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Regularity of CR-mappings of
codimension one into
Levi-degenerate hypersurfaces
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We provide regularity results for CR-maps from a real hypersur-
face in n-dimensional complex space to a Levi-degenerate target
hypersurface in a n + 1-dimensional space. We address both the
real-analytic and the smooth case. Our results allow immediate
applications to the study of proper holomorphic maps between
Bounded Symmetric Domains.
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This paper is devoted to establishing smooth and real-analytic versions of the
Schwarz reflection principle for holomorphic maps in several complex vari-
ables. In the real-analytic version of the reflection principle, we investigate
conditions under which a CR-map between real submanifolds in complex
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space (or a holomorphic map between wedges attached to real submanifolds)
extends holomorphically to an open neighborhood of the source manifold. In
the smooth version, we ask for conditions under which a CR-map between
real submanifolds in complex space has higher regularity than the given one.
Problems of this type have attracted considerable attention since the work
of Fefferman [Fe|, Lewy [Le|, and Pinchuk [Pi]. In the equidimensional case,
the reflection principle is understood quite well due to the extensive research
in this direction. We refer the reader to e.g. [BER, Frl, KL1, KL2] for de-
tailed surveys and references related to this research, as well as for the most
up-to-date results.

In this paper, we study aspects of the regularity problem for CR-
mappings between CR-manifolds M and M’ of different dimension. This
has been an extensively developing direction since the pioneering work of
Webster [W], Faran [Fal, and Forstneri¢ [Frl]. We shall note that the case
of different dimensions is far more difficult than the equi-dimensional one,
and much less is known in this setting. For an overview of existing results in
the real-analytic case, we refer to the recent work of Berhanu and the first
author [BX1].

The regularity problem in the smooth category rather than in the real-
analytic one (in what follows, by “smooth” we refer to the C°° smooth-
ness, if not otherwise stated) seems to be even more difficult due to lack
of techniques. Starting from the work of Forstneri¢ [Frl] and Huang [Hul],
[Hu2], the expected type of regularity of a finitely smooth CR-map between
smooth CR-manifolds is its C'*° smoothness at a generic point. One of the
main tools for obtaining results in this line was introduced in the work
[L1, L2, L3] by the second author, which is the notion of k-nondegeneracy
of a CR-mapping. The latter is used for studying differential systems asso-
ciated with CR-mappings. In particular, this tool was applied by Berhanu
and the third author for studying the situation when the target manifold
is Levi-nondegenerate. In the work [BX1], a smooth version of the reflec-
tion principle is established for CR-mappings from an abstract CR-manifold
to a strongly pseudoconvex hypersurface. In particular, it solves a conjec-
ture formulated earlier by Huang [Hu2] and also reproves a conjecture of
Forstneri¢ [Frl] consequently. In [BX2], this type of result is extended for
CR-mapping into Levi-nondegenerate CR-submanifolds of hypersurface type
with certain conditions on the signature. These results in particular show
that if ' : M — M’ is a CR-transversal CR-mapping of class C? from a real-
analytic (resp. smooth) strictly pseudoconvex hypersurface M C C" into a
real-analytic (resp. smooth) Levi-nondegenerate hypersurface M’ c C"*1,
then F' is real-analytic (resp. smooth) on a dense open subset of M (we



Regularity of CR mappings of codimension one 153

mention that when F' is assumed to be C°°, the result in the real-analytic
case was proved in [EL]).

However, the case when the target is Levi-degenerate remains widely
open, in both smooth and real-analytic categories, and very little is known
in this setting. In the real-analytic case, a number of very interesting results
in the latter direction were obtained in the recent paper of Mir [Mil].

The main goal of this paper is to extend the reflection principle for
CR-maps of real hypersurfaces in complex space to the setting when the
target hypersurface M’ C C"*! is Levi-degenerate, while the source M C C"
is strictly pseudoconvex.

First, we obtain in the paper the generic analyticity property (resp. the
generic smoothness property) for finitely smooth CR-maps between real-
analytic (resp. smooth) real hypersurfaces of different dimensions with min-
imal assumptions for the target. Namely, in the real-analytic case, we assume
the target M’ to be merely holomorphically nondegenerate. Clearly, for any
given source, the latter assumption can not be relaxed further (see Exam-
ple 1.1 below). In the smooth case, we assume the finite nondegeneracy of the
target. For definitions of different notions of nondegeneracy, see Section 2.

Second, we establish in the paper the everywhere analyticity (resp. ev-
erywhere smoothness) of CR-maps in the case when the target belongs to
the class of uniformly 2-nondegenerate hypersurfaces. The latter class of
hypersurfaces is of fundamental importance in Complex Analysis and Ge-
ometry. Uniformly 2-nondegenerate hypersurfaces have been recently stud-
ied intensively (e.g. Ebenfelt [E1, E2], Kaup and Zaitsev [KaZa|, Fels and
Kaup [FK1, FK2], Isaev and Zaitsev [IZ13], Medori and Spiro [MS], Kim
and Zaitsev [KiZal, Beloshapka and the first author [BK]). These hypersur-
faces naturally occur as boundaries of Bounded Symmetric Domains (see,
e.g., [KaZa], [XY] for details), and in this way CR-maps into uniformly 2-
nondegenerate hypersurfaces become important for understanding proper
holomorphic maps between the respective Bounded Symmetric Domains
(on the latter subject, see e.g. the work of Mok [Mol, Mo2] and references
therein). Uniformly 2-nondegenerate hypersurfaces occur as well as homo-
geneous holomorphically nondegenerate CR-manifolds [FK1, FK2]. We also
note that the study of CR-embeddings of strictly-pseudoconvex hypersur-
faces into 2-nondegenerate hypersurfaces performed in the present paper is
important for understanding the geometry of the latter class of CR-manifolds
(see, e.g., [BK]).

We shall now formulate our main results. Let us recall that a map
F: M — M’ between real hypersurfaces is said to be CR-transversal at
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p €M if Ty M+ T M! + dF (CT, M) = CTp, M'. The definition of
uniform 2-nondegeneracy is going to be given below in Definition 2.1.
Theorem 1. Let M C C" (n > 2) be a strongly pseudoconvex real-analytic
(resp. smooth) hypersurface, and M' C C"*! a uniformly 2—nondegenerate
real-analytic (resp. smooth) hypersurface. Assume that F' = (Fy,..., Fyy1) :
M+ M’ is a CR-transversal CR-mapping of class C%. Then F is real-
analytic (resp. smooth) everywhere on M.

