to make
the code suitable for simulating star formation and stellar dynamics,
including a new set of time-step criteria based on Grudić & Hopkins
(2019). We use the Hopkins (2016) constrained-gradient scheme
to ensure the ∇ · B = 0 constraint is satisfied to high precision.
The gas obeys an isothermal equation of state with cs = 0.2 km s−1

(effective gas temperature T ∼ 10 K) in our adopted code units,
however the equations solved are scale-free, so this choice of cs

is arbitrary. Gravity is solved with the approximate Barnes–Hut tree
method (Springel 2005). Force softening is fully adaptive for gas cells
(Price & Monaghan 2007; Hopkins 2015), with no imposed floor.
Sink particles (representing stars) have a fixed Plummer-equivalent
softening radius of 7.56 au, unlike Guszejnov et al. (2018b) where
we also used adaptive softening for sink particles. As such we are
able to follow the formation and evolution of binaries and multiples
with separations larger than ∼ 10 au.

To carry on the calculation past the runaway collapse of the first
core, we use a sink particle algorithm very similar to Bate, Bonnell &
Price (1995). A gas cell is converted to a sink particle if it satisfies a

1http://www.tapir.caltech.edu/∼phopkins/Site/GIZMO.html

number of criteria intended to identify the centres of collapsing cores
that have become too dense to resolve the Jeans instability (Bate et al.
1995; Truelove et al. 1997; Federrath et al. 2010b; Gong & Ostriker
2013). We take this density threshold to be

ρJ =
π3c6

s

64G3
m2
= 3 × 10−14g cm−3

(

cs

0.2 km s−1

)6

×
(


m

10−3 M�

)−2

(10)

(where 
m is the conserved cell mass) corresponding to the density
at which a hydrodynamic cell of size 
x = (
m/ρ)1/3 contains

half a Jeans wavelength λJ = cs

√

π

Gρ
. Cells converted to sinks

must also be a local density maximum among their Nngb ∼ 32
nearest neighbours, be gravitationally bound accounting for thermal,
turbulent, and magnetic energy (Federrath et al. 2010b; Hopkins,
Narayanan & Murray 2013), and must be collapsing along all
three axes (Gong & Ostriker 2013). Lastly, we impose a new tidal
criterion to be described fully in Grudić et al. (in preparation) that is
similar in motivation to the potential-minimum criterion of Federrath
et al. (2010b), but is invariant to the transformation g → g + g′,
where g′ is a constant, uniform acceleration that should have no
effect upon the system’s internal dynamics (see Bleuler & Teyssier
2014).

Sink particles interact with gas cells via gravity and accretion. To
be accreted by a sink, gas cells must lie within the sink radius

Rsink = max

(

(

3
m

4πρJ

)1/3

, 21 au

)

, (11)

the greater of the volume-equivalent spherical radius of a gas cell of
density ρJ or the support radius of the sink’s gravitational softening
kernel (i.e. 2.8 au × 7.56 au). To be accreted, cells must also be grav-
itationally bound to the sink and must have less angular momentum
than a circular orbit at Rsink. When a gas cell is accreted, its mass,
momentum, centre of mass moment, angular momentum, and mag-
netic flux are transferred to the sink particle. This is essentially the
same prescription that other Lagrangian codes use (e.g. Price & Bate
2007; Price 2012; Wurster, Bate & Price 2019). The accreted angular
momentum is redistributed to nearby gas cells with an e-folding
time equal to the freefall time at ρJ, similar to the prescription of
Hubber, Walch & Whitworth 2013. Note that we have experimented
with several variations to the above prescriptions, including using
different values for the critical density relative to ρJ, varying the
sink radius and removing magnetic energy from the boundedness
condition. We will present the results of these experiments in detail in
a future numerics-focused work (Grudić et al. in preparation), but can
summarize that none of the results in this work are sensitive to these
choices.

2.2.2 Initial conditions

For the runs included in this paper, we are using two different sets of
initial conditions (ICs) common in the literature, to ensure that our
results are robust to the specifics of the IC generation2:

(i) Sphere ICs begin with a spherical cloud (T = 10 K, the radius
Rcloud and mass M0 are specified) with uniform density, surrounded

2The initial conditions are generated by the MakeCloud script.
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Can MHD set the mass scale of stars? 5075

Table 1. Initial conditions of clouds used in our runs (see Section 2.1.2 for definitions). The scaled parameters give the properties of a corresponding physical
GMC model with �gas ∼ 63 M� pc−2, typical in the Milky Way, with M0 being the initial cloud mass. Note that the parameters in this table apply to both Box

and Sphere runs as they set up to have identical initial global parameters, with Lbox being the box size for Box runs and Rcloud being the cloud radius for the
Sphere runs. Note that Box runs have slightly different initial parameters (e.g. Mach number, virial parameter) due to the non-exact scaling of the driving, so the
values shown here are the target values. Also, different works in the literature use different Jeans mass definitions, which can change MJeans up to a factor of 10;
ours is defined by equation (14).

Input parameters Scaled parameters Derived parameters Resolution

Key αturb μ M M0 ( M�) Lbox (pc) Rcloud (pc)
cs

(m s−1) αth α MA β αB
MJeans
M0

Msonic
M0

M�

M0
max(M0/
m)

M2e3 R3 2 4.2 9.3 2 × 103 4.8 3 200 0.02 2.04 10 2.3 0.02 1 × 10−2 6 × 10−4 0.1 108

M2e4 R10 2 4.2 16 2 × 104 16 10 200 0.008 2.03 10 0.78 0.02 3 × 10−3 7 × 10−5 0.1 2 × 108

M2e5 R30 2 4.2 29 2 × 105 48 30 200 0.002 2.02 10 0.23 0.02 5 × 10−4 7 × 10−6 0.1 2 × 108

M2e6 R100 2 4.2 51 2 × 106 160 100 200 0.0008 2.02 10 0.078 0.02 8 × 10−5 7 × 10−7 0.1 2 × 108

M2e4 R20 a4 4 4.2 16 2 × 104 32 20 200 0.016 4.02 14 1.6 0.02 8 × 10−3 2 × 10−4 0.1 2 × 107

M2e4 R5 a1 1 4.2 16 2 × 104 8 5 200 0.0039 1.02 7 0.39 0.02 1 × 10−3 4 × 10−5 0.1 2 × 107

M2e4 R2.5 a0.5 0.5 4.2 16 2 × 104 4 2.5 200 0.002 0.52 5 0.19 0.02 3 × 10−4 2 × 10−5 0.1 2 × 107

M2e4 R1.25 a0.25 0.25 4.2 16 2 × 104 2 1.25 200 0.0001 0.27 3.5 0.097 0.02 1 × 10−4 1 × 10−5 0.1 2 × 107

M2e4 R10 mu13 2 13.4 16 2 × 104 16 10 200 0.008 2.002 31 7.8 0.002 3 × 10−3 7 × 10−5 0.04 2 × 107

M2e4 R10 mu1.3 2 1.34 16 2 × 104 16 10 200 0.008 2.2 3.1 0.078 0.2 3 × 10−3 7 × 10−5 0.4 2 × 107

M2e4 R10 mu0.42 2 0.42 16 2 × 104 16 10 200 0.008 4 1 0.0078 2 3 × 10−3 7 × 10−5 1.4 2 × 107

by diffuse gas with a density contrast of 1/1000. The cloud is placed
at the centre of a 10Rcloud box, that is periodic to gas cells and sink
particles but not for gravitational forces (has no discernible effect,
but reduces computational cost). The velocity field is a Gaussian
random field with power spectrum Ek ∝ k−2 (Ostriker, Stone &
Gammie 2001), generated on a Cartesian grid and interpolated to
the cell positions. The magnitude of the velocity field is rescaled
to the value prescribed by αturb. The initial clouds have a uniform
Bz magnetic field whose strength is set by the parameter μ. There
is no external driving in these simulations. Note that for these
simulations, we define αturb similar to how previous studies did in
the literature (e.g. Bertoldi & McKee 1992; Federrath & Klessen
2012),

αturb,0 ≡
5c2

sM
2Rcloud

3GM0
. (12)

Note that this matches the definition from equation (2) for a spherical
cloud, so αturb,0 = αturb in these cases, but can significantly differ
for different initial conditions (see Federrath & Klessen 2012).
Nevertheless, it is a parameter that describes the relative importance
of the initial turbulence to gravity.

