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We revisit the concept of an approximate delta function (ADF), introduced by Huynh 
(2011) [1], in the form of a finite-order polynomial that holds identical integral properties 
to the Dirac delta function when used in conjunction with a finite-order polynomial 
integrand over a finite domain. We show that the use of generic ADF polynomials can be 
effective at recovering and generalizing several high-order methods, including Taylor-based 
and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via 
Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value 
enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values 
inside each element as well as the unknown quantities and, if needed, their derivatives 
on nodal points. The sharing of nodal information with surrounding elements saves the 
number of degrees of freedom compared to other compact methods at the same order. 
To ensure conservation, cell-averaged values are updated using an identical approach to 
that adopted in the finite volume method. Here, the updating of nodal values and their 
derivatives is achieved through an ADF concept that leverages all of the elements within 
the domain of integration that share the same nodal point. The resulting scheme is shown 
to be very stable at successively increasing orders. Both accuracy and stability of the PFV 
method are verified using a Fourier analysis and through applications to the linear wave 
and nonlinear Burgers’ equations in one-dimensional space.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Dirac delta function represents a well-defined distribution that extends over a line of real numbers while possessing 
the unique property of vanishing everywhere except at the origin. Nonetheless, it still produces a unit value when integrated 
over the entire real line. Moreover, one of its most distinguishing properties stands, perhaps, in its ability to reproduce 
the values and derivatives of any function in integral form. In this paper, we show that the integral properties of the 
delta function may be useful in a number of computational settings as an alternative vehicle for evaluating functional 
values and derivatives over a finite domain. In numerical computations, however, the theoretical delta function suffers from 
singularities because of its sudden vanishing and infinite distribution. In 2011 and 2014, Huynh [1,2] introduced a very 
important concept, namely, that of an approximate delta function (ADF), which serves well to overcome these limitations. 
Accordingly, the ADF is defined as a finite-order polynomial that is capable of preserving the integral properties of the exact 
delta function in the evaluation of finite-order polynomials over finite domains. In this study, we extend the ADF concept 
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by allowing the ADF polynomial to contain arbitrary coefficients and by defining ADF derivative weight functions that can 
be very effective in the development of a high-order numerical framework for solving partial differential equations.

It is well known that, in the field of computational fluid dynamics, low-order methods are often selected because of their 
simplicity and robustness, factors that jointly justify their recurrent use in engineering practice. Using similar CPU resources, 
however, high-order methods can provide more accurate solutions, albeit at the cost of increased complexity and reduced 
robustness. For this reason, numerous researchers have undertaken efforts to improve the manner by which high-order 
techniques may be constructed, with the aim of improving their accuracy while enhancing their stability and performance 
characteristics.

In this vein, the Discontinuous Galerkin (DG) method was developed because of its favorable attributes; these have led 
to its acceptance as one of the most widely relied upon high-order methods for solving the Navier–Stokes equations. The 
method itself was introduced in the context of the neutron transport problem by Reed and Hill [3], analyzed by LaSaint and 
Raviart [4] and then extended and popularized in the fluid dynamics community by Cockburn, Shu, Bassi, Rebay, and others 
(see [5–9], and the references therein).

One of the essential characteristics of the DG approach lies in its dependence on the Galerkin method to approximate a 
partial differential equation (PDE) that applies to a finite element. The corresponding PDE is subsequently converted into a 
series of ordinary differential equations (ODEs) that can be solved by standard methods.

Alternative approaches that seek to achieve high-order accuracy rely on differential forms. These may be exemplified 
by the pioneering work on the staggered-grid spectral method [10], as well as the spectral difference [11,12] and spectral 
volume approaches [13], which have been complemented by the elegant method of flux reconstruction [14,15,1] (FR), later 
evolving into the correction procedure via reconstruction [16–18] (CPR).

Among these high-order methods, different ways exist to appoint the degrees of freedom (DOFs) to each element at 
the cell-averaged or point-wise values, as well as their derivatives, which are later refreshed during the evaluation process. 
Although the Galerkin method and local reconstruction have been shown to provide formal avenues to derive the relevant 
ODEs in the context of the DG and differential approaches, the application of ADF to formulate the local ODEs will be used in 
this work as an alternative approach with particular benefits [1,2]. We further explore a generic ADF approach that contains 
arbitrary constants that can be specified in such a way to enhance the performance of the method to be reproduced. The 
characteristic attributes of this approach, such as simplicity, will constitute one of the main subjects of this article. In fact, 
one of the advantages of ADF implementation will be shown to be associated with its versatility in handling different DOF 
specifications.

It should also be noted that, in recent years, a well-developed constrained interpolation profile (CIP) with multi-moment 
finite volume (MFV) method has been developed (see Xie et al.[19] and the references therein). Apart from the cell-averaged 
value of a given element, MFV introduces additional DOFs on the element’s edge and nodal points. The ability to share this 
supplementary information with neighboring elements transforms MFV into a more efficient scheme for saving the number 
of DOFs compared to other high-order methods of comparable accuracy. Pursuant to this approach, the sharing of additional 
DOFs within the context of continuity leads to the enhancement of the scheme’s robustness. In fact, a similar concept may 
be attributed to the Active Flux (AF) method [20,21], where the unknown values at edge-based flux points are treated as 
independent DOFs and updated at every time step.

Because nodal points undergo the highest sharing rate, being shared by more elements than edges, it proves more 
efficient to increase the amount of information that is being communicated with a given element by placing all additional 
DOFs on the nodes only. As such, it is possible to augment the nodal information and extend the MFV and AF approaches by 
adding not only the unknown functional values at the nodal points, but also their derivatives. In this process, the updating 
of cell-averaged values may be accomplished in a manner that mirrors the traditional finite volume (FV) approach, thus 
guaranteeing the conservation of the scheme.

In practice, the manner by which additional information is updated on nodal points and edges constitutes the most 
distinguishing features in the MFV and AF schemes. We presently rely on an ADF procedure and set the integral domain 
to encompass all of the elements surrounding the point in question. This increases the radius of influence, as it were, that 
accompanies each update. Our nodal updating procedure may hence be likened to the case of an overlapped DG, where 
nodal values and derivatives can provide sufficient information for the high-order reconstruction of the unknown quantity 
in each element. As for the order of the “DG on the node,” it is no longer constrained by the DOFs on the nodal point itself. 
The nodal updating becomes comparable to the PnPm procedure [22]. Furthermore, since the precision of the method may 
be improved by increasing the amount of information that is assigned to the nodal points, we call this strategy a point-value 
enhanced finite volume method (PFV). As to the temporal updating, a conventional third-order total variation diminishing 
(TVD) Runge–Kutta scheme can be conveniently employed.

In this article, the approximate delta function is revisited and extended in Section 2 to comprise arbitrary constants. 
This is followed by applying the extended ADF to recover and generalize Taylor-based DG, nodal-based DG, and FR/CPR 
methods in Sections 3, 4, and 5, respectively. In Section 6, the ADF-based point value enhanced finite volume method is 
defined, implemented, and verified numerically. We retire in Section 7 with some conclusions and recommendations for 
future work.
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2. Reviewing and extending the approximate delta function (ADF)

To set the stage, we recall that a delta function exhibits the following integral property:
+∞∫

−∞
f (y)δ(y − x)dy = f (x), (1)

where f (x) stands for a continuous function of compact support. In 2011 and 2014, Huynh [1,2] introduced an approximate 
delta function (ADF) in the form of a finite-order polynomial that can mirror the integral property of a Dirac delta function 
over a finite domain, x ∈ [−1, 1]. In this work, we find it useful to change the domain boundaries to the generic interval 
x ∈ [a, b] and write

b∫
a

PN(y)δ̃N(y, z)dy = PN(z), (2)

where PN(y) is any Nth-order polynomial and δ̃N (x, z) represents an ADF polynomial of order N . The present analysis 
begins by reviewing the ADF formulation in [2] while extending it to the case of x ∈ [a, b]. We also consider generic ADF 
forms that have orders higher than N and that enable us to retrieve the derivatives of PN (y).

2.1. Revisiting Huynh’s ADF concept

According to (3.4) in Ref. [2], a Legendre polynomial expansion may be used to express the ADF of order N explicitly as

δ̃N(x, z) = 1

h

N∑
i=0

(2i + 1)Li(ξ)Li(η), ξ = x− xc
h/2

, η = z − xc
h/2

, (3)

where the present notation is used with xc = 1
2 (a +b) representing the domain center, h = b −a denoting the domain width, 

and Li(ξ) standing for the Legendre polynomial of order i.
By assuming a solution interval that is bracketed by [a, b] = [−1, 1] as in Ref. [2], and for N ≤ 4, one may readily deduce 

from (3) that

δ̃0(x, z) = 1

2
, δ̃1(x, z) = 1

2
+ 3z

2
x, δ̃2(x, z) = 9− 15z2

8
+ 3z

2
x+ 45z2 − 15

8
x2,

δ̃3(x, z) = 9− 15z2

8
+ 75z − 105z3

8
x+ 45z2 − 15

8
x2 + 175z3 − 105z

8
x3,

δ̃4(x, z) = 225− 1050z2 + 945z4

128
− 105z3 − 75z

8
x− 525− 4410z2 + 4725z4

64
x2

+ 175z3 − 105z

8
x3 + 945− 9450z2 + 11025z4

128
x4. (4)

Note that at z = 0, we recover four terms with two identical expressions,

δ̃0(x,0) = δ̃1(x,0) = 1

2
, δ̃2(x,0) = δ̃3(x,0) = 9

8
− 15

8
x2,

δ̃4(x,0) = 225

128
− 525

64
x2 + 945

128
x4.

(5)

Similarly at z = 1
4 , we extract,

δ̃0

(
x,

1

4

)
= 1

2
, δ̃1

(
x,

1

4

)
= 1

2
+ 3

8
x, δ̃2

(
x,

1

4

)
= 129

128
+ 3

8
x− 195

128
x2,

δ̃3

(
x,

1

4

)
= 129− 195x2

128
+ 1095x− 1505x3

512
,

δ̃4

(
x,

1

4

)
= 41745+ 101745x4

32768
+ 1095x− 1505x3

512
− 68565x2

16384
.

(6)

For the reader’s convenience, the shapes of the approximate delta functions, δ̃N (x, z) for 1 ≤ N ≤ 4 are illustrated in Fig. 1
at both z = 0 and z = 1

4 . It should be noted that identical ADF distributions may be found in Ref. [2] for δ̃N (x, 0) (N =
0, 1, · · · , 8) and δ̃N (x, 1) (N = 4, 5, · · · , 8).
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Fig. 1. The shape of the approximate delta function (ADF) for (a) δ̃1(x, 0) (——), δ̃2(x, 0) (− − −), and δ̃4(x, 0) (− · −), as well as (b) δ̃1(x, 14 ) (——), δ̃2(x, 14 )

(− − −), δ̃3(x, 14 ) (− · −), and δ̃4(x, 14 ) (· · · · ·).

2.2. Defining a generic ADF expression

At this point, it may be helpful to specify the difference between ADFs at two distinct orders N and M by introducing 
the gap function, εN

M(x, z), where

εN
M(x, z) = δ̃N(x, z) − δ̃M(x, z) = 1

h

i=N∑
i=M+1

(2i + 1)Li(ξ)Li(η); N > M. (7)

It is then possible to define a generic ADF, δ̃N|K (x, z), as a polynomial of order N + K , namely, by superimposing a function, 
δ̃N (x, z), of order N , and a sum of gap functions, εN+i

N (x, z), for i = 1, 2, · · · , K . This may be accomplished by taking

δ̃N|K (x, z) = δ̃N(x, z) + c1ε
N+1
N (x, z) + c2ε

N+2
N (x, z) + ... + cK εN+K

N (x, z), (8)

where the arbitrary coefficients are given by ci ∈ R, i = 1, 2, 3, ..., K . In the foregoing, the indices N|K denote a generic ADF 
polynomial of order (N + K ). By virtue of the ADF integral property, one may readily substitute δ̃N|K (x, z) back into (2) to 
show that

b∫
a

PN(y)δ̃N|K (y, z)dy = PN(z), (9)

where not only the order of the polynomial in δ̃N|K (x, z) is raised to N + K , but also K arbitrary coefficients are introduced. 
Equation (9) can also be viewed as an integral-form definition of ADF other than the one given by (8). It can thus be seen 
that the function δ̃M(x, z) not only satisfies

b∫
a

PN(y)δ̃M(y, z)dy = PN(z) (10)

but also possesses an infinite number of solutions, when M > N . Furthermore, one can write δ̃M(y, z) = δ̃N|M−N (x, z) when 
M = N , thus leading to δ̃N|0(x, z) = δ̃N (x, z).

2.3. Defining ADF polynomial derivative weight functions

Besides the functions themselves, it is possible to define (N + K )th-order ADF weight functions to generate the actual 
derivatives of an Nth-order polynomial. This may be achieved by specifying δ̃′

N|K (y, z) and δ̃′′
N|K (y, z) with the following 

integral properties:
b∫

a

PN(y)δ̃′
N|K (y, z)dy = dPN(z)

dz
,

b∫
a

PN(y)δ̃′′
N|K (y, z)dy = d2PN(z)

dz2
. (11)

Then based on (9), one can deduce that

δ̃′
N|K (x, z) = ∂δ̃N|K (x, z)

, δ̃′′
N|K (x, z) = ∂2δ̃N|K (x, z)

2
. (12)
∂z ∂z
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Fig. 2. The shape of the ADF derivative weight functions for (a) δ̃′
1(x, 0) (——) and δ̃′

3(x, 0) (− − −), as well as (b) δ̃′
1(x, 14 ) (——), δ̃′

2(x, 14 ) (− − −), δ̃′
3(x, 14 )

(− · −), and δ̃′
4(x, 14 ) (· · · · ·).

More generally, for a given nth-order derivative dn PN(z)/dzn , one may specify a corresponding ADF derivative weight 
function using

δ̃
(n)
N|K (x, z) = ∂nδ̃N|K (x, z)

∂zn
. (13)

For example, using the Legendre polynomial expression in (3), δ̃′
N(x, z) can be written as

δ̃′
N(x, z) = ∂δ̃N(x, z)

∂z
= 1

2

N∑
i=0

(2i + 1)Li(ξ)
dLi(η)

dη
, (14)

which, for the special case of [a, b] = [−1, 1] and N ≤ 4, yields the following sequence of δ̃′
N (x, z) (N = 0, 1, · · · , 4):

δ̃′
0(x, z) = 0, δ̃′

1(x, z) = 3

2
x, δ̃′

2(x, z) = −15

4
z + 3

2
x+ 45

4
zx2,

δ̃′
3(x, z) = −15

4
z + 75− 315z2

8
x+ 45z

4
x2 + 525z2 − 105

8
x3,

δ̃′
4(x, z) = 945z3 − 525z

32
+ 75− 315z2

8
x+ 2205z − 4725z3

16
x2

+ 525z2 − 105

8
x3 + 11025z3 − 4725z

32
x4.

(15)

Similarly, for z = 0 and z = 1
4 , we have

δ̃′
1(x,0) = δ̃′

2(x,0) = 3

2
x,

δ̃′
3(x,0) = δ̃′

4(x,0) = 75x− 105x3

8
,

(16)

and

δ̃′
1

(
x,

1

4

)
= 3

2
x, δ̃′

2

(
x,

1

4

)
= −15

16
+ 3

2
x+ 45

16
x2,

δ̃′
3

(
x,

1

4

)
= −15

16
+ 885

128
x+ 45

16
x2 − 1155

128
x3,

δ̃′
4

(
x,

1

4

)
= −7455

2048
+ 885

128
x+ 30555

1024
x2 − 1155

128
x3 − 64575

2048
x4.