We note that Theorem 1 has direct applications to the study of rigid-
ity of proper holomorphic maps between bounded symmetric domains (see
the work [XY] of Yuan and the third author, where certain rigidity results
for holomorphic proper maps from the complex unit ball to the Type IV
bounded symmetric domain D!V are obtained). We also note that Theo-
rem 1 somehow parallels a theorem proved by Mir [Mil] and establishing
the analyticity of CR-maps (at a generic point) in the situation when the
source M is real-analytic and minimal while the target is the well known
uniformly 2-nondegenerate hypersurface called the tube over the future light
cone:

(11) Tn+1 = {(Zl, .. .,Zn+1) S (CTH_I :
(Imz1)? 4+ + (Im2,)* = (Im 2,,41)*}.

Next, in the more general setting of M’, we prove

Theorem 2. Let M C C" (n > 2) be a strongly pseudoconvex smooth hyper-
surface, and M’ C C" an everywhere finitely nondegenerate smooth hyper-
surface. Let F = (Fy,..., Fpy1) : M — M’ be a CR-transversal CR-mapping
of class C%. Then F is smooth on a dense open subset of M.

If the target hypersurface is real-analytic, a stronger assertion holds.

Theorem 3. Let M C C" (n > 2) be a strongly pseudoconvex smooth hy-
persurface, and M' C C"1 a holomorphically nondegenerate real-analytic
hypersurface. Let F = (Fy,...,Fn41): M — M’ be a CR-transversal CR-
mapping of class C%. Then F is smooth on a dense open subset of M.

A similar result holds in the real-analytic category: here we prove the
stronger result, which does (only) require M’ to be holomorphically nonde-
generate.
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Theorem 4. Let M C C"(n>2) be a strongly pseudoconver real-
analytic hypersurface, and M’ C C"*1 a holomorphically nondegenerate real-
analytic hypersurface. Assume that F = (Fy,...,Fpy1): M — M’ is a CR-
transversal CR-mapping of class C?. Then F is real-analytic on a dense
open subset of M.

As was mentioned above, for any given M, one cannot drop the holo-
morphic nondegeneracy assumption when expecting the generic analyticity
of CR-embeddings F': M +— M’', M’ € C"! (see Example 1.1 below). The
transversality assumption on F' cannot be dropped either. See [BX2] for an
example where F' (being not transversal) is not smooth on any open subset
of M. Thus, the assertion of Theorem 4 is in a sense optimal.

Example 1.1. Let M C C", n > 2 be a strongly pseudoconvex hypersur-
face. Consider the holomorphically degenerate hypersurface M’ = M x C C
C"*t!. Let f be a C? CR function on M which is not smooth on any open
subset of M. Then F(Z):= (Z, f(Z)), Z € M is a CR-transversal map of
class C? from M to M'. Clearly, F is not smooth on any open subset of M.

The following example shows also that one cannot expect F' to be real-
analytic everywhere on M in the setting of Theorems 3.

Example 1.2. Let M C C? be the strongly pseudoconvex real hypersurface
defined by

12+ [w? + |1 —w|*? =1

near (0,1), where (z,w) are the coordinates in C2. Let M’ C C? be the
holomorphically nondegenerate real hypersurface defined by

21 + |22 + |28/ = 1,
where (21, 22, 23) are the coordinates in C3. Consider the map
F=(zw,(1—w)?)
from one side of M : {|z|> + |w|? + |1 — w|!® < 1} to C3. Tt is easy to see F'
extends C?—smoothly up to M, sending M to M'. However, F is not even
C3 at the point (0,1).

We, however, hope that the following is true.
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Conjecture 1.3. For any integer n > 2, there exists an integer k = k(n)
such that the following holds. Let M C C"(n >2), M’ C C"*! be real-
analytic (resp. smooth) hypersurfaces that are finitely nondegenerate (on
some dense open subsets), and F = (Fi,...,F,41): M — M' be a CR-
transversal CR-mapping of class C*. Then F is real-analytic (resp. smooth)
on a dense open subset of M.

(In the real-analytic version of the Conjecture, we may replace the con-
dition on M by its holomorphic nondegeneracy).

The paper is organized as follows. In Section 2, we present some prelim-
inaries on the degeneracy of CR-submanifolds and CR-mappings. Section 3
is devoted to a normalization result for a CR-map between hypersurfaces
satisfying the assumptions of Theorems 1-3. It will be applied in later argu-
ments. Theorems 1-4 will be proved in Sections 4-6.
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2. Preliminaries

In this section, we recall various notions of degeneracy in CR geometry, and
their relations. The following definition is introduced in [BHR].

Definition 2.1. Let M be a smooth generic submanifold in CV of CR-
dimension n and real codimension d, and p € M. Let p = (p1, ..., pq) be the
defining function of M near p, and choose a basis L1,..., L, of CR vec-
tor fields near p. For a multiindex o = (a1, ..., ay,), write LY = L{* - - L9,
Define the increasing sequence of subspaces Ej(p) (0 < 1) of CV by

Ey(p) = Spanc{L®ppz(Z, Z)|z=p : 0 < o] < 1,1 < p < d}.

Here p, 7z = (ggf,..., ggg), and Z = (z1,...,2zy) are the coordinates in CV.

We say that M is k—nondegenerate at p, k > 1 if

Ey_1(p) # Ex(p) = CV.
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We say M is k—degenerate at p if Ex(p) # CV, and we say that M is uni-
formly k-nondegenerate if it is k-nondegenerate at every point p € M.

We say M is (everywhere) finitely nondegenerate if M is k(p)—
nondegenerate at every p € M for some integer k(p) depending on p. A
smooth CR-manifold M of hypersurface type is Levi-nondegenerate at
p € M if and only if M is 1—nondegenerate at p. This notion of degen-
eracy is then generalized to CR-mappings by the second author [Lal] as
follows.

Definition 2.2. Let M c CN, M’ ¢ CV' be two generic CR-submanifolds
of CR dimension n, n/, respectively. Let H : M — M’ be a CR-mapping of
class C" near py € M. Let p = (p1,...,pa) be local defining functions for
M’ near H(py), and choose a basis L1, ..., L, of CR vector fields for M near
po. If = (aq,...,a,) is a multiindex, write LY = L{* --- LS. Define the
increasing sequence of subspaces E;(po)(0 <1 < r) of CV' by

Ei(po) = Spanc{L®p,.z (H(2), H(Z))| 7-p, : 0 < |o] <11 < p < ).

Here p, 7z = (%,...,%), and Z' = (z],...,2y,) are the coordinates in

CN'. We say that H is ko—nondegenerate at pg (0 < ko < 7) if

Eky—1(po) # Ek,(po) = cv.

A manifold M is kg—nondegenerate if and only if the identity map from
M to M is kg—nondegenerate. For a real-analytic submanifold, we also in-
troduce the notion of holomorphic degeneracy.

Definition 2.3. A real-analytic submanifold M c CV is holomorphically
nondegenerate at p € M if there is no germ at p of a holomorphic vector

field X tangent to M such that X|ps # 0. We shall also say that M is
holomorphically nondegenerate if it is so at every point of it.

We recall the following proposition about k—nondegeneracy and holo-
morphic nondegeneracy. For a proof of this, see [BER].

Proposition 2.4. Let M C CV be a connected real-analytic generic man-
ifold with CR dimension n. Then the following conditions are equivalent:

o M 1is holomorphically nondegenerate.
o M is holomorphically nondegenerate at some point p € M.

o M is k—nondegenerate at some point p € M for some k > 1.



158 1. Kossovskiy, B. Lamel, and M. Xiao

o There exists V, a proper real-analytic subset of M and an integer
l=1(M),1 <IU(M)<n, such that M is l[—nondegenerate at every p €
M\ V.

3. Normalization

In the section, we prove an auxiliary normalization result for CR-maps
(Proposition 3.3 below), following the lines introduced by Huang [Hu3],
in the following setting. Let M C C"(n >2) be a strongly pseudocon-
vex real-analytic (resp. smooth) hypersurface defined near a point py € M,
and M’ C C"*! a real-analytic (resp. smooth) hypersurface which is Levi-
degenerate at a point gy € M'. Assume that F = (Fy,...,Fo41): M — M’
is a CR-transversal CR-mapping of class C? near py with F(pg) = qo. We
assume, after a holomorphic change of coordinates in C™, pg = 0 and that
M is defined near 0 by

n—1
(3.1) r(2,2) = —Imz, + Y _ |zl* +¥(Z, 2),
=1

where Z = (21, ..., z,) are the coordinates in C*, (Z, Z) = O(|Z|3) is real-
analytic (resp. smooth) function defined near 0.

After a holomorphic change of coordinates in C"*!, we assume that
qo = F(pp) = 0 and that M’ is locally defined near 0 by

(3.2) p(W, W) = ~Tmwn 1 + WUW + o(W, W),
for some Hermitian n x n matrix U. Here
W = (W,wn+1) = (w1,..., W, Wnt1)
are the coordinates in C"™!, ¢(W, W) = O(|W]3) is a real-analytic (resp.

smooth) function defined near 0.
If we write F' = (F, Fy41) = (F1,...,F,, F11), then F satisfies:

F .. F L =t _
(3.3) - % + FUF + ¢(F,F) =0,
along M. Since F is CR-transversal, we get A\ := 8%’;“ lo # 0, where we

write z, = s + it(cf. [BER]). Moreover, (3.3) shows that the imaginary part
of F,41 vanishes to second order at the origin, and so the number A is
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real. By applying the change of coordinates in C"*1: 7(w1, ..., wp, wpi1) =

(w1, ..., Wy, —wn+1) if necessary, we may assume that A\ > 0. Let us write
or 0 ar 0

3.4 Li=2— 3+ ), 1<j<n-—1.

(34) y Z(aznazj+azjazn> ==

Then {L;}1<j<n—1 forms a basis for the CR vector fields along M near p.
By applying L;, L;Li,1 < j,k <n — 1 to the equation (3.3) and evaluating
at 0, we get:

aZj S 82j82k

0)=0, 1<jk<n-—1

Hence we have,
(3.5) Fri1(Z) = Az + O(|1Z%).

For 1 < j < n, we write

n—1
(36) Fj :ajzn+2aijzi+0(]2\2),
i=1
for some a; € C,a;; € C,1 <i<n—1,1<j <n. Or equivalently,

(3.7)  (Fi,....,F)) =zp(a1,...,an) + (21, ..., 2n-1)A+ (F1, ..., F),

where A = (aij)1<i<n—1.1<j<n is an (n — 1) x n matrix, and Fj = O(|Z]?),
1 <j <n.We plug in (3.5) and (3.7) into (3.3) to get,
(3.8) NZP + O(1Z]1za] + 12al*) + 0(1Z])

= ZAUA'Z + O(1Z|zal + |2al) + (1 Z]2),

where we write Z = (#1,. -+, 2n—1). Equip 7 with weight 1, and z, with
weight 2. We then compare terms with weight 2 at both sides of (3.8) to get:

(3.9) AL,_1 = AUA*.

As a consequence, the matrix A has full rank (n — 1), and U has rank
(n—1) or n. Recall that M’ is not 1—nondegenerate at ¢ = 0. We thus
conclude that U has rank (n — 1). Moreover, note from (3.9) that U has (n —
1) positive eigenvalues. By a holomorphic change of coordinates in C"*1, we
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may assume that U = diag{1,...,1,0}. M’ is then of the following form
near 0 :

n—1
(3.10)  p(W. W) = ~Imwnys + ) [w;l” + o(W. W), 6 =O(WP).
j=1
Write A = (B,b), where B is a (n—1) x (n—1) matrix, b is an
(n — 1)—dimensional column vector. (3.9) yields that BB = AL,—1. We

now apply the following holomorphic change of coordinates: W = WD or
W = WD™!, where we set

lft

ﬁB C 0
D= o0 1 0 |-

ot 0 1

and 0 is the (n —1)—dimensinal zero column vector, ¢ is a (n—
1)—dimensional column vector to be determined. We compute

1
1 ﬁB d 0
D~ = o 1 0 |,
o0 0 1
- _ 1
where d = ﬁBc. N

_ We write the new defining function of M’ and the map as p and F =
(F1,...,Fut1) in the new coordinates W = (w1, ..., Wp11), respectively. We

have

Lemma 3.1. p still has the form of (3.10). More precisely,

_ n—1 _
PV, W) = —Imii, 1 + Y |;]* + o(W, W),
j=1

where a(W,W) = O(|[W3) is also a real-analytic (resp. smooth) function
defined near 0.

Proof. This can be checked by a simple calculation and using the fact that

1 1 pt
o 1 o' 0 ad 1 0" 0
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Moreover, since F= FD, it is easy to see that

OF;

5 (0) =6;VA, 1<i,j<n-1

Here we denote by d;; the Kronecker symbol that takes value 1 when 7 = j
and 0 otherwise.

Lemma 3.2. We can choose an appropriate ¢ such that

OF,
A1 = 1<j<n-1.
(3.11) G0 =0, 1<j<n
Proof: Note that F, = (F1,..., F),) < (1: ) . Combining this with (3.7),
we obtain,
OF,
0)=0, 1<3<n-1
7, 0)=0, 1<j<n

is equivalent to A = 0, where 0 is the (n — 1)—dimensinal zero col-

c
1
umn vector. Recall A= (B,b). We can thus choose ¢ = —B~1b.

In the following, for brevity, we still write W, F' and p instead of W, F
and p. We summarize the considerations of this section in the following

Proposition 3.3. Let M C C™"(n >2) be a strongly pseudoconver real-
analytic (resp. smooth) real hypersurface, M' C C"* a real-analytic (resp.
smooth) real hypersurface. Assume that F = (Fi,...,Fy41): M — M’ is
a CR-transversal CR-mapping of class C? near po € M with F(po) = qo,
and that M' is Levi-degenerate at qo. Then, after appropriate holomorphic
changes of coordinates in C" and C" ! respectively, we have py = 0,9 = 0,
and the following normalizations hold. M is defined by

n—1

(3.12) r(2,Z) = —Imzy + Y _|z* +9(2,Z), ¢ =0(2P)
i=1

near 0, and M’ is defined by
n—1

(3.13)  p(W,W) = —Imwni1 + Y _ |w> + ¢(W, W), ¢ =O(|W})
j=1
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near 0, where Z = (z1,...,2n), W = (w1,...,wny1) are the coordinates of
C" and C"*1, respectively. Furthermore, F satisfies:

OF;
(3.14) L0) =3V, 1<i,j<n-—1,

6z]~
for some A > 0, and moreover,

oF,

J
OF, .
(3.16) ?ﬂ(o):o, 1<j<n-1
J

One can use the same arguments as given above to arrive at the following,
more general conclusion, as pointed out by one of the anonymous referees;
we record it here, even though we only need the version given above in
this paper. In particular, the following formulation recovers as a special case
(m =n+ ¢ —1) aresult of Berhanu and the third author [BX1, Lemma 4.2].

Proposition 3.4. Let M C C*(n >2) be a strongly pseudoconvez real-
analytic (resp. smooth) real hypersurface, M’ C C"** o real-analytic (resp.
smooth) real hypersurface. Assume that F = (Fy,...,Fyip): M — M’ is a
CR-transversal CR mapping of class C? near pg € M with F(pg) = qo, and
that the Levi-form of M’ has, say m monzero eigenvalues, all of the same
sign. Then, after appropriate holomorphic changes of coordinates in C™ and
C* respectively, we have pg = 0,qo = 0, and the following normalizations
hold. M is defined by

n—1

(3.17) r(2,Z) = —Tmz + Y _ |l +9(2,2), ¢ =0(2]%)
=1

near 0, and M’ is defined by

(3.18)  p(W, W) = —Imwnsp+ Y _ |w;|> + (W, W), ¢ =0(W|*)
Jj=1

near 0, where Z = (z1,...,2n), W = (w1, ..., wpi¢) are the coordinates of

C™ and C"*, respectively. Furthermore, F satisfies:

OF;
aZj

(3.19) (0) =05V, 1<i,j<n-—1,
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for some X\ > 0, and moreover,

aFn-ﬁ-k

(3.20) 5o,

(0)=0, 1<j<n-1, 1<k<t

In order to prove this more general assertion, one just has to follow the
steps of the proof of Proposition 3.3 taking into account the more general
codimension. This leads to a number of scalar quantities quantities to be
vectors, but does not impact the main argument.

4. Proof of Theorem 1

In this section will make use of the normalization of M, M’ in Proposition 3.3
and prove Theorem 1. We will see that in the setting of Theorem 1, the map
is actually 2-nondegenerate. The result then follows in the smooth case by
applying [L1, Theorem 2| and in the real-analytic case by applying [L2, The-
orem 1.3]. Our first step therefore is the following computational Lemma for
the uniformly 2—nondegenerate target hyperurface M’. For further results
about normal forms along this line, see [E1].

Lemma 4.1. Let M C C" (n > 2) be a strongly pseudoconvex real-analytic
(resp. smooth) hypersurface, and M' C C"' a uniformly 2—nondegenerate
real-analytic (resp. smooth) hypersurface. Assume that F = (Fy,..., Fyy1) :
M — M' is a CR-transversal CR-mapping of class C?. Then F is 2-
nondegenerate.

Proof. We will write for 1 < k < n,

(9 8 9p 0
(4.1) g =2i <8wn+1 owy, owy, 8wn+1> ’

where {Aj}1<k<pn forms a basis for the CR vector fields along M’ near 0.
Note that

0 0

0
Ap =1+ 2i¢m)% — 2i(¢n)

(4.2)

awn—i— 1

Here and in the following, we write for 1 <4,j,k <n+1, ¢; = ¢m, =
00 4 oy 06 4 g 0% IO TR
Tma@ = bw, = Tm’¢ij = ¢wtwj = w.ow, Yijk = ¢wiijk = Jw,0w,0uwy,> ¢
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(8,0 op
8w1""’8w+

Recall our notation py := ). We compute

(43) pW(W7W) - (wl + ¢17 cee, Whp—1 + @Z)n 1, ¢n7 + ¢n+1>
‘We thus have
(4.4) Apw (W, W) = (ha1,- -, higry)

where

hi1 = (14 2igq3y) (1 + ¢17) — 2i(w1 + 7)1y
hiz = (1 + 2i¢q,5y) o1 — 2i(wi + 1) by i1y

(4.5)

hins1) = (1 + 2000, 55y) Py 1)1 — 26(w1 + 1)D (4 1) ig Dy
Hence
(4.6) Apw (W, W) = (1+0(1),0(1),...,0(1)).