(ii) Box ICs are initialized with the cells set up on a uniform 3D
grid, each starting at zero velocity and T = 10 K. The boundary
conditions of this box are periodic for both hydrodynamics and
gravity. This periodic box is then ‘stirred’ by running the simulation
with a pre-determined turbulent driving spectrum (Ek ∝ k−2, i.e.
supersonic turbulence) and an appropriate decay time for driving
mode correlations (tdecay ∼ tcross ∼ Lbox/σ 3D) (Federrath et al. 2010a;
Bauer & Springel 2012). This stirring is initially performed without

gravity for five global freefall times (tff ≡
√

3π

32Gρ0
). The result is a

state of saturated MHD turbulence in which the density distribution
is roughly lognormal, and correlations between the density, velocity,
and magnetic fields are representative of realistic MHD turbulence.
The normalization of the driving spectrum is set so that in equilibrium
the gas in the box has a turbulent velocity dispersion (σ 3D) that gives
the desired M and αturb. We use purely solenoidal driving, which
remains active throughout the simulation after gravity is switched on
(see Section 3.2 for a discussion on this choice). We take the box side
length Lbox to give a box of equal volume to the associated Sphere

cloud model, i.e. Lbox = ( 4π
3 )1/3Rcloud, and thus define αturb,0 using

the volume-equivalent Rcloud in equation (12).

Table 1 shows the target parameters for the runs we present in
this paper. The input parameters are the turbulent virial parameter
αturb,0, normalized magnetic flux μ and Mach number M, which,
together, fully define the initial conditions due to the scale-free
nature of the problem. Using the mass–size relation of observed
GMCs in the Milky Way (e.g. Larson 1981, specifically assuming
� ≡ M0/πR2

cloud = 63 M� pc−2) we can identify the observable
counterparts of these clouds, which are molecular clouds between
2000 and 2 × 106 M�. For each set of parameters in Table 1 we
carried out both Sphere and Box runs at several resolution levels.
An important difference between the Sphere and Box runs is that in
case of driven boxes the magnetic field is enhanced by a turbulent
dynamo (Federrath et al. 2014b) and saturates at about αB ∼ 0.1.
This means that (1) for Box runs μ is not a free parameter and
(2) by doing both kinds of runs we are effectively exploring the
effects of changing μ. Note that of the αturb,0, μ, M parameter
space we concentrate on the region relevant to the description of
star forming GMCs in the present-day Milky Way (outside of the
galactic centre). These clouds are highly supersonic (M � 1), have
finite, but low magnetic support (μ > 1) and negligible rotation
aside from turbulent motions (Mrot = 0), see Heyer & Dame (2015)
for a review. In this regime we can simplify equations (2)–(7) as
approximately

α ≈ αturb =
1

3
αthM

2, (13)

MJeans

M0
≈ 4 α

3/2
turbM

−3, (14)

Msonic

M0
≈ 2.5 αturbM

−4 (15)

M turb
BE

M0
≈ 14 α

3/2
turbM

−4. (16)

Since most Milky Way (MW) GMCs achieve a star formation
efficiency (SFE = M�/M0) of 1–10 per cent over their lifetime (see
Krumholz 2014 for a discussion, and note that some clouds have
<1 per cent, see Federrath & Klessen 2013), we restrict our analysis
to the SFE < 10 per cent range, even though all of our simulations
eventually reach SFE ∼ 1.
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5076 D. Guszejnov et al.

Figure 1. Surface density maps from a simulation of a 2 × 105 M� GMC that includes isothermal turbulence and MHD (M2e5 R30, see Table 1), at about
8 per cent star formation efficiency. The colour scale is logarithmic and the circles represent sink particles (stars) that form in high-density regions where
fragmentation can no longer be resolved, their size increasing with mass. This simulation resolves a dynamic range from ∼50 pc to ∼30 au.

3 R ESULTS

We carried out a suite of simulations in the αturb,0–M–μ parameter
space at various resolutions, up to M0/
m = 2 × 108 (see Table 1 for
details and Fig. 1 for a demonstration of the dynamic range). This
is the highest mass resolution yet achieved in any 3D simulation of
resolved star cluster formation.

Once the simulation begins, we find that the clouds quickly develop
a filamentary structure similar to observations (Andre et al. 2010) that
collapses and forms stars (see Fig. 2). Fig. 3 shows that all our clouds
turn roughly 10 per cent of their gas into stars in a freefall time. At
low Mach numbers (M < 10), we find a rough trend of SFE ∝ t2

(consistent with the results of Lee, Chang & Murray 2015 who
simulated a M = 9 cloud), while for all highly supersonic clouds
(M > 10) the relation becomes steeper, consistent with SFE ∝ t3.
This does not necessarily contradict the theory of Murray & Chang
(2015), who derived Ṁ� ∝ t2 for a single star accreting in a turbulent
medium – our star formation history is the sum of many individual
stellar accretion histories.

3.1 Sink mass distribution (IMF)

Fig. 4 shows that varying the initial conditions (in this case the
virial parameter αturb,0 and Mach number M) significantly changes
the mass distribution of sink particles. At high masses, the sink
distribution is consistent with a dN/dlog M ∝ M−1 power law, similar
to the observed IMF (Salpeter 1955; Offner et al. 2014). Meanwhile,
at low masses, the distribution becomes shallower, consistent with
dN/dlog M ∼ const. This is significantly shallower than the low-
mass end of the observed IMF (dN/dlog M ∼ M0.7 in the Kroupa
2002 form), leading to an excess of brown dwarfs, which should
only make up ∼ 30 per cent of the stellar population (Andersen
et al. 2006). Meanwhile, the turnover from the high-mass power-

law behaviour shows that the sink mass distribution does have a
mass scale inherited from initial conditions. For simplicity, we adopt
the mass-weighted median mass of sinks M50 as the characteristic
mass scale of sinks in our subsequent analysis (similar to Krumholz,
Klein & McKee 2012), as it roughly corresponds to this turnover
mass (see Fig. 4). This characteristic mass M50 monotonically
increases as more gas is turned into stars (see Figs 5 and A2 for
values).

3.2 Effects of turbulent driving and boundary conditions (Box

versus Sphere)

While the global parameters of the initial conditions (αturb,0, M, M0)
affect the mass spectrum of sink particles, we find no significant
difference between Sphere and Box runs (see Fig. 5), despite the
difference in initial cloud shape, turbulent driving, density, and
magnetic fields.34 The insensitivity of the sink mass spectrum to
the specifics of the initial conditions is similar to the findings of Bate
(2009b), Liptai et al. (2017), and Lee & Hennebelle (2018a).

