
P. Ebenfelt et al. (2021) “On the Classification of Normal Stein Spaces and Finite Ball Quotients With Bergman–
Einstein Metrics,”
International Mathematics Research Notices, Vol. 00, No. 0, pp. 1–31
https://doi.org/10.1093/imrn/rnab120

On the Classification of Normal Stein Spaces and Finite Ball

Quotients With Bergman–Einstein Metrics

Peter Ebenfelt∗, Ming Xiao and Hang Xu

Department of Mathematics, University of California at San Diego, La

Jolla, CA 92093, USA

∗Correspondence to be sent to: e-mail: pebenfelt@ucsd.edu

We study the Bergman metric of a finite ball quotient Bn/Ŵ, where n ≥ 2 and Ŵ ⊆

Aut(Bn) is a finite, fixed point free, abelian group. We prove that this metric is Kähler–

Einstein if and only if Ŵ is trivial, that is, when the ball quotient Bn/Ŵ is the unit ball

Bn itself. As a consequence, we characterize the unit ball among normal Stein spaces

with isolated singularities and abelian fundamental groups in terms of the existence of

a Bergman–Einstein metric.

1 Introduction

Since the introduction of the Bergman kernel in [3, 4] and the subsequent groundbreak-

ing work by Kobayashi [20] and Fefferman [11], the study of the Bergman kernel and

metric has been a central subject in several complex variables and complex geometry.

A general problem of fundamental importance seeks to characterize complex analytic

spaces in terms of geometric properties of their Bergman metrics. The Bergman kernel

of the unit ball Bn ⊆ Cn, for example, is explicitly known,

K
Bn(z, w̄) =

n!

πn

1

(1 − 〈z, w̄〉)n+1
, 〈z, w̄〉 =

n∑

j=1

zjw̄j,
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2 P. Ebenfelt et al.

and it is routine to verify that the Bergman metric,

(g
Bn)ij̄ =

∂2

∂zi∂ z̄j

log K
Bn(z, z̄),

is Kähler–Einstein, that is, has Ricci curvature equal to a constant multiple of the metric

tensor; indeed, the Bergman metric of the unit ball has constant holomorphic sectional

curvature, which implies the Kähler–Einstein property. A well-known conjecture posed

by S.-Y. Cheng [7] in 1979 asserts that the Bergman metric of a bounded, strongly

pseudoconvex domain in Cn with smooth boundary is Kähler–Einstein if and only if the

domain is biholomorphic to the unit ball Bn. There are also variations of this conjecture

in terms of other canonical metrics; see, for example, Li [22–24] and the references

therein.

The aforementioned Cheng conjecture was confirmed by S. Fu–B. Wong [14] and

S. Nemirovski–R. Shafikov [26] in the 2D case and by X. Huang and the 2nd author [18]

in higher dimensions. X. Huang and X. Li [16] recently generalized this result to Stein

manifolds with strongly pseudoconvex boundary as follows: The only Stein manifold

with smooth and compact strongly pseudoconvex boundary for which the Bergman

metric is Kähler–Einstein is the unit ball Bn (up to biholomorphism). These results lead

naturally to the question of whether a similar characterization of Bn holds in the setting

of normal Stein spaces with possible singularities; see Conjecture 1.4 in [17]. In this

paper, we provide strong evidence that this is the case. The following two theorems

establish the 1st results that the authors are aware of characterizing the unit ball among

normal Stein spaces with possible singularities in terms of the existence of a Bergman–

Einstein metric.

Theorem 1.1. Let V be an n-dimensional Stein space in CN with N > n ≥ 2, and

G = V ∩ BN . Assume that every point in G is a smooth point of V, except for finitely

many normal singularities in G, and that G has a smooth boundary. Then the Bergman

metric of G is Kähler–Einstein if and only if G is biholomorphic to Bn.

Theorem 1.2. Let V be an n-dimensional Stein space in CN with N > n ≥ 2 and � ⊆ CN

a bounded strongly pseudoconvex domain with smooth and real-algebraic boundary.

Write G = V ∩ �. Assume every point in G is a smooth point of V, except for finitely

many normal singularities in G, and that G has a smooth boundary. Then the following

are equivalent:

(i) G is biholomorphic to Bn.
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Normal Stein Spaces and Finite Ball Quotients 3

(ii) The fundamental group of the regular part of G is abelian and the Bergman

metric of G is Kähler–Einstein.

Remark 1.3. As we will see in the proof (Section 3), if G itself is assumed to be bounded

in Theorem 1.2, then the boundedness assumption on � can be dropped.

We shall utilize the work by Lichtblau [25] (see also F. Forstnerič [13] and

D’Angelo–Lichtblau [9]) and X. Huang [15], as well as methods from [18], [16], and [10] to

reduce the proofs of Theorems 1.1 and 1.2 to that of the following theorem, which is one

of the main results in the paper.

Theorem 1.4. Let Ŵ be a finite abelian subgroup of Aut(Bn), n ≥ 2, and assume Ŵ is

fixed point free. Then the Bergman metric of Bn/Ŵ is Kähler–Einstein if and only if Ŵ is

the trivial group.

Here a subgroup Ŵ of Aut(Bn) is called fixed point free if the only element γ ∈ Ŵ

with a fixed point on ∂Bn is the identity. The fixed point free condition on Ŵ guarantees

that the quotient space Bn/Ŵ has smooth boundary (see [13]). Moreover, as we shall see

in Section 4, an abelian fixed point free finite group Ŵ is in fact cyclic.

To prove Theorem 1.4, it suffices to show that if Ŵ is not the trivial group, that

is, Ŵ 6= {id}, then the Bergman metric is not Kähler–Einstein. For that, we shall use the

transformation formula for the Bergman kernel under branched holomorphic coverings

of complex analytic spaces; see Theorem 2.3 below. A crucial step in the proof is to

reduce the non-Einstein condition to several combinatorial inequalities. The proofs of

these combinatorial inequalities are technical and will be given in a separate section;

see Section 5.

We remark that the analogue of Theorem 1.4 is not true in the case n = 1. If we

denote the unit disk in C by D (= B1), then one readily verifies that any finite subgroup

Ŵ ⊆ Aut(D) must be fixed point free and cyclic. Nevertheless, in this case, X. Huang

and X. Li [16] proved the very interesting result that the Bergman metric of D/Ŵ always

has constant Gaussian curvature, which is equivalent to being Kähler–Einstein in the

one-dimensional case.

The paper is organized as follows. Section 2 recalls some preliminaries on the

Bergman metric and finite ball quotients. In Section 3, we prove that Theorems 1.1

and 1.2 follow from Theorem 1.4. Theorem 1.4 is then proved in Section 4, except for

some combinatorial lemmas used in the proof that are left to Section 5.
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4 P. Ebenfelt et al.

2 Preliminaries

2.1 The Bergman kernel

In this subsection, we will briefly review some properties of the Bergman kernel and

metric on a complex manifold. More details can be found in [20] and [21].

Let M be an n-dimensional complex manifold. Let L2
(n,0)(M) denote the space of

L2-integrable (n, 0)-forms on M, equipped with the inner product

(ϕ,ψ)L2(M) := in
2
∫

M

ϕ ∧ ψ , ϕ,ψ ∈ L2
(n,0)(M). (2.1)

Define the Bergman space of M to be

A2
(n,0)(M) :=

{
ϕ ∈ L2

(n,0)(M) : ϕ is a holomorphic (n, 0)-form on M}. (2.2)

Assume A2
(n,0)(M) 6= {0}. Then A2

(n,0)(M) is a separable Hilbert space. Taking any

orthonormal basis {ϕk}
q
k=1 of A2

(n,0)(M) with 1 ≤ q ≤ ∞, we define the Bergman kernel

(form) of M to be

KM(x, ȳ) = in
2

q∑

k=1

ϕk(x) ∧ ϕk(y).

Then, KM(x, x̄) is a real-valued, real-analytic form of degree (n, n) on M and is

independent of the choice of orthonormal basis.

The Bergman kernel form remains unchanged if we remove a proper complex

analytic subvariety, as the following theorem from [20] shows:

Theorem 2.1 ([20]). If M ′ is a domain in an n-dimensional complex manifold M and if

M − M ′ is a complex analytic subvariety of M of complex dimension ≤ n − 1, then

KM(x, ȳ) = KM ′(x, ȳ) for any x, y ∈ M ′.

This theorem suggests the following generalization of the Bergman kernel form

to complex analytic spaces.
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Normal Stein Spaces and Finite Ball Quotients 5

Definition 2.2. Let M be a reduced complex analytic space, and let V ⊆ M denote its

set of singular points. The Bergman kernel form of M is defined as

KM(x, ȳ) = KM−V(x, ȳ) for any x, y ∈ M − V,

where KM−V denotes the Bergman kernel form of the complex manifold consisting of

regular points of M.

Let N1, N2 be two complex manifolds of dimension n. Let γ : N1 → M and τ :

N2 → M be holomorphic maps. The pullback of the Bergman kernel KM(x, ȳ) of M to

N1 × N2 is defined in the standard way. That is, for any z ∈ N1, w ∈ N2,

(
(γ , τ)∗KM

)
(z, w̄) =

q∑

k=1

γ ∗ϕk(z) ∧ τ ∗ϕk(w).

In terms of local coordinates, we may write the Bergman kernel form of M as

KM(x, ȳ) = K̃M(x, ȳ)dx1 ∧ · · · dxn ∧ dy1 ∧ · · · ∧ dyn, (2.3)

where the function K̃M(x, ȳ) depends on the choice of local coordinates. We then have

(
(γ , τ)∗KM

)
(z, w̄) = K̃M(γ (z), τ(w)) Jγ (z) Jτ (w)dz1 ∧ · · · dzn ∧ dw1 ∧ · · · ∧ dwn, (2.4)

where Jγ and Jτ are the Jacobian determinants of the maps γ and τ , respectively. In

particular, we observe that the kernel function K̃M(x, ȳ) transforms according to the

usual biholomorphic invariance formula under changes of local coordinates.

Let M be as in Definition 2.2. Assume KM(x, x̄) is nowhere vanishing (on the set

of regular points of M, where it is defined). We define a Hermitian (1, 1)-form on the

regular part of M by

ωM := i ∂∂ log KM(x, x̄) := i ∂∂ log K̃M(x, x̄). (2.5)

Here K̃M is as in (2.3). It is easy to verify that this form is independent of the choice

of local coordinates used to determine the function K̃M(x, x̄). The Bergman metric on M

is the metric induced by ωM (when it indeed induces a positive definite metric on the

regular part of M).

We recall the Bergman kernel transformation formula in [10] for (possibly

branched) covering maps of complex analytic spaces. This formula generalizes a

classical theorem of Bell ([1], [2]; see also [6]):
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6 P. Ebenfelt et al.

Theorem 2.3. Let M1 and M2 be two complex analytic sets. Let V1 ⊆ M1 and V2 ⊆ M2

be proper analytic subvarieties such that M1 − V1, M2 − V2 are complex manifolds of the

same dimension. Assume that f : M1 −V1 → M2 −V2 is a finite (m−sheeted) holomorphic

covering map. Let Ŵ be the deck transformation group for the covering map (with |Ŵ| =

m), and denote by Ki the Bergman kernels of Mi for i = 1, 2. Then the Bergman kernel

forms transform according to

∑

γ∈Ŵ

(id, γ )∗K1 = (f , f )∗K2 on (M1 − V1)× (M1 − V1),

where id : M1 → M1 is the identity map.

2.2 Finite ball quotients

In this subsection, we recall the canonical realization of a finite ball quotient due

to H. Cartan [5]. Let Bn denote the unit ball in Cn and Aut(Bn) its (biholomorphic)

automorphism group. Let Ŵ be a finite subgroup of Aut(Bn). Assume Ŵ is fixed point

free; that is, assume no γ ∈ Ŵ − {id} has any fixed points on ∂Bn. As the unitary group

U(n) is a maximal compact subgroup of Aut(Bn), by basic Lie group theory, there exists

some ψ ∈ Aut(Bn) such that Ŵ ⊆ ψ−1 · U(n) · ψ . Thus without loss of generality, we

can assume Ŵ ⊆ U(n), that is, Ŵ is a finite unitary subgroup. The origin 0 ∈ Cn is then

always a fixed point of every element in Ŵ. Moreover, the fixed point free condition on

Ŵ is equivalent to the assertion that every γ ∈ Ŵ − {id} has no other fixed point than 0.

We also note that, by the fixed point free condition, the action of Ŵ on ∂Bn is properly

discontinuous and ∂Bn/Ŵ is a smooth manifold. We remark that such groups Ŵ are well

understood. The classification of the fixed point free finite unitary groups appears in

the book [28] as part of the solution to the problem of finding all spaces of constant

curvature.

By a theorem of H. Cartan [5], the quotient Cn/Ŵ can be realized as a normal

algebraic subvariety V in some CN . Let A denote the algebra of Ŵ-invariant holomorphic

polynomials, that is,

A :=
{
p ∈ C[z1, · · · , zn] : p ◦ γ = p for all γ ∈ Ŵ

}
.

By Hilbert’s basis theorem, A is finitely generated. Moreover, we can find a minimal set

of homogeneous polynomials {p1, · · · , pN} ⊆ A such that every p ∈ A can be expressed
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Normal Stein Spaces and Finite Ball Quotients 7

in the form

p(z) = q(p1(z), · · · , pN(z)),

where q is some holomorphic polynomial in CN . The map Q := (p1, · · · , pN) : Cn → CN

is proper and induces a homeomorphism of Cn/Ŵ onto V := Q(Cn). As Q is a proper

holomorphic polynomial map, V is an algebraic variety. The restriction of Q to the unit

ball Bn maps Bn properly onto a relatively compact domain � ⊆ V. In this way, Bn/Ŵ

is realized as �. Following [27], we call such Q the basic map associated to Ŵ. The ball

quotient � = Bn/Ŵ is nonsingular if and only if the group Ŵ is generated by reflections,

that is, elements of finite order in U(n) that fix a complex subspace of dimension n − 1

in Cn (see [27]); thus, if Ŵ is fixed point free and nontrivial, then � = Bn/Ŵ must have

singularities. Moreover, � has smooth boundary if and only if Ŵ is fixed point free (see

[13] for more results along this line).

3 Proof of Theorems 1.1 and 1.2

In this section, we prove that Theorems 1.1 and 1.2 follow from Theorem 1.4; see

Section 3.2 and 3.1, respectively.

3.1 Proof of Theorem 1.2

The implication (i) H⇒ (ii) in Theorem 1.2 is trivial. We therefore only need to prove the

converse. Let G be as in Theorem 1.2 and assume the conditions in (ii) hold. To prove (i),

assuming that Theorem 1.4 has been proved, we proceed in three steps.

Step 1. It follows from the assumption that the boundary ∂G is strongly

pseudoconvex. We first prove that the boundary ∂G is indeed spherical. Recall that

a CR hypersurface M of dimension 2n − 1 is said to be spherical if it is locally CR

diffeomorphic, near every point, to an open piece of the unit sphere S2n−1 ⊆ Cn. The

proof uses the Kähler–Einstein assumption, the localization of the Bergman kernel,

Fefferman’s expansion of the Bergman kernel, as well as CR invariant theory. Since the

detailed proof for this step is contained in [16] (see Theorem 1.1 in [16]). We will omit

the proof here.

Step 2. In this step, we prove that G is biholomorphic to a ball quotient Bn/Ŵ

for some finite fixed point free subgroup Ŵ ⊆ U(n). Since we know ∂G is spherical from

Step 1 and ∂G is contained in a real algebraic hypersurface in CN , it follows from

Corollary 3.3 in [15] that ∂G is CR equivalent to CR spherical space form S2n−1/Ŵ where

Ŵ ⊆ U(n) is as above. More precisely, there is an algebraic CR map F : S2n−1 → ∂G,
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8 P. Ebenfelt et al.

which is a finite covering map. From this one can further prove that G is biholomorphic

to Bn/Ŵ. The proof of this is identical with Step 3 in Section 5 of [10]. The general setting

of [10] is in dimension n = 2, but, as pointed out in Remark 5.4 in [10], this argument

works for all dimensions. The argument shows that F extends to a proper, holomorphic

branched covering map from Bn onto G, which realizes G as the ball quotient Bn/Ŵ.

In particular, G is biholomorphic to Bn/Ŵ as claimed. Since Ŵ ⊆ U(n) is fixed point

free, either G has one unique singular point at F(0) when Ŵ 6= {id} or G is smooth

when Ŵ = {id}. In the former case, F : Bn − {0} → G − {F(0)} is a smooth covering

map whose group of deck transformations is Ŵ, and in the latter case, F extends as a

biholomorphism Bn → G.

Step 3. By the conclusion in Step 2, the fundamental group of the regular part of

G is isomorphic to Ŵ. By assumption in (ii), Ŵ is abelian. Moreover, the biholomorphism

between G and Bn/Ŵ gives an isometry between the Bergman metrics of G and Bn/Ŵ.

By assumption in (ii) again, the Bergman metric of Bn/Ŵ is Kähler–Einstein. Thus, by

Theorem 1.4, Ŵ must then be the trivial group {id}. Hence G is biholomorphic to Bn.

3.2 Proof of Theorem 1.1

We now prove Theorem 1.1, under the assumption that Theorems 1.4 and 1.2 have been

proved. The “if” implication is trivial, and we only need to prove the converse. Thus, we

assume that G is as in Theorem 1.1 and the Bergman metric of G is Kähler–Einstein,

and we shall prove G is biholomorphic to Bn. By copying the argument in Step 1 and

Step 2 in Section 3.1, we conclude that there is an algebraic CR map F from S2n−1 to

∂G ⊆ ∂BN = S2N−1, which is a finite covering map. In particular, the map F induces a

smooth, nonconstant CR map from the spherical space form S2n−1/Ŵ, for some finite

fixed point free subgroup Ŵ ⊆ Aut(Bn), to S2N−1 (see [25], [9], and [8]). Since Ŵ is a finite

subgroup of Aut(Bn), by basic Lie group theory as above, Ŵ is contained in a conjugate of

the unitary group U(n). Then it follows from [25] that the finite subgroup Ŵ is abelian;

and thus so is the fundamental group of the regular part of G (Indeed, by Theorem 8

in [9], Ŵ is conjugate to one from a short list of special cyclic subgroups of U(n)). Now,

Theorem 1.1 follows from Theorem 1.2.

Remark 3.1. Theorem 1.1 can be also proved without going through the full depth of

Theorems 1.2 and 1.4. By [9], there are only three cases in the short list of special cyclic

subgroups of U(n) that need to be considered. One of these is generated by a multiple of

the identity and the proof in this case is much simpler. The other two cases have either
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Normal Stein Spaces and Finite Ball Quotients 9

only two or three distinct eigenvalues, and the proof also simplifies, although to a lesser

extent.

4 Proof of Theorem 1.4

In this section, we shall prove Theorem 1.4. It suffices to prove the Bergman metric of

Bn/Ŵ cannot be Kähler–Einstein if Ŵ ⊆ Aut(Bn) is nontrivial, abelian, and fixed point

free. We will prove this by contradiction. Thus, we suppose Ŵ ⊆ Aut(Bn) is abelian and

fixed point free, Ŵ 6= {id}, and the Bergman kernel of � = Bn/Ŵ is Kähler–Einstein. As

before, we know Ŵ is contained in a conjugate of U(n). Thus, without loss of generality,

we will assume Ŵ ⊆ U(n).

We shall split our proof into three subsections. Section 4.1 reduces the Kähler–

Einstein condition of the Bergman metric to a functional equation (see equation (4.8))

for general finite, fixed point free groups Ŵ ⊂ Aut(Bn). In Section 4.2, we focus on

the case where the group Ŵ is additionally assumed to be abelian, and simplify the

equation further into a rather explicit one (see equation (4.13)). After that, in Section

4.3, we take the Taylor expansion of both sides of the equation. By carefully comparing

the lowest order Taylor terms, we conclude that they can never match up due to some

combinatorial inequalities. The proofs of these inequalities are then given in Section 5,

which concludes the proof of Theorem 1.4.

4.1 The Kähler–Einstein equation on finite ball quotients

Since any two realizations of Bn/Ŵ are biholomorphic, we can use H. Cartan’s canonical

realization of Bn/Ŵ, which was discussed in Section 2.2. Thus, let Q : Cn → CN be the

basic map realizing B/Ŵ as a domain � := Q(Bn) in the n-dimensional algebraic variety

Q(Cn), as explained in Section 2.2. Set

Z := {z ∈ Cn : the Jacobian of Q at z is not of full rank}.

Note that in fact Z = {0} by the fixed point free condition and nontriviality of Ŵ (see [5]

and [10]). We denote by K� and K
Bn the Bergman kernel forms of � and Bn, respectively.

By the transformation formula in Theorem 2.3, they are related by

∑

γ∈Ŵ

(id, γ )∗K
Bn = (Q, Q)∗K� on (Bn − Z)× (Bn − Z), (4.1)
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10 P. Ebenfelt et al.

where id : Bn → Bn is the identity map. We note that

Q∗(i∂∂ log K�) = i∂∂ log((Q, Q)∗K�).

Furthermore, we also note that the Kähler–Einstein condition is a local property and

that Q is a local biholomorphism (on Bn − Z). It follows that the Bergman metric of � is

Kähler–Einstein if and only if the logarithm of the left hand side of (4.1), restricted to

the diagonal w = z, gives the potential function of a Kähler–Einstein metric on Bn − Z.

Recall the notation 〈u, v〉 =
∑n

i=1 uivi for two column vectors u = (u1, · · · , un)
⊺,

v = (v1, · · · , vn)
⊺. Set dγ := det γ for γ ∈ U(n). The left hand side of (4.1), in the standard

coordinates z, w of Cn, equals

∑

γ∈Ŵ

(id, γ )∗K
Bn =

n!

πn

∑

γ∈Ŵ

dγ

(1 − 〈z, γw〉)n+1
dz1 ∧ . . .dzn ∧ dw1 ∧ . . . ∧ dwn,

where z, w ∈ Bn are regarded as column vectors and the elements of Ŵ as unitary

matrices. We introduce the function

ϕ(z, w) :=
∑

γ∈Ŵ

dγ

(1 − 〈z, γw〉)n+1
,

and note that ϕ(z, z) is real analytic on Bn.

Remark 4.1. We also note that the above formula of ϕ can be regarded as a kind of

invariant average over the group of the Bergman kernel of the ball (up to constants).

Moreover, by the fixed point freeness of Ŵ, except for γ = id, every term
dγ

(1−〈z,γ z〉)n+1

extends real analytically to a neighborhood of Bn.

Next, by the preceding discussion, we conclude that the Bergman metric of � is

Kähler–Einstein if and only if ϕ = ϕ(z, z̄) is the potential function of a Kähler–Einstein

metric, that is, for z ∈ Bn − Z and some constant c1 ∈ R,

− ∂∂ log8(z, z) = −c1 ∂∂ logϕ(z, z), (4.2)

where 8 = det(gij) with gij = ∂zi
∂zj

logϕ. (We remark that one can use the result by

Klembeck [19] to find the value of c1, but this value will also come out directly from our

arguments below.) The equation (4.2) is equivalent to the statement that log8− c1 logϕ

is pluriharmonic on Bn−Z. Consequently, since Z = {0} and n ≥ 2 so that Bn−Z is simply

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab120/6304409 by Science and Engin Library user on 03 July 2021



Normal Stein Spaces and Finite Ball Quotients 11

connected, there exists some holomorphic function h on Bn − Z such that

log8(z, z)− c1 logϕ(z, z) = h(z)+ h(z).

By Hartogs’s extension theorem, again since n ≥ 2, we may assume h is

holomorphic on Bn.

Lemma 4.2. The function h is constant. Furthermore, h + h = n ln(n + 1) and c1 = 1.

Proof. This lemma is in fact proved in [16] using ideas from [14]. For the reader’s

convenience, we also sketch a proof here. We give a slightly different proof in order to

avoid some tedious computations.

Set g = e2h. Then g is holomorphic in Bn and |g| = eh+h̄ > 0. We first study the

boundary behavior of g.

Claim. lim|z|→1 |g| = a for some constant 0 ≤ a ≤ ∞.

Proof of the claim. Note that

|g| = eh+h̄ =
8

ϕc1
. (4.3)

We also note that

n!

πn
ϕ(z, z̄) =

n!

πn

( 1

(1 − |z|2)n+1
+

∑

γ∈Ŵ,γ 6=id

dγ

(1 − 〈z, γ z〉)n+1

)

:=
n!

πn

1

(1 − |z|2)n+1
+ T(z, z̄),

(4.4)

where T(z, z̄) is real analytic in a neighborhood of Bn, as observed in Remark 4.1. In

particular, the asymptotic singular part of n!
πn ϕ as z → ∂Bn is the same as that of the

Bergman kernel of Bn. Let J be the Monge–Ampère type operator as defined in (4.7). With

the preceding observation and the well known formula

8 = det
(
∂zi
∂zj

log
(
ϕ
))

=
J(ϕ)

ϕn+1
,

a simple calculation yields that the most singular part of 8 (as z → ∂Bn) is identical

with that of the volume form of the Bergman metric on Bn. More precisely,

8 =
(n + 1)n

(1 − |z|2)n+1
+ 8̂, (4.5)
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12 P. Ebenfelt et al.

where 8̂ is real analytic in Bn − Z and satisfies (1 − |z|2)n+18̂ → 0 as |z| → 1. Then by

(4.3), (4.4), and (4.5), we see

lim
|z|→1

|g| = (n + 1)n lim
|z|→1

(1 − |z|2)(n+1)c1

(1 − |z|2)n+1
. (4.6)

Thus, depending on c1, we have lim|z|→1 |g| = a for some 0 ≤ a ≤ ∞. This proves the

claim. �

But g is a nowhere vanishing holomorphic function in Bn. We apply the

maximum modulus principle to g and 1
g , respectively, and use (4.6) to obtain c1 = 1. And

in this case by (4.6), a = (n + 1)n. Applying the maximum principle again, we see |g| ≡

a = (n+1)n. This implies g and thus h are constant functions, and h+h ≡ n ln(n+1). The

proof of the lemma is finished. �

We define the Monge–Ampère type operator J as follows (note that it differs by

a sign from the standard operator introduced by Fefferman [12]):

J(ϕ) := det


 ϕ ϕzj

ϕzi
ϕzizj


 , (4.7)

We use Lemma 4.2 and the well-known formula 8 = J(ϕ)/ϕn+1 to further simplify (4.2)

into

J(ϕ)(z, z) = (n + 1)nϕn+2(z, z) (4.8)

for z ∈ Bn − Z. Since both sides of (4.8) are in fact real analytic in Bn, we see (4.8) holds

on Bn by continuity. We pause here to observe that if Ŵ is such that ϕ(0, 0) 6= 0, then it

follows that logϕ extends as the potential of a Kähler–Einstein metric in the whole unit

ball Bn, which by uniqueness of the Cheng–Yau metric, can be used to directly conclude

that Ŵ = {id}; this was previously observed in [16, Corollary 5.4]. Now, let us compute

J(ϕ). Clearly, we have

ϕzi
= (n + 1)

∑

γ∈Ŵ

dγ · (γ z)i

(1 − 〈z, γ z〉)n+2
, ϕzj

= (n + 1)
∑

γ∈Ŵ

dγ · (z⊺γ )j

(1 − 〈z, γ z〉)n+2
,

where (γ z)i denotes the i-th entry of the column vector γ z and similarly (z⊺γ )j denotes

the j-th entry of the row vector z⊺γ . By differentiating both sides one more time, we
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Normal Stein Spaces and Finite Ball Quotients 13

obtain

ϕzizj
=(n + 1)

∑

γ∈Ŵ

dγ ·
γij(1 − 〈z, γ z〉)+ (n + 2)(γ z)i(z

⊺γ )j

(1 − 〈z, γ z〉)n+3
,

where γij is the (i, j) component of the matrix γ .

For each γ ∈ Ŵ, 0 ≤ j ≤ n, we define a column vector-valued function ξj(γ ) : Bn →

Cn+1 in the variables (z, z) as follows:

ξ0(γ )(z, z) :=

(
1 − 〈z, γ z〉

(n + 1)γ z

)
and ξj(γ )(z, z) :=

(
z⊺(γ )j

(γ )j(1−〈z,γ z〉)+(n+2)γ z(z⊺(γ )j)

1−〈z,γ z〉

)
for1 ≤ j ≤ n,

where (γ )j is the j-th column vector of the matrix γ . Given any (n+1) (possibly repeated)

elements γ0, · · · , γn in Ŵ, we define a matrix-valued function A(γ0, · · · , γn) : Bn → C(n+1)2

as follows:

A(γ0, · · · , γn) =
(
ξ0(γ0) · · · ξn(γn)

)
.

We emphasize that the map A(γ0, · · · , γn) sends a point z ∈ Bn to an (n+1)×(n+1)matrix.

We then expand the determinant in (4.7) by multi-linearity with respect to columns. We

obtain the following formula:

J(ϕ) =
∑

γ0,··· ,γn∈Ŵ

(n + 1)n dγ0
· · · dγn∏n

i=0(1 − 〈z, γiz〉)n+2
det

(
A(γ0, · · · , γn)

)
. (4.9)

4.2 Abelian group case

From now on, we will assume that Ŵ is a finite, abelian, fixed point free subgroup of

U(n).

Lemma 4.3. Let Ŵ ⊆ U(n) be a finite abelian group. If Ŵ is also fixed point free,

then it is cyclic of order m for some m ∈ N. Furthermore, after replacing Ŵ by an

appropriate conjugate of itself, there are primitive m−th roots of unity ε1, · · · , εn such

that the diagonal matrix diag(ε1, · · · , εn) generates Ŵ.

Proof. The result is well known; see, for example, [28]. For the convenience of readers,

we will sketch a proof here. Since Ŵ ⊆ U(n) is abelian, one can simultaneously

diagonalize the matrices in Ŵ. Thus, replacing Ŵ by an appropriate conjugate of Ŵ,

we can assume Ŵ consists of diagonal matrices. Consider the group homomorphism

π1 : Ŵ → U(1) defined by π1(γ ) := γ11 for γ = diag(γ11, · · · , γnn). We claim π : Ŵ → π1(Ŵ)
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14 P. Ebenfelt et al.

is an isomorphism. Indeed, let γ ∈ Ŵ be such that π1(γ ) = 1. Then 1 is an eigenvalue of γ ,

and by the fixed point free condition, γ must be the identity. This proves the claim. But

π1(Ŵ) ⊆ U(1) is finite, thus it must be cyclic. So is Ŵ and this proves the 1st assertion. To

prove the 2nd assertion, write γ for a generator of Ŵ. By our assumption, γ is a diagonal

matrix, and again the fixed-point free condition guarantees that all diagonal elements

of γ have the same order m. This establishes the 2nd assertion. �

By Lemma 4.3, we can assume Ŵ = {γ , γ 2, · · · , γm = id} for some generator

γ =




ε1

. . .

εn


 .

Here m ≥ 2 by the nontriviality of Ŵ. And ε1, · · · , εn are primitive m-th roots of unity. By

setting ε := ε1, for 1 ≤ j ≤ n we can write εj in the form of

εj = εtj , for some1 ≤ tj ≤ m − 1 with gcd(tj, m) = 1.

By renumbering the coordinates, we can assume

1 = t1 ≤ t2 ≤ · · · ≤ tn ≤ m − 1.

For any γ ∈ Ŵ ⊆ U(1)× · · · × U(1), note that γ−1 = γ ⊺ = γ . Hence, we can replace

all γj by γj in the sum in J(ϕ) and obtain

J(ϕ) =
∑

γ0,··· ,γn∈Ŵ

(n + 1)n dγ0
· · · dγn∏n

i=0(1 − 〈z, γiz〉)n+2
det

(
A(γ0, · · · , γn)

)
.

Write γj = γ kj for some 0 ≤ kj ≤ m − 1. Then dγj
= det γj = εkj(

∑n
i=1 ti). Choose

z = z∗ := (z1, 0, · · · , 0)⊺ with |z1| < 1 and set x = z∗ · z∗ = z1z1 < 1. Then at z∗, we have

det
(
A(γ0, · · · , γn)

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − εk0x z1ε
k1 0

(n + 1)εk0w1
εk1 (1−εk1 x)+(n+2)ε2k1 x

1−εk1 x
0

0 0




ε
k2
2

. . .

ε
kn
n




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=ε
k1+

∑n
j=2 k2t2

(
1 − (n + 2)εk0x + (n + 2)

1 − εk0x

1 − εk1x
εk1x

)
.
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Normal Stein Spaces and Finite Ball Quotients 15

In the following, we use the notation

• T = (t1, · · · , tn), where t1 = 1.

• K = (k0, k1, · · · , kn) and K′ = (k1, · · · , kn).

• |T| =
∑n

j=1 tj and |K′| =
∑n

j=1 kj.

Using these notations, we have, at z = z∗,

J(ϕ)(z∗, z∗) = (n + 1)n
m−1∑

k0,··· ,kn=0

ε|K|·|T|+K′·T

∏n
i=0(1 − εkix)n+2

(
1 − (n + 2)εk0x + (n + 2)

1 − εk0x

1 − εk1x
εk1x

)
.

If we set

I :=
m−1∑

k0,··· ,kn=0

ε|K|·|T|+K′·T

∏n
i=0(1 − εkix)n+2

,

II := − (n + 2)
m−1∑

k0,··· ,kn=0

ε|K|·|T|+K′·T+k0x∏n
i=0(1 − εkix)n+2

,

III :=(n + 2)
m−1∑

k0,··· ,kn=0

ε|K|·|T|+K′·T+k1x∏n
i=0(1 − εkix)n+2

1 − εk0x

1 − εk1x
,

then

J(ϕ)(z∗, z∗) = (n + 1)n
(
I + II + III

)
. (4.10)

We pause to introduce the following definition and lemmas. Let ε be as above.

Write D for the open unit disk in C.

Definition 4.4. Let t ∈ Z, p ∈ Z+. Define ft,p : D → C as

ft,p(x) :=
m−1∑

k=0

1

εtk(εk − x)p
.

Lemma 4.5. The following holds:

f ′
t,p(x) = pft,p+1(x).

In general, for j ≥ 2, f
(j)
t,p(x) = p(p + 1) · · · (p + j − 1)ft,p+j(x).
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16 P. Ebenfelt et al.

Proof. Note

f ′
t,p(x) =

m−1∑

k=0

p

εtk(εk − x)p+1
= pft,p+1(x).

This proves the 1st statement. The latter assertion follows from the 1st statement and

an inductive argument. �

Lemma 4.6. The following hold:

(1)

ft,p(0) =





0 ifm ∤ (t + p),

m if m | (t + p).

(2) For j ≥ 1,

f
(j)
t,p(0) =





0 if m ∤ (t + p + j),

m
∏i=j−1

i=0 (p + i) if m | (t + p + j).

Proof. To prove part (1), we note that

ft,p(0) =

m−1∑

k=0

ε−k(t+p).

Then the result in part (1) follows directly by the fact that ε is a primitive m-th root of

unity. Part (2) follows from part (1) and Lemma 4.5. �

Lemma 4.7. The following holds:

m−1∑

k=0

εtk

(1 − εkx)p
= ft−p,p(x).

Proof.

m−1∑

k=0

εtk

(1 − εkx)p
=

m−1∑

k=0

1

εtk(1 − ε−kx)p
=

m−1∑

k=0

1

ε(t−p)k(εk − x)p
= ft−p,p(x),

where the 1st equality follows from the fact that ε is a primitive m-th root of unity. �
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Normal Stein Spaces and Finite Ball Quotients 17

Now, using the above notation and Lemma 4.7, we shall express J(ϕ)(z∗, z∗) in

terms of ft,p.

I =

m−1∑

k0,··· ,kn=0

ε|K|·|T|+K′·T

∏n
i=0(1 − εkix)n+2

=

m−1∑

k0=0

εk0|T|

(1 − εk0x)n+2

m−1∑

k1=0

εk1(|T|+t1)

(1 − εk1x)n+2
· · ·

m−1∑

kn=0

εkn(|T|+tn)

(1 − εknx)n+2

=f|T|−(n+2),n+2(x) f|T|+t1−(n+2),n+2(x) · · · f|T|+tn−(n+2),n+2(x).

II = − (n + 2)x
m−1∑

k0,··· ,kn=0

ε|K|·|T|+K′·T+k0

∏n
i=0(1 − εkix)n+2

= − (n + 2)x
m−1∑

k0=0

εk0(|T|+1)

(1 − εk0x)n+2

m−1∑

k1=0

εk1(|T|+t1)

(1 − εk1x)n+2
· · ·

m−1∑

kn=0

εkn(|T|+tn)

(1 − εknx)n+2

= − (n + 2)x f|T|−(n+1),n+2(x) f|T|+t1−(n+2),n+2(x) · · · f|T|+tn−(n+2),n+2(x).

III =(n + 2)x
m−1∑

k0,··· ,kn=0

ε|K|·|T|+K′·T+k1

∏n
i=0(1 − εkix)n+2

1 − εk0x

1 − εk1x

=(n + 2)x
m−1∑

k0=0

εk0|T|

(1 − εk0x)n+1

m−1∑

k1=0

εk1(|T|+t1+1)

(1 − εk1x)n+3

m−1∑

k2=0

εkn(|T|+t2)

(1 − εk2x)n+2
· · ·

m−1∑

kn=0

εkn(|T|+tn)

(1 − εknx)n+2

=(n + 2)x f|T|−(n+1),n+1(x) f|T|+t1−(n+2),n+3(x) f|T|+t2−(n+2),n+2(x) · · · f|T|+tn−(n+2),n+2(x).

Set

P :=f|T|−(n+2),n+2f|T|−(n+1),n+2 − (n + 2)x
(
f 2
|T|−(n+1),n+2 − f|T|−(n+1),n+1f|T|−(n+1),n+3

)
,

Q :=f|T|+t2−(n+2),n+2 · · · f|T|+tn−(n+2),n+2.

(4.11)

By (4.10) and the fact t1 = 1, we conclude that J(ϕ)(z∗, z∗) can be written as

J(ϕ)(z∗, z∗) = (n + 1)nP(x)Q(x). (4.12)
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18 P. Ebenfelt et al.

Moreover, at z = z∗ = (z1, 0, · · · , 0)⊺, we can simplify ϕ as

ϕ(z∗, z∗) =
∑

γ∈Ŵ

dγ

(1 − 〈z∗, γ z∗〉)n+1
=
∑

γ∈Ŵ

dγ

(1 − 〈z∗, γ z∗〉)n+1
=

m−1∑

k=0

εk |T|

(1 − εkx)n+1

= f|T|−(n+1),n+1(x).

The 2nd equality here is due to the fact that Ŵ ⊆ U(1) × · · · × U(1) ⊆ U(n), as also

explained above. By the above expression for ϕ and (4.12), we conclude that at z = z∗,

the Kähler–Einstein equation (4.8) is reduced to, for x ∈ [0, 1) ⊆ R,

f n+2
|T|−(n+1),n+1(x) = P(x)Q(x), (4.13)

where P, Q are defined in (4.11). Since both sides of (4.13) are holomorphic in D, we

conclude that (4.13) in fact holds for all x ∈ D.

4.3 Reduction to combinatorial inequalities

We shall take the Taylor expansion of both sides in (4.13) at x = 0. By comparing the

Taylor coefficients, we shall prove that (4.13) cannot hold if m = |Ŵ| ≥ 2 and n ≥ 2,

which will establish Theorem 1.4. We shall proceed by dividing the proof into several

cases.

Case I. m | |T|.

As m | |T|, m ∤ |T| + 1. Lemma 4.6 yields that

f|T|−(n+1),n+1(0) = m, f|T|−(n+1),n+2(0) = 0.

Therefore, at x = 0,

f n+2
|T|−(n+1),n+1(0) = mn+2 6= 0 = P(0) · Q(0),

which implies that the Kähler–Einstein equation (4.13) does not hold.

Case II. m ∤ |T| and m | |T| + 1.

In this case, we have

m ∤ |T| + 2, · · · , m ∤ |T| + m, m | |T| + m + 1.
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Normal Stein Spaces and Finite Ball Quotients 19

We take the Taylor expansion of f|T|−(n+2),n+2 at x = 0.

f|T|−(n+2),n+2(x) =

m+1∑

j=0

f
(j)
|T|−(n+2),n+2(0)

j!
xj + O(m + 2)

=

(
n + 2

1

)
mx +

(
n + m + 2

m + 1

)
mxm+1 + O(m + 2).

(4.14)

Here for a holomorphic function h in a neighborhood U ⊆ C of 0, we say h is O(j), j ≥ 1,

if h(i)(0) = 0 for all 0 ≤ i < j. The last equality follows from Lemma 4.6.

Similarly, we also have

f|T|−(n+1),n+2(x) =m +

(
m + n + 1

m

)
mxm + O(m + 1),

f|T|−(n+1),n+1(x) =

(
n + 1

1

)
mx +

(
m + n + 1

m + 1

)
mxm+1 + O(m + 2),

f|T|−(n+1),n+3(x) =

(
m + n + 1

m − 1

)
mxm−1 + O(m).

By (4.11), it follows that

P =

((
n + 2

1

)
mx +

(
n + m + 2

m + 1

)
mxm+1

)(
m +

(
m + n + 1

m

)
mxm

)

− (n + 2)x

(
m +

(
m + n + 1

m

)
mxm

)2

+ (n + 2)x

((
n + 1

1

)
mx +

(
m + n + 1

m + 1

)
mxm+1

)(
m + n + 1

m − 1

)
mxm−1 + O(m + 2)

=m2

(
n + m + 1

m

)
xm+1

(
−n − 2 +

m + n + 2

m + 1
+ (n + 1)m

)
+ O(m + 2)

=
m4(n + 1)

m + 1

(
n + m + 1

m

)
xm+1 + O(m + 2).

Recall that

Q = f|T|+t2−(n+2),n+2 · · · f|T|+tn−(n+2),n+2,

where 1 = t1 ≤ t2 ≤ · · · ≤ tn ≤ m − 1. Let 1 ≤ a ≤ n be such that

1 = t1 = · · · = ta < ta+1 ≤ · · · ≤ tn.
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20 P. Ebenfelt et al.

When a = n, the above means that all t′
js equal 1. Now for 1 ≤ j ≤ a, we have

f|T|+tj−(n+2),n+2(x) = f|T|−(n+1),n+2(x) = m + O(1).

And for a + 1 ≤ j ≤ n, |T| + 1 < |T| + tj < |T| + m + 1. We get, by a similar computation

as in (4.14),

f|T|+tj−(n+2),n+2(x) =

(
n + m + 2 − tj

m + 1 − tj

)
mxm+1−tj + O(m + 2 − tj).

Thus,

Q = mn−1

(
m + n + 2 − ta+1

m + 1 − ta+1

)
· · ·

(
m + n + 2 − tn

m + 1 − tn

)
x(m+1)(n−a)−(ta+1+···+tn) + h.o.t.,

where h.o.t. denotes the higher order term. Combining this with the Taylor expansion of

P, the lowest order term in PQ at x = 0 is

mn+3(n + 1)

m + 1

(
n + m + 1

m

)(
m + n + 2 − ta+1

m + 1 − ta+1

)
· · ·

(
m + n + 2 − tn

m + 1 − tn

)
x
(m+1)(n−a+1)−

∑n
j=a+1 tj .

(4.15)

When a = n,
∑n

j=a+1 tj is a null sum and equals zero. Furthermore, we have

f n+2
|T|−(n+1),n+1 = (n + 1)n+2mn+2xn+2 + h.o.t . (4.16)

Suppose that the Kähler–Einstein equation (4.13) holds. Then f n+2
|T|−(n+1),n+1 and PQ must

share the same Taylor expansion at x = 0. In particular, their lowest order terms, where

the former is found in (4.16) and the latter in (4.15), must have the same degree, that is,

n + 2 = (m + 1)(n − a) −
∑n

j=a+1 tj. In this case, however, the coefficients of the lowest

order terms do not match by the following lemma.

Lemma 4.8. Suppose m, n ≥ 2, 1 ≤ a ≤ n, and 1 = t1 = · · · = ta < ta+1 ≤ · · · ≤ tn ≤

m − 1. If n + 2 = (m + 1)(n − a + 1)−
∑n

j=a+1 tj, then

(n + 1)n+1(m + 1) > m

(
n + m + 1

m

)(
m + n + 2 − ta+1

m + 1 − ta+1

)
· · ·

(
m + n + 2 − tn

m + 1 − tn

)
.
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Normal Stein Spaces and Finite Ball Quotients 21

In the case a = n, that is, all t′
js equal 1, the above is reduced to the following: if

m = n + 1, then

(n + 1)n+1(m + 1) > m

(
n + m + 1

m

)
.

This is a contradiction and we thus conclude the Kähler–Einstein equation (4.13)

does not hold. The proof of Lemma 4.8 is left to Section 5.

Case III. m ∤ |T|, m ∤ |T|+ 1, · · · , m ∤ |T|+ k − 1 and m | |T|+ k for some 2 ≤ k < m.

We follow the same procedure as in Case II. Similarly, as in (4.14), by using

Lemma 4.6, we have

f|T|−(n+2),n+2(x) =

k+m∑

j=0

f
(j)
|T|−(n+2),n+2(0)

j!
xj + O(xk+m+1)

=

(
n + k + 1

k

)
mxk +

(
n + k + m + 1

k + m

)
mxk+m + O(k + m + 1),

and

f|T|−(n+1),n+2(x) =

(
n + k

k − 1

)
mxk−1 +

(
k + m + n

k + m − 1

)
mxk+m−1 + O(k + m),

f|T|−(n+1),n+1(x) =

(
n + k

k

)
mxk +

(
n + k + m

k + m

)
mxk+m + O(k + m + 1),

f|T|−(n+1),n+3(x) =

(
n + k

k − 2

)
mxk−2 +

(
n + k + m

k + m − 2

)
mxk+m−2 + O(k + m − 1).

By (4.11), it follows that

P =

(
n + k

k − 1

)(
n + k + m

n

)
m4

k
x2k+m−1 + h.o.t. (4.17)

Now we turn to the computation of the leading term in Q. Recall that 1 = t1 ≤

t2 ≤ · · · ≤ tn ≤ m − 1. We shall divide the computation into two subcases: k < tn and

k ≥ tn.

Subcase III (a). k < tn.

Since k ≥ 2, there exists some 1 ≤ a ≤ n − 1 such that

1 = t1 ≤ · · · ≤ ta ≤ k < ta+1 ≤ · · · ≤ tn ≤ m − 1.
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For 1 ≤ j ≤ a, as |T| + 1 ≤ |T| + tj ≤ |T| + k, by the Taylor expansion and Lemma 4.6, we

have

f|T|+tj−(n+2),n+2(x) =

(
n + 1 + k − tj

k − tj

)
mxk−tj + O(k − tj + 1).

For a + 1 ≤ j ≤ n, it follows that |T| + k < |T| + tj < |T| + k + m. Thus, by the Taylor

expansion and Lemma 4.6,

f|T|+tj−(n+2),n+2(x) =

(
n + 1 + m + k − tj

m + k − tj

)
mxm+k−tj + O(m + k − tj + 1).

By (4.11), we obtain

Q =

a∏

j=2

(
n + 1 + k − tj

k − tj

)
mxk−tj ·

n∏

j=a+1

(
n + 1 + m + k − tj

m + k − tj

)
mxm+k−tj + h.o.t.

Therefore, (4.17) and the above equality yield the leading term in the Taylor expansion

of PQ at x = 0 as

mn+3

k

(
n + k

k − 1

)(
n + k + m

n

) a∏

j=2

(
n + 1 + k − tj

k − tj

)
·

n∏

j=a+1

(
n + 1 + m + k − tj

m + k − tj

)
· xs,

where

s = (n + 1)k + m − 1 −

a∑

j=2

tj +

n∑

j=a+1

(m − tj). (4.18)

On the other hand, the left hand side of (4.13) satisfies

f n+2
|T|−(n+1),n+1 =

(
n + k

k

)n+2

mn+2xk(n+2) + h.o.t.

Suppose that the Kähler–Einstein equation (4.13) holds. Then f n+2
|T|−(n+1),n+1 and

PQ must share the same Taylor expansion at x = 0. In particular, their lowest order

terms have the same degree, that is, s = k(n + 2), which in view of (4.18) implies that

k = m −

a∑

j=1

tj +

n∑

j=a+1

(m − tj). (4.19)
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In this case, the coefficients of the lowest terms are, however, unequal by the following

lemma.

Lemma 4.9. Suppose 1 ≤ a ≤ n − 1, 2 ≤ k ≤ m − 1 and 1 = t1 ≤ · · · ≤ ta ≤ k < ta+1 ≤

· · · ≤ tn ≤ m − 1. If (4.19) holds, then

k

(
n + k

k

)n+2

> m

(
n + k + m

n

) a∏

j=1

(
n + 1 + k − tj

k − tj

)
·

n∏

j=a+1

(
n + 1 + m + k − tj

m + k − tj

)
.

This is a contradiction and we thus conclude that (4.13) does not hold. We will

leave the proof of Lemma 4.9 to Section 5.

Subcase III (b). k ≥ tn.

In this case, |T| + 1 ≤ |T| + tj ≤ |T| + k for all 1 ≤ j ≤ n. Thus we have, by the

Taylor expansion,

Q =

n∏

j=2

(
n + 1 + k − tj

k − tj

)
mxk−tj + h.o.t.

Note that all other terms in (4.13) have the same Taylor expansions as in case III (a). As

before, in order to disprove (4.13), it is sufficient to verify the following lemma, whose

proof is also delayed to Section 5.

Lemma 4.10. Let 2 ≤ k ≤ m − 1 and n ≥ 2. Let 1 = t1 ≤ · · · ≤ tn ≤ k. If

k = m −

n∑

j=1

tj,

then

k

(
n + k

k

)n+2

> m

(
n + k + m

n

) n∏

j=1

(
n + 1 + k − tj

k − tj

)
.

5 Proof of the Combinatorial Lemmas

In this section, we shall prove Lemmas 4.8, 4.9, and 4.10.

5.1 Proof of Lemma 4.8

For the reader’s convenience, we restate Lemma 4.8 here.
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Lemma 5.1. Suppose m, n ≥ 2, 1 ≤ a ≤ n, and 1 = t1 = · · · = ta < ta+1 ≤ · · · ≤ tn ≤

m − 1. If n + 2 = (m + 1)(n − a + 1)−
∑n

j=a+1 tj, then

(n + 1)n+1(m + 1) > m

(
n + m + 1

m

)(
m + n + 2 − ta+1

m + 1 − ta+1

)
· · ·

(
m + n + 2 − tn

m + 1 − tn

)
. (5.1)

Proof. We divide the proof into two cases.

Case I. n = 2.

In this case, by the assumption of Lemma 4.8, we have 4 = (m + 1)(3 − a) −
∑n

j=a+1 tj and 1 ≤ a ≤ 2.

Suppose a = 1. Then 2(m + 1) = 4 + t2 ≤ m + 3, which yields m ≤ 1. This

contradicts the assumption m ≥ 2. Thus we have a = 2. It follows that t2 = 1 and m = 3.

A straightforward computation shows

LHS of (5.1) = 108 > 60 = RHS of (5.1).

So this case is verified.

Case II. n ≥ 3.

We first prove the following elementary combinatorial inequality, which will be

used in the proof.

Lemma 5.2. For any integers n, k ≥ 3, we have

(
n + k

k − 1

)
< (n + 1)k−1. (5.2)

Proof.

(
n + k

k − 1

)
· (n + 1)−(k−1) =

k−1∏

t=1

(n + 1 + t)

t · (n + 1)
=
(n + 2)(n + 3)

2(n + 1)2
·

k−1∏

t=3

(n + 1 + t)

t · (n + 1)
.

Since n ≥ 3,

2(n + 1)2 − (n + 2)(n + 3) = n2 − n − 4 ≥ 2 > 0,

which implies that

(n + 2)(n + 3)

2(n + 1)2
< 1
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When t ≥ 3,

t(n + 1)− (n + 1 + t) = n(t − 1)− 1 ≥ 2n − 1 > 0,

which implies that

(n + 1 + t)

t · (n + 1)
< 1.

The result therefore follows. �

Recall that 1 ≤ tj ≤ m − 1 for any 1 ≤ j ≤ n. By applying (5.2) with k = m + 2 − tj,

we get

(
m + n + 2 − tj

m + 1 − tj

)
< (n + 1)(m+1−tj).

Thus,

RHS of (5.1) < m(n + 1)m+
∑n

j=a+1(m+1−tj) = m(n + 1)(n+1) < LHS of (5.1).

So the proof is complete also in Case II. �

5.2 Proof of Lemma 4.9 and Lemma 4.10

We will prove a slightly more general result.

Lemma 5.3. Let k, m, n be integers such that 1 ≤ k ≤ m − 1 and n ≥ 2. Let λ =

(λ1, · · · λn) ∈ Zn satisfy λj ≤ k for each 1 ≤ j ≤ n. If

m − k =

n∑

j=1

λj,

then

k

(
n + k

k

)n+2

> m

(
n + k + m

n

) n∏

j=1

(
n + 1 + k − λj

k − λj

)
. (5.3)

Clearly, Lemma 4.9 follows from 5.3 by taking (λ1, · · · , λn) = (t1, · · · , ta, ta+1 −

m, · · · , tn − m). Lemma 4.10 follows from Lemma 5.3 by taking (λ1, · · · , λn) = (t1, · · · , tn).
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Proof of Lemma 5.3. We divide the proof into several steps.

Step 1. We show that it is actually sufficient to prove (5.3) for 0 ≤ λj ≤ k for all

1 ≤ j ≤ n.

We begin this step with the following elementary combinatorial lemma.

Lemma 5.4. Let n ∈ N and let s, t be integers such that s + 1 < t ≤ k. Then we have

(
n + 1 + k − s

k − s

)(
n + 1 + k − t

k − t

)
<

(
n + 1 + k − (s + 1)

k − (s + 1)

)(
n + 1 + k − (t − 1)

k − (t − 1)

)
. (5.4)

Proof. A straightforward computation gives

LHS of(5.4)

RHS of(5.4)
=

n + 1 + k − s

k − s
·

k + 1 − t

n + 2 + k − t
.

Note that

(n + 1 + k − s)(k + 1 − t)− (k − s)(n + 2 + k − t) = (n + 1)(s + 1 − t) < 0.

The result thus follows immediately. �

Now we fix m, n, k and apply Lemma 5.4 to the product
(∏n

j=1 n+1+k−λj

k−λj

)
in the

right hand side of (5.3). Suppose λj1
< 0 for some 1 ≤ j1 ≤ n. Since

∑n
j=1 λj = m −

k ≥ 1, there is some 1 ≤ j2 ≤ n such that λj2
> 0. We change

(n+1+k−λj1
k−λj1

)(n+1+k−λj2
k−λj2

)
to

(n+1+k−(λj1
+1)

k−(λj1
+1)

)(n+1+k−(λj2
−1)

k−(λj2
−1)

)
, that is, use λj1

+ 1 as the new λj1
and use λj2

− 1 as the new

λj2
. Then the sum

∑n
j=1 λj is still equal to m − k, and the value of the right hand side of

(5.3) becomes larger. We keep doing this if there is some λj < 0 for some 1 ≤ j ≤ n. Then

we finally get 0 ≤ λj ≤ k for all 1 ≤ j ≤ n and m−k =
∑n

j=1 λj still holds; and the process

will not make the value of the right hand side of (5.3) smaller. So we only need to prove

(5.3) with the additional condition λj ≥ 0 for all 1 ≤ j ≤ n.

From now on, we will assume λj ≥ 0 for all 1 ≤ j ≤ n. As
∑n

j=1 λj = m − k ≥ 1,

without loss of generality, we can further assume λ1 ≥ 1.

Step 2. We show that it is actually sufficient to prove (5.3) for λ1 = 1 and λ2 =

· · · = λn = 0.

For simplicity, we denote the right hand side of (5.3) by F:

F(n, k, λ) := m

(
n + k + m

n

) n∏

j=1

(
n + 1 + k − λj

k − λj

)
, (5.5)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab120/6304409 by Science and Engin Library user on 03 July 2021



Normal Stein Spaces and Finite Ball Quotients 27

where m = k +
∑n

j=1 λj and λ = (λ1, · · · , λn). The function F has the following property.

Lemma 5.5. Suppose n, k ≥ 1 and λ = (λ1, · · · , λn) ∈ Zn with 0 ≤ λj ≤ k for each

1 ≤ j ≤ n. If λj1
≥ 1 for some 1 ≤ j1 ≤ n, then

F(n, k, λ) ≤ F(n, k, λ− ej1
), (5.6)

where ej1
= (0, · · · , 0, 1, 0 · · · , 0) is the unit vector along the j1-th direction in Rn.

Consequently, if λ1 ≥ 1, and all other λ′
js are nonnegative, then

F(n, k, λ) ≤ F(n, k, e1).

Proof. We cancel the common combinatorial factors in (5.6), and write it as

m

(
n + k + m

n

)(
n + 1 + k − λj1

k − λj1

)
≤ (m − 1)

(
n + k + m − 1

n

)(
n + 2 + k − λj1

k − λj1
+ 1

)
,

where m = k +
∑n

j=1 λj.

By expanding the remaining combinatorial terms and further canceling common

factors, we deduce that (5.6) is equivalent to

m ·
n + k + m

k + m
≤ (m − 1) ·

n + 2 + k − λj1

k − λj1
+ 1

.

Clearly, the right hand side is increasing with respect to 1 ≤ λj1
≤ k. Thus, it is sufficient

to prove

m ·
n + k + m

k + m
≤ (m − 1) ·

n + k + 1

k
, (5.7)

A straightforward computation shows that

(5.7) ⇐⇒ m ·
n

k + m
+ 1 ≤ (m − 1) ·

n + 1

k

⇐⇒ mnk + k2 + mk ≤ mnk + mk − nk − k + (m2 − m)(n + 1)

⇐⇒ k2 + nk + k ≤ (m2 − m)(n + 1).

The last inequality follows immediately by the fact m = k +
∑n

j=1 λj ≥ k +1. So the proof

is finished. �
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Thus, with the help of Lemma 5.5, it suffices to prove (5.3) for λ1 = 1, λ2 = · · · =

λn = 0 and m = k + 1. That is, we only need to show that

k

(
n + k

k

)n+2

> (k + 1)

(
n + 2k + 1

n

)(
n + k

k − 1

)(
n + k + 1

k

)n−1

. (5.8)

Step 3. We complete the proof of Lemma 5.3, by proving (5.8) for any n ≥ 2, k ≥ 1.

Let us further simplify (5.8) to the following equivalent inequalities.

(5.8) ⇐⇒ k ·
(n + k)!2

n!2 k!2
> (k + 1) ·

(n + 2k + 1)!

n! (2k + 1)!
·

k

n + 1
·
(n + k + 1)n−1

(n + 1)n−1

⇐⇒
(n + 1)n

(k + 1)(n + k + 1)n−1
·
(n + k)!2 (2k + 1)!

n! k!2 (n + 2k + 1)!
> 1.

Denote the left hand side term in the last inequality by L(n, k), that is,

L(n, k) :=
(n + 1)n

(k + 1)(n + k + 1)n−1
·
(n + k)!2 (2k + 1)!

n! k!2 (n + 2k + 1)!
.

It remains to prove L(n, k) > 1 for n ≥ 2, k ≥ 1.

Lemma 5.6. Given nonnegative integers n, k, we have

L(n, k) ≤ L(n + 1, k). (5.9)

Proof. Set Q(n, k) := L(n + 1, k)/L(n, k). Then

Q(n, k) =
(n + 2)n+1

(n + 1)n+1
·

(n + k + 1)n+1

(n + k + 2)n(n + 2k + 2)
.

Regarding k as a real variable in [0, ∞), we take the logarithmic derivative of Q(n, k)

with respect to k:

∂ log Q(n, k)

∂k
=

n + 1

n + k + 1
−

n

n + k + 2
−

2

n + 2k + 2

=
2n + k + 2

(n + k + 1)(n + k + 2)
−

2

n + 2k + 2

=
nk

(n + k + 1)(n + k + 2)(n + 2k + 2)
.
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It follows that for given n ≥ 0, Q(n, k) is increasing with respect to k ≥ 0. Thus, for

n, k ≥ 0, we have

Q(n, k) ≥ Q(n, 0) = 1.

That is the desired result. �

Now, for n ≥ 2, k ≥ 1, Lemma 5.6 yields that

L(n, k) ≥ L(2, k) =
32

(k + 1)(k + 3)
·
(k + 2)!2 (2k + 1)!

2! k!2 (2k + 3)!

=
9(k + 1)2(k + 2)2

2(k + 1)(k + 3)(2k + 2)(2k + 3)

=
9(k2 + 4k + 4)

4(2k2 + 9k + 9)
> 1.

The proof of Lemma 5.3 is now complete. �
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