Here we write O(m) = O(|W|™) for any m > 0. Similarly, we have for 1 <
k<n-—1,

(4.7) Appw (W, W) = (O(1),...,0(1),1+ 0O(1),0(1),...,0(1)),
where the term 14 O(1) is at the &*" position;

(4.8) Appw (W, W) = (0(1),...,0(1), pnz + O(2),0(1)).

As a consequence, we have

pw (W, W) .
(4.9) det | AoV W) | 2 6 + O(2)

Recall that M’ is uniformly 2—nondegenerate at 0, in particular, it is
1—degenerate at every point near 0. This implies (4.9) is identically zero near
0 along M’. Consequently, by applying A;,1 < j < n to (4.9) and evaluating
at 0, we obtain ¢ (0) =0 for any 1 < j < n.
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Since M’ is 2-nondegenerate, there exists a choice jo, ko, 1 < jo, ko Sﬁn
such that Aj, Ay, pw (W, W) together with the A;pw (W, W) and pw (W, W)
spans C"*! for W close to 0. Hence, for that choice of jg, ko, we have.

(4.10) @5oron(0) # 0, for some 1 < jo, ko <n — 1.
Consequently, if we write
(4.11) L, L, pw (F, F)(0) := (v1, ..., Un—1, Vn, Unt1)s

then v, is nonzero. Here L; is as defined in (3.4). Indeed,

0%, (F,F) ”i 0%, | OF,| OF,
" 8230821% 0 8wl(’9@] O&zjo Oazko 0
BFj OF},
= ¢ I 0.
T e M
Moreover, it is easy to verify that
(4.12) Lipw (F,F)(0) = (0,...,0,VA,0,...,0), 1<i<n-—1,
where V/\ is at the i*® position, and that
(4.13) pw (F,F)(0) = (o,...,o, ;) .

Equations (4.13), (4.12) and (4.11) with v, # 0 now imply that F' is
2—nondegenerate at 0. O

Proof of Theorem 1. By the above-mentioned results of [L1, L2], F is real-
analytic (resp. smooth) near 0, as required. O

5. Proof of Theorem 2

Let M’ be as above and p as in (3.13). Forany 1 <i; < --- < i <n,q € M,
we define,
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pw
A1pw
Aj,..i () = det e (q)-
An—1pw
Ai oo N pw

We first prove the following lemma.

Lemma 5.1. Let M’ be as above. Assume that M’ is l-nondegenerate at 0
for some l > 2. Then there exist 1 < i1 < --- <4y <n, such that

(5.1) A, 4, (0) #0.

Proof. We note that

(5.2) o (0) = (0,...,0, ;) ,

(5.3) Ajpw(0) = (0,...,0,1,0,...,0), 1<j<n—1,

where 1 is at the j'' position. Thus py (0), Ajpw (0),1 < j <n — 1, are lin-
early independent over C. Then by the definition of I-nondegeneracy at 0,
one easily sees that there exists 1 <1 <.+ <4; < n such that

W
A1pw
det . (0) #0.
An—1pw
Ai - N pw

0

Remark 5.2. In particular, when [ = 2 in Lemma 5.1, there exist 1 < i1 <
iz < n, such that A;;,(0) # 0. Note the n'® component of A;, A;, pw (0) is
¢77;0(0). By the form (5.2), (5.3) of pw (0) and A;pw (0), we conclude that
G77an(0) # 0.

We then prove the following proposition.
Proposition 5.3. Let M C C"(n >2) be a strongly pseudoconver real-

analytic (resp. smooth) hypersurface, and M' C C"™' be a real-analytic
(resp. smooth) hypersurface. Assume that M’ is either 1- or 2-nondegenerate
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at every point of it. Let F' = (Fy,...,F,11) : M — M’ be a CR-transversal
CR-mapping of class C?. Then F is real-analytic (resp. smooth) on a dense
open subset of M.

Proof. We write  as the open subset of M where F' is real-analytic (resp.
smooth). Fix any py € M. Write qo = F(pg) € M’. We will need to prove
po € Q. We assume pg =0 € M,qy = 0 € M'. By assumption, M’ is either
1-nondegenerate or 2-nondegenerate at gg. We then split our argument in
two cases.

Case I: M’ is 1-nondegenerate at qo. That is, M’ is Levi-nondegenerate
near go. Then it follows from Corollary 2.3 in [BX2] that py € €.

Case II: M’ is 2-nondegenerate at qo. Let O be a small neighborhood
of go in C"*1. Let V.= 0O nN M’. We write V; as the set of 1-degeneracy of
M’ in V. More precisely,

Vi ={q €V : M is l1-degenerate at ¢}.

If there is a sequence {p;}3°, C M converging to py such that M’ is
1—nondegenerate at each F(p;), i.e., F(p;) € M \ V1,7 > 1. Then by Case I,
we have each p; € Q,i > 1. Consequently, pg € Q. Thus we are only left with
the case that there exists a neighborhood U of p on M such that F'(U) C V.
We apply then normalization to M, M’ and the map F as in Proposition 3.3.
Since M’ is 2-nondegenerate at 0, we conclude by Lemma 5.1, A, (0) =
c# 0, for some 1 < jg < kg < n. We then further split into the following
subcases.

Case II(a): There exist some 1 < jo < kg < n — 1, such that, Aj x, (0) =
¢ # 0. Consequently, we have quo—k,on(()) = 0. Then similarly as in the proof
of Theorem 1, we can show that F' is finitely nondegenerate. Hence again
by the results of [L1, L2], F' is real-analytic (resp. smooth) at 0.

Case II(b): Forany 1 < j <k <n—1, Aj;(0) = 0. Moreover, there ex-
ists 1 < jo < n — 1 such that, A ,,(0) = ¢ # 0. Then by a similar argument
as in Remark 5.2, we conclude d)j—kn(O) =0,forany 1 <j<k<n-1, and
G5onn(0) # 0.

Note that Vi € 14 ( M', where Vi is defined

(5.4) Vii={WeO:oW,W)=0},
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with
141%
o Aipw
(5.5) (W, W) = det . (W, W).
AnflpW
Anpw

Then we have

Claim 5.4. The wj -derivative of ¢ is nonzero at go = 0.

Proof. 1t is equivalent to show that Aj ¢(0) # 0. That is,

417
A1pw
(5.6) Ajo det e (0) 7& 0.
An—1pw
Anpw
Note that
pw Ajopw pw
A1 pw A1 pw Ajo Apw
Aj, det . (0) = det . (0) + det . (0)
AnflpW AnflpW AnflpW
Anpw Anpw Anpw
pw
A1pw
+ -+ det (0)
Aj An—1pw
AnPW
417
A1pw
+ det . (0).
An—1pw
AjoAan

In the above equation, the first term is trivially zero. Then we note that
in the row vector py/(0), or A;pw(0),1 < i < n, the n'" component is zero.
This is due to the fact that ¢ = O(|W|?). Moreover, the n'" component in
the row vector Aj,Agpw (0),1 <k <n—1,is ¢, (0), which is zero by the
assumption. Consequently, the second term up to the n'" term in the above
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equation are all zero. We also note the last term in the equation above is
just equal to A ,,(0), which is nonzero. Hence the lemma is established. [

Recall that F(U) C Vi C V;. We have
(5.7) Oo(F(Z),F(Z))=0, forall Ze U C M.

Applying L;j, to the above equation and evaluating at Z = 0, we have,
(5.8) Ljyo(F, F)lo =Y _ ¢w,(F, F)loLj, Filo = 0.

i=1

Note that by our normalization, Lj,F;(0) = 0, if i # jo. Lj, Fj,(0) # 0.
Moreover, by Claim 5.4, ¢z, (0) # 0. This is a contradiction to (5.8). Hence
Case II(b) cannot happen in this setting.

Case II(c): Aj(0) = Aj,(0) =0, forall1 < j, k <n —1,and A, (0) #
0.
We let Vi be defined by ¢ as above in (5.4), (5.5).

Claim 5.5. In the setting of this subcase, the wy,-derivative of ¢ is nonzero
at gog = 0.

Proof. Similar as Lemma Claim 5.4. O

By Lemma Claim 5.5, we have ¢z, (0) # 0. Consequently, if we define
G(W, W) = (W, W), then

(5.9) Bun(0) £ 0.
Note F(U) C V4 C V1. We have
©(F(Z),F(Z)) =0, forall Z € U.
Consequently,
(5.10) o(F(Z2),F(Z))=0.
Recall that for all Z € U,

(5.11) p(F,F) =0,
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(5.12) Lip(F,F)=0, 1<i<n-—1.
Combining (4.12), (4.13), (5.9), we conclude that

LlpW(Fv F)
(5.13) det e (0) # 0.
Ln—lpW(E F)
@W(F7 F)

This implies that equations (5.10), (5.11), (5.12) form a nondegenerate sys-
tem for F. Then it follows that F' is real-analytic (resp. smooth) at 0 by
a similar argument as in [L1, L2] or [BX1, BX2]. For the convenience of
the readers, we sketch a proof here for the real-analytic category. The proof
for the smooth category is similar (we remark on the differences). However,
those readers unfamiliar with the strategy, we refer to the aforementioned
papers for the necessary details.

We assume that M is defined near 0 by {(z, z,) = (2,5 +it) € Uy x V :
t=¢(z,%,s)}, where ¢ is a real-valued, real-analytic function with ¢(0) =
0,d¢(0) = 0. Here Uy C C"~! and V C R are sufficiently small open subsets.
In the local coordinates (z,s) € C"! x R, we may assume that,

0 = (2,Z,8) O
szf—iM*, 1§j§n_1-
0z;  1+i¢s(2,%,s)0s
Since ¢ is real-analytic, we can complexify (resp. extend almost holomor-
phically, in the smooth case) in the s variable and write

0 . ¢z, (2,Z,5+10t) 0
T 0% 1tids(z7 s+ i) ds
which are holomorphic in s + it and extend the vector fields L;.

Since ¢ and L; are real-analytic now, equations (5.10), (5.11), (5.12)
imply that there is real-analytic map ®(W, W, ©) defined in a neighborhood
of {0} x CY4in C"*! x CY, polynomial in the last q variables for some integer
q such that

M;

O(F,F, (LOF)|g=1) = 0

at (z,s) € Up x V. By (5.13) the matrix ®yy is invertible at the central point
0, by the holomorphic version of the implicit function theorem. (In the
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smooth category, we apply the “almost holomorphic” version of the implicit
function theorem, cf. [L1]). We get a holomorphic map ¥ = (¥y,...,¥,4;)
such that for (z,s) near the origin,

Fj = Ui(F,(L°F)jg=1), 1<j<n+l.
We now set for each 1 < j<n+1,
h‘j(z7 S, t) = \Ilj (F(Z, S, _t)? (Maf)|oc\:1(z7 S, _t)) :

Since M is strongly pseudoconvex, the CR functions F;,1 < j <n+1, all
extend as holomorphic functions in s + it to the side ¢ > 0. Hence the con-
jugates F'j,1 < j <n+ 1, extend holomorphically to the side ¢ < 0. It now
follows that Fj,1 <j <mn+ 1, extend as holomorphic functions to a full
neighborhood of the origin (See Lemma 9.2.9 in [BER]). (In the smooth cat-
egory, we apply the edge-of-the-wedge theorem, as in [L1]). This establishes
Proposition 5.3. U

We then prove Theorem 2.

Proof of Theorem 2. We again write ) for the open subset of M where F
is smooth. Fix any pg € M and let g9 = F(pg) € M’'. We need to show that
po € € to establish the theorem. Assume that pg = 0, gg = 0. By assumption,
M’ is f-nondegenerate at gg for some ¢ > 1. We note that if 1 < /¢ <2, it
follows from Proposition 5.3 that py € Q. We will prove pg € ) for the general
case £ > 3 by induction on the order of nondegeneracy /.

Suppose the statement pg € € holds when ¢ < k for some k& > 2. We now
consider the case £ = k + 1, that is, we assume M’ is (k + 1)—nondegenerate
at go. Note that if there is a sequence {p;}3°,; C M converging to py such
that M’ is at most k-nondegenerate at each F(p;), then it follows from the
inductive hypothesis that each p; € Q. Consequently, pg € Q and hence the
statement holds. Thus we are only left with the case that there exists a
neighborhood U of py on M such that F(U) C Vj. Here Vi is the set of
k-degeneracy of M’ near qg. More precisely,

Vi, = {q €V : M is k-degenerate at ¢},

for some small neighborhood V.= O N M’ of qo. Here O is a small neighbor-
hood of go in C**!. Since M’ is (k + 1)-nondegenerate at go = 0, by Lemma
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5.1, Ajyiyin (0) # 0, for some 1 < iy <ij--- <1 <n. We define

PW
o A1pw o
(5.14) (W, T7) = det (W, 7).
An—1pw
Y
Set

Vi ={W € 0: op(W,W) =0}.

We split our argument into two cases.

Case I: We first suppose that ig < n — 1. Note that F(U) C V}, C Vi.

We have

Claim 5.6. The w;,-derivative (¢y)w,, of ¢y is nonzero at go = 0.

Proof. 1t is equivalent to show that A;,¢x(0) # 0. That is,

Pw
A1pw
(5.15) Aio det .
An—1pw
Ai, - i pw
Note that
pw
A1pw
Aio det (0)
A_1pw
Ai, - Ay pw
A’iopW
A1pw
= det (0) + det
AnflpW
Ay - Nigpw
pw
A1pw
+ det . (0) + det
NigAp—1pw

Ai1 . AikPW

(0) #0

pw
Aig A pw
(0) 4+ ..
AnflpW
Ag, - Niypw
pw
A1pw
. (0)
An—1pw
Ai A, - Ag pw
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We claim that the first term up to the n'" term above are all zero. Indeed,
otherwise, M’ is at most k—nondegenerate at 0. This is a contradiction to
our assumption.

We finally note the last term in the above equation just equals to
Ajyiy i, (0), which is nonzero. This establishes the lemma. O

Recall F(U) C Vj, C V;. We have
(5.16) or(F(2),F(2)) =0, forall Z € U C M.

Applying L;, to the above equation and evaluating at Z = 0, we have,

n+1
(5.17) Lijer(F F)lo =Y _(er)w. (F, F)loLi, Filo = 0.
i=1
Note that by our normalization, L;, F;(0) = 0, if i # ig and L;, F;,(0) #
0. Moreover, by Claim 5.6, (¢ )w,, (0) # 0. This is a contradiction to (5.17).
Hence Case I cannot happen in this setting.

Case II: We are thus only left with the case if ig = i ==l =
n. Let ¢y be as in (5.14) with 4y = --- =i =n. Again let V,, ={W € O :
o (W, W) = 0}.

By a similar argument as in the proof of Claim 5.6, we are able to prove
the following lemma.

Claim 5.7. The w,-derivative (pr)m, of i is nonzero at 0.

As a consequence of Lemma Claim 5.7, if we define @p(W, W) =
¢k(VV7 W)v then

(5.18) (k) w, (0) # 0.

Note F(U) C Vi C V. We have
or(F(Z),F(Z)) =0, for all Z € U.
Consequently,
(5.19) er(F(2), F(2)) = 0.
Recall that for all Z € U,

(5.20) p(F,F) =0,
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(5.21) Lip(F,F)=0,1<i<n-—1.
Note that
pw (F, F)
LlpW(F7 F)
(5.22) det . (0)#0
Ln—lPW(FE)
(@e)w (F, F)

by equations (4.12), (4.13), (5.18). This implies that equations (5.19), (5.20),
(5.21) forms a nondegenerate system for F. Then by a similar argument
as in the proof of Proposition 5.3, it follows that F' is smooth at 0. This
proves po € Q when ¢ = k + 1. Hence the statement holds for all [ > 1 by
mathematical induction. Theorem 2 is thus established. O

6. Proof of Theorem 3

We are now going to prove Theorem 3. Fix pp € M and let go = F(py) €
M’'. We will show below that we can apply Theorem 2 for gg € M’ \ X
for some complex variety X in C"*!. We note that the transversality of F
implies that the set F~1(M’\ X) is open and dense in M, and the statement
of Theorem 3 follows. Indeed, to prove that last observation, suppose on
the contrary that for a neighbourhood U of p € M we have that F(M N
U) C X. Then dF(CT,M) C CTpy X C T M' +T{ ) M’, and so F is
not transversal at p.

The following theorem gives the missing claim in the above argument.
Let V be a small neighborhood of go in C"*!. We first need to show that

Theorem 5. M’ is finitely nondegenerate near qu away from a complex
analytic variety X in V.

In order to do so, we shall first state and prove a useful general fact. For
this, let M C CV be a generic real-analytic submanifold of CR dimension
n and real codimension d (i.e. N =n + d). We denote the set of germs at
p € M of real-analytic functions on M with C{M},. We say that an ideal
I C C{M}, is Op-closed if for any CR vector field L on M and any f € I we
have that Lf € I. For any ideal I C C{M},, we denote by V(I) the germ
of the real-analytic subset of M given by the vanishing of all elements of I.
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Proposition 6.1. Let I C C{M}, be a ideal which is Op-closed. Then there
exists a neighborhood U of p in CN and a complex subvariety V C U such
that, in the sense of germs at p, VN M =V(I).

Proof. We choose normal coordinates (z,w) € C" x C¢ for M at p; in these
coordinates, p = 0 and M is defined by

w = Q(Za 2,'117),

where Q = (Q',...,Q%) is a holomorphic map with values in C¢, defined in
a neighborhood of (0,0,0) € C" x C" x C?, satisfying

(6.1) Q(2,0,w) = Q(0,z,w) = w, Q2,2 Q(Z,zw)) = w.

A basis of the CR vector fields on M near 0 is given by

d
~ 0
b (
82] Z::Qg Z,z,w) o0,

As usual, we use multtiindex notation and for o = (aq,...,q,) we write
La:Lal'--La"
1 n

Let fe C{M},. There exists a holomorphic function F(z,w,Xx,T)
defined in a neighborhogd of (0,0,0,0) € C™ x C? x C™ x C% such that
f(z,w,z,w) = F(z,w,2,Q(Z,z,w)) for (z,w) € M. For any such f, we
write ¢f(z,w,x) = F(z,w, 2,Q(z,2,w)). We note that 8‘6;“” (z,w,2) =
wraf(z,w, z). We also note that we can write

_ 1 9lal _
62 Pl Qbozw) =3 GaaFle ey Qo sw)|
x=0

—Z LO‘ F(z,w,0,w)x“

1 dlely
_Zal dx af (2, w, 0)x*

So assume that we have chosen a small neighborhood of 0, such that in-
side this neighborhood, V(I) is defined by an ideal I of functions f(z, w, Z, @)
extending holomorphically to a common neighborhood of (0,0,0,0) € C" x
C4 x C" x C%. We claim that V(I) = {(z,w): ¢s(2,w,0) =0, f € I}.

Let Zo = (z0,wo) € V(I), and let f € I. Then the holomorphic func-
tion x — ¢f(20,wo,x) vanishes to infinite order at x = Zy; hence also



176 1. Kossovskiy, B. Lamel, and M. Xiao

¢ (20, wp,0) = 0. Assume now that ¢g4(20,wo,0) = 0 for every g € I. Then
by (6.2), if f € is arbitrary, then f(z0,wo,20,%wo) = 0. Hence, V(I) =
{(z,w): ¢¢(z,w,0) =0, f € I} as claimed. O

The proof of Theorem 5 is a combination of Proposition 6.1 with the
following fact.

Lemma 6.2. Let X C M be the set of points p in M at which M is not
finitely nondegenerate of any order k. Then X can be defined, near every
point p € M, by an ideal which is Jy-closed.

Proof. Let p € M, and let Z = (Z3,...,Zn) be coordinates near p. We note
that M is k-nondegenerate if the space Ej(p) has dimension N, where

Eo=T(M,T°M), Ej=Ey_+{Liw:w€ E,_;,L CR}.

Here TOM = Re(TMOM)L 0 (TOD M) denotes the (real) characteristic
bundle of M and £ the Lie derivative (of forms). It turns out that Ej C
(M, T'M), where T'M = (T©YM)L is the bundle of holomorphic forms
on M. We have that

T'M = (dZy,...,dZx).

‘We note that for
N
w= Z wldZ;,
j=1

it holds that

N
Lrw= Z(ij)de.
j=1
Choose a basis of characteristic forms 6; = chvzl Qé?de, where j =1,...,d.

The space E}, is therefore spanned by forms of the form

N
Lpey = L3 L30; =Y (L*0})dZk, j=1,....d, |a| <k
k=1

We therefore have that M is not £-nondegenerate for some £ < kg at p if

and only if for every choice r = (rq,...,7rn) of integers ry € {1,...,d} and
for every choice of multiindeces 4 = (al,...,a!V), where o/ = (af, ..., %)
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satisfies |A| = max{|a?|: j =1,..., N} < ko, the determinant

Legl ... LN
D(A,r) = det : :
Levol ... LYToN

vanishes at p; that is, if we denote by Xy, the set of all points where p is
not /-nondegenerate where ¢ < ko, then Xy, is defined by the ideal

I, = ({D(A,r): |A| < ko}).

No:ce that LI C Ixyq. The set X = N X} is now defined by I = U1y, which
is Op-closed. O

By combining Proposition 6.1 and Lemma 6.2, we obtain the result in
Theorem 5. Now the proof of Theorem 3 follows by combining Theorem 5
and the argument in the beginning of the section.

7. Proof of Theorem 4

Theorem 4 can be obtained very much in the same way as Theorem 3 from
Theorem 2, noting that the statement of Theorem 3 is also valid in the real-
analytic category. However, we are grateful to one of the anonymous referees,
to point out another, conceptually very nice proof using the methods of the
paper by Mir [Mil], and using our normalization given in Proposition 3.3.
We sketch that proof here, referring the reader for the details of the steps
outlined in the cases below to [Mil].
From Proposition 3.3, we have

n—1
(7.1) p(F(Z),F(Z)) = —ImF,1(Z) + Y _ |F;(Z)?
j=1
+o(F(2),F(Z)), ¢=0(F2Z)).

Applying a basis of CR vector fields Li,...,L,—1 of M to that equa-
tion, and using the implicit function theorem in the resulting system of
n equations, we obtain a holomorphic map ¥, valued in C", defined in a
neighbourhood of (0, LE(0),0) € C*1 x C(»+1)x(n=1) 5 C, such that with
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F = (Fy,...,F,_1, F,11) the following holds on M:
(7.2) F=9(F,LF,F,) = (V(F,LF,F,),...,V,(F,LF,F,)).

We now distinguish the following two cases:

Case 1. There exists a CR vector field X on M and a jo with 1 < jg <n
such that XV, (F,LF,T) #0 in a neighbourhood of (0,0) € M x Cr. In
that case, one can apply the implicit function theorem to the system of
equations formed by the equation 0 = XV (F,LF,F,) and the equations
(7.2), at a generic point in M, to see that F' is real-analytic there; hence we
see that in Case 1, F' is real-analytic on a dense, open subset of M.

Case 2. For all CR vector fields X on M and all j, <j<mn, we
have XW,;(F,LF,T) = 0. In that case, the reflection principle implies that
V(F(Z),LF(Z),T) =: ®(Z,T) is holomorphic in a neighbourhood of 0 €
C™ x C. We write &)(Z, T)= (2.2, T7),...,2n_1(Z,T),T,Pn(Z,T)) and
distinguish the following two alternatives:

Case 2A. o(®(Z,T),®(Z,T)) £ 0 for Z € M and T € C: In that case,
as in Case 1, it follows that actually F' is real-analytic in a dense open subset
of M.

Case 2B. o(®(Z,T),®(Z,T)) =0 for Z € M and T € C: By our nor-
malization of F, we see that ® is a biholomorphism from M x C into M.
This is impossible if we assume M’ to be holomorphically nondegenerate.
Hence, Case 2B does not happen, and in any case, F' is real-analytic on a
dense open subset of M.
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