Note that studies simulating dense, centrally concentrated clouds
found that the final sink masses depend on the initial condition
(Girichidis et al. 2011). These initial conditions, however, are quite
different from what is observed in GMCs. Furthermore, Girichidis
et al. (2011) simulated isothermal turbulence without magnetic fields,

3It should be noted that while the exact magnitude of magnetic support on
large scales appears to be irrelevant, having finite (non-zero) magnetic fields
is crucial because, in the limit of no magnetic fields, clouds undergo an
infinite fragmentation cascade, see Section 3.4 and Guszejnov et al. (2018b)
for details.
4Note that we use αturb,0 based on equation (12) similar to other studies in
the literature. For a periodic box, this can significantly differ from the value
αturb from equation (2) (Federrath & Klessen 2012).
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Can MHD set the mass scale of stars? 5077

Figure 2. Surface density maps for the same cloud type as Fig. 1 (M2e5 R30, see Table 1), both for Sphere and Box initial conditions (top and bottom row,
respectively), when the simulation starts and at 1 per cent and 5 per cent star formation efficiency (columns, left to right).

Figure 3. Evolution of the star formation efficiency [SFE(t) = Msink(t)/M0]
as function of time for a subset of runs. SFE rises as a broken power law of

time and reaches about 10 per cent in about one freefall time (tff =
√

3π
32Gρ0

).

which have been shown to produce sink mass spectra entirely set by
numerical resolution (Guszejnov et al. 2018b).

Previous studies have shown that the driving mode of turbulence
has significant effect on the star formation histories of clouds (e.g.
Federrath et al. 2010a), which is apparent in our results as well (see
Fig. 2 for an illustration). But since we found the mass-weighted
median sink mass M50 to be insensitive to even whether there is
driving or not, we left the exploration of the effects of different
driving modes to a future study.

3.3 M50 as a function of initial conditions

Neglecting variations with μ, we find that the evolution and parame-
ter dependence of M50 is well-described by the following formula:

M50/M0 = 7.8 (SFE)0.3
M

−3.2α1.1
turb,0 ± 0.06 dex, (17)

where the parameters and the overall RMS fitting error were obtained
from an unweighted least-squares fit to all simulations with our
fiducial μ = 4.2, excluding snapshots with <5 sink particles and
with SFE > 0.1. This fit appears to collapse all simulations to a
single curve, with no obvious trend in the residuals with any of the
dimensionless parameters (see Appendix A for details). The runs that
deviate most from the best-fitting relation happen to be the lower-
M clouds that produce the smallest number of sinks at fixed SFE,
suggesting that the deviations are simply statistical noise from the
‘sampling’ process of the underlying IMF.
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5078 D. Guszejnov et al.

Figure 4. Distribution of sink particle masses at 10 per cent star formation efficiency [SFE =
∑

(Msink)/M0] for a subset of our runs using Sphere initial
conditions. The chosen runs have αturb,0 = 2 and a similar mass–size relation to observed MW GMCs, except for one that has αturb,0 = 1 (see Table 1). The
dotted vertical lines and the circular symbols denote the mass-weighted median sink mass M50, while the dash–dotted and dotted lines are the analytical results
for a Salpeter-like dN/dlog M ∝ M−1 and a shallower dN/dlog M = const. sink population distributions. To make the plots easier to parse the y axes are not
normalized. Note that we only plot sink particles more massive than 100 times the mass resolution, as results below that might be sensitive to our choice of
sink particle algorithm. Left: The mass PDF of sink particles (dNsink/dlog M). The PDF rises steeply at the high mass end then turns over to a flat distribution.
Right: Distribution of mass among sink particles for the same runs (dMsink/d log M ∼ M dN/d log M). At high masses the distribution is flat (consistent with
dN/dlog M ∝ M−1) then becomes linear (dN/dlog M = const.). Note that M50 roughly corresponds to the point where the slope of the power law changes, similar
to the turnover mass in the observed IMF. For the rough scaling of M50 with M and αturb,0, see equation (19).

Figure 5. The mass-weighted median sink mass (normalized to our approx-
imate best-fitting scaling as a function of cloud mass, initial Mach number,
and turbulent virial parameter) as a function of star formation efficiency (see
equation 18 for details on the scalings). We find no clear difference between
runs with Box and Sphere initial conditions.

Based on this fit, the rough scaling of the characteristic mass M50

(at fixed SFE) is

M50
∝∼ M0M

−3αturb,0. (18)

This is similar to the scalings of both Msonic and MJeans (see
equations 14 and 15), but neither of those matches our results exactly
(see Appendix A). Assuming the existence of a mass–size and a
linewidth–size relation similar to that in the MW (M0 ∝ R2

0 and
M2 ∝ R0, respectively, see Larson 1981), we can eliminate the cloud
mass M0 and rewrite equation (17) as

M50
∝∼ Mα−1

turb,0, (19)

see Fig. 4 for an illustration of the scaling with M.
In dimensional units, in terms of the cloud mass M0, surface

density � = M0/πR2
cloud, SFE, and virial parameter αturb, our fit

of equation (17) can be expressed as

M50 ≈ 24 M�

(

SFE

0.05

)0.3

M0.2
5 α−0.5

turb,0 �−0.8
100 c3.2

s,0.2, (20)

where M5 = M0
105 M�

, �100 = �

100 M� pc−2 , and cs,0.2 = cs
0.2km s−1 , nor-

malizing to typical values for GMCs in the Milky Way (e.g. Larson
1981).

Using the same procedure as with M50 in equation (17), we also
fit the maximum stellar mass M�max, obtaining

M�,max/M0 = 1.2 (SFE)0.5
M

−1.8α0.5
turb,0 ± 0.1 dex. (21)
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Can MHD set the mass scale of stars? 5079

Figure 6. Dependence of the mass-weighted median sink mass M50 at
5 per cent SFE on the normalized mass-to-flux ratio μ (or equivalently, mean
magnetic field strength) in a 2 × 104 M� GMC (e.g. M2e4 R10 mu1.3,
see Table 1). Recall, for otherwise equal parameters, μ ∝ 1/B0 is inversely
proportional to the mean magnetic field strength. The solid black line shows
M50 in a non-magnetized run (at the same resolution), while the dashed
line shows the expected behaviour if M50 was set by the magnetic critical
mass (equation 8). We only include Sphere runs as the magnetic field
energy saturates a constant fraction of the kinetic energy in the Box ICs
(Federrath et al. 2014b). The errors are estimated by bootstrapping: we
resample the sink mass distribution at fixed total stellar mass and calculate
the 95 per cent confidence interval of the mass-weighted median mass over
these new realizations.

3.4 (In-)sensitivity of M50 to µ

An interesting aspect of our results is that M50 appears to be
insensitive to the initial magnetic field strength (see Fig. 6), but
without magnetic fields we have found that clouds fragment without
limit, making M50 dependent on numerical resolution (Guszejnov
et al. 2016, 2018b).

Fig. 7 shows that regardless of the initial magnetic field strength,
the turbulent dynamo in the system drives the systems towards a
common B−ρ relation at high densities. This is in good agreement
with the findings of Mocz et al. (2017), Wurster et al. (2019), and
Lee & Hennebelle (2019), who, using different numerical schemes,
find the B–ρ relation to saturate to the same trend, regardless of
initial magnetic field strength. Furthermore, we find that this result is
insensitive to not only the initial field strength but also to whether we
have decaying (Sphere) or driven (Box) turbulence in the simulation.

It is unclear what exactly causes the B ∝ ρ1/2 relation observed in
our simulations (see Fig. 7). A possible explanation of the exponent
is that it arises from the anisotropic collapse of magnetic flux-
conserving gas in both disc-like and cylindrical geometries (see
Tritsis et al. 2015). One problem with this interpretation is that both
our results and the ones in the literature saturate to the same relation,
regardless of the initial field strength (as opposed to parallel ‘tracks,’
which is what one would obtain for different initial μ values in a
pure flux-freezing argument). What is striking is that this universal
normalization roughly corresponds to vA(ρ) ∼ 2cs, where vA(ρ) is

Figure 7. Magnetic field strength as a function of gas density in the
M2e4 R10 runs at the same 
m = 0.001 M� mass resolution with different
initial magnetic fields and ICs (see Table 1) at 5 per cent SFE. The solid lines
show the mass-weighted median of the magnetic field in different density bins
(equivalent to median value for cells as MFM cells have equal masses), while
the dashed lines show the 25th and 75th percentiles. The shaded region marks
densities exceeding the maximum Jeans-resolved density ρJ (equation 10).
To achieve satisfactory statistics at the high density end we stacked the
distribution from 10 snapshots around the target SFE. Despite the different
initial conditions all runs saturate to the same B ∝ ρ1/2 line (corresponding
to vA = 2cs), similar to the results of Wurster et al. (2019). The results
depart from the power law above ρ ∼ 3 × 10−14 g cm−3, corresponding to
the maximum Jeans-resolved density ρJ for these simulations (equation 10).

the local Alfvén velocity at density ρ. This is suspiciously close to
equipartition. One possibility is that the normalization of the B–ρ

relation is enforced by a local dynamo effect (similar to the global
αB saturating in driven boxes, see Federrath et al. 2011a) that is
driven by the local gravitational collapse. In numerical experiments,
β ∼ 1 is generally achieved for trans- or modestly supersonic
turbulence (Stone, Ostriker & Gammie 1998), which was indeed
found on all scales in individual collapsed cores by Mocz et al.
(2017).

Of course, if the initial magnetic field was much larger than the
‘saturation’ values predicted here at high densities, this would alter
out conclusions, but such large fields would imply the initial cloud
is not self-gravitating at all.

A local small-scale dynamo effect would also explain why our
isothermal MHD results, although insensitive to the exact initial value
of the magnetic field strength, are qualitatively different from our
previous isothermal non-MHD results (Guszejnov et al. 2018b). If
magnetic fields are present, they are amplified to this line, regardless
of their initial value, and prevent the fragmentation cascade that
would happen in the non-magnetized case.

In Fig. 7, we also note a departure from the B ∝ ρ1/2 relation
above ρ ∼ 3 × 10−14 g cm−3, which corresponds to the maximum
density at which the smallest unstable Jeans modes can possibly be
resolved, ρJ (equation 10). We have verified that this departure from
power-law behaviour is an artefact of the finite resolution of the

MNRAS 496, 5072–5088 (2020)
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5080 D. Guszejnov et al.

Figure 8. ‘Percentile curves’ showing the sink mass below which X per cent
of the total mass in sinks resides (measured when each simulation has reached
an SFE of 5 per cent), in otherwise-identical M2e4 R10 simulations as a
function of mass resolution 
m, corresponding to the number of Lagrangian
gas cells in the cloud (top axis). The ‘50th’ curve is just the mass-weighted
median M50 as defined above, while 0th and 100th are the minimum and
maximum sink mass in the simulation. The minimum mass scales proportional
to 
m because the predicted IMF has no discernible lower cut-off (Fig. 4).
However, the higherpercentiles appear to become insensitive to resolution for
sufficiently low 
m (high resolution).

simulations (
m = 10−3 M�), as our version of M2e4 R10 at our
maximum resolution of 10−4 M� has a similar turnover at ∼100×
higher density. This deficit of magnetic energy at densities >ρJ may
be due to a numerical suppression of small-scale energy injection
through gravitational collapse at the smallest unstable Jeans scale,
which would otherwise drive turbulence and the small-scale dynamo
in turn (Federrath et al. 2011b).

3.5 Resolution insensitivity of the characteristic mass

In the non-magnetized case, clouds fragment to infinitely small-
scales as discussed in section 1 and in Guszejnov et al. (2018b), so
any apparent mass scale in the sink mass distribution is inescapably
tied to numerical resolution. It is therefore crucial to check for
the resolution dependence of M50. Fig. 8 shows how various mass-
weightedpercentiles of the IMF vary as a function of mass resolution
for the M2e5 R30 run. The minimum stellar mass continuously
decreases ∝ 
m, but the maximum stellar mass, and the intermediate
mass-weighted percentiles (i.e. stellar mass below which there is
X per cent of the total mass in the IMF), level off above a certain
resolution threshold.

For this specific model (M2e4 R10), the apparent resolution
criterion is 
m ≈ 3 × 10−8M0 = 0.01 M�, however the problem
is scale-free, so we expect that the resolution criterion will more
generally assume the form 
m ≤ M0M

p1α
p2
turb,0μ

p3 , for some ex-
ponents p1, p2, and p3. Lacking a detailed convergence study for
runs that vary αturb,0 and μ, we focus on the criterion for simulations
with the fiducial values of these parameters (2 and 4.2, respectively).

Figure 9. Mass resolution dependence of the predicted mass-weighted
median stellar mass M50 in Sphere runs at 5 per cent SFE, rescaled to the best-
fitting value to the respective highest available resolution levels (equation 17).
When the resolution criterion 
m << M0M

−4 is satisfied (equation 22), the
predicted M50 becomes insensitive to 
m.

For all runs, at all times and SFE, we have examined the variation of
M50/M50, ∞ as a function of mass resolution, where M50,∞ is the value
obtained in the limit 
m → 0. In practice we use the value given by
equation (17) as a proxy for M50, ∞, which is a fit to the respective
highest available resolution levels for each simulation. Fig. 9 shows
that with increasing resolution M50 approaches the value given by
equation (17). This value is reached in all simulations when the
following criterion is satisfied:


m � 0.05M0M
−4. (22)

For αturb,0 ∼ 1, this is simply the criterion that the sonic mass
(equation 15) or turbulent Bonnor–Ebert mass (equation 16) be
resolved by �20
m. These are both proposed characteristic core
masses in turbulent fragmentation (Padoan et al. 2007; Hopkins
2012), and the specific number is on the order of the minimum
number of Lagrangian mass elements for the stability of a clump to
be insensitive to numerical discretization and softening details (Bate
et al. 1995; Price & Monaghan 2007, Grudić et al., in preparation).
Thus equation (22) simply expresses the requirement that the collapse

of gravitationally unstable cores formed via turbulent fragmentation

is sufficiently resolved. We conjecture that the corresponding criterion
for Eulerian methods, which specify a spatial resolution 
x (which
may be either fixed or adaptive) is


x � 0.2Lsonic ≈ 0.2Rcloud M
−2, (23)

meaning that the sonic length Lsonic ≈ RcloudM
−2 is resolved across

a certain number of cells. We expect the scaling ∝ M−2 to hold,
but we caution that the exact numerical coefficient, encoding the
exact number of cells required, may not generalize to other methods
– it will generally depend upon the specifics of the MHD and
gravity solvers used. For AMR methods, equation (23) may impose
some requirement for both the refinement criterion and the base
grid resolution; Haugbølle et al. (2018) found that it is necessary to
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Can MHD set the mass scale of stars? 5081

Figure 10. Mass PDF of sink particles at 5 per cent SFE for the M2e5 R30

run (M0 = 2 × 105 M�, αturb, 0 = 2, M = 29, see Table 1) at various mass
resolutions (M0/
m). Note that unlike Fig. 4, here we plot the full range
of sink particle masses. We shaded the region where non-isothermal effects
are expected to suppress the formation of new sinks (Bate 2009a; Offner
et al. 2009; Lee & Hennebelle 2018b) and mark the brown dwarf regime
(M < 0.08 M�, dashed line). While the high mass end (that contains most
of the mass) is insensitive to resolution (see Fig. 8), a resolution sensitive
peak forms near the resolution limit for M0/
m → ∞, leading to an excess
of brown dwarfs.

scale both the base and maximum AMR resolution levels to achieve
convergence.

Note that while it only contains a small fraction of the total IMF
mass in these simulations, the low-mass end of the IMF is clearly
not converged and depends strongly on resolution in our simulations.
Plotting the full IMF as a function of resolution in Fig. 10 we see
that the ‘brown dwarf excess’ predicted by ideal MHD physics alone
becomes more severe as our resolution increases. So we emphasize
that our conclusions about M50 and resolution-independence apply
only to the relatively large masses containing most of the mass in
the IMFs here. Note that it is unclear if this would still be true
at much higher mass resolutions (M0/
m ∼ 1010), but probing
that regime is prohibitively expensive with our current code. We
find that this large number of very low mass sinks originate from
dense regions around massive stars. Note that in these regions our
assumption of isothermality is expected to break down, preventing
further fragmentation in the gas and the formation of this ‘brown
dwarf excess’ (for discussion see Section 4.3.1). Furthermore, we
find that this region of the IMF is sensitive to the details of our
angular momentum return algorithm, but the conclusions of our study
is not.

4 D ISCUSSION

4.1 Comparison with other simulation studies

There have been several studies in recent years that investigated
the sink particle mass spectrum in simulations including MHD
turbulence and gravity. In Table 2, we apply our fitting functions from
equations (17) and (21) to the initial conditions of their simulations

and compare them with the mass-weighted median and maximum
sink mass in their reported IMFs. Haugbølle et al. (2018), Lee
et al. (2019), and Federrath et al. (2017) all used a simulation
set-up essentially identical to our Box simulation suite, simulating
isothermal MHD with gravity and sink particles with the RAMSES,
ORION2, and FLASH codes, respectively. Compared to ours, these
studies have subtle differences in the details of turbulence driving,
but our results suggest these are unlikely to strongly affect the IMF
(Fig. 5).

First, we compare with Haugbølle et al. (2018). Most of these
simulations included a prescription to model protostellar outflows,
by having sink particles accrete only half of the inflowing mass and
delete the rest, so we compare with the IMF from their acc test
run that does have this prescription (their fig. 14). We find that our
predicted M50 = 7.5 M� and M�, max = 19 are quite close to their
values of 4.2 M� and 17 M�, both <2σ compatible if we estimate
errors by bootstrapping their mass distribution and taking the RMS
error of our fit. We find even better agreement with the values in Lee
et al. (2019).

Our prediction for M�,max matches the results of the HighResIso

simulation in Federrath et al. (2017), but for those initial conditions
we predict M50 = 11 M�, much greater than their M50 = 1.9 M�.
This simulation produced 23 objects of mass > 1 M�, so while the
sampling of the IMF is certainly sparse, the numbers are not so small
that we can readily attribute a factor of ∼5 discrepancy to statistical
variations. One difference between our respective calculations is that
they used a mixture of compressive and solenoidal driving, versus
the purely solenoidal driving used in our BOX simulations. However
given the robustness of our results to the details of turbulent forcing,
this is unlikely to strongly affect the result either. We are left with no
clear explanation for the discrepancy.

Wurster et al. (2019) simulated a 50 M� dense clump akin to
our Sphere suite, with both ideal and non-ideal smoothed-particle
radiation MHD; we compare with their μ = 5, ideal MHD model,
but note that they found that the IMF is not strongly affected by μ or
non-ideal MHD effects. Our predictions of M50 ∼ M�,max ∼ 1 M�
agrees very well with their results. As such, while it has been shown
that accounting for full radiation transfer is important for suppressing
brown dwarf formation (Bate 2009a; Offner et al. 2009), isothermal
MHD may be a sufficient approximation to predict M50 and M�,max.

Finally, we compare with Padoan et al. (2019), who ran a 250 pc
Box-type set-up containing 1.9 × 106 M�, but with turbulence driven
by supernova explosions. We derive approximate RMS M and
αturb,0 values of 66 and 4.7, respectively, from the energy statistics
given in Padoan et al. (2016), however we emphasize that these
are rough values because (1) their ISM is not isothermal but rather
multiphase, (2) the energetics are highly variable, and (3) the results
in Padoan et al. (2019) are from a different, higher-resolution
simulation with the same physical parameters. Nevertheless we
predict M50 = 36 M�, within a factor of 2 of their value of ∼ 20 M�.
They attribute this overprediction of the IMF turnover to a lack of
numerical resolution, but our results suggest that they are actually
close to the ‘converged’ value. Rather, we believe other, important
processes that shape the IMF were neglected, as we will argue further
in this section.

In summary, we find that our simulations predict M50 and M�,max in
very good agreement with the predictions of other codes running sim-
ilar problems, with the exception perhaps of the FLASH simulations
in Federrath et al. (2017). Whether this represents any meaningful
difference in code behaviours, or sensitivity to prescriptions, can
ultimately only be answered by a controlled code comparison study
(e.g. Federrath et al. 2010b). Overall the good agreement between the
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5082 D. Guszejnov et al.

Table 2. IMF results from previous simulations of MHD star formation in the literature. We compare the values of M50 and M�,max from the published IMFs
to the prediction from the fits to our simulation results (equations 17 and 21). All masses are given in M�. All virial parameters are converted to the definition
used in this work, αturb = 5σ 2

v Rcloud/3GM0, using the volume-equivalent Rcloud ≈ 0.6Lbox for box simulations. In studies that survey μ, we compare with the
one that is closest to our fiducial 4.2, however we do not expect varying μ to strongly affect results (Section 3.4).

Study M0 M αturb,0 SFE (%) M50 (sim.) M50 (equation 17) Mmax (sim.) Mmax (equation 21)

Federrath et al. (2017) 775 5 0.62 10 1.9 11 15 13
Haugbølle et al. (2018) 3000 10 1 10.8 4.2 7.5 17 19
Lee et al. (2019) 601 6.6 1.2 6.6 6.7 6.8 12 7.6
Wurster et al. (2019) 50 6.4 2 15.2 0.9 1.3 1.2 1.2
Padoan et al. (2019) 1.9e6 66 4.7 1.2 20 36 130 290

present study, Haugbølle et al. (2018), Lee et al. (2019), Wurster et al.
(2019), and arguably Padoan et al. (2019) is encouraging, suggesting
that these IMF predictions have some robustness to choice of MHD
solver and numerical sink particle prescriptions.

4.2 Can ideal MHD alone explain the observed IMF?

By transforming our results back to a dimensional form, we can
examine whether isothermal, ideal MHD, and gravity alone are
enough to explain the observed stellar IMF, as proposed by studies
such as that of Haugbølle et al. (2018). At first, our results might
seem to support this conclusion, as we show that such a system
forms stars with a well-defined, resolution-insensitive characteristic
mass, which corresponds to a ‘turnover mass’ in the IMF: above this
mass the predicted mass spectrum is close to the observed power law
of Salpeter (1955), while below that value it becomes shallower, like
the observed IMF (Bastian, Covey & Meyer 2010).

However, there are three major discrepancies between this pre-
dicted behaviour and the observed IMF: (1) the predicted charac-
teristic mass is much too large, for typical cloud conditions; (2)
the characteristic mass depends sensitively on cloud properties,
predicting far too much scatter in IMFs across different star-forming
regions; (3) the low-mass end of the IMF has the wrong slope, and
predicts an excess of brown dwarfs which is progressively more
severe at higher resolution (with a shape that is dependent on the
specific numerical implementation).

First, consider (1) in more detail. We find that, for conditions
similar to a typical MW GMC, the simulations predict an IMF
turnover of ∼20 M� (see Fig. 11). Meanwhile, using the Kroupa
(2002) form for the observed IMF with an appropriate high-mass
cut-off (200 M�) we get M50 of ∼ 2 M�, an order of magnitude
lower than predicted by our model. Even if we account for feedback
(e.g. winds, jets) reducing accretion by applying a correction factor
of 2–3 (similar to Haugbølle et al. 2018) the predicted characteristic
mass still ends up a factor of 3–5 larger than that observed. One
might worry that this is because massive stars are allowed to accrete,
in principle, for longer than their main-sequence lifetimes (since we
ignore any stellar evolution), but we find that even if we ‘delete’
massive sinks after their main-sequence lifetimes this has very little
effect on our results, owing to fast and efficient new sink formation
in the simulated GMCs (and the fact that most of the accretion on
to these sinks occurs very quickly after they form; see Figs 2 and
3). One more thing to note is that our highest resolution simulations
reach an effective Jeans-length resolution of ∼< 1 au (in the case of
M2e3 R3 at maximum resolution), so unresolved binary formation
is unlikely to significantly decrease our sink masses. Even if we took
the extreme case and compared the predicted M50 with that of the

system IMF (Chabrier 2005), it would only account for a factor of
∼2 shift.

We can also see that our predicted stellar masses are too large
by considering the masses of the most massive stars forming in
typical clouds. We find that in massive GMCs (total complex mass
∼ 106 M�) stars with ∼ 1000 M� masses form routinely in the
simulations (Fig. 11). These are far more massive than the most
massive stars seen in current observations (Crowther et al. 2016),
although admittedly if such stars do exist their lifetimes would be
extremely short.

Regarding point (2), another significant issue is the dependence
of M50 on the initial conditions of the cloud. While we find our
results to be insensitive to some details of the ICs (e.g. driven versus
decaying turbulence) M50 is sensitive to the initial cloud mass M0,
sonic Mach number M, turbulent virial parameter αturb,0, and star
formation efficiency (SFE), according to equation (17). Observed
clouds exhibit an order of magnitude scatter in observed virial
parameter (Kauffmann, Pillai & Goldsmith 2013; Heyer & Dame
2015), which would translate into a similar (∼ 1 dex) cloud-to-
cloud scatter in M50, in the simulations here. Even assuming that all
GMCs have a constant αturb,0 = 0.1 (the required value to have M50

≈ Mobs, even though the observed average is closer to αturb,0 ∼ 2−3,
see Heyer & Dame 2015; Miville-Deschênes, Murray & Lee 2017),
in dimensional units this would mean M50 ∝ SFE0.3 M0.2

0 �−0.8 c3.2
s

(equation 20). Observed instantaneous cloud SFEs (M∗/M0) in nearby
well-studied GMCs vary by 3 orders of magnitude (∼ 1 dex 1σ

scatter; see e.g. Lee, Miville-Deschênes & Murray 2016), predicting
∼1 dex spread in the characteristic IMF masses of these nearby
clusters. Even if this was fixed, the result is extremely sensitive
to the cloud temperature, which varies by factors of several, again
predicting ∼1 dex spread in M50. It should be noted that some of these
properties co-vary following e.g. the linewidth–size or size–mass
relations. In Fig. 11, we plugged observationally inferred properties
of MW clouds from various catalogues into equation (20) and found
about a dex of scatter in M50. It should be noted that different
catalogues utilize different methodologies (see Grudić et al. 2019b
for a summary), including different tracers for gas (dust versus CO)
and stellar mass (free–free emission versus IR versus YSO counts),
which, combined with the uncertainties of other observationally
inferred properties like the cloud virial parameter, leads to order
of magnitude uncertainties in the predicted M50. Nevertheless, by
looking at more extreme regions, like the Central Molecular Zone of
the MW, starburst or high-redshift galaxies, we find surface densities
a factor 100–1000 higher than in the MW (Solomon et al. 1997;
Swinbank et al. 2011), predicting drastically more bottom-heavy
IMFs than in the MW, since M50 ∝ �−0.8 (see the ‘Brick’ in Fig. 11).
In short, as shown in detail in Guszejnov, Hopkins & Ma (2017)
and Guszejnov, Hopkins & Graus (2019), a scaling of M50 with
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Can MHD set the mass scale of stars? 5083

Figure 11. The mass-weighted median sink mass M50 (left) and the maximum stellar mass M�,max (right) as a function of initial cloud mass M0 at different star
formation efficiencies (labelled), for clouds chosen from Table 1 to have the same, single virial parameter αturb,0 = 2, same sound speed cs = 0.2 km s−1 and
lie exactly on the local Solar-neighbourhood median mass–size and linewidth–size relation of GMCs (corresponding Mach number M, since this is one-to-one
with mass for this restricted simulation set, is shown in the top axis). The dashed vertical line on the left denotes M50 for a fit to the observed IMF using the
Kroupa (2002) form. The symbols show the predicted M50 values by equation (20) using observed properties of nearby molecular clouds (Evans, Heiderman &
Vutisalchavakul 2014), MW GMCs (Lee, Miville-Deschênes & Murray 2016; Vutisalchavakul, Evans & Heyer 2016) and the extremely dense ‘Brick’ cloud
in the Galactic centre (Longmore et al. 2012). Note that we assumed a constant cs = 0.2 km s−1 for observed clouds, which likely reduces the scatter in the
results by a significant amount. We find that the predicted IMF masses are (1) order of magnitude larger than observed (with ∼ 1000 M� stars routinely forming
in massive clouds), (2) depend significantly on time (SFE), and (3) depend strongly on cloud properties. Due to the scatter in αturb and deviations from the
mass–size and linewidth–size relations, for observed clouds this model predicts significant scatter and wildly varying IMFs for more extreme environments (e.g.
the Brick).

cloud properties of the sort predicted here would predict order-of-
magnitude variation in the IMF turnover mass in the Milky Way
Solar neighbourhood and more in nearby galaxies, contrary to the
observed near-universality of the IMF in the local Universe (Bastian
et al. 2010; Offner et al. 2014).

Finally, (3): as discussed above, at low (sub-Solar) masses the IMF
predicted by ideal MHD does not exhibit any converged turnover
down to the smallest resolved masses in our simulations (sub-
Jupiter). In fact the IMF steepens progressively at very low masses,
predicting even more sub-stellar objects, every time we increase our
resolution. So there is a clear discrepancy with observations (excess
of brown dwarfs and smaller objects), and ideal MHD cannot robustly
predict the IMF shape in this regime.

These conflicts with observations indicate that isothermal, ideal

MHD with gravity and no additional physics cannot explain the

observed IMF.
It should also be noted that star formation in the simulation

proceeds very efficiently, reaching 10 per cent SFE in one freefall
time (εff ∼ 0.1, see Fig. 3), and continues (at an accelerating pace)
until an order unity fraction of the gas is turned into stars. Meanwhile,
observations indicate that typical GMCs convert only a few per cent
of their mass into stars by the end of their lifetimes (see e.g. Krumholz
2014). This is yet another obvious indication that the physics here is
incomplete.

We should also note that while ideal MHD does appear to predict
a plausible Salpeter-like slope for the massive end of the IMF, this is

not a unique effect of ideal MHD, but in fact emerges just as robustly
in isothermal non-MHD simulations (Guszejnov et al. 2018b), as
a generic consequence of turbulent fragmentation (Hopkins 2013),
competitive accretion (Bonnell, Larson & Zinnecker 2007), or indeed
any process which is scale-free over a sufficient dynamic range
(Guszejnov, Hopkins & Grudić 2018a).

4.3 Potential roles for additional physics in setting the IMF

4.3.1 The opacity limit and tidal forces

Isothermality is a key assumption in the current simulations. But even
at low densities, it is debatable whether this is a good assumption,
and it must break down at the highest densities where protostars
form. Recent works have revived the idea of this transition (i.e.
the traditional opacity limit) being responsible for setting the IMF
(for the original idea see Low & Lynden-Bell 1976; Rees 1976)
by taking into account the tidal screening effect around the first
Larson core (Lee & Hennebelle 2018b; Colman & Teyssier 2019).
These simulations mostly concentrate on the non-magnetized case,
but Lee & Hennebelle (2019) investigated the inclusion of ideal MHD
when including an idealized barotropic equation of state (meant to
represent suppression of cooling above some limit) and claimed that
the IMF characteristic mass is still set by the mass of the first Larson
core (MLarson ∼ 0.02 M�, leading to Mtidal ∼ 0.2 M�).

The simulations of Lee & Hennebelle (2019) were run on centrally
condensed 1000 M� clouds with characteristic radius 0.084 pc,
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5084 D. Guszejnov et al.

M ∼ 22, αturb,0 ∼ 1, and SFE ∼ 0.1. Applying the M50 scaling
from our results (equation 18) leads to M50 ≈ 0.1 M�, comparable
to the 0.1–0.2 M� peak coming from tidal screening around the first
Larson core. So, in that case, the characteristic mass from isothermal
MHD fragmentation happened to coincide with the mass scale
imprinted by the Larson core, possibly explaining why introducing
the magnetic field was not found to have a major effect. We showed
in Fig. 11 that, for initial conditions appropriate for MW GMCs,
M50 ≈ 20 M�, much larger than this tidal screening mass. Since
additional heating can only suppress fragmentation, we expect that
adding the opacity limit to our calculation would imprint a low-
mass cut-off scale upon the IMF, mitigating the brown dwarf excess
and perhaps allowing the low-mass (sub-stellar) end of the IMF
to exhibit robust numerical convergence. But the high-mass end
of the IMF, including M50 as studied here, lies far above this
mass scale and would be unaffected (or even slightly increased)
by accounting for inefficient cooling (and the tidal effects described
above).

In other words, tidal screening around the first Larson core should

affect the IMF, but it alone is not sufficient to set the characteristic

mass of stars. Additional mechanisms are required to suppress the
formation of massive stars.

4.3.2 Non-ideal MHD terms

Our assumption of ideal MHD is also expected to break down in the
very dense gas within pre-stellar and protostellar cores and discs, in
which the time-scales for ambipolar diffusion, Ohmic resistivity,
and the Hall effect can become comparable to the dynamical
time. These effects may be important for preventing the magnetic
braking that would otherwise prevent protostellar discs from existing
(Hennebelle & Fromang 2008; Li, Krasnopolsky & Shang 2011;
Wurster, Price & Bate 2016, see however Wurster et al. 2019 for
a counterargument), determining the physical properties of discs
(Hennebelle et al. 2016). In the present work we have found that
the dynamical effect of the magnetic field does play some role in
inhibiting fragmentation, so in principle the breakdown of flux-
freezing could permit smaller fragment masses. But the effect we see
is weakly-dependent on magnetic field strength. Moreover, Wurster
et al. (2019) investigated the combined effects of non-ideal MHD
terms upon the IMF predicted by simulations and found no systematic
difference compared to ideal MHD. And even if we imagined the
‘most extreme non-ideal’ limit, where non-ideal terms allowed for
either efficient de-coupling of magnetic fields from most of the gas
(ambipolar diffusion) or efficient magnetic damping (resistivity), this
would lead to results more like non-MHD simulations, which as
discussed above fare even more poorly at predicting any IMF shape
resembling that observed.

Based upon these arguments, we anticipate that the effects of non-
ideal MHD upon the IMF itself are weak. Even if they are not weak,
they cannot lead to the correct IMF shape.

4.3.3 The necessity of feedback regulation

While isothermal, ideal MHD does produce an IMF it has several
issues as noted above: (1) too many massive stars, (2) sensitivity
to cloud ICs, (3) too many brown dwarfs, and (4) excessive star
formation continues until SFE ∼ 1 with very high SFE (εff ∼ 0.1).
All of these, however, are likely to be strongly influenced by feedback
processes that are ignored here.

Non-isothermal cooling physics is likely important for the excess
of brown dwarfs (see Section 4.3.1). However, many authors have
argued that it is also crucial to account for radiative heating by
protostars as they accrete (Offner et al. 2009; Krumholz 2011; Bate
2012; Myers et al. 2013; Guszejnov et al. 2016; Guszejnov &
Hopkins 2016). Whether protostellar heating or other physics is
the dominant physics at substellar mass scales remains to be fully
explored, but such heating certainly has the desired qualitative effect
of suppressing low-mass fragmentation.

In parallel, protostellar outflows and jets can expel a significant
fraction (up to half or more) of the material accreted in a collapsing
core, reducing the stellar masses directly (e.g. Offner & Chaban
2017). These outflows can also drive turbulence on small scales
(Offner & Arce 2014; Offner & Chaban 2017; Murray, Goyal &
Chang 2018) that can both disrupt the nearby accretion flow and drive
the local region to form fragments with smaller characteristic masses
(similar to increasing M in our simulations). Thus protostellar
outflows can, in principle, have a significant effect upon the IMF
when included in simulations (Cunningham et al. 2011; Hansen et al.
2012; Krumholz et al. 2012; Federrath et al. 2014a; Cunningham
et al. 2018). They also tend to reduce the rate of star formation by
modest factors (∼2–3; Federrath 2015), which would bring our SFE
per-freefall-time (εff) to a few per cent. Thus protostellar outflows
may be an important feedback mechanism that can regulate the star
formation rate to observed levels, especially in regions where massive
stars are absent (Grudić et al. 2019b; Krumholz, McKee & Bland -
Hawthorn 2019).

However, it is unlikely that protostellar outflows are powerful
enough to regulate star formation on the scale of the entire GMC
(Matzner & McKee 2000; Murray, Quataert & Thompson 2010).
Stellar feedback, i.e. feedback mechanisms originating in main-
sequence stars powered by nuclear fusion (including ionizing radia-
tion, stellar winds, and supernova explosions) are likely responsible
for regulating the integrated SFE of GMCs down to observed levels,
by disrupting the cloud once sufficient stellar mass has formed (see
Krumholz et al. 2019 for review and fig. 1 of Grudić et al. 2019a for
a literature compilation of theoretical predictions). For typical local
GMCs, these mechanisms (given standard stellar evolution tracks)
are more than sufficient to disrupt clouds after a few per cent of
the total mass is turned into stars (Grudić et al. 2016; Kim, Kim &
Ostriker 2018; Li et al. 2019). This process must also affect the
IMF, as it abruptly cuts off the gas supply for accretion, and could
also potentially stir turbulence on small scales. Gavagnin et al.
(2017) investigated the effect of photoionization feedback upon the
IMF predicted in radiation-hydrodynamic simulations (neglecting
magnetic fields), and found that it reduced the mean stellar mass
of massive stars by a factor of ∼3, from ∼ 15 to ∼ 5 M�. This is
still more than an order of magnitude larger than the observed mean,
so while ionizing radiation certainly has important effects in high-
mass star formation (it is likely the dominant contributor to GMC
disruption, see Grudić et al. 2019b), it cannot account for the mass
scale of the IMF alone.

Stellar winds can disrupt the gas around massive stars and prevent
further accretion, thus potentially reducing the frequency of high
mass stars, but their effects fall off quickly and have not been found
to significantly affect either the IMF (Dale & Bonnell 2008) or the
overall cloud SFE (Dale et al. 2013) in simulations. However, to our
knowledge no dynamical MHD star cluster formation simulations
have investigated the effect of main-sequence stellar winds, and
it is conceivable that magnetic fields could enhance their effect,
suppressing the growth of instabilities and transporting momentum
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Can MHD set the mass scale of stars? 5085

and energy beyond the extent of the wind bubble itself (e.g. Offner &
Liu 2018).

Supernova explosions dominate the overall feedback momentum
injected into the ISM (Leitherer et al. 1999), and are generally agreed
to be the most important feedback mechanism in galaxy formation
(Hopkins et al. 2014; Somerville & Davé 2015; Naab & Ostriker
2017; Hopkins et al. 2018; Vogelsberger et al. 2020). However, their
effect upon the IMF must be indirect, because they occur too late
to significantly affect the evolution of dense clumps in which star
clusters form. Their main role in star formation is likely maintaining
the state of ISM turbulence on the scale of the galactic scale height
and driving galactic outflows (via superbubbles and chimneys), thus
regulating the ISM gas densities and other ‘environmental’ properties
which set the properties of GMCs in turn (e.g. Hopkins, Quataert &
Murray 2011, 2012; Walch et al. 2015; Padoan et al. 2017; Seifried
et al. 2018; Guszejnov et al. 2020).

The processes discussed in this section and their effects on
star formation will be investigated individually in the upcoming
STARFORGE simulation suite (Guszejnov et al. 2020).

5 C O N C L U S I O N S

We carried out a suite of high-resolution simulations of turbulent
molecular clouds and showed that ideal, isothermal MHD does
exhibit a characteristic mass scale (M50) that is inherited by the
mass distribution of collapsed objects (see Figs 4 and 8). This is in
contrast to non-magnetized clouds, which exhibit no such scale. The
characteristic mass appears to be set by the turbulent properties of
the cloud as it (at any given time) only depends on the cloud mass,
the initial sonic Mach number, virial parameter and the current SFE
(see equation 17 and Fig. 9). We find that using different detailed
initial conditions, with driven or decaying turbulence does not affect
this result (see Fig. 5).

The shape of the mass distribution of collapsed objects is qualita-
tively similar to the observed intermediate and high-mass IMF, as it
reproduces a Salpeter-like slope with a turnover to a ‘flat’ slope below
this characteristic mass M50 (see Fig. 4). However, this model of
isothermal turbulence with ideal MHD and no additional physics has
severe difficulties explaining the observed IMF because the predicted
mass scale (1) is an order of magnitude larger than the observed IMF
mass scale, (2) evolves strongly in time with the cloud SFE, and
(3) sensitively depends on initial clouds conditions/properties in a
manner that would predict order-of-magnitude cloud-to-cloud (and
larger galaxy-to-galaxy) variation in the IMF mass scale. In addition,
(4) isothermal MHD predicts an excess of brown dwarfs (no sub-
stellar turnover), which becomes more severe at higher resolutions,
and (5) the SFE is too large and rises rapidly until essentially all
gas in GMCs is turned into stars. It is thus necessary to include
the physics of proto-stellar and stellar feedback in addition to ideal
MHD and gravity in any star formation theory that hopes to explain
current observations, which we will show in detail in a future work
(Guszejnov et al. 2020).
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Guszejnov D., Hopkins P. F., Grudić M. Y., Krumholz M. R., Federrath C.,

2018b, MNRAS, 480, 182
Guszejnov D., Hopkins P. F., Graus A. S., 2019, MNRAS, 485, 4852
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APP ENDIX A : D ETAILED SCALING O F M50

W I T H C L O U D PA R A M E T E R S

In this appendix, we examine in detail how the mass-weighted median
sink mass M50 depends on the turbulent virial parameter αturb,0, sonic
Mach number M, normalized magnetic flux ratio μ and the SFE,
and how well it is fit by equation (17).

Fig. A1 compares the fit from equation (17) with the actual
evolution of M50 in a subset of our runs that have various M0, M, and
αturb,0 values. We find that all runs lie upon the predicted curve with
deviations below 0.2 dex at all times and with no trend in the residuals
with any of the input parameters, indicating that the fluctuations are
likely statistical in nature.

To get a sense of the accuracy of the predicted exponents in
equation (17) we examine how M50 depends on each of them inde-
pendently. Fig. A2 shows that M50 evolves roughly as M50 ∝ SFE1/3

for all runs. Meanwhile, Fig. A3 shows how varying αturb,0 and
M respectively changes M50 (for the effects of changing μ see
Fig. 6). The scaling with virial parameter appears to be consistent
with M50/M0 ∝ α while the Mach number dependence is close to
M50/M0 ∝ M−3.

Figure A1. Comparison of the fit of M50 (equation 17) with simulation
results, pulling out the best-fitting scaling ∝ M0M

−3.18 α1.08
turb,0 and plotting

as a function of SFE. The fit residuals have no clear trend with αturb,0, M,
or SFE, and tend to be smaller for higher-M clouds that produce more sinks,
indicating that fluctuations about the relation are statistical.

To estimate the errors of the fitted exponents for αturb,0 and M,
we first estimate the errors in M50 using bootstrapping, which means
resampling the sink mass distribution at fixed SFE and calculating
the 95 per cent confidence interval of M50 over these new samples.
Then we fit the exponents at our fiducial SFE (5 per cent) by using
runs between which only a single parameter varies (see Fig. A3).
For the exponent of SFE, we estimate its error by fitting a power
law to our different runs (in Fig. A2) and take the variance of
the fitted values. We find the following fitting parameters and
errors:

M50 ∝ M0 M
−3.24±0.08 α1.01±0.09

turb,0 SFE0.30±0.05. (A1)

Note that contrary to the fitting in equation (17) here we use only a
subset of our runs and fit each slope individually (hence the slightly
different exponents).

The exponents we find in equations (17) and (A1) do not cor-
respond to any of the known mass scales listed in Section 2.1.2
(see equations 14–16). While neither mass scale is as good a fit as
equations (17) and (A1) (see Fig. A3), Fig. A4 shows that they are
all good qualitative predictors of M50 for our set of simulations.

Figure A2. Evolution of the mass-weighted median mass M50 as a function
of SFE for a subset of runs. M50 increases with SFE in a power-law fashion,
roughly consistent with M50 ∝ SFE1/3, regardless of the initial conditions.
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Figure A3. Dependence of the mass-weighted median sink mass M50 at 5 per cent SFE on the initial Mach number (left) and turbulent virial parameter (right).
We show results for both Sphere and driven Box initial conditions (denoted with blue and red respectively). Note that due to the nature of the driving Box runs
with different Mach numbers have slightly different virial parameters. To compensate for this in the top figure we use M50/(M0α). The errors are estimated by
bootstrapping: we resample the sink mass distribution at fixed total stellar mass and calculate the 95 per cent confidence interval of M50 over these realizations,
which we denote with errorbars. Note that the resolution of the highest Mach number and lowest virial parameter calculations do not satisfy equation (22), so
their mass-weighted medians should be considered upper limits and are denoted by arrows.

Figure A4. Dependence of the mass-weighted medan sink mass M50 on the Jeans mass MJeans (left, see equation 14), sonic mass Msonic (middle, see equation
15) and the turbulent Bonnor–Ebert mass M turb

BE (right, see equation 16). Notation and errorbars are the same as in Fig. A3.
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