(17)

The shapes of the ADF derivative weight functions, δ̃′
N (x, z) for 1 ≤ N ≤ 4 are illustrated in Fig. 2 at both z = 0 and z = 1

4 . 
It should be noted that the scales and shapes of δ̃′

N (x, z) are different from those of the ADF introduced in Ref. [2] and 
illustrated in Fig. 1.
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3. ADF in relation to the Taylor-based DG method for the scalar wave equation

3.1. Second- and third-order Taylor-based DG schemes for the one-dimensional wave equation

We begin by briefly reviewing the DG method in the context of the linear, one-dimensional, scalar wave equation. Using 
standard nomenclature, we consider:

∂u

∂t
+ ∂ f (u)

∂x
= 0; f (u) = au, a > 0, x ∈ [0,1]. (18)

To proceed, we first subdivide the [0, 1] interval uniformly into multiple elements {�e}, and then use Taylor expansion to 
discretize u(x) over each element by taking

ue(x, t) = ū(t) + ∂u

∂x
(x − xc) + ∂2u

∂x2

[
(x− xc)2

2
− h2

24

]
+ · · ·

= ū(t)B0(x) + u1(t)B1(x) + u2(t)B2(x) + · · · , (19)

where ū denotes the cell-averaged u, xc refers to the location of the cell-center, and h alludes to the width of the cell. Being 
a normal polynomial, the Taylor basis (x − xc)i (i = 1, 2, · · · ) can be modified through subtraction to produce∫

�e

Bi(x)dx = 0, i > 1. (20)

Next, (18) may be multiplied term by term by the Taylor bases

[B0(x), B1(x), B2(x), · · ·] =
[
1, x− xc,

(x− xc)2

2
− h2

24
, · · ·

]
, (21)

then integrated over the cell �e to obtain the weak form∫
�e

∂ue

∂t
B j dx+ aueB j|R − aueB j|L −

∫
�e

aue ∂B j

∂x
dx = 0, j = 0,1,2, · · · (22)

where R and L refer to the adjacent right and left points. To produce a third-order scheme, the Taylor-series expansion in 
(19) may be inserted into the weak form (22). Then using the upwind flux with a > 0 at the cell interface, we can put

⎡
⎢⎢⎢⎣
h 0 0

0
h3

12
0

0 0
h5

720

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

dū

dt
du1

dt
du2

dt

⎤
⎥⎥⎥⎥⎥⎥⎦

i

− a

⎡
⎢⎢⎣
0 0 0

h 0 0

0
h3

12
0

⎤
⎥⎥⎦

⎡
⎢⎣

ū

u1

u2

⎤
⎥⎦

i

+

a(ū + 1
2hu1 + 1

12h
2u2)i

⎡
⎢⎢⎢⎢⎢⎣

1
h

2
h2

12

⎤
⎥⎥⎥⎥⎥⎦ − a(ū + 1

2hu1 + 1
12h

2u2)i−1

⎡
⎢⎢⎢⎢⎣

1
−h

2
h2

12

⎤
⎥⎥⎥⎥⎦ = 0.

(23)

The resulting assortment of ordinary differential equations with respect to the variables ū(t), u1(t), u2(t) may be handled 
using standard ODE solvers. In this context, the second and third-order schemes may be directly written as⎧⎪⎪⎨

⎪⎪⎩
dūi

dt
= a(ūi−1 − ūi)

h
+ a(u1,i−1 − u1,i)

2
du1,i

dt
= 6a(ūi − ūi−1)

h2
− 3a(u1,i−1 + u1,i)

h

, (24)

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dūi

dt
= a(ūi−1 − ūi)

h
+ a(u1,i−1 − u1,i)

2
+ ah(u2,i−1 − u2,i)

12
du1,i

dt
= 6a(ūi − ūi−1)

h2
− 3a(u1,i−1 + u1,i)

h
− a(u2,i−1 + u2,i)

2
du2,i

dt
= 60a(ūi−1 − ūi)

h3
+ 30a(u1,i−1 + u1,i)

h2
+ 5a(u2,i−1 − u2,i)

h

. (25)



L.-J. Xuan, J. Majdalani / Journal of Computational Physics 355 (2018) 37–58 43
3.2. ADF-based scheme underlying a Taylor-based solution

In what follows, we show how the derivatives may be updated using a generic ADF. The ensuing scheme may be viewed 
as a DG variant that implements the ADF concept instead of the Galerkin approach to derive the updating ODEs, thus leading 
to an ADF-DG method. On any interval x ∈ [xc − 1

2h, xc + 1
2h], it is straightforward to evaluate generic ADF polynomials for 

the first-order derivatives from (13), namely,

δ̃′
1(x, xc) = 12h−3(x− xc),

δ̃′
1|1(x, xc) = δ̃′

1(x, xc) + 6C[(x − xc)
2 − h2/12]h−3,

(26)

where C represents an arbitrary constant. In the interest of simplicity, because the only point of interest is xc , all of the 
related δ̃(n)

N|M(x, xc) are abbreviated by δ̃(n)
N|M(x). In general, δ̃′

1|N (x) will contain N arbitrary constants. In like fashion, we may 
retrieve δ̃′

2(x) = δ̃′
1(x), and so,

δ̃′
2|1(x) = δ̃′

2(x) + 6C[20(x− xc)
3 − 3h2(x− xc)]h−5. (27)

Along similar lines, the ADF weight functions for the second-order derivatives may be evaluated to be

δ̃′′
2(x) = −30h−3 + 360h−5(x− xc)

2,

δ̃′′
2|1(x) = δ̃′′

2(x) + 60C[20(x− xc)
3 − 3h2(x− xc)]h−6.

(28)

In the implementation of the ADF-DG approach, the cell-averaged values can be updated in a DG manner, while rewriting 
the ODEs for the updating derivatives using

du1,i

dt
=

∫
�e

∂u

∂t
δ̃′
N|1(x)dx =

∫
�e

au
∂δ̃′

N|1(x)
∂x

dx− (aue δ̃′
N|1|R − aue δ̃′

N|1|L). (29)

Here N = 1 corresponds to the second-order scheme, where one may use δ̃′
1|1(x), reduce the Taylor expansion to a linear 

polynomial, and substitute the outcome into (29). This operation yields,

du1,i

dt
= 6a(ūi − ūi−1 − C[u]i)

h2
− 3a(u1,i−1 + u1,i)

h
, (30)

where the interface jump term may be readily determined from the expression [u]i = (u+ −u−)xi−1/2 = ūi − 1
2hu1,i − (ūi−1 +

1
2hu1,i−1). In general, it is possible to employ a higher-order ADF derivative weight function, δ̃′

1|M with M > 1, thus leading 
to additional constants and, therefore, greater flexibility to enhance the scheme’s capabilities. The ensuing analysis, however, 
falls beyond the scope of the present study and will be deferred to later work. We can see that when C = 0, the ADF-DG 
approach reproduces the second-order Taylor-based DG formulation identically.

To obtain a third-order scheme, the same procedure may be followed by first applying the ADF concept to derive the 
updating ODEs for the first and second-order derivatives using

du1,i

dt
=

∫
�e

∂u

∂t
δ̃′
2|1(x)dx =

∫
�e

au
∂δ̃′

2|1(x)
∂x

dx− (aue δ̃′
2|1|R − aue δ̃′

2|1|L),

du2,i

dt
=

∫
�e

∂u

∂t
δ̃′′
2|1(x)dx =

∫
�e

au
∂δ̃′′

2|1(x)
∂x

dx− (aue δ̃′′
2|1|R − aue δ̃′′

2|1|L),
(31)

and then substituting a quadratic polynomial expansion of u to retrieve⎧⎪⎪⎨
⎪⎪⎩

du1,i

dt
=6a(ūi − ūi−1 + C1[u]i)

h2
− 3a(u1,i−1 + u1,i)

h
− a(u2,i−1 + u2,i)

2
du2,i

dt
=60a(ūi−1 − ūi + C2[u]i)

h3
+ 30a(u1,i−1 + u1,i)

h2
+ 5a(u2,i−1 − u2,i)

h

, (32)

where the interface jump term may be identified as [u]i ≡ (u+ − u−)xi−1/2 = ūi − 1
2hu1,i + 1

12h
2u2,i − (ūi−1 + 1

2hu1,i−1 +
1
12h

2u2,i−1).
Here too, by setting C1 = C2 = 0, the third-order ADF-DG scheme returns the third-order Taylor-based DG expressions 

given by (25). Moreover, not only do the ADF-DG relations recover the Taylor-based DG approximations as special cases, their 
second- and third-order ADF-DG formulations contain arbitrary coefficients that may be judiciously adjusted to enhance the 
properties of the resulting scheme, specifically, by controlling dispersive and dissipative errors.
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Fig. 3. The real parts of the two eigenvalues corresponding to the coefficient matrix M for a second-order Taylor-based ADF-DG using the constant coeffi-
cients of C = −0.5, 0, and 0.5.

Fig. 4. The real parts of the three eigenvalues corresponding to the coefficient matrix M for a third-order Taylor-based ADF-DG using the constant coeffi-
cients of C = −0.5, 0, and 0.5.

3.3. Fourier stability verification of the Taylor-based ADF-DG method

At this juncture, a conventional Fourier analysis is undertaken to assess the stability of a half-discretized ODE system of 
both second and third-order ADF-DG schemes. Letting j = √−1 and α refer to the imaginary unit and a wave number such 
that α ∈ [0, π ], the solution of the ODE system using Fourier analysis may be written as

U i = eiα jA, (33)

where the integer i represents the cell index and A denotes the vector amplitude such that U i = [ūi, u1,i, · · · ]T corresponds 
to the unknown vector stored in each element. By substituting (33) into the half-discretized, second-order ADF-DG system 
of ODEs, one arrives at

dA

dt
= MA, (34)

where the coefficient matrix M consists of

M =
[

e− jα − 1 1
2 (e− jα − 1)

6(C − 1)(e− jα − 1) 3(C − 1)(e− jα + 1)

]
. (35)

Fig. 3 displays the real parts of the first and second eigenvalues (λ1, λ2) of M using different coefficients, namely, C =
−0.5, 0, and 0.5. As one may infer graphically, the negative eigenvalues confirm the stability of the scheme for all three 
coefficients. Furthermore, the present analysis enables us to realize that the scheme tends to be more diffusive for the first 
eigenvalue when C = 0.5. The flexibility in selecting C can therefore be used to optimize the second-order Taylor-based DG, 
a task that can be relegated to a future study.

For the third-order ADF-DG, the problem may be simplified by taking C1 = C2 = C . Then following a similar procedure 
as before, the real parts of the first, second, and third eigenvalues, i.e. (λ1, λ2, λ3), may be extracted and shown in Fig. 4. 
Forthwith, it may be immediately seen that the scheme remains stable for C = 0 and 0.5, although it exhibits a slightly 
diffusive behavior for C = 0.5.
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4. ADF in relation to the nodal DG method for the scalar, one-dimensional wave equation

4.1. Nodal discontinuous Galerkin method

For the second-order scheme, it is possible to introduce the shape functions

λ1(x) = 1− x− xc + h/2

h
and λ2(x) = x− xc + h/2

h
, (36)

thus prescribing the base functions, Bi(x), i = 1, 2, where

[B1(x), B2(x)] = [λ1(x), λ2(x)]. (37)

To make further headway, we follow a similar procedure to the one we pursued in the Taylor-based DG formulation. Here, 
the updating ODEs for the second-order nodal DG approach may be expressed as⎧⎪⎪⎨

⎪⎪⎩
du1,i

dt
=a(4u2,i−1 − 3u1,i − u2,i)

h
du2,i

dt
=a(3u1,i − u2,i − 2u2,i−1)

h

. (38)

The shape functions associated with a third-order scheme may be similarly compacted into

[B1(x), B2(x), B3(x)] = {2λ1(x)[λ1(x) − 1
2 ],4λ1(x)λ2(x),2λ2(x)[λ2(x) − 1

2 ]}. (39)

Lastly, the updating ODEs may be derived and re-arranged into⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du1,i

dt
=a(u3,i − 6u1,i + 9u3,i−1 − 4u2,i)

h
du2,i

dt
=a(5/2u1,i − u3,i − 3/2u3,i−1)

h
du3,i

dt
=a(3u3,i−1 + 4u2,i − 3u3,i − 4u1,i)

h

. (40)

4.2. ADF-based scheme underlying the nodal DG solution

For the second-order representation, the solution on each cell may be reconstructed from

ũ = u1λ1(x) + u2λ2(x). (41)

In this case, we may use δ̃1|1(x, z) to obtain the updating differential relations. First, the ADF expressions may be determined 
at the left and right points using

δ̃1|1,1 =1

h
− 6ξ

h
+ 6C

h

(
ξ2 − 1

12

)
,

δ̃1|1,2 =1

h
+ 6ξ

h
+ 6C

h

(
ξ2 − 1

12

)
,

(42)

where ξ = (x − xc)/h and δ̃1|1,i = δ̃1|1(x, xi), i = 1, 2 represent the generic ADF polynomials on points 1 and 2, respectively. 
Then, by virtue of the integral property, we may write

du1,i

dt
=

∫
�e

∂u

∂t
δ̃1|1,1 dx =

∫
�e

au
∂δ̃1|1,1(x)

∂x
dx− (aue δ̃1|1,1|R − aue δ̃1|1,1|L), (43)

and retrieve
du1,i

dt
= a[(4 + C1)u2,i−1 − (3+ C1)u1,i − u2,i]

h
. (44)

We may similarly multiply δ̃1|1,2(x) by the linear wave equation (18) and perform integration by parts to deduce

du2,i

dt
= a[(3 − C2)u1,i − u2,i − (2 − C2)u2,i−1]

h
. (45)

As usual, the jump term may be taken to be [u]i = u1,i − u2,i−1 such that the ODEs for the second-order ADF-DG approach 
may be simplified into
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Fig. 5. The real parts of the two eigenvalues corresponding to the coefficient matrix M for a second-order nodal-based ADF-DG using the constant coeffi-
cients of C = −0.5, 0, and 0.5.

⎧⎪⎪⎨
⎪⎪⎩

du1,i

dt
=a(4u2,i−1 − 3u1,i − u2,i + C1[u]i)

h
du2,i

dt
=a(3u1,i − u2,i − 2u2,i−1 − C2[u]i)

h

. (46)

Here too, by taking C1 = C2 = 0, the second-order ADF-DG formulation may be seen to reproduce the second-order nodal DG 
expressions identically. Furthermore, the use of higher-order ADF representations of the type δ̃1|M , M > 1, will immediately 
give rise to additional coefficients and, hence, additional ways to improve the scheme.

For the third-order scheme, the solution on a cell may be synthesized from

ũ = 2λ1(x)[λ1(x) − 1
2 ]u1 + 4λ1(x)λ2(x)u2 + 2λ2(x)[λ2(x) − 1

2 ]u3. (47)

As before, the ADF polynomials corresponding to the left side, center, and right side of the element may be subsequently 
evaluated and consolidated into

δ̃2|1,1 = − 3

2h
− 6ξ

h
+ 30ξ2

h
+ 6C

h

(
20ξ3 − 3ξ

)
,

δ̃2|1,2 = 9

4h
− 15ξ2

h
+ 6C

h

(
20ξ3 − 3ξ

)
,

δ̃2|1,3 = − 3

2h
+ 6ξ

h
+ 30ξ2

h
+ 6C

h

(
20ξ3 − 3ξ

)
.

(48)

These ADF relations enable us to express the updating ODEs as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du1,i

dt
=a(u3,i − 6u1,i + 9u3,i−1 − 4u2,i + C1[u]i)

h
du2,i

dt
=a(5/2u1,i − u3,i − 3/2u3,i−1 + C2[u]i)

h
du3,i

dt
=a(3u3,i−1 + 4u2,i − 3u3,i − 4u1,i + C3[u]i)

h

, (49)

where the interface jump term is prescribed by [u]i = u1,i −u3,i−1. As expected, by setting C1 = C2 = C3 = 0, the third-order 
ADF-DG restores the third-order nodal DG formulation.

4.3. Fourier stability verification of the nodal-based ADF-DG method

Here too, the standard Fourier analysis may be carried out for the second-order ADF-based nodal DG using, for example, 
C1 = C2 = C . The real parts of the two eigenvalues for the cases of C = −0.5, 0, and 0.5 may be retrieved and plotted in 
Fig. 5. As one may observe, the stability of the scheme is confirmed for the three representative coefficients of C . Moreover, 
the ability to adjust C in a manner to control the stability properties of the scheme seems to offer an added benefit.

For the third-order ADF-based nodal DG approach, we may take, as before, C1 = C2 = C3 = C . The real parts of three 
eigenvalues of the coefficient matrix M may be extracted and displayed in Fig. 6 for the three representative cases of 
C = −0.5, 0, and 0.5. Clearly, the scheme remains stable for all three values of C , although it appears to be slightly diffusive 
for the first eigenvalue and C = 0.5.
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Fig. 6. The real parts of the three eigenvalues corresponding to the coefficient matrix M for a third-order nodal-based ADF-DG using the constant coefficients 
of C = −0.5, 0, and 0.5.

5. ADF in relation to the one-dimensional Flux Reconstruction (FR) method

It is well recognized that the Flux-Reconstruction (FR) method and its variant Correction Procedure via Reconstruction 
(CPR) incorporate into their schemes the nodal DG approach as a special case. Furthermore, both approaches tend to be 
more efficient to implement than the integral DG form. For example, the main concept in the FR method is to store, on 
every cell i, the values at the solution points ui,k , for k = 1, · · · , N + 1, and then reconstruct the flux function F (x) using 
the flux values at both solution points and boundary interfaces. With this reconstructed F (x), a differential form may be 
developed to obtain the right-hand side of the updating ODEs. Specifically in FR, the flux function may be reconstructed via

Fi(x) = f i(x) + [ F̂ L − f i(xL)]gLB(x) + [ F̂ R − f i(xR)]gRB(x), (50)

where F̂ denotes the numerical flux at the interface (e.g., upwind-flux), while xL and xR refer to the locations of the left 
and right interfaces, respectively; as for g , it stands for the correction function with indices LB for ‘left boundary’ and RB
for ‘right boundary.’ Here f i(x) may be reconstructed from f i,k = f (ui,k) at the solution points.

For the kth-solution point, the right-hand side of the updating ODEs may be formulated as

dFi
dx

∣∣∣∣
k
= d f i

dx

∣∣∣∣
k
+ [ F̂ L − f i(xL)]g′

LB(xk) + [ F̂ R − f i(xR)]g′
RB(xk). (51)

Then the updating ODEs become simply

dui,k

dt
= − dFi

dx

∣∣∣∣
k
; ∀i,k. (52)

Consequently, based on the ADF concept, the updating ODEs may be readily determined for the solution-point values viz.

dui,k

dt
=

xR∫
xL

∂u

∂t
δ̃(x, xk)dx =

xR∫
xL

f (x)
dδ̃(x, xk)

dx
dx− F̂ R δ̃(xR , xk) + F̂ L δ̃(xL, xk). (53)

The foregoing procedure may be viewed as an ADF-FR scheme, as it combines the generic ADF approach with a Flux 
Reconstruction base solution.

Assuming that on the right-hand side of (53) the reconstruction of f (x) may be obtained from the flux at the solution 
points f i,k , then from (50), it is possible to extract

f (x) = Fi(x) − [ F̂ L − f i(xL)]gLB(x) − [ F̂ R − f i(xR)]gRB(x). (54)

Subsequently, we can put
xR∫

xL

f (x)
dδ̃(x, xk)

dx
dx =

xR∫
xL

F (x)
dδ̃(x, xk)

dx
dx

− [ F̂ L − f i(xL)]
xR∫

xL

gLB(x)
dδ̃(x, xk)

dx
dx− [ F̂ R − f i(xR)]

xR∫
xL

gRB(x)
dδ̃(x, xk)

dx
dx.

(55)

Then through the use of Fi(xL) = F̂ L, Fi(xR) = F̂ R , we can write
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xR∫
xL

F (x)
dδ̃(x, xk)

dx
dx− F̂ R δ̃(xR , xk) + F̂ L δ̃(xL, xk) = −

xR∫
xL

dF (x)

dx
δ̃(x, xk)dx = − dF (x)

dx

∣∣∣∣
xk

. (56)

With these expressions in hand, the substitution of (55) into (53) leads to

dui,k

dt
=

xR∫
xL

f (x)
dδ̃(x, xk)

dx
dx − F̂ R δ̃(xR , xk) + F̂ L δ̃(xL, xk)

=
xR∫

xL

F (x)
dδ̃(x, xk)

dx
dx− F̂ R δ̃(xR , xk) + F̂ L δ̃(xL, xk)

− [ F̂ L − f i(xL)]
xR∫

xL

gLB(x)
dδ̃(x, xk)

dx
dx− [ F̂ R − f i(xR)]

xR∫
xL

gRB(x)
dδ̃(x, xk)

dx
dx

= − dF (x)

dx

∣∣∣∣
xk

− [ F̂ L − f i(xL)]
xR∫

xL

gLB(x)
dδ̃(x, xk)

dx
dx− [ F̂ R − f i(xR)]

xR∫
xL

gRB(x)
dδ̃(x, xk)

dx
dx.

(57)

According to the FR method, in the case of N+1 solution points, gLB(x) becomes a polynomial of order (N+1) that satisfies

gLB(xL) = 1 and gLB(xR) = 0. (58)

In the context of the FR-DG approach, the gLB(x) polynomial is taken to be orthogonal to PN−1(x).
Presently, for the Nth-order u(x), the appropriate ADF will be δ̃N|M(M ≥ 0). Then if we use δ̃N (x, xk) = δ̃N|0(x, xk), which 

represents an Nth-order polynomial, the derivative dδ̃N (x, xk)/dx becomes an (N − 1)th-order polynomial. This enables us 
to put

xR∫
xL

gLB(x)
dδ̃N(x, xk)

dx
dx =

xR∫
xL

gRB(x)
dδ̃N(x, xk)

dx
dx = 0, (59)

whence, based on (57), we have

dui,k

dt
= − dFi

dx

∣∣∣∣
k
. (60)

It can thus be seen that the present ADF-FR formulation gives rise to the same FR-DG expression.
When considering other cases where gLB(x) is no longer orthogonal to PN−1, the flexibility of δ̃N|M(x, xk), which is 

enhanced by its inclusion of M arbitrary coefficients, enables us to solve for the coefficients from the linear integrals
xR∫

xL

gLB(x)
dδ̃N|M(x, xk)

dx
dx = 0,

xR∫
xL

gRB(x)
dδ̃N|M(x, xk)

dx
dx = 0. (61)

This straightforward evaluation allows the complete determination of δ̃N|M (x, xk) in a manner that reproduces the corre-
sponding FR formulation identically. However, by selecting δ̃N|M (x, xk) differently, it is possible to devise schemes that differ 
from the FR method, namely, in their ability to incorporate additional capabilities. Moreover, extensions of this ADF-FR 
method to two and three dimensions can be accomplished with similar ease, thus leading to identical conclusions to those 
realized here. In short, the ability of the ADF-FR method to extend the FR and CPR approaches is plausible.

6. Point-value enhanced finite volume method (PFV)

Based on the foregoing discussions, it may be safely argued that approximate delta functions may be viewed as effec-
tive tools for deriving the updating ODEs associated with different schemes through the use of a rigorous mathematical 
formalism. In this context, it is clear that the ADF approach offers a fresh and efficient strategy for updating the unknown 
information associated with a given element irrespective of the underlying scheme. Another advantage of this approach 
stands in its simplicity and flexibility in the placement of DOFs at any desired point in the element such as the nodal points 
and edges.

Since nodes undergo the highest sharing rate, the assignment of additional information at the nodes maximizes the 
number of neighbors with whom this information may be communicated. When information is added at one node, it is 
systematically shared by all of the surrounding nodes, thus leading to one of the most effective DOF strategies. For example, 
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Fig. 7. Comparison between the DOF arrangement and integral domain of (a) the Point-value enhanced Finite Volume (PFV) method and (b) the Taylor-based 
DG method.

in the case of a triangular mesh, the addition of a single quantity at the nodes of one element enables us to immediately 
gain three values for this element. Furthermore, to ensure the scheme’s conservation, the cell-averaged values are stored 
and updated identically to the manner used by the finite volume method.

Presently, both nodal values and derivatives are introduced to enhance the scheme’s overall accuracy by achieving a 
high-order and compact representation of the unknown quantity in each element. To emphasize this property, we dub this 
scheme “Point-value enhanced Finite Volume (PFV).” The PFV method can, therefore, be compact, high-order, and stable, 
because of the continuity of the solution being enhanced by the sharing of nodal information.

Similar strategies may be seen in the multi-moment finite volume method (see [19] and the references therein), as well 
as the active flux method [20,21]. In these, however, the values, without the derivatives, are stored and updated on the 
edges and, in some cases, the nodes. The distinguishing characteristic of these approaches rests in the manner by which the 
updating of point information, values and derivatives can be performed. Unlike the differential form used by Xie et al. [19], 
the PFV relies on approximate delta functions to derive the updating ODEs for the additional DOFs at each point.

Simple sketches that compare the DOF arrangement and integral domain within the PFV to those associated with the 
Taylor-based DG method are furnished in Fig. 7. Although both PFV and Taylor-based DG methods seek to update the 
cell-averaged value in each element consistently with the finite volume method, the updating of derivatives is performed 
quite differently. In the PFV case, the weak integral form is implemented in the region [xi−1/2, xi+3/2], while in DG method, 
the integration domain is restricted to [xi−1/2, xi+1/2]. The doubling of the domain width as well as the overlapping of PFV’s 
integration interval enhances its stability relative to the DG scheme. As to the element-wise unknown reconstruction, the 
Taylor-based DG method possesses element-wise DOFs of the type {ū, ∂u/∂x, · · · }i . In contrast, every element within the 
PFV scheme carries multiple DOF quantities, namely, {u, ∂u/∂x, · · · }i−1/2, ūi , and {u, ∂u/∂x, · · · }i+1/2. Another avenue for 
comparison is this. If we were to compare the DG scheme with N × DOFs in every element to a PFV formulation taken at 
the same order on the nodes, the PFV would possess (2N + 1) × DOFs for each element. It can hence be seen that for the 
same number (or order) of DOFs in one-dimensional space, the PFV strategy can double the order of the scheme compared 
to the DG formulation. In fact, the same argument not only holds but can be more beneficial when contemplating the 
extension of this approach to multiple dimensions.

In the interest of clarity, we refer to the PFV approach as P0FV when only the unknown value is stored at the nodal point. 
As such, the term PnFV may be used when the coefficients of an nth-order polynomial are saved on each nodal point. Ac-
cordingly, the use of P1FV will imply that both the unknown quantity u and its first-order derivative are saved on the nodal 
point. Along similar lines, the term PnFVm will be used to describe the approach in the presence of an mth-order polynomial 
reconstruction within the element. The mth-order polynomial in the element is typically reconstructed using the method of 
least squares and information that is stored on the cell and nodal points. At times, a weighted least-squares method may 
be implemented to ensure a suitable reconstruction while providing an additional avenue for controlling stability.

6.1. P0FV for the linear, one-dimensional, scalar wave equation

To illustrate the application of the P0FV, we begin by considering a classical example, namely, that of the linear wave 
equation in one-dimensional space as given by (18). To solve this hyperbolic equation, we construct a uniform mesh, store 
and update the cell-averaged values ūi , as well as the point values ui+1/2 at the interfaces. Based on the P0FV construct, 
the updating equations become

dūi

dt
= − F̂ i+1/2 − F̂ i−1/2

h
,

dui+1/2

dt
=

xi+3/2∫
xi−1/2

f (x)
dδ̃(x, xi+1/2)

dx
dx − F̂ i+3/2δ̃(xi+3/2, xi+1/2) + F̂ i−1/2δ̃(xi−1/2, xi+1/2).

(62)

6.1.1. Second-order P0FV1 formulation
At every cell i, the solution may be expressed using a first-order polynomial, viz.

ũi(x) = ūi + ui+1/2 − ui−1/2
(x− xi). (63)
h
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Then at the interface, i + 1/2, the left and right-hand side values may be computed using

uL
i+1/2 = ũi(xi+1/2), uR

i+1/2 = ũi+1(xi+1/2). (64)

Subsequently, the upwind numerical flux may be consolidated into

F̂ i+1/2 = 1
2 [auL

i+1/2 + auR
i+1/2 − |a|(uR

i+1/2 − uL
i+1/2)], (65)

and then inserted into (62). Because ũi(x) is linear, we may use δ̃1(x) = 1
2h

−1 for the updating of the point values. In this 
case, the domain integral in (62) vanishes by virtue of dδ̃1/dx = 0. As such, the updating expression for the point values 
simplifies into

dui+1/2

dt
= − F̂ i+3/2 − F̂ i−1/2

2h
. (66)

6.1.2. Third-order P0FV2 formulation
For every cell i, the solution may be synthesized from (ūi−1, ̄ui, ̄ui+1) and (ui−1/2, ui+1/2), using the method of least 

squares. Accordingly, the solution in each cell may be written as

ũi(ξ) = ūi + a1ξ + a2
(
1
2ξ2 − 1

24

)
. (67)

Hence, the problem becomes that of minimizing the total deviation from the cell-averaged value and the values at the 
interface and neighboring cells. By taking

I0 = [ũi(−1/2) − ui−1/2]2 + [ũi(1/2) − ui+1/2]2 +
⎡
⎢⎣

−1/2∫
−3/2

ũi(ξ)dξ − ūi−1

⎤
⎥⎦

2

+
⎡
⎢⎣

3/2∫
1/2

ũi(ξ)dξ − ūi+1

⎤
⎥⎦

2

, (68)

one obtains the linear system

∂ I0
∂a1

= 0,
∂ I0
∂a2

= 0. (69)

Subsequently, by solving (69), the reconstructed second-order polynomial takes the form

ũi(ξ) = ūi + ui+1/2 − ui−1/2 + 2(ūi+1 − ūi−1)

5
ξ

+ 36(ūi+1 + ūi−1) + 6(ui+1/2 + ui−1/2) − 84ūi

37

(
ξ2

2
− 1

24

)
,

(70)

where ξ = (x − xi)/h. Then at the interface, i + 1/2, the left and right-hand sides values may be evaluated from

uL
i+1/2 = ũi(xi+1/2) and uR

i+1/2 = ũi+1(xi+1/2). (71)

The corresponding upwind-based numerical flux becomes

F̂ i+1/2 = 1
2 [auL

i+1/2 + auR
i+1/2 − |a|(uR

i+1/2 − uL
i+1/2)]. (72)

In this case, the ADF formulation yields

δ̃2(x, xi+1/2) = 9

8h
− 15

8h3
(x− xi+1/2)

2. (73)

When (73) is substituted into the domain integral in (62), it may be evaluated separately on each cell by taking
xi+3/2∫

xi−1/2

f (x)
dδ̃2

dx
dx =

xi+1/2∫
xi−1/2

f (x)
dδ̃2

dx
dx+

xi+3/2∫
xi+1/2

f (x)
dδ̃2

dx
dx, (74)

which can be readily computed using a two-point Gaussian–Legendre quadrature on each cell. In this exercise, the two Gaus-
sian points consist of ξ1,2 = ±

√
3
6 , and the corresponding weight equals 12h. For each cell i, the Gaussian point corresponds 

to xk = ξkh + xi , and so the derivatives and integrals over the cell domain may be evaluated sequentially using

dδ̃2

dx

∣∣∣∣∣
i,k

= − 15

4h2
(ξk − 1/2),

dδ̃2

dx

∣∣∣∣∣
i+1,k

= − 15

4h2
(ξk + 1/2), (75)

and so
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xi+3/2∫
xi−1/2

f (x)
dδ̃2

dx
dx = −15

8h
[(ξ1 − 1/2) f i,1 + (ξ2 − 1/2) f i,2 + (ξ1 + 1/2) f i+1,1 + (ξ2 + 1/2) f i+1,2], (76)

where f i,1 = f [ũi(ξ1)], and f i,2 = f [ũi(ξ2)] represent the fluxes at the Gaussian points in element i. Forthwith, the updating 
equation for ui+1/2 reduces to

dui+1/2

dt
= −15

8h
[(ξ1 − 1/2) f i,1 + (ξ2 − 1/2) f i,2 + (ξ1 + 1/2) f i+1,1 + (ξ2 + 1/2) f i+1,2] + 3

4h
( F̂ i+3/2 − F̂ i−1/2).(77)

6.1.3. Fourth-order P0FV3 formulation
At every cell i, the solution may be deduced, as usual, from (ūi−1, ̄ui, ̄ui+1) and (ui−1/2, ui+1/2), using the method of 

least squares. As before, by writing the solution in each cell as

ũi(ξ) = ūi + a1ξ + a2
(
1
2ξ2 − 1

24

)
+ a3ξ

3, (78)

minimizing the total deviation between the cell value and the values at the interface and neighboring cells can be captured 
through

I0 = [ũi(−1/2) − ui−1/2]2 + [ũi(1/2) − ui+1/2]2 +
⎡
⎢⎣

−1/2∫
−3/2

ũi(ξ)dξ − ūi−1

⎤
⎥⎦

2

+
⎡
⎢⎣

3/2∫
1/2

ũi(ξ)dξ − ūi+1

⎤
⎥⎦

2

. (79)

Minimizing the deviation will hence require setting
∂ I0
∂a1

= 0,
∂ I0
∂a2

= 0,
∂ I0
∂a3

= 0. (80)

By solving the linear system given by (80), one arrives at a third-order polynomial of the form

ũi(ξ) = ūi − ūi+1 − ūi−1 − 10(ui+1/2 − ui−1/2)

8
ξ

+ 36(ūi+1 + ūi−1) + 6(ui+1/2 + ui−1/2) − 84ūi

37

(
ξ2

2
− 1

24

)

+ 3(ūi+1 − ūi−1) − 2(ui+1/2 − ui−1/2)

6
ξ3.

(81)

As for the flux at the interface, its computation may be accomplished using a procedure that mirrors our evaluation at pre-
vious orders. At this particular order, however, two ADFs, namely, δ̃2(x, xi+1/2) = δ̃3(x, xi+1/2), must be used in conjunction 
with three Gaussian points in order to suitably resolve the domain integrals. To proceed, these quantities may be substituted 
into the domain integrand of (62) and evaluated term-by-term to produce

xi+3/2∫
xi−1/2

f (x)
dδ̃3

dx
dx = −15

8h

[
3∑

k=1

wk(ξk − 1/2) f i,k +
3∑

k=1

wk(ξk + 1/2) f i+1,k

]
, (82)

where the Gaussian weights consist of w1 = w3 = 5
9 , and w2 = 8

9 , while the Gaussian points comprise ξ1,3 = ±
√
15
10 , and 

ξ2 = 0. At this fourth order, the updating equation for ui+1/2 may be rearranged into

dui+1/2

dt
= −15

8h

[
3∑

k=1

wk(ξk − 1/2) f i,k +
3∑

k=1

wk(ξk + 1/2) f i+1,k

]
+ 3

4h
( F̂ i+3/2 − F̂ i−1/2). (83)

6.2. P1FV for the linear, one-dimensional, scalar wave equation

In this case, apart from the two equations that arise in (62), a third relation will be necessary in order to adequately 
update the first-order derivative on each node. This expression is

dvi+1/2

dt
=

xi+3/2∫
xi−1/2

hf (x)
dδ̃′(x, xi+1/2)

dx
dx− hF̂i+3/2δ̃

′(xi+3/2, xi+1/2) + hF̂i−1/2δ̃
′(xi−1/2, xi+1/2), (84)

where

vi+1/2 = h
du

dx

∣∣∣∣
i+1/2

. (85)
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6.2.1. Third-order P1FV2 formulation
As we gradually increase the order, the solution at every cell can be reconstructed from the quantities and derivatives, ūi

and (ui−1/2, ui+1/2, vi−1/2, vi+1/2), retrieved from the method of weighted least squares. In this case, the solution in each 
cell may be expanded into

ũi(ξ) = ūi + a1ξ + a2
(
1
2ξ2 − 1

24

)
, (86)

and so the distance to the values and derivatives at interfaces may be expressed as

I0 = s[ũi(−1/2) − ui−1/2]2 + s[ũi(1/2) − ui+1/2]2 +
[

dũi
dξ

(−1/2) − vi−1/2

]2 +
[

dũi
dξ

(1/2) − vi+1/2

]2
. (87)

Naturally, minimizing the total deviation requires taking
∂ I0
∂a1

= 0,
∂ I0
∂a2

= 0. (88)

Thus by solving (88), the reconstructed second-order polynomial becomes

ũi(ξ) = ūi + s(ui+1/2 − ui−1/2) + 2(vi+1/2 + vi−1/2)

4+ s
ξ

+ 6
[
(sui+1/2 + sui−1/2 − 2sūi + 6(vi+1/2 − vi−1/2)

]
36+ s

(
ξ2

2
− 1

24

)
,

(89)

where s = 10−6 denotes the least-squares weight associated with the nodal values. The remaining procedure to obtain the 
updating ODE for ui+1/2 proves to be identical to that already developed for P0FV2. To illustrate the manner by which the 
updating of vi+1/2 may be accomplished, we consider the ADF polynomial for the derivative weight function δ̃′

2(x), namely,

δ̃′
2(x) = 3x

2h3
. (90)

In this case, two Gaussian points will be necessary in the evaluation of the domain integral. After some algebra, we retrieve 
the updating equation for vi+1/2, namely,

dvi+1/2

dt
= 3

4h

[
2∑

k=1

wk(ξk − 1/2) f i,k +
2∑

k=1

wk(ξk + 1/2) f i+1,k

]
− 3

2h
( F̂ i+3/2 + F̂ i−1/2), (91)

where the Gaussian weights may be set at unity with w1 = w2 = 1.

6.2.2. Fourth-order P1FV3 formulation
The highest order that we will describe in this study consists of using the method of weighted least-squares at every cell 

i for the values of (ūi−1, ̄ui, ̄ui+1) and (ui−1/2, ui+1/2, vi−1/2, vi+1/2) to arrive at a fourth-order formulation. For the solution 
in each cell

ũi(ξ) = ūi + a1ξ + a2
(
1
2ξ2 − 1

24

)
+ a3ξ

3, (92)

the total deviation that must be minimized can be estimated from

I0 = s[ũi(−1/2) − ui−1/2]2 + s[ũi(1/2) − ui+1/2]2 +
[

dũi
dξ

(−1/2) − vi−1/2

]2 +
[

dũi
dξ

(1/2) − vi+1/2

]2
, (93)

and so, its extrema may be found by taking
∂ I0
∂a1

= 0,
∂ I0
∂a2

= 0,
∂ I0
∂a3

. (94)

After solving (94), the reconstructed third-order polynomial can be written as

ũi(ξ) = ūi + 6(ui+1/2 − ui−1/2) − (vi+1/2 + vi−1/2)

4
ξ

+ 6
[
sui+1/2 + sui−1/2 − 2sūi + 6(vi+1/2 − vi−1/2)

]
36+ s

(
ξ2

2
− 1

24

)

+ 3(ūi+1 − ūi−1) − 2(ui+1/2 − ui−1/2)

6
ξ3,

(95)

where s = 10−6 stands for the least-squares weight ascribed to the nodal values. We replace a3 from (81), which makes 
scheme stable. Here too, three Gaussian points may be effectively used following the procedure that we developed for the 
P0FV3 formulation. At the outset, the updating equation for vi+1/2 may be extracted and compacted into
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Fig. 8. The real parts of the two eigenvalues of the coefficient matrix M corresponding to P0FVn (n = 1,2,3).

dvi+1/2

dt
= 15

16h

[
3∑

k=1

wk[5 − 21(ξk − 1/2)2] f i,k +
3∑

k=1

wk[5 − 21(ξk + 1/2)2] f i+1,k

]
+ 15

4h
( F̂ i+3/2 + F̂ i−1/2). (96)

6.3. Fourier stability verification of the PFV method

To further confirm the viability of the PFV method, a Fourier stability analysis is carried out as in the case of ADF-DG 
method. Here the unknown vectors are specified as U j = [ū j, u j+1/2]T and U j = [ū j, u j+1/2, v j+1/2]T for the P0FVn and 
P1FVn , respectively. As before, the coefficient matrices M at different orders may be readily evaluated along with the real 
parts of the corresponding eigenvalues. In what follows, we use Fig. 8 to display the real parts of the two eigenvalues for 
P0FVn , and Fig. 9 to provide the real parts of the three eigenvalues for P1FVn . In all cases considered, it may be seen that 
the P0FVn scheme remains stable in its half-discretized form. The stability of the P1FV2 solution is also confirmed, although 
P1FV3 exhibits a small region of α with weakly positive eigenvalues. This instability may be readily suppressed by the TVD 
Runge–Kutta time-matching technique, which is known for its effectiveness in stabilizing the scheme. The ensuing behavior
will be illustrated in the forthcoming numerical examples.

6.4. Numerical verification

In order to test the accuracy and stability of the PFV scheme, two benchmark cases will be considered: the linear wave 
equation given by (18) with a = 1 as well as the nonlinear Burgers’ equation. In this process, periodic boundary conditions 
will be imposed at both ends of the computational domain, which will be bracketed over the interval [0, 1]. Two different 
initial conditions will be tested in the context of the linear wave equation by specifying two forms of the initial function, 
u0(x). For simplicity, a uniform mesh is considered. Subsequently, to verify the successive orders of the PFV scheme in the 
context of the one-dimensional wave equation, the number of grid points will be taken to be 8, 16, 32, and 64, respectively. 
In analyzing Burgers’ equation, an additional stencil of 128 points is considered to fully confirm the convergence order. To 
quantify the error, we define the residual to be Ri = |uexact − unumeric| and use both the L1 = ∑

Ri dx and L∞ = max Ri
error measurements of the cell-averaged values to quantify the error. Furthermore, a third-order TVD-Runge–Kutta method 
is relied upon for time matching.

6.5. Linear wave equation with an initial function of u0(x) = sin(2πx)

Using u0(x) = sin(2πx), the problem is run for one period of time, until t = 1. The errors entailed in the PFV scheme at 
different orders are cataloged and compared in Tables 1, 2, and 3. Everywhere, h denotes the grid step size.

We refer the reader to Fig. 10 where the left and right subsets provide a useful comparison of the base 10 logarithms, 
lg(L1) and lg(L∞), at different PFV orders. Based on these findings, it may be ascertained that the intended orders are 
secured. Nonetheless, P0FV3 appears to slightly under-perform its projected fourth order, unlike the P1FV2 result which 
displays an accelerated convergence rate. These findings demonstrate that, when taken at the same order n, the P1FVn
formulation outperforms the P0FVn result in the attainable degree of precision.

In these numerical experiments, the critical CFL, which represents the maximum CFL number to keep the scheme stable, 
is computed numerically, although it can be alternatively determined using Fourier analysis. Specifically for the case of 16
grid points, the code is executed in time up to t = 1000. In principle, the scheme is deemed stable when the maximum 
value of u over the entire domain, x ∈ [0, 1], continues to depreciate with the passage of time. This test also enables us to 
determine the critical CFL, which is evaluated and posted in Table 4. Based on these results, it may be seen that the PFV 
scheme is highly stable. Another characteristic that may be inferred from these results concerns the critical CFL, which does 
not decrease monotonically with successive increases in the order of the solver, contrarily to its variation within most other 
methods.
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Fig. 9. The real parts of the three eigenvalues of the coefficient matrix M corresponding to P1FVn (n = 2,3).

Table 1
Characteristics of the linear wave equation with a = 1, u0 = sin(2πx), and 
t ∈ [0, 1]. The decimal logarithms, lg(L1) and lg(L∞), refer to the errors 
entailed in the second-order P0FV1 scheme.

lg(h) lg(L1) Order lg(L∞) Order

−0.903 −0.685 – −0.480 –
−1.204 −1.278 1.98 −1.076 1.98
−1.505 −1.886 2.02 −1.689 2.04
−1.806 −2.492 2.01 −2.295 2.01

Table 2
Characteristics of the linear wave equation with a = 1, u0 = sin(2πx), and t ∈ [0, 1]. Here lg(L1) and lg(L∞) refer to the third-order P0FV2 and P1FV2 errors.

lg(h)

P0FV2 P1FV2

lg(L1) Order lg(L∞) Order lg(L1) Order lg(L∞) Order

−0.903 −0.980 – −0.771 – −1.153 – −0.952 –
−1.204 −1.785 2.68 −1.595 2.90 −2.271 3.71 −2.077 3.74
−1.505 −2.665 2.92 −2.468 2.90 −3.452 3.92 −3.258 3.92
−1.806 −3.539 2.90 −3.343 2.90 −4.648 3.98 −4.452 3.97

Table 3
Characteristics of the linear wave equation with a = 1, u0 = sin(2πx), and t ∈ [0, 1]. Here lg(L1) and lg(L∞) refer to the errors in the fourth-order P0FV3

and P1FV3 schemes.

lg(h)

P0FV3 P1FV3

lg(L1) Order lg(L∞) Order lg(L1) Order lg(L∞) Order

−0.903 −2.485 – −2.304 – −2.777 – −2.606 –
−1.204 −3.556 3.56 −3.366 3.53 −4.099 4.39 −3.908 4.33
−1.505 −4.614 3.51 −4.419 3.50 −5.356 4.18 −5.161 4.16
−1.806 −5.714 3.65 −5.518 3.65 −6.579 4.06 −6.383 4.06

6.6. Linear wave equation with an initial function of u0(x) = sin2(2πx)

In comparison to the previous case, using an initial condition of u0(x) = sin2(2πx) leads to a more complex distribution, 
namely, one that engenders more extrema. By running the problem over one period of time, t = 1, the errors at different 
PFV orders are collected and compared in Tables 5, 6, and 7. Furthermore, the left and right subsets of Fig. 11 compare the 
logarithmic lg(L1) and lg(L∞) variations at successive PFV orders.

Upon close examination of the tabular and graphical results, it may be confidently ascertained that the expected orders 
have been very closely reproduced. Two exceptions may be noted, as the P0FV3 solution appears at a slightly lower order 
than the expected fourth order, whereas the P1FV2 solution converges more rapidly than expected. Here too, for the same 
order scheme, the P1FVn approximation displays a better degree of precision than its P0FVn counterpart.

6.7. Burgers equation with an initial function of u0(x) = 1
2 + sin(2πx)

To further verify the consistent accuracy of the PFV approach in the solution of nonlinear equations, the standard Burgers’ 
equation is considered with an initial function of u0(x) = 1 + sin(2πx). This hyperbolic PDE may be written as
2
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Fig. 10. Convergence behavior of the PFV errors at differently specified orders. Results correspond to the linear wave equation with a = 1 and u0 = sin(2πx)
at t = 1. Here we show (a) lg(L1) (�) and (b) lg(L∞) (◦) for the errors in the PnFVm scheme at successive levels of accuracy: P0FV1 (——), P0FV2 (− − −), 
P1FV2 (− · −), P0FV3 (· · · · ·), and P1FV3 (− · ·−).

Table 4
Critical CFL using the PFV scheme at different orders in conjunction with 
the linear wave equation with a = 1, u0 = sin(2πx), and a time resolution 
leading up to t = 1000.

P0FV1 P0FV2 P0FV3 P1FV2 P1FV3

CFL 1.20 1.61 0.88 1.67 0.74

Table 5
Characteristics of the linear wave equation with a = 1, u0 = sin2(2πx), and 
t ∈ [0, 1]. Here lg(L1) and lg(L∞) correspond to the errors in the second-
order P0FV1 scheme.

lg(h) lg(L1) Order lg(L∞) Order

−0.903 −0.456 – −0.379 –
−1.204 −0.767 1.03 −0.549 0.56
−1.505 −1.285 1.72 −1.087 1.49
−1.806 −1.887 2.00 −1.690 2.00

Table 6
Characteristics of the linear wave equation with a = 1, u0 = sin2(2πx), and t ∈ [0, 1]. Here lg(L1) and lg(L∞) refer to the third-order P0FV2 and P1FV2

errors.

lg(h)

P0FV2 P1FV2

lg(L1) Order lg(L∞) Order lg(L1) Order lg(L∞) Order

−0.903 −0.489 – −0.412 – −0.427 – −0.362 –
−1.204 −1.020 1.76 −0.804 1.30 −1.148 2.40 −0.954 1.97
−1.505 −1.790 2.56 −1.600 2.64 −2.265 3.71 −2.070 3.70
−1.806 −2.666 2.91 −2.470 2.89 −3.449 3.93 −3.253 3.93

Table 7
Characteristics of the linear wave equation with a = 1, u0 = sin2(2πx), and t ∈ [0, 1]. Here lg(L1) and lg(L∞) correspond to the errors in the fourth-order 
P0FV3 and P1FV3 schemes.

lg(h)

P0FV3 P1FV3

lg(L1) Order lg(L∞) Order lg(L1) Order lg(L∞) Order

−0.903 −1.301 – −1.187 – −1.440 – −1.438 –
−1.204 −2.417 3.71 −2.266 3.59 −2.775 4.43 −2.601 3.86
−1.505 −3.490 3.56 −3.299 3.43 −4.101 4.40 −3.911 4.35
−1.806 −4.564 3.57 −4.367 3.55 −5.358 4.18 −5.164 4.16

∂u

∂t
+ ∂

∂x

(
u2

2

)
= 0; x ∈ [0,1], (97)

with periodic boundary conditions on both sides of the computational domain. To promote a smooth solution, the numer-
ical effort is carried out up to time t = 1

4π . In this case, our reference solution is obtained straightforwardly using the 
P1FV3 formulation in conjunction with a benchmark mesh of 256 grid points. Subsequently, the reference cell-averaged 
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Fig. 11. Convergence behavