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1 Introduction

It is widely believed that astrophysical black holes are typically surrounded by magneto-
spheres composed of an electromagnetic plasma that is force-free to a good approximation.
In [1], Blandford and Znajek used a model of force-free electrodynamics (FFE) for the
plasma surrounding a spinning black hole to suggest a mechanism for energy extraction
from the black hole. They argued that rotational energy escapes via plasma currents along
magnetic field lines that thread the horizon. The Blandford Znajek (BZ) process is con-
sidered to provide the basic picture behind astrophysical observations of jets, e.g. in active
galactic nuclei and quasars. For more recent discussions on the consistency of the BZ
mechanism, see [2–4].

The FFE solution discussed in the original paper [1] is an approximate analytical
solution for a slowly rotating Kerr black hole. Despite a lot of work on numerical as well
as analytical solutions ([5–10], see also [11] and references therein), it remains a challenge
to find a physically realistic, exact and energy extracting solution of the FFE equations in
a Kerr black hole background.

One successful strategy for generating families of solutions has been to exploit the
enhanced amount of symmetry in the near-horizon region of an extremal, i.e. maximally
spinning, Kerr black hole [12–16]. In this paper we will continue this effort by proposing
a previously overlooked symmetric ansatz for the electromagnetic field strength of the
plasma. We discuss in detail the corresponding energy outflux. By making use of a toy
model of a rotating electromagnetic configuration, we argue the correct measure for energy
extraction is the outflux measured by a rotating observer in the near-horizon geometry,
corresponding to an observer at rest in Kerr. The new symmetric ansatz has the main
advantage (over previous energy-extracting, symmetric FFE solutions [14]) that it gives
rise to an energy outflux at the boundary of the near-horizon region, as measured by a
Kerr observer, that is finite.

The FFE solutions that can be produced with the new ansatz in the Near Horizon
Extremal Kerr geometry — known as NHEK— do not obey the assumed physical boundary
conditions presented in this paper. However, when we generalize the background to the
Near Horizon Extremal AdS-Kerr geometry — introduced later as AdS-NHEK or SE-
NHEK for super-entropic Near Horizon Extremal AdS-Kerr — we do find such a solution.
For the background in question the topology is in fact that of a cylinder and this metric
therefore provides a close resemblance to our toy model of a rotating conducting cylinder.

The generalization to AdS-Kerr was motivated by the discovery in [17] of an exotic
application of the BZ process that does not involve the presence of plasma, realized in
a BTZ background. While not immediately relevant astrophysically, the study of FFE
in AdS backgrounds may prove useful for obtaining a better understanding of remaining
conceptual questions regarding the BZ process, such as where and how the negative energy
originates. Indeed we hope the presented toy model and FFE solutions in near-horizon
AdS-Kerr may contribute to this goal in the future.

The toy model and new symmetric log ansatz in NHEK were first presented in the
unpublished [18]. In this paper we additionally apply these ideas in the context of AdS-
Kerr black holes.
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The paper is organized as follows. We begin in section 2 with a review where we
explain how a 2-dimensional (2D) action naturally describes toroidal force-free plasma
systems surrounding a spinning black hole. At this stage we already assume a system that
is toroidally invariant and therefore effectively 2-dimensional. We present in section 3 all
the near-horizon geometries of spinning black holes that we will be using in the paper.
Next, in section 4, we apply the technique of imposing the extra scaling symmetry of the
near-horizon regions on the field strength of the plasma. This gives rise to the scaling
ansatz in 4.1.1 and the new log ansatz in 4.1.2. These ansatze fix the analytic behavior of
the field strength as a function of the radius r of the background. The scaling ansatz is
known in the literature for NHEK. We employ the same scaling ansatz in AdS-NHEK and
SE-NHEK to find a new scaling solution of FFE. The log ansatz, to our knowledge, is new
in all three backgrounds.

Making use of the ansatze, the problem reduces to solving an ODE for a function Φ(θ)
describing the dependence of the field strength on the polar angle. This is the part that
will be treated numerically. The numerical problem is to solve the EOM summarized in
section 4.2 with physical boundary conditions provided in section 4.3.

Before presenting the numerical solutions, in section 5 we consider the energy flux
of electrodynamic fields in rotating frames, making use of a ‘toy model’, to explain how
the fluxes at the boundary of the near-horizon throats connect with non-rotating observers
outside the throat. We argue it is the latter observer’s flux that determines whether a near-
horizon solution is energy extracting. The main results of this section are equation (5.11)
for the energy flux in the toy model, equation (5.21) for the Kerr energy flux and (5.32) for
the AdS-Kerr energy flux. The general relation (5.40) highlights the equivalence with the
toy model. These formulas are applied to our energy-extracting semi-analytical solutions
in section 6. The energy extraction is also discussed in section 5.5 for the full BTZ solution
of [17]. This provides a check on the proposed procedure for obtaining the flux outside the
near-horizon throat.

Finally we present a scaling solution in NHEK, a scaling solution in AdS-NHEK and a
log solution in SE-NHEK, with their corresponding Poynting fluxes, in figures 2–4. Final
remarks are discussed in section 7. Some mathematical details of our analysis have been
relegated to appendices A–D.

We adopt the metric signature (−,+,+,+), the units c = G = 1, and orientation of
dt ∧ dφ ∧ dr ∧ dθ for defining the Hodge dual ?.

2 Action for force-free plasma in black holes

In this section we review the set-up of the problem, hereby setting our notation. In par-
ticular, we will make use of an available action principle for the description of a force-free
plasma in black holes. This has several advantages in general, such as allowing for the easy
identification of conserved quantities through Noether’s theorem.

As first studied by Blandford and Znajek [1], the equations for the force-free plasma
around rotating black holes (described by a fixed background metric gµν) consists of
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Maxwell’s equations

∇µF νµ = Jν , (2.1)
∇[µFσν] = 0 , (2.2)

and the force-free electromagnetic (FFE) condition

FµνJ
ν = 0 , (2.3)

with source current Jν and field strength Fµν . Solutions to these equations involve finding
a field strength Fµν that generates a current Jµ through (2.1), and satisfies the FFE
constraint (2.3). The Bianchi identity (2.2) follows straightforwardly by writing the field
strength as Fµν = ∂µAν − ∂νAµ in terms of the gauge field Aµ.

The criterion for the FFE condition (2.3) to hold is that in local inertial frames the
matter source contribution Tmatter

µν becomes negligible. The stress tensor can therefore be
defined as

Tµν = TEM
µν + Tmatter

µν ≈ TEM
µν , (2.4)

where TEM
µν is the contribution from the electric and magnetic field.1

In general, the above system of equations (2.1)–(2.3) is highly nonlinear and can only
be solved numerically. However, in toroidal spacetimes the symmetries can be exploited
to simplify the analysis and obtain semi-analytical solutions [12–14]. Here, by toroidal
spacetimes we mean curved spacetimes that can be described by a coordinate system
(t, φ, r, θ) in which the metric is independent of time t and angle φ. The coordinates (t, φ)
are then referred to as toroidal coordinates xα,β , and (r, θ) as poloidal coordinates xa,b.
The line-element of such a spacetime with a block-diagonal metric (gaα = 0), independent
of time t and angle φ (∂tgµν = ∂φgµν=0) takes the form

ds2 ≡ (gT )αβ dxαdxβ + (gP )ab dxadxb , (2.5)

with toroidal metric gT and poloidal metric gP .
Typically the dynamics around a black hole will capture the black hole’s symmetries.

It is natural then to impose the same toroidal symmetry of the background metric on the
solutions for the field strength. As we now argue, this will allow to reduce the 4D problem
to a well-defined action in the two poloidal coordinates.

We assume a stationary and axisymmetric solution, characterized by a field strength
with non-zero components

Fµa(xa) 6= 0 . (2.6)

The analysis of the conditions on Fµa imposed by the FFE equations is most clear in form
notation, with the field strength defined as a two-form F = 1

2Fµνdx
µ ∧ dxν . See e.g. [17]

1The correspondence with the force-free condition (2.3) follows directly from stress-energy conservation
∇µTµν = 0, combined with ∇νTEM

µν = −FµνJν from Maxwell’s equations.
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for a quick review of differential forms in the context of force-free electrodynamics. In this
notation, the equations (2.1)–(2.2) are written respectively as

d ? F = ?J (2.7)
dF = 0 (2.8)

for the 2-form field strength F = dA in terms of the 1-form gauge field A, with ? the
Hodge dual and ∧ the wedge product. Introducing the notation AT = Aαdx

α for the
toroidal contribution and AP = Aadx

a for the poloidal contribution to the gauge field, we
can write

A = Aµdx
µ = AT +AP (2.9)

and

F = dAt ∧ dt+ dAφ ∧ dφ+ dAP . (2.10)

Similarly, the 1-form current J is

J = JP + JT . (2.11)

In the expression for the field strength, d is the differential operator in 4D, with
dA = ∂µAdx

µ. Imposing toroidal invariance comes down to reinterpreting the differential
operator d as a 2D differential operator in the poloidal metric gP . That is, dA = ∂aAdx

a.
The toroidal invariance is therefore implicitly present in the expressions through the inter-
pretation of d.

The toroidal component of the FFE equation (2.3) can be written in form notation as

dAT ∧ ∗JP = 0 . (2.12)

Here, we use ∗ to refer to the star operator in the poloidal metric, to be distinguished from
the star operator ? in the full 4D spacetime (as used in Maxwell’s equation). Its action is
defined as ∗JP = Ja ∗ dxa = Jaε

a
bdx

b. Maxwell’s equation implies conservation of current
d ? J = 0 (in 4D). For the toroidally invariant solution this further implies d ∗ JP = 0 (in
2D), which allows to introduce a 0-form current I by writing ∗JP as a total derivative

∗JP = d

(
I√
−gT

)
. (2.13)

The interpretation of I is that it is proportional to the integrated polar current through
a ‘spherical cap’ S, stretching over a time interval ∆t, azimuthal angle interval ∆φ = 2π
and range θ < θ0 at constant radius r, which by Stokes’ theorem is given by∫

S
?J =

∫
C

√
−gT

(
I√
−gT

)
dt dφ = (2π∆t) I (2.14)

with C (along t and φ) the boundary of the 3D surface S. Following [11], we will refer to
I as the polar current.
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We can parametrize the field strength in terms of the polar current I. By Maxwell’s
equations and again Stokes’ theorem, the integrated polar current

∫
S ?J is also equal to∫

S d ? F =
∫
C ?F =

∫
C ?dAP , so that ?dAP = I dt ∧ dφ or

dAP = I√
−gT
√
gP dr ∧ dθ (2.15)

in equation (2.10).
The FFE equation (2.12) with (2.13) imposes the conditions

dAt ∧ dI = 0 and dAφ ∧ dI = 0. (2.16)

These conditions fix different terms of the field strength to be related to each other by

dAt = −ωF dAφ (2.17)

and

dI = fdAφ or I = I(Aφ) . (2.18)

The field strength thus has to be of the form

F = dAφ ∧ (dφ− ωFdt) +
√
gP√
−gT

I dr ∧ dθ (2.19)

where ωF is the angular velocity of the EM fields, and both ωF and the polar current I are
functions of Aφ.

As shown originally in [19], and reviewed nicely in [11], the system is now described
by the effective 2D action

S[Aφ] = −1
2

∫ (
|dφ− ωFdt|2 |dAφ|2 + I2

gT

)
√
gP
√
−gT dr dθ , (2.20)

with the notation |X|2 = gabXaXb for a 1-form X. The integration over t and φ only pro-
duces overall volume factors. This action is a generalization of the Scharlemann-Wagoner
action for pulsars [20] to curved space-times. It can be obtained from the Einstein-Maxwell
action for a field strength of the form F = dAφ ∧ (dφ − ωFdt) + dAP , with the force-free
condition enforced through the use of a Lagrange multiplier term [21, 22]. Caution has to
be taken in the process of eliminating AP from the action using I(Aφ) [19].

The problem is now reduced to solving the remaining FFE equation, also called the
stream equation, for the toroidal gauge field Aφ(xa). It is obtained as the Euler-Lagrange
equation of the action S[Aφ] =

∫
L drdθ, given by

∂a

(
∂L

∂(∂aAφ)

)
− ∂L
∂Aφ

= 0 . (2.21)

In the ensuing analysis we will find the action, derive the stream equation and solve this
equation for specific choices of the rotating background metrics.
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General rotating black hole metric. To illustrate the simplicity of this 2D force-free
action (2.20), one can take a general stationary and axisymmetric block-diagonal metric

ds2 = −α2dt2 + ω̄2(dφ+ ω dt)2 + (gP )ab dxadxb (a, b = r, θ) . (2.22)

Considering a field strength (per construction compatible with the background symmetries)
of the form

F = dAφ ∧ (dφ− ωFdt) +
√
gP
αω̄

I dr ∧ dθ (2.23)

with functions ωF (Aφ) and I(Aφ), leads to the 2D poloidal system given by

S[Aφ] = −1
2

∫ √
gP dr dθ

(
C|dAφ|2 −

I(Aφ)2

αω̄

)
(2.24)

with

C = α

ω̄
− ω̄

α
(ωF + ω)2 . (2.25)

3 Near horizon geometries

Rather than analyzing the 2D poloidal problem directly in the Kerr black hole geometry,
it has proved advantageous to concentrate specifically on the near-horizon regions, which
are described by a decoupled metric. These metrics possess a higher amount of symmetry
than the black hole geometry they are derived from through a scaling limit. It is this
high amount of symmetry that can be exploited in finding ansatze for symmetric, semi-
analytic FFE solutions. This approach has been successfully applied in the near horizon of
extremal Kerr or NHEK geometry, in the sense that energy-extracting solutions have been
obtained [12–14]. (However, we will comment on an unphysical feature of such solutions
in the discussion of the energy flux.) We generalize the search for energy-extracting FFE
solutions to include near-horizon geometries of AdS-Kerr black holes. Indeed, a 3D version
of such a solution was presented in [17] for the BTZ black hole. For previous work on the
BZ process in AdS-Kerr, see [23].

In this section we collect the near horizon geometries that we will consider in this
paper, each of the general rotating form (2.22): NHEK, AdS-NHEK, SE-NHEK, and near
horizon extremal BTZ, which we will refer to as NHEBTZ. They are obtained from scaling
limits of the respective black hole geometries. These limits are summarized in appendix A.
The action and stream equation associated to these specific near horizon geometries are
also described.

3.1 Near Horizon Extreme geometries

In this paper we are interested in the region very near the horizon of extreme Kerr and
AdS-Kerr. These regions are described by the so-called Near-Horizon Extreme geometries
defined by

ds2 = Γ(θ)
[
−r2dt2 + dr2

r2 + α(θ)2dθ2 + γ(θ)2(dφ+ k r dt)2
]
, (3.1)

– 6 –
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and characterized in each case by specific functions Γ(θ), α(θ), γ(θ) and parameter k. A
separate discussion of each geometry is given in the next subsections.

3.1.1 Near Horizon Extreme Kerr

The line element of the so-called Near-Horizon Extreme Kerr (NHEK) geometry [24] is of
the form (3.1) with

Γ(θ) = M2
(
1 + cos2 θ

)
, α(θ)2 = 1 , γ(θ) = Λ(θ) = 2 sin θ

1 + cos2 θ
, k = 1 (3.2)

and metric determinant
√
−g = Λ Γ2. It is the decoupled near horizon limit of extremal

Kerr and co-rotates with the extremal Kerr metric at the angular velocity of the horizon
Ωext
H = 1

2M , see equation (A.2).
In contrast with the original Kerr metric, the NHEK geometry is not asymptotically

flat; the metric contains an AdS2 factor in the (r, t) directions and correspondingly an
SL(2,R) isometry. The full isometry group is SL(2,R)×U(1). The U(1) rotational symmetry
is generated by the Killing vector field

W0 = ∂φ (3.3)

and the SL(2,R) symmetry by the Killing vector fields

H0 = t ∂t − r ∂r , (3.4)
H+ =

√
2 ∂t , (3.5)

H− =
√

2
[1

2

(
t2 + 1

r2

)
∂t − t r ∂r −

1
r
∂φ

]
. (3.6)

It is easily verified that these satisfy the SL(2,R)× U(1) commutation relations

[H0, H±] = ∓H± , [H+, H−] = 2H0 ,

[W0, H±] = 0 , [W0, H0] = 0 .
(3.7)

3.1.2 Near Horizon Extreme AdS-Kerr

The near horizon of extreme AdS-Kerr (AdS-NHEK) geometry [25] is given by (3.1) where

Γ(θ) =
r2

+ + a2 cos2 θ

∆0
, α(θ)2 = ∆0

1− (a2/l2) cos2 θ
, γ(θ) =

(r2
+ + a2) sin θ
α(θ) Γ(θ) Ξ , (3.8)

and constants ∆0 = 1+a2/l2 +6r2
+/l

2, Ξ = 1−a2/l2 and k = 2 a r+ Ξ/(∆0(r2
+ +a2)). This

metric obeys Rµν = −3 l−2gµν . It is of the form (2.22) with
√
−gT = r γ Γ, √gP = αΓ/r

and
√
−g = αγ Γ2.

The parameter r+ is defined as the largest root of

(l2 + a2 + 3 r2
+) r2

+ − l2a2 = 0 . (3.9)

Finally note that the NHEK geometry (3.2) is recovered in the limit l→∞ while

k → 1 , α(θ)→ 1 , γ(θ)→ Λ(θ) . (3.10)
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As in NHEK, a crucial feature of the AdS-NHEK region is that the original U(1)×U(1)
Kerr-AdS isometry group is enhanced to SL(2,R)×U(1). In fact, AdS-NHEK has the same
isometries as NHEK up to a rescaling of φ. The U(1) rotational symmetry is generated by
the Killing vector field W0 in (3.3). The time translation symmetry becomes part of an
enhanced SL(2,R) isometry group generated by the Killing vector fields H0 in (3.4), H+
in (3.5) and

H− =
√

2
[1

2

(
t2 + 1

r2

)
∂t − t r ∂r −

k

r
∂φ

]
. (3.11)

The Killing vectors satisfy the SL(2,R)× U(1) commutation relations in (3.7).

3.1.3 Super-entropic Near Horizon Extremal AdS-Kerr

The near horizon geometry of the super-entropic extremal AdS-Kerr black hole [26], or
simply SE-NHEK metric, is of the form (3.1) where now

Γ(θ) = l2(1 + 3 cos2 θ)
12 , α(θ)2 = 4

sin2 θ
, γ(θ) = 4 l2

3
sin θ

α(θ) Γ(θ) , k =
√

3
8 . (3.12)

There are essentially two ways to derive this metric. In appendix A we describe how
to obtain the near horizon geometry from the extremal super-entropic AdS-Kerr black
hole [27, 28]. A more straightforward way is to start with the AdS-NHEK line element (3.1)
with (3.8), and before taking a → l rescale φ → φΞ. The coordinate can be chosen such
that φ ∼ φ + 2π (for the new angle φ). This geometry has the special feature that the
locations θ = 0, π are removed from the space-time. The isometry group of the SE-NHEK
geometry is SL(2,R)×U(1) as for AdS-NHEK, with the same Killing vector fields (3.3)–(3.5)
and (3.11) (with k in (3.12)).

3.1.4 Near Horizon Extreme BTZ

For future reference we also describe the near horizon geometry of the extreme BTZ
(NHEBTZ) black hole metric [29–31]. The line-element is

ds2 = l2

4
dr2

r2 + 2r
l
dtdφ+ r2

+dφ
2. (3.13)

The geometry retains all the relevant aspects of black holes, i.e. a horizon, and necessary
ingredients for energy extraction, i.e. an ergosphere. While the NHEBTZ region provides
a rich context to study FFE, the focus of our work will remain primarily in 4 dimensions.
On the BTZ spacetime, purely electromagnetic versions of the BZ process were found,
in which plasma surprisingly plays no role [17]. In section 5.5, we employ these exact
analytical FFE solutions in BTZ to argue that our prescription reproduces the energy flux
from the extreme black hole throat.
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3.2 Action and stream equation

We now turn to the study of the force-free electrodynamics action in the near horizon
geometries. For a near horizon extremal metric (3.1), the action (2.20) is

S[Aφ] =
∫
drdθ

[
dα
2

(
r2(∂rAφ)2 + 1

α2 (∂θAφ)2
)

+ α

2r2γ
I(Aφ)2

]
dα ≡ −

α

r
C = αγ

(
ωF
r

+ k

)2
− α

γ
.

(3.14)

The relevance of C is that it becomes zero at the so-called light surface or light cylinder.
At these locations, an observer co-rotating with the field lines would have to travel at the
speed of light.

Variation of this action gives the stream equation for Aφ,

∂θ

(
dα

1
α2∂θAφ

)
+ ∂r(dα r2∂rAφ)− 1

2∂Aφdα
(
r2(∂rAφ)2 + 1

α2 (∂θAφ)2
)
− α

r2γ
I ∂AφI = 0 .

(3.15)

Further details about the actions and stream equations can be found in appendix B. Observe
that the stream equation (3.15) is highly nonlinear and can in general only be solved
numerically. Moreover, the possibility of C having zeros in the domain of integration may
lead to further complications. Despite these issues, the symmetries can be exploited to
simplify the analysis. We will show that imposing scaling symmetry allows to solve the
force-free equations semi-analytically and find energy extracting configurations.

4 Force-free electrodynamics solutions

In this section we construct solutions to the FFE stream equations in (AdS/SE-)NHEK.
The stream equation (3.15) for the gauge field component Aφ(r, θ) is written out explicitly
for the (AdS/SE-)NHEK background geometries (see also appendix B). To obtain the
stream equations in the form (3.15) we already have used one aspect of the symmetry of
the problem, that is, the gauge field solution is required to have the same independence on
time t and azimuthal angle φ as the stationary and axisymmetric background metrics. This
strategy can be applied further by also imposing the scaling symmetry of the background
near horizon metrics on the solution. This gives rise to two ansatze for the behavior of
the solution as a function of the radius r, which we will refer to as the ‘scaling ansatz’
(which was considered earlier in [13, 14]) and the ‘log ansatz’. For these ansatze, the
stream equations reduce further to a single ODE for the θ-profile of Aφ, which can be
solved numerically. The ODE’s are summarized in section 4.2.

4.1 Ansatze

Consider the stationary and axisymmetric field strength ansatz (2.23), written out
explicitly to

F = ∂rAφdr ∧ dφ+ ∂θAφdθ ∧ dφ− ωF∂rAφdr ∧ dt− ωF∂θAφdθ ∧ dt+ I

αω̄

√
gPdr ∧ dθ

(4.1)
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where
√
gP
αω̄ scales as 1/r2 for each of the near horizon geometries we consider. In the

form (4.1), it is easy to read off the conditions for self-similar behavior of the field strength
under scaling transformations.

4.1.1 Scaling ansatz

The field strength (4.1) will display scaling symmetry

F → λhF (4.2)

under a scaling transformation r → λ r, t→ t/λ generated byH0 = r∂r−t∂t in (3.4), only if

∂rAφ ∼ rh−1, ∂θAφ ∼ rh, ωF ∼ r, I ∼ rh+1 . (4.3)

These conditions are solved by the ‘scaling ansatz’ for Aφ in terms of a field Φ(θ), and I
and ωF as functions of Aφ:

Aφ = rhΦ(θ), h 6= 0

I = I0A
1+1/h
φ

ωF = ω0A
1/h
φ

(4.4)

where I0 and ω0 are integration constants. By construction, the scaling ansatz field strength
satisfies the symmetries of the (AdS/SE-)NHEK region2

LW0F = 0 , LH+F = 0 , LH0F = −hF . (4.5)

Moreover, the scaling ansatz vector potential, with At = ω0A
1+1/h
φ /(1+1/h)+c satisfies the

same symmetries, LW0A = 0, LH+A = 0 and LH0A = −hA, if the constant c equals zero.

4.1.2 Log ansatz

The h = 0 case needs to be handled separately. Imposing the scaling symmetry

F → F (4.6)

under the scaling transformation r → λ r, t→ t/λ, requires

∂rAφ ∼ r−1, ∂θAφ ∼ 1, ωF ∼ r, I ∼ r. (4.7)

This leads to the ‘log ansatz’ in terms of a field Φ(θ):

Aφ = log(rΦ(θ))/ω0

I = I0 rΦ(θ)
ωF = ω0 rΦ(θ)

(4.8)

with constants I0 and ω0. The same invariance (4.5) of the field strength applies to this
log ansatz. However, the gauge field is not in a highest-weight representation of SL(2,R) as
LH0A 6= 0. In this sense the log ansatz could be called an approximate symmetric ansatz.

2Note that our definition of h is different by a sign compared to the h of e.g. [12, 13, 16].
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4.2 Equations of motion

First let us focus on the NHEK background. The stream equation (B.3) for a field Aφ of
the form specified in the scaling ansatz (4.4) reduces to an ODE for the field Φ(θ), which
we can call the ‘NHEK scaling EOM’:

∂θ (d ∂θΦ) + d h(h+ 1)Φ− 1
2(∂Φd)

(
h2Φ2 + (∂θΦ)2

)
− 1

ΛI
2
0

(
1 + 1

h

)
Φ1+2/h = 0

with d = Λ(ω0Φ1/h + 1)2 − 1
Λ .

(4.9)

Here d is itself a functional of Φ(θ) and is defined in (3.14) to be proportional to the
functional C, which determines the location of light surfaces.

Evaluating the EOM (3.14) for the log ansatz (4.8) leads to the ‘NHEK log EOM’
for Φ(θ),

∂θ (D∂θΦ)− 1
2(∂ΦD)

(
Φ2 + (∂θΦ)2

)
− 1

ΛI
2
0 Φ = 0

with D = Λ
(

1 + 1
ω0Φ

)2
− 1

Λ
1

ω2
0Φ2 .

(4.10)

Similarly, for a near-horizon region of AdS-Kerr (3.1), the ‘AdS-NHEK scaling EOM’

∂θ

(
dα

1
α2∂θΦ

)
+dαh(h+1)Φ− 1

2(∂Φdα)
(
h2Φ2+ 1

α2 (∂θΦ)2
)
−α
γ
I2

0

(
1+ 1

h

)
Φ1+2/h = 0

with dα =αγ(ω0Φ1/h−k)2+α

γ
(4.11)

is the EOM (B.7) for the scaling ansatz (4.4). The metric functions α, γ and k are specified
in (3.8) for AdS-NHEK and in (3.12) for SE-NHEK. The ‘AdS-NHEK log EOM’

∂θ

(
Dα

1
α2 ∂θΦ

)
− 1

2(∂ΦDα)
(

Φ2 + 1
α2 (∂θΦ)2

)
− α

γ
I2

0 Φ = 0

with Dα = αγ

(
1 + k

ω0Φ

)2
− α

γ

1
ω2

0Φ2

(4.12)

is the EOM (B.8) for the log ansatz (4.8).
The functionals d,D, dα and Dα introduced here become zero at the location of a light

surface. For the solutions that we will discuss, these functionals will have a definite sign.

4.3 Boundary conditions

When solving the EOM’s in the previous section, the physical boundary conditions we
impose on the field Φ(θ) are the same as in [14]. The range of the angle θ stretches from
θ = 0 at the north pole, over θ = π/2 at the equator, to θ = π at the south pole. For
the solution to be north-south symmetric, i.e. symmetric under reflection θ → π − θ, we
require the field to have a vanishing derivative at the equator,

Φ′(π/2) = 0. (4.13)
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A second condition follows from considering the integrated polar current through a spherical
cap S : θ < θ0, as given in equation (2.14),

∫
C=∂S ?F = (2π∆t) I. Consider the limit that

the spherical cap shrinks to the point at the north pole θ0 → 0. For a physical solution with
non-diverging field strength F at the north pole, the integrated polar current will vanish
in this limit. For both our ansatze, (4.4) and (4.8), the vanishing of the polar current I
at θ = 0 imposes the field Φ to vanish in that point. The second boundary condition is
therefore

Φ(0) = 0. (4.14)

4.4 Solutions

A shooting method is employed to numerically solve the EOM’s of section 4.2 using NDSolve
in Mathematica. We recover a NHEK scaling solution that has previously been discussed
in the literature [14], but have not succeeded in finding a NHEK log solution that satisfies
the boundary condition (4.14). The new solutions we find are an AdS-NHEK scaling
solution and an SE-NHEK log solution. The Φ(θ) profiles for the numerical solutions are
presented in figures 2–4. To determine whether they are energy-extracting, we turn now
to a discussion of the energy flux.

In the following sections, we will evaluate the energy and angular momentum flux
densities of near horizon geometries to show that our force-free solutions do indeed produce
non-trivial fluxes measured by stationary observers outside the near horizon throats.

5 Energy flux from extreme black hole throat

Before analyzing in this section the energy flux of our obtained solutions in rotating geome-
tries, we first turn to a toy model. The toy model consists of a rotating electromagnetic
(EM) field configuration, and serves to illustrate that the direction of the Poynting flux,
i.e. whether the set-up has an inwards or outwards pointing flux of energy, depends on
the rotation of the observer. The lesson relevant for the discussion of the energy flux of
the (AdS/SE-)NHEK solutions, is that it is the Poynting flux measured by a Kerr ob-
server rather than a near horizon observer (which rotate with respect to each other) that
determines whether or not a solution is energy extracting.

5.1 Toy model

Consider a conducting cylinder that rotates with an angular velocity ΩH and is placed in a
radial magnetic field Br. This is an academic set-up that we consider for the sake of argu-
ment of describing the energy outflux in a rotating frame. The set-up has non-zero fields

Ez = rωFBr(r), Bθ = Bθ(r), Br = Br(r). (5.1)

The E-field contributes a term σωF rBr proportional to the conductivity σ to the current
Jz. Because the conducting cylinder moves with a velocity v, the charges in it feel an elec-
tromotive force qv×B, adding another term to the current. In total, Jz = σ(ωF −ΩH)rBr.
The current induces, by the integral Ampere law, the B-field Bθ ∼ Jz ∼ σ(ωF −ΩH)r2Br.
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Ez = rωFBr

Br P ∼ σωF (ΩH − ωF )B
2
r

Bθ ∼ Jz

(ΩH

Jz = −σ(ΩH − ωF )rBr

P r Br

Bθ ∼ Jz
Jz = −σ(ΩH − ωF )rBr

Erot
z = −(ΩH − ωF )rBr

P r ∼ −σ(ΩH − ωF )
2B2

rrot

Figure 1. Toy model set-up of a rotating conducting cylinder in the lab frame (left) and a frame
that rotates with the cylinder (right).

The Poynting vector, as defined in (C.11), is P = E × B = (−ωFBrBθ, ωFB2
r , 0) for

P = (P r, P θ, P z). Its radial component is

P r = −BθEz
r

= −ωFBrBθ ∼ σr2B2
rωF (ΩH − ωF ) (5.2)

so that the sign of the vector is determined by the sign of ΩH − ωF .
The system can also be observed from a rotating frame with angular velocity ω = ΩH

or θ′ = θ−ΩHt. In the rotating frame, the contribution to the current that in the lab frame
originated from an electromotive force, has to follow from an electric field contribution. The
total observed electric field (in the sense that it obeys Faraday’s equation in the rotating
frame, see (C.14) in appendix C) is given by Erot

z = r(ωF −ΩH)Br. The observed magnetic
fields (C.15) remain the same as in (5.1). The Poynting flux in the rotating frame3 can
then be defined as Prot = Erot ×B. It has radial component

P rrot = −BθE
rot
z

r
= −Bθ(ωF − ΩH)Br ∼ −(ωF − ΩH)2r2B2

r . (5.3)

This is the Poynting flux in the right figure of figure 1. It is inwards pointing, even though
the physical Poynting flux in the lab frame (5.2) is outwards pointing.

Let us repeat the analysis of the toy model in a covariant language that will be straight-
forwardly applicable to the force-free electrodynamics in a rotating NHEK frame versus
asymptotically non-rotating Kerr frame.

The field strength in the lab frame (C.10) is

F lab
µν = Brr (dθ − ωFdt) ∧ dz −

Bθ
r
dr ∧ dz (5.4)

3Note that the mixing of E and B fields in rotating frames makes the definitions of E and B ambiguous,
reflected in the Maxwell equations (C.17)–(C.18) for E,B,Erot, Brot. We refer to appendix C for a discussion
of EM fields in a rotating frame.
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and the field strength in a rotating frame (C.20) (with θ′ = θ − ωt) is

F rot
µν = Brr

(
dθ′ + (ω − ωF )dt

)
∧ dz − Bθ

r
dr ∧ dz . (5.5)

In particular, we will consider a frame that co-rotates with the cylinder, ω = ΩH .
The conserved energy flux seen by a stationary observer in the lab frame can be

calculated from the Maxwell stress-energy tensor

Tµν = −1
4gµνFαβF

αβ + FµαF
α

ν (5.6)

as

Eµ = −Tµνχν (5.7)

where χ = ∂t is the global timelike Killing vector. Similarly, the angular momentum flux

Lµ = Tµνην (5.8)

is defined in terms of the axial Killing vector η = ∂θ. Here and hereafter, it is understood
that we have dropped the ‘EM’ label in the symbol TEM

µν to denote the electromagnetic
stress-energy tensor defined in (5.6). The transformation matrix for the coordinate trans-
formation from the lab frame, in cylindrical coordinates xµ = (t, r, θ, z), to the rotating
frame xµ′ = (t′, r′, θ′, z′) = (t, r, θ − ΩHt, z) is given by

∂x

∂x′
=


1 0 0 0
0 1 0 0

ΩH 0 1 0
0 0 0 1

 . (5.9)

Under the coordinate transformation, the energy flux transforms to

Eµ′ = ∂xµ
′

∂xµ
Eµ. (5.10)

In particular, Er′ = Er. This is the lab energy flux as measured by a rotating observer. In
terms of the stress tensor in the rotating frame, it is given by

Eµ′ = −Tµ
′

ν′χ
ν′ = −

(
Tµ
′

t′ − ΩHT
µ′

θ′

)
(5.11)

where we made use of χν′ = ∂xν
′

∂xµ χ
µ = ∂xν

′

∂t = (1, 0,−ΩH , 0). It follows that the radial
energy flux in the lab frame is obtained from a combination of the radial energy flux and
angular momentum flux in the rotating frame

Er = Er′rot + ΩHLr
′

rot , (5.12)

where we introduced the notation Er′rot ≡ −T r
′

t′ and L
r′
rot ≡ T r

′

θ′ in analogy with (5.7)–(5.8).
We would like to point out that there is no ambiguity of interpretation in equation (5.12).
It relates a component of the lab flux to components of the rotating frame fluxes, by making
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use of Eµ = − ∂xµ

∂xµ′
(Tµ

′

t′ − ΩHT
µ′

θ′). In this simple set-up where r′ = r, we can change r′

to r on the right hand side of (5.12).
From equation (C.22) in the general discussion in the appendix, the energy flux

Er′rot = r(ΩH − ωF )BrBθ equals the Poynting flux P rrot in (5.3), and Lrrot = −rBrBθ. The
relation (5.12) thus relates the radially inwards Poynting vector measured in the rotating
frame to the outwards one measured in the lab frame

P r = P rrot + ΩHLrrot , (5.13)

consistent with equations (5.2) and (5.3). The outflux P r in (5.2) is positive when ΩH > ωF ,
and rotational energy can be transferred from the cylinder to the field. The suggestive
notation ΩH for the angular velocity of the cylinder indicates that we will think of the
rotation of a black hole in an analogous way.

5.2 Energy flux in Kerr

In this section we derive the analogue of the relation (5.12) for the energy flux measured in a
Kerr geometry as a function of the flux measured by an observer in the near-horizon region.

The NHEK geometry (3.2), with xµ = (t, φ, r, θ), is obtained from the Kerr geome-
try in Boyer-Lindquist coordinates xµ̂ = (t̂, φ̂, r̂, θ̂) through the coordinate transformation
(see (A.3))

t̂ = t

ζ
, φ̂ = φ+ t

2Mζ
, r̂ = 2M2ζr +M, θ̂ = θ (5.14)

in the limit where the scaling parameter ζ vanishes. The transformation matrix is

∂x̂

∂x
=


1
ζ 0 0 0
1

2Mζ 1 0 0
0 0 2M2ζ 0
0 0 0 1

 . (5.15)

We are interested in the energy flux seen by a stationary Kerr observer (with hatted
coordinates). It is defined in terms of the Kerr stress tensor T µ̂ν̂ and the Kerr timelike
Killing vector χµ̂ = (1, 0, 0, 0) as [1]

E µ̂ ≡ −T µ̂ν̂χν̂ = −T µ̂
t̂
. (5.16)

The solutions we obtained are solutions in the NHEK geometry (with unhatted coordi-
nates). We therefore need to work out first what the relation is between E µ̂ and quantities
measured in NHEK. This follows closely the discussion in section 5.1 of the toy model
(equations (5.10) and (5.11)), with the Kerr frame taking the role of the lab frame, and
the NHEK frame the role of the rotating frame.

If we introduce the notation4

Eµ ≡ −Tµνχν (5.17)
4Note that Er is not the radial energy flux observed by a stationary NHEK observer, which would

be defined as −Tµνξν = −Tµt in terms of the NHEK timelike Killing vector ξ. When it is necessary to
distinguish this object, we will refer to it as Eµrot ≡ −T

µ
t, following the notation in equation (5.12) in the

toy model.
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in terms of the transformed Tµν and χµ, then we find

Er = 1
2M2ζ

E r̂. (5.18)

This gives the scaling between the energy flux rate per NHEK time, Er, and the energy
flux rate per Kerr time, E r̂, and expresses that the scale invariant quantity is the energy
Er∆t ∼ E r̂∆t̂.

Furthermore, because the stationary Kerr observer is rotating from the NHEK-
perspective

χµ = ∂xµ

∂xµ̂
χµ̂ = ∂xµ

∂t̂
=
(
ζ,− 1

2M , 0, 0
)
, (5.19)

it follows that

Er = −
(
ζT rt −

1
2MT rφ

)
. (5.20)

We thus find the following expression for the Kerr energy flux as a function of NHEK
observables

E r̂ = −λ
2

2

(
T rt −

1
λ
T rφ

)
, (5.21)

which follows most directly from the transformation T µ̂ν̂ = Tµν
∂xµ̂

∂xµ
∂xν

∂xν̂
. Here the scaling

parameter

λ = 2Mζ (5.22)

was introduced, which has the following interpretation. By writing the Kerr to NHEK
angle transformation as

φ̂ = φ+ 1
λ
t , (5.23)

the scale factor can be interpreted as the angular velocity ΩNHEK
A of the asymptotic (Kerr)

region as seen by a NHEK observer

ΩNHEK
A = 1

λ
. (5.24)

The rotation ω = r of the NHEK metric (of the form (2.22)) should not exceed the value
ΩNHEK
A , and therefore the ‘gluing’ from NHEK to the asymptotic Kerr region should take

place at

r∗ = 1
λ
. (5.25)

This makes the statement that the NHEK region is glued to a Kerr region at r →∞ more
precise (with λ→ 0 per definition of the NHEK metric). We propose that the radial energy
outflux in (5.21) evaluated at the gluing radius r∗,

E r̂(r∗) = −λ
2

2

(
T rt −

1
λ
T rφ

)∣∣∣∣
r=r∗

, (5.26)
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gives a good measure for determining whether a force-free electrodynamics solution in a
near-horizon geometry is energy-extracting. What is relevant in particular, is the sign of
the total energy outflux through a constant r̂ hypersurface Σr̂,

E =
∫

Σr̂
E r̂(r∗) dΣr̂ (5.27)

with the directed surface element dΣr̂ in Kerr related to the one in NHEK by
dΣr̂ = 1

2M2ζ dΣr. For the axisymmetric and stationary solutions of section 4.4, the
flux (5.26) is a function of θ̂ only, and as dΣr is just the volume element dt ∧ dφ ∧ dθ
multiplied with a positive function of θ, it suffices for the determination of the sign of the
extracted energy during a time interval ∆t̂ to evaluate

E ∼ 2π∆t̂
∫ π/2

0
E r̂(r∗) dθ̂ . (5.28)

Our proposal can be compared to the energy outflux measured by a zero angular
momentum observer (ZAMO) in the NHEK frame. For a constant t surface in NHEK with
unit normal uµ ∼ (−r, 0, 0, 0), the associated ZAMO uµ ∼ (1

r ,−1, 0, 0) is such that upon
evaluation at r∗ it takes the form

uµ(r∗) ∼
(
ζ,− 1

2M , 0, 0
)
. (5.29)

By comparison with the rotating NHEK observer χµ in (5.19), we conclude that the energy
outflux measured by the ZAMO uµ(r∗) matches (up to possible normalizations) the one
in (5.26) measured by the stationary asymptotic Kerr observer χµ̂ = (1, 0, 0, 0). This
argument mimics the comments (D.6) and (D.7) in appendix D as applied to the toy model.

5.3 Energy flux in AdS-Kerr

The discussion in the previous subsection can straightforwardly be repeated for the AdS
case. As summarized in appendix A, the transformation between AdS-Kerr (hatted coor-
dinates) and its near-horizon region AdS-NHEK is

t̂ = t
r0
ε
, φ̂ = φ+ Ωext

H

t r0
ε
, r̂ = r+ + ε r0 r, θ̂ = θ, (5.30)

with Ωext
H given in (A.9) and r0 in (A.8). The same coordinate transformation applies for

the SE-NHEK limit from super-entropic AdS-Kerr, if φ̂ in (5.30) refers to the angle ψ̂ in the
metric (A.10), and with Ωext

H given in (A.15) and r0 in (A.14). For the rest of this section
we will refer to AdS-NHEK for definiteness, but the whole discussion applies equally well
to SE-NHEK.

The conserved energy flux (5.16) measured by an observer χµ̂ = (1/Ξ, 0, 0, 0) at rest
in AdS-Kerr is given in terms of the stress tensor components of the near-horizon observer

χµ ∼
(
ε

r0
,−Ωext

H , 0, 0
)

(5.31)
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as

E r̂ = −εr0

(
ε

r0
T rt − Ωext

H T rφ

)
. (5.32)

The scaling parameter

λ = ε

r0Ωext
H

(5.33)

sets the maximum value 1/λ of the rotation ω = k r of the NHEK region, resulting in a
gluing radius

r∗ = 1
kλ

(5.34)

at which we evaluate the flux,

E r̂(r∗) = −εr0

(
ε

r0
T rt − Ωext

H T rφ

)∣∣∣∣
r=r∗

. (5.35)

An AdS-NHEK ZAMO uµ ∼ (1
r ,−k, 0, 0) evaluated at r∗ is of the form

uµ(r∗) ∼
(
ε

r0
,−Ωext

H , 0, 0
)

(5.36)

so that the Poynting flux measured by this observer will match the flux E r̂ measured by χµ.

5.4 Discussion of energy flux profile

The main equations for energy extraction are given in equations (5.11) (for the toy model),
(5.21) (for the Kerr energy flux E r̂) and (5.32) (for the AdS-Kerr energy flux E r̂). These
equations reflect the transformation under respectively the coordinate transformation be-
tween the lab and rotating frame in the toy model, and the near-horizon coordinate trans-
formation, with T µ̂ν̂ = Tµν

∂xµ̂

∂xµ
∂xν

∂xν̂
. Let us distill from the (AdS-)Kerr energy flux formula

the main expected behavior. More specifically we want to determine what factors will be
crucial to the sign of the flux.

We start by repeating here the equation that can be applied for both the Kerr and the
AdS-Kerr energy fluxes, i.e. equation (5.26) with r∗ defined in (5.34),

E r̂(r∗) ∼ −
(
T rt −

1
λ
T rφ

)∣∣∣∣
r=r∗

, r∗ = 1
kλ
. (5.37)

For a NHEK solution, the corresponding Kerr flux is given by this E r̂(r∗) with the scaling
parameter λ defined in (5.22) and k = 1. For an AdS-NHEK solution, similarly the AdS-
Kerr flux is given by the same equation with λ now equal to (5.33), with parameters r0
and Ωext

H given in (A.8) and (A.9), and k defined under equation (3.8). Finally, for an
SE-NHEK solution, one can again use the flux equation with (5.33), where now r0 and
Ωext
H are the ones from equations (A.14) and (A.15), and k is defined in (3.12).
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The two terms in the above flux equation are not independent, but related to each
other as

T rφ = − 1
ωF

T rt. (5.38)

Plugging this relation into (5.37) and replacing λ by kr∗, we can write

E r̂(r∗) ∼ − T rt
(

1 + kr

ωF

)∣∣∣∣
r=r∗

. (5.39)

All the geometries we consider are of the form (3.1), which in turn is of the form of a
general rotating metric (2.22) with angular velocity Ω ≡ −gtφ/gφφ equal to Ω = −kr. This
allows to further rewrite the flux profile as

E r̂(r∗) ∼ −ωF Errot (Ω− ωF )|r=r∗ , (5.40)

where we used the notation Errot ≡ −T rt for the flux measured by an observer at rest in the
near horizon region or ‘rotating frame’. It is clear from this form that the sign of the flux
will be determined by whether or not the metric angular velocity is larger than the field
angular velocity, as well as by the sign of the field angular velocity ωF and the sign of the
flux as measured by a non-rotating observer in the near-horizon region.

Equation (5.40) for the (AdS-)Kerr flux makes the equivalence with the toy model
manifest: coupling back to the notation used in section 5.1 by replacing E r̂ → P r,
Errot → P rrot and Ω → ΩH , equation (5.40) expresses that the lab Poynting flux P r scales
like −ωFP rrot(ΩH − ωF ), as can be read off directly from the expressions in figure 1.

5.5 Energy flux in BTZ

The aim here is to demonstrate the extent of the validity of applying the proposed toy
model to the derivation of an energy flux from extreme near horizon black hole throats.
To this end we employ an exact solution to FFE for rotating black holes, namely, the
solution describing the BZ process [17] in the 3-dimensional rotating black hole known as
BTZ. The presumably unique, exact EM field is given in a simple, closed form for the BTZ
metric (A.17) with coordinates (t̂, φ̂, r̂). This result provides us with a set-up where the
full FFE solution is known, i.e. not just in the near-horizon region. In particular, the FFE
solution in BTZ will allow us to check equation (5.46) for the BTZ energy flux as measured
by a NHEBTZ observer.

We begin by directly applying the near horizon procedure to the FFE solution in the
BTZ metric. The energy extracting FFE solution in BTZ obtained in [17] is given by

F̂ = Φ̇
2πdt̂ ∧ dφ̂+ Q

2πr̂dr̂ ∧ dt̂−
Q r̂(Ω(r̂)− ΩF )

2πα(r̂)2 (dφ− Ω(r̂)dt̂) ∧ dr̂ (5.41)

with electric charge Q and magnetic monopole current Φ̇, and the functions α and Ω given
in (A.18). Including Znajek’s regularity condition implies Φ̇ = Qr+(ΩH − ΩF ), where the
horizon angular velocity is given by ΩH = r−/(lr+) in terms of the horizons r±.
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Consider in particular the extreme BTZ solution (Ωext
H = 1/l), with Φ̇ = 0 (required

to have a finite field strength in the NHEBTZ background) and ΩF = 1/l. Its energy flux
as defined in (5.16), with χ = ∂t̂, reads

E µ̂ = Q2

4π2(r̂2 − r2
+)

(
1, 1
l
, 0
)
. (5.42)

Note that there is no radial energy outflux for this special case of the extreme BTZ solution.
This is a consequence of the regularity condition imposed by the near-horizon solution. It
causes the field angular velocity to reach the horizon angular velocity of the extremal BTZ
black hole, ΩF = Ωext

H , while energy extraction is achieved in the range 0 < ΩF < Ωext
H .

Following the near horizon limiting procedure defined in appendix A (which involves
defining new coordinates xµ in addition to taking the limit ε → 0) for the energy flux
E ≡ Eµ̂dxµ̂ = Eµdxµ = Q2

4π2ldφ with (5.42) yields

Eµ =
(
Q2

4π2r
, 0, 0

)
, (5.43)

and for the extreme electromagnetic field (5.41) one finds

F = lQ

4πrdφ ∧ dr . (5.44)

This result for the near horizon solution in the NHEBTZ background (3.13) is obtained
specifically by making use of the conditions Φ̇ = 0 and ΩF = 1/l which impose finiteness
and Znajek’s condition.

Imagine we had not known the full FFE solution in BTZ, but only the field (5.44) in
NHEBTZ. The only non-vanishing component of the corresponding stress energy tensor is
T tφ = lQ2

4π2r . Following the discussion in the preceding sections, the energy flux measured
by a rotating NHEBTZ observer χ = ε∂t − 1

l ∂φ yields

Eµ = −
(
εT µt −

1
l
Tµφ

)
=
(
Q2

4π2r
, 0, 0

)
, (5.45)

in agreement with (5.43). The energy flux (5.45) computed solely with the field in NHEBTZ
gives rise to the same energy flux E as the one measured by the χ = ∂t̂ observer at rest in
BTZ. This is the extent to which our analysis of the NHEBTZ is exactly equivalent to our
toy model prescription.

Now let us take a look at the gluing procedure. It suggests that the object

E µ̂(r∗) = − ∂xµ̂

∂xµ

(
εT µt −

1
l
Tµφ

)∣∣∣∣∣
r=r∗

= Q2

4π2r∗ε

(
1, 1
l
, 0
)

(5.46)

allows the NHEBTZ observer, with no knowledge of the full BTZ solution, to obtain the
profile of the energy outflux measured outside the throat. The gluing radius r∗ marking
the ‘edge’ of the near horizon region is determined to be

r∗ =
r2

+
ε
. (5.47)
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This follows from a completely analogous reasoning as before. Namely, the angular velocity
ΩA, which can be read off from the BTZ to near-horizon angle transformation φ̂ = φ+ΩAt

given in (A.20), sets the maximal value ω(r∗) of the rotation ω ≡ gtφ/gφφ = r
lr2

+
of the

NHEBTZ metric (3.13). Writing out the evaluation at r∗ in (5.46) gives rise to a finite
quantity

E µ̂(r∗) = Q2

4π2r2
+

(
1, 1
l
, 0
)
. (5.48)

It matches the full BTZ flux in (5.42) evaluated at the gluing point r̂∗ =
√
r2

+ + εr∗.

6 Energy flux of force-free solutions

We are interested in the profile of E r̂(r∗) (defined in the previous section) as a function
of θ̂ ranging from the north pole to the equator, and the positivity of

∫ π/2
0 E r̂(r∗)dθ̂ as a

sign of energy extraction. The Kerr flux E r̂ takes the role of the Poynting vector in the
lab frame of the toy model of section 5.1. It can be energy extracting even if the NHEK
flux, analogous to the Poynting vector in the rotating frame of the toy model, is not. To
analyze this statement, we will also consider the NHEK flux as measured by a stationary
asymptotic observer (1, 0, 0, 0) in the NHEK frame, −T rt, and the corresponding extracted
energy at the boundary of NHEK

ENH = − lim
r→∞

∫
Σr
T rt dΣr, (6.1)

with dΣr =
√
−g dt ∧ dφ ∧ dθ. This is the object considered in [12] to discuss energy

extraction.5 It is to be compared to the energy (5.27), rewritten using equation (5.20) as

E = − lim
ζ→0

∫
Σr

(
ζT rt(r∗)−

1
2MT rφ(r∗)

)
dΣr , (6.2)

where now we explicitly wrote the limit ζ → 0 that was implicit in equation (5.27), and
r∗ = 1/(2Mζ). The AdS version of this expression is immediate from (5.31):

E = − lim
ε→0

∫
Σr

(
ε

r0
T rt(r∗)− Ωext

H T rφ(r∗)
)
dΣr , (6.3)

with r∗ = r0Ωext
H /(kε).

For the scaling solutions (both in NHEK and AdS-NHEK), the scaling of the relevant
stress tensor components is T rt ∼ r2h+2 and T rφ ∼ r2h+1. It follows that the extracted
energy (6.2) scales like

E ∼ lim
ζ→0

2π∆t r2h+1
∗ (6.4)

5To compare to their notation, limr→∞ T rt dΣr becomes their E∞ =
√
−hnν(r)Tαν χ

α
(t)|r→∞ (with χ = ∂t

and n the normal to Σr). It is pointed out in their footnote 2 that the NHEK and Kerr energies differ
because of the mixing with angular momentum.
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where we used the NHEK notation, but the same conclusion will apply to the AdS-NHEK
case. The NHEK energy flux rate E/∆t for the scaling solution will thus be finite only
for the special value h = −1

2 . This special value was also pointed out in [12].6 However,
from the point of view of the Kerr frame, the energy flux is measured in units of Kerr time
t̂ = t/ζ,

E ∼ lim
ζ→0

2π∆t̂ r2h
∗ (6.5)

and the Kerr energy flux rate E/∆t̂ is finite for h = 0. This motivates the study of the log
ansatz discussed in section 4.1.2. Indeed the log ansatz allows for a finite energy outflux
in this sense: it has T rt ∼ r2 and T rφ ∼ r or E r̂ finite.

We discuss now in detail the h = 1 scaling solutions in NHEK and AdS-NHEK. They
have infinite energy outflux.

The h = 1 scaling solution in NHEK was previously discussed in [14]. We repeat it
here in our notation before we present the new solutions: the AdS-NHEK h = 1 scaling
solution and an SE-NHEK log solution.

Scaling solution in NHEK. For the scaling ansatz in section 4.1.1, we find NHEK and
Kerr stress tensor components

T rt = ω0I0r
2h+2Φ(θ)1+2/hΦ′(θ)
4M4Γ(θ)2Λ(θ) , −T rφ = T rt

ωF
= T rt
rω0Φ1/h (6.6)

and

E r̂ =−2M2ζ

(
ζT rt−

1
2MT rφ

)
=
I0r

2h+1ζΦ(θ)1+1/h
(
1+2ω0MrζΦ(θ)1/h

)
Φ′(θ)

4M3Γ(θ)2Λ(θ) . (6.7)

The first plot in figure 2 shows the numerically obtained solution Φ(θ) of the EOM (4.9)
for h = 1. It satisfies the boundary conditions (4.13) and (4.14). What is plotted in the
second figure is the infinite energy flux rate E r̂(r∗) rescaled by a power of ζ to extract the
θ-profile of the Poynting flux,

P r = ζ2hE r̂(r∗), r∗ = 1
2Mζ

. (6.8)

This Kerr outflux is compared in the third plot to the (infinite) NHEK outflux rescaled to
the finite

P rNHEK = −ζ2h+2T rt(r∗), r∗ = 1
2Mζ

. (6.9)

Both profiles have a positive integral over θ, i.e. both E and ENH are positive, and the
extracted energy ENH is actually greater than E in this case.

This solution was first presented in [14]. The Poynting flux considered in [14] is the one
observed by a ZAMO uµ = −

√
2Γ(θ)M(r, 0, 0, 0) in the NHEK frame, using the general

definitions (D.1)–(D.3). The radial component for the Poynting flux (D.4) equals −T rρuρ.
It was discussed in the paragraph around equation (5.29) to produce the same energy
outflux profile as we find for E r̂(r∗).

6Recall that our h differs from the one in [12] by a sign.
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Figure 2. Solution Φ(θ) and corresponding Poynting flux P r as a function of θ, for the energy
extracting NHEK scaling solution for parameter values ω0 =−1,h= 1, I0 = 0.1 and Ωext

H = 1
2M = 0.5,

and with Φ(π/2) = 1.44774. This reproduces the solution of [14] (up to a sign disagreement). The
Kerr flux is smaller than the NHEK flux.

Scaling solution in AdS-NHEK. For the AdS-NHEK scaling solution, we find the
following AdS-NHEK and AdS-Kerr mixed stress tensor components

T rt = ω0I0r
2h+2Φ(θ)1+2/hΦ′(θ)
α(θ)γ(θ)Γ(θ)2 , −T rφ = T rt

ωF
= T rt
rω0Φ1/h (6.10)

and

E r̂ = −εr0

(
ε

r0
T rt − Ωext

H T rφ

)
=
I0r

2h+1εΦ(θ)1+1/h
(
r0Ωext

H + ω0 rεΦ(θ)1/h
)

Φ′(θ)
α(θ)γ(θ)Γ(θ)2 .

(6.11)

Figure 3 shows the numerical function Φ(θ) obtained for h = 1, which solves EOM (4.11)
with boundary conditions (4.13)–(4.14). Further, the θ-profile of the Poynting flux, again
appropriately rescaled to

P r = ε2hE r̂(r∗), r∗ = r0Ωext
H

kε
(6.12)

is compared to the rescaled AdS-NHEK outflux

P rAdS-NHEK = −ε2h+2T rt(r∗), r∗ = r0Ωext
H

kε
. (6.13)

In this case we observe an inwards AdS-NHEK flux (ENH < 0) but an outwards flux in
AdS-Kerr (E > 0). This is reminiscent of the toy model, and provides an example where
it matters to describe the energy extraction from the point of view of a Kerr rather than
a near-horizon observer.
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Figure 3. Solution Φ(θ) and corresponding Poynting flux P r as a function of θ, for the AdS-
NHEK scaling solution for parameter values h = 1, I0 = 0.2, ` = 1, a = −0.25, k = −0.68, ω0 = 1

2 ,
r+ = 0.226654 and Ωext

H = −2.06, and with Φ(π/2) = 1.585633. The near horizon flux P r
AdS-NHEK

is inwards while P r does detect energy extraction.

Log solution in SE-NHEK. While we have not succeeded in finding a log solution in
(AdS-)NHEK with the boundary condition Φ→ 0 at θ → 0, we do present such a solution
in SE-NHEK.

Figure 4 shows the numerically obtained Φ(θ) for the specified set of parameter values.
The plotted Φ(θ) solves the EOM (4.12) with boundary conditions (4.13)–(4.14). The
mixed stress tensor components

T rt = I0 r
2Φ(θ)Φ′(θ)

α(θ)γ(θ)Γ(θ)2 , −T rφ = T rt
ωF

= T rt
rω0Φ(θ) , (6.14)

and

E r̂ = −εr0

(
ε

r0
T rt − Ωext

H T rφ

)
= I0rε

(
r0Ωext

H + rε ω0Φ(θ)
)

Φ′(θ)
ω0α(θ)γ(θ)Γ(θ)2 (6.15)

are such that the AdS-Kerr flux rate E r̂(r∗) is finite. It is shown in figure 4 with the
notation

P r = E r̂(r∗), r∗ = r0Ωext
H

kε
, (6.16)

along with the (rescaled) SE-NHEK outflux

P rSE-NHEK = −ε2T rt(r∗), r∗ = r0Ωext
H

kε
. (6.17)

The SE-NHEK flux is again inwards while the AdS-Kerr flux is outwards.
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Figure 4. Solution Φ(θ) and corresponding Poynting flux P r as a function of θ, for the SE-
NHEK log solution with parameter values ` = 1, I0 = 0.9, ω0 = 0.5 and Ωext

H = 3/4, and with
Φ(π/2) = −0.68. The last figure shows the flux measured by a non-rotating SE-NHEK observer.

In the scaling solutions, the boundary condition Φ → 0 at θ → 0 gives rise to a fine-
tuning of the field strength to a finite value at the north pole. For the log solution this is
not the case: even though Φ→ 0, the field strength squared FµνFµν diverges at θ → 0 (so
does the angular component of the Poynting vector, while P r is finite). This unphysical
feature of the solution might be allowed because of the special geometry of SE-NHEK near
the north pole, but this remains unclear.

Discussion of energy fluxes. The energy outfluxes P r in figures 2–4 all have the prop-
erty that they change sign at the special value of θ where the field angular velocity ωF
equals the angular velocity Ω of the geometry. This is consistent with equation (5.40). The
corresponding critical value θc is determined from the condition ω0Φ(θc) = −1 for NHEK,
and ω0Φ(θc) = −k for AdS/SE-NHEK. The toy model, with constant ωF and ΩH , has a
flux of definite sign and thus no analogue of θc.

Let us provide a different visualization of the solutions through vector plots of the flux
in the (r, θ) plane of the geometry. Figure 5 shows, for each of the solutions, the streamlines
of the vector field (P x, P y), with (P x, P y) =

(
P r cos θ − rP θ sin θ, rP θ cos θ + P r sin θ

)
in

a polar vector plot, with x = r cos θ, y = r sin θ. The Poynting flux Pµ that is used to
obtain these figures is the conserved energy flux measured by the rotating observer (ZAMO)
in (5.29) and (5.36). The result for the vector plots is qualitatively similar to the result
one would obtain from using the conserved energy flux E µ̂(r, θ;λ) with λ(r∗) replaced by
λ(r). The magnitude of the radial flux P r is superimposed as a density plot with color-
coding: negative (purple) over zero (yellow) to positive (red). The first quadrant of each
plot in figure 5 corresponds to the range (θ ∈ [0, π/2]) of figures 2–4. When the solution is
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Figure 5. Polar vector plots of the (ZAMO) Poynting flux stream lines for the NHEK, AdS-NHEK
and SE-NHEK solution, in the (r, θ) plane of the near horizon geometry. The flux changes sign
at the critical angle θc (blue dashed lines). The density plot shows the magnitude of the radial
Poynting flux ranging from negative (purple) over zero (yellow) to positive (red). Along the flux
lines, the angular velocity ωF is constant (white solid lines) in agreement with the conducting
cylinder toy model.
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Figure 6. Polar vector plots of the Poynting flux stream lines for the NHEK, AdS-NHEK and SE-
NHEK solution, in the (r̂, θ̂) plane of (AdS/SE-)Kerr. Only the first quadrant is shown. In NHEK
and AdS-NHEK, the location where the flux changes sign (purple line) corresponds at the equator
to the start of the Kerr ‘ergoregion’ as determined by the NHEK observer, which is the orange
shaded region bounded by the gray dashed line. The region behind the horizon is shaded in black.

extended by symmetry to the full angular range θ ∈ [0, 2π], the net energy outflux obtained
by integrating the Poynting flux over the full range vanishes by energy conservation. To
obtain a non-trivial power output, we therefore consider the near horizon black hole regions
embedded into an externally imposed split-monopolar magnetic field sourced by toroidal
currents in a razor-thin disk at the equator [1]. This magnetic field is given by the solution in
the northern hemisphere which is mirrored into the southern hemisphere. All the solutions
we found for near-horizon black holes threaded by a split monopole magnetic field have net
positive energy outflux. The AdS- and SE-NHEK solution bring in energy at the equator
and emit energy near the poles. The NHEK solution has net positive energy outflux near
the equator. Figure 6 shows the same information as figure 5, but in Kerr coordinates.
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7 Discussion and outlook

We have presented symmetric FFE solutions in two different near horizon geometries of
AdS-Kerr. They have the property that an observer at rest in the near horizon metric
measures an energy influx, while a rotating observer — corresponding to an observer at
rest in the Kerr region — measures an energy outflux. This behavior is consistent with
the simple toy model set-up of a rotating conducting cylinder in figure 1, which shows
that the angular flux contribution can be large enough to change the sign of net energy
flux. The solutions have non-negative FµνFµν ≡ 2(B2 − E2), and therefore correspond
to magnetically dominated plasmas. This is required to avoid superluminal motion of the
plasma. That said, both solutions still display an unphysical feature. The AdS-NHEK
solution has an infinite energy outflux at the boundary of NHEK, similar to the NHEK
scaling solution of [14]. The SE-NHEK solution has diverging field strength near the north
pole. However, as the north pole is effectively removed from the SE-NHEK geometry, this
drawback might actually be irrelevant.

We have shown the log ansatz can be used to produce an FFE solution with finite
energy outflux. It would be interesting to extend this to other near-horizon geometries,
most notably the original NHEK metric, which is most relevant for astrophysics. Perhaps
another set of physical boundary conditions than the ones used in this paper can be used.

The energy-extracting solutions presented in this paper require the presence of plasma,
as in the usual BZ process. It could be investigated whether solutions describing a plasma-
less version of the BZ process, as obtained in [17] for BTZ, also appear in the context of
AdS-Kerr.

The use of AdS geometries in this paper suggests the question whether an AdS/CFT
interpretation of our FFE solutions exists, in the spirit of [17, 32]. Since the AdS-Kerr
solution is only known in our case in the near-horizon region, the only AdS factor that is
available to us for such an AdS/CFT interpretation is the warped (at constant θ) AdS3
factor that makes up the 4D (AdS-)NHEK geometry. This is the AdS space that gives rise
to the conjectured Kerr/CFT correspondence of [33]. However, an immediate repetition
of the strategy in [17] for the calculation of a dual CFT conductivity would require the
presence of an EM field strength component Ftφ, which is missing by construction in the
toroidally invariant solutions we presented. We leave these open questions for future work.
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A Kerr black holes and their near horizons

We summarize in this appendix how to take the near horizon limits of various Kerr black
holes. More details can be found e.g. in the review [34].

Near horizon extreme Kerr black hole: NHEK. In Boyer-Lindquist coordinates,
the Kerr solution, parametrized by the angular momentum per mass a and mass M , is

ds2 = −
(

1− 2Mr̂

Σ

)
dt̂2 − 4Mar̂ sin2 θ̂

Σ dt̂ dφ̂+ Σ
∆dr̂2 + Σ dθ2 + A sin2 θ̂

Σ dφ̂2 (A.1)

where Σ = r̂2 + a2 cos2 θ̂, ∆ = r̂2 − 2Mr̂ + a2 and A = (r̂2 + a2)2 − ∆ a2 sin2 θ̂. The
determinant of the metric is

√
−g = Σ sin θ̂. The roots of ∆ = 0 are the black hole inner and

outer event horizons r± = M±
√
M2 − a2. The Kerr black hole is stationary, axisymmetric

and asymptotically flat. It has an angular velocity Ω ≡ −gt̂φ̂/gφ̂φ̂ = 2Mar̂/A that vanishes
asymptotically. The angular velocity at the outer horizon is ΩH ≡ Ω(r+) = a/(r2

+ + a2).
Extremal Kerr (a = M) has coinciding horizons r+ = r− = M and horizon angular

velocity

Ωext
H = 1

2M . (A.2)

The so-called Near Horizon of Extreme Kerr (NHEK) geometry can be thought of as a
zoom in on the near horizon region r = r+ of the black hole. Following [24], the NHEK
metric (3.2) can be obtained from the extremal Kerr black hole geometry (A.1) in Boyer-
Lindquist coordinates (t̂, r̂, θ̂, φ̂) by defining new coordinates

t̂→ t

ζ
, φ̂→ φ+ t

2Mζ
, r̂ → 2M2ζr +M, θ̂ → θ (A.3)

and taking the limit ζ → 0. The location of the horizon is at r = 0 in these coordinates.
From the relation φ = φ̂ − 1

2M t̂ between the new angle φ and the Kerr angle φ̂, it is clear
that the NHEK geometry co-rotates with extremal Kerr at the angular velocity of the
horizon (A.2). The scale parameter ζ can be rescaled without changing the resulting near
horizon metric. This points to an extra scaling symmetry of the NHEK geometry under
r → λr and t→ t/λ. It is discussed in more detail in section 3.1.1.

Near horizon extreme AdS-Kerr black hole: AdS-NHEK. In this section and the
next we discuss two types of near horizon geometries that follow from two types of extremal
limits of the AdS-Kerr black hole (in Boyer-Lindquist coordinates)

ds2 = −∆a

Σa

(
dt̂− a sin2 θ̂

Ξ dφ̂

)2

+ Σa

∆a
dr̂2+ Σa

∆θ
dθ̂2+ ∆θ sin2 θ̂

Σa

(
a dt̂− r̂2 + a2

Ξ dφ̂

)2

(A.4)

where

∆a = (r̂2 + a2)(1 + r̂2/l2)− 2mr̂ Ξ = 1− a2/l2 , (A.5)
∆θ = 1− a2 cos2 θ̂/l2 Σa = r̂2 + a2 cos2 θ̂ . (A.6)
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In one case we take the traditional extreme limit where the inner and outer horizons
degenerate to a single horizon at r̂ = r+ = r−. In the other case we will take the so called
super-entropic limit a→ l while also fixing the mass m = 8 l/3

√
3 for the black hole to be

extreme. More details on these two different prescriptions are described next.
The outer and inner horizon of AdS-Kerr are defined as the largest and smallest root

of ∆a (which allows to eliminate m for r±). As it was shown in [25, 34], to find the near
horizon geometry of the extreme AdS-Kerr black hole (3.1) one has to first find the extreme
limit of (A.4) where the inner and outer horizons degenerate r = r+ = r−, then introduce
new coordinates

t̂→ t
r0
ε
, φ̂→ φ+ Ωext

H

t r0
ε
, r̂ → r+ + ε r0 r, θ̂ → θ, (A.7)

with r0 and Ωext
H defined below, and finally take the limit ε→ 0.

The extremality condition a(r+) is given in (3.9) and r0 is defined as

r2
0 =

(r2
+ + a2)

∆0
, ∆0 = 1 + a2

l2
+ 6

r2
+
l2
. (A.8)

The parameter Ωext
H is given by the AdS-Kerr angular velocity of the (outer) horizon

Ωext
H = Ξ a

r2
+ + a2 , (A.9)

where the superscript refers to the angular velocity being evaluated at extremality (3.9).

Near horizon of super-entropic AdS-Kerr black hole: SE-NHEK. A different
extremal limit for the AdS-Kerr black hole has been studied in the super-entropic limit
a → l in [28]. Here we show how to derive the near horizon geometry of these super-
entropic extremal black holes, as first discussed in [26].

Following [28] we first take the limit a→ l, but at the same time to avoid a singularity
in the metric rescale the coordinate φ̂ = ψ̂ Ξ and identify ψ̂ with period 2π/Ξ to prevent
conical singularities. The black hole (A.4) in this limit is super-entropic (see [27] for details)
and becomes

ds2 =−∆l

Σl

(
dt̂−l sin2 θ̂ dψ̂

)2
+ Σl

∆l
dr̂2+ Σl

sin2 θ̂
dθ̂2+ sin4 θ̂

Σl

(
l dt̂−(r̂2+l2)dψ̂

)2
(A.10)

where
∆l = (r̂2 + l2)(1 + r̂2/l2)− 2mr̂ Σl = r̂2 + l2 cos2 θ̂ . (A.11)

The coordinate ψ̂ is non-compact and hence we choose to compactify it by ψ̂ ∼ ψ̂+2π. The
black hole event horizon topology is that of a sphere with two punctures (at the poles) and
for horizons to exist there is a minimal extremal value of the mass m ≡ ml = 8 l/(3

√
3).

Note that now there are only three roots of ∆l|m=ml = 0 located at r = {l/
√

3, (−1 ±
2
√

2i) l/
√

3}. The event horizon is therefore located at

r+ ≡ rl = l√
3
. (A.12)
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Now we derive the near horizon region r = rl of these extreme super-entropic black
holes, dubbed here SE-NHEK metric (3.1) with functions (3.12). It can be obtained from
the extremal m = ml super-entropic AdS-Kerr black hole geometry (A.10) by defining
new coordinates in the same way as in (A.7) but starting from the super-entropic black
hole (A.10) with angle ψ̂, namely

t̂→ t
r0
ε
, ψ̂ → φ+ Ωext

H

t r0
ε
, r̂ → r+ + ε r0 r, θ̂ → θ, (A.13)

and taking the limit ε → 0. Note that in this super-entropic extremal limit r0 defined
in (A.8) equals r+, i.e.

r0 = l√
3
, (A.14)

and Ωext
H is given by the horizon angular velocity ΩH ≡ −gt̂ψ̂/gψ̂ψ̂(r+) of the geome-

try (A.10), evaluated at the extremal value of r+ in (A.12),

Ωext
H = 3

4l . (A.15)

With these values filled in, the SE-NHEK limit (A.13) can be written out as

t̂→ rl t/ε , ψ̂ → φ+ (
√

3/4) t/ε , r̂ → rl (1 + ε r) , θ̂ → θ . (A.16)

It was shown in [26] that the super-entropic limit and the near-horizon limit of AdS-
Kerr commute, i.e. the SE-NHEK metric can alternatively be obtained from a super-
entropic limit of AdS-NHEK.

Near horizon of extremal BTZ: NHEBTZ. The BTZ black hole background met-
ric [35], which is a three-dimensional solution of Einstein’s equations with a negative cos-
mological constant, is

ds2 = −α(r̂)2dt̂2 + dr̂2

α(r̂)2 + r̂2(dφ̂− Ω(r̂)dt̂)2 (A.17)

with

α(r̂) =
(r̂2 − r2

+)(r̂2 − r2
−)

r̂2l2
, Ω(r̂) = r−r+

r̂2l
. (A.18)

It has horizons r± at the locations where α(r̂) vanishes, and angular velocity Ω(r̂). In
the extremal limit, the inner and outer horizon coincide r+ = r− and the horizon angular
velocity becomes

Ωext
H = 1

l
. (A.19)

The near-horizon extreme BTZ geometry or NHEBTZ geometry (3.13) can be obtained
from the coordinate transformation (see e.g. [31])

t̂ = t

ε
, φ̂ = φ+ t

εl
, r̂2 = r2

+ + εr (A.20)

in the limit ε→ 0.
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B Stream equations in near-horizon regions

For the NHEK metric (3.1) with (3.2), the action in (2.24) becomes

S[Aφ] =
∫
drdθ

[
d

2
(
r2(∂rAφ)2 + (∂θAφ)2

)
+ 1

2r2ΛI(Aφ)2
]

d ≡ −C
r

= Λ
(
ωF
r

+ 1
)2
− 1

Λ

(B.1)

or alternatively, using (2.17),

S[At] =
∫
drdθ

r2

[
D

2
(
r2(∂rAt)2 + (∂θAt)2

)
+ 1

2ΛI(At)2
]

D ≡ − r

ω2
F

C = Λ
(

1 + r

ωF

)2
− 1

Λ
r2

ω2
F

.

(B.2)

From these actions we obtain respectively the NHEK EOM for Aφ,

∂θ(d ∂θAφ) + ∂r(d r2∂rAφ)− 1
2
δd

δAφ

(
r2(∂rAφ)2 + (∂θAφ)2

)
− 1
r2ΛI

δI

δAφ
= 0, (B.3)

and the one for At,

∂θ

(
D

r2∂θAt

)
+ ∂r(D∂rAt)−

1
2
δD

δAt

(
(∂rAt)2 + 1

r2 (∂θAt)2
)
− 1
r2ΛI

δI

δAt
= 0. (B.4)

For an AdS-NHEK metric (3.1), with either (3.8) or (3.12), the action (2.24) is

S[Aφ] =
∫
drdθ

[
dα
2

(
r2(∂rAφ)2 + 1

α2 (∂θAφ)2
)

+ α

2r2γ
I(Aφ)2

]
dα ≡ −

α

r
C = αγ

(
ωF
r

+ k

)2
− α

γ

(B.5)

or

S[At] =
∫
drdθ

r2

[
Dα

2

(
r2(∂rAt)2 + 1

α2 (∂θAt)2
)

+ α

2γ I(At)2
]

Dα ≡ −
αr

ω2
F

C = γα

(
1 + k

r

ωF

)2
− α

γ

r2

ω2
F

.

(B.6)

Variation of the action gives the AdS-NHEK EOM for Aφ,

∂θ

(
dα

1
α2∂θAφ

)
+ ∂r(dα r2∂rAφ)− 1

2
δdα
δAφ

(
r2(∂rAφ)2 + 1

α2 (∂θAφ)2
)
− α

r2γ
I
δI

δAφ
= 0,

(B.7)

and for At,

∂θ

(
Dα

r2α2∂θAt

)
+∂r(Dα∂rAt)−

1
2
δDα

δAt

(
(∂rAt)2+ 1

r2α2 (∂θAt)2
)
− α

r2γ
I
δI

δAt
= 0. (B.8)
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C EM fields in different frames

We review the identification of EM fields in the EM tensor that allow the standard form
of Maxwell’s equations to be obtained from the covariant expressions in terms of the field
strength. Different frames are considered. In particular the relation between electromag-
netic fields in rotating frames in (C.14) is useful for the description of the toy model in the
main text.

Carthesian. In Carthesian coordinates in mostly plus convention, the standard definition

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 (C.1)

(or Ei = Fi0 and Bi = 1
2ε0ijkF

jk, with εµναβ the covariant permutation tensor of the
spacetime) is easily shown to provide as equivalent formulations of Maxwell’s equations

∂νF
µν = jµ

{
∇ · E = j0

∇×B = ∂E
∂t + j

(C.2)

and

∂νF̃
µν = 0

{
∇ ·B = 0
∇× E = −∂B

∂t

, (C.3)

with

F̃µν = 1
2ε

µναβFαβ . (C.4)

The electromagnetic stress energy tensor is defined as

Tµν = FµαF
α

ν −
1
4FαβF

αβgµν (C.5)

and related to the Poynting vector P i = (E ×B)i = ε ijk0 EjBk as

T i 0 = −P i. (C.6)

Cylindrical. In cylindrical coordinates, we use

Fµν =


0 −Er −Eθ −Ez
Er 0 Bzr −Bθ/r
Eθ −Bzr 0 Brr

Ez Bθ/r −Brr 0

 (C.7)

to obtain the equivalent formulations

∇νFµν = jµ
{
∇ · E = j0

∇×B = ∂E
∂t + j

(C.8)

– 32 –



J
H
E
P
1
2
(
2
0
2
0
)
0
1
8

and

∇νF̃µν = 0
{
∇ ·B = 0
∇× E = −∂B

∂t

. (C.9)

Here, ∇µ is the covariant derivative in the metric

ds2 = −dt2 + dr2 + r2dθ2 + dz2. (C.10)

The field strength (C.7) can be obtained from the Carthesian expression (C.1) by the
transformation F → ΛTFΛ under the transformation from Carthesian coordinates x to
cylindrical coordinates x′ with transformation matrix Λ = ∂x/∂x′. The components of the
electromagnetic fields are given by Ei = Fi0 and Bi = 1

2ε0ijkF
jk. In the alternative choice

of basis ~eθ →
√
gθθ~eθ (or Eθ = Ecylθ /r and Bθ = Bcyl

θ /r), the form of Maxwell’s equations
in curvilinear, cylindrical coordinates is recovered.

The same relation (C.6) holds for the Poynting flux defined as P i= (E×B)i = ε ijk0 EjBk,

P =
(
BzEθ −BθEz

r
,
BrEz −BzEr

r
,
BθEr −BrEθ

r

)
. (C.11)

Rotating frame. We can go from cylindrical coordinates xµ = (t, r, θ, z) = (t′, r′, θ′ +
ωt′, z′) to rotating cylindrical coordinates xµ′ = (t′, r′, θ′, z′) = (t, r, θ − ωt, z), with metric
ds2 = −dt2 + dr2 + r2dθ2 + dz2 transformed into the metric ds′2 = −dt′2 + dr′2 + r′2(dθ′ +
ωdt′)2 + dz′2 such that the primed frame rotates with angular velocity ω counterclock-
wise about the z axis. In the rotating frame in cylindrical coordinates (t′, r′, θ′, z′), the
transformed field strength is then given by7

Fµ
′ν′

rot =


0 Er Eθ/r

2 Ez
−Er 0 Brot

z /r −Brot
θ /r

−Eθ/r2 −Brot
z /r 0 Brot

r /r

−Ez Brot
θ /r −Brot

r /r 0

 (C.12)

and

F rot
µ′ν′ =


0 −Erot

r −Erot
θ −Erot

z

Erot
r 0 rBz −Bθ/r

Erot
θ −rBz 0 rBr

Erot
z Bθ/r −rBr 0

 (C.13)

with the rotating EM fields as a function of the lab EM fields given by

Erot
θ = Eθ, Erot

r = Er + ωrBz, Erot
z = Ez − ωrBr (C.14)

Brot
θ = Bθ, Brot

r = Br − ωrEz, Brot
z = Bz + ωrEr (C.15)

7One goes between contravariant and covariant EM fields by Eθ = Eθ/r
2 and Bθ = Bθ/r

2. Also, as
remarked in the previous section on the cylindrical frame, we can use Eθ → Eθ/r, Bθ → Bθ/r to recover
the curvilinear notation.
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or Erot = E+ (ω~ez×~r)×B and Brot = B− (ω~ez×~r)×E. The rotating fields are obtained
from the field strength through

Erot
i′ = Fi′0′ , Brot

i′ = 1
2ε0

′i′j′k′F
j′k′ . (C.16)

The field strength in (C.12) gives the Maxwell equations

∇ν′Fµ
′ν′

rot = jµ
′

rot

{
∇ · E = j0′

rot
∇×Brot = ∂E

∂t + jrot
(C.17)

and

∇ν′F̃µ
′ν′

rot = 0
{
∇ ·B = 0
∇× Erot = −∂B

∂t

, (C.18)

with

jµ
′

rot =
(
ρ, jr, jθ − ρω, jz

)
(C.19)

and ∇µ′ the covariant derivative in the metric

ds′2 = −dt′2 + dr′2 + r′2(dθ′ + ωdt′)2 + dz′2. (C.20)

The rotating frame Poynting flux

Prot =
(
Brot
z Erot

θ −Brot
θ Erot

z

r′
,
Brot
r Erot

z −Brot
z Erot

r

r′
,
Brot
θ Erot

r −Brot
r Erot

θ

r′

)
(C.21)

is determined by the Maxwell stress tensor through

T i
′
0′ = −P i′rot . (C.22)

Further references on EM fields in rotating frames are [36] and [37].

D General curved space EM field definitions

For u a future-pointing unit time-like vector field (uµuµ = −1) in a 4-dimensional curved
spacetime gµν , the associated observer with four-velocity umeasures EM fields (see e.g. [38])

Eµ = Fµνu
ν (D.1)

Bµ = 1
2εσµαβF

αβuσ (D.2)

and Poynting vector

Pµ = εσµνρuσEνBρ. (D.3)

The Poynting vector is defined as

Pµ = −γµαTαβuβ = −Tµρuρ − uµuβT
β
ρu

ρ (D.4)

in terms of the induced metric γαβ on the hypersurface orthogonal to u,

γαβ = gαβ + uαuβ . (D.5)
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Rotating cylinder. We now apply these definitions to the rotating cylinder space-
time (C.20). For an observer uµ′ = (1, 0, 0, 0) at rest in the rotating frame, (D.1) and (D.2)
extract the fields E = (Erot

r , Erot
θ , Erot

z ) and B = (Brot
r , Brot

θ , Brot
z ), and (D.4) gives (C.22)

for the Poynting flux (C.21). (Notice however that (D.3) does not reproduce (C.21), be-
cause the observer’s four-velocity is not normalized to unity.)

On the other hand, the unit normal to a constant time surface is given by
uµ′ = (−1, 0, 0, 0). The corresponding observer

uµ
′ = (1, 0,−ω, 0) (D.6)

is a zero angular momentum observer or ‘ZAMO’, as it satisfies uµ′ηµ′ = 0 with η the
angular Killing vector of the spacetime. The definitions (D.1)–(D.3) then extract the lab
EM fields E = (Er, Eθ, Ez) and B = (Br, Bθ, Bz), as well as the lab Poynting vector (C.11).
Indeed, the ZAMO rotates in the rotating frame and corresponds to an observer at rest in
the lab frame (C.10),

uµ = (1, 0, 0, 0) (D.7)

via uµ′ = ∂xµ
′

∂xµ u
µ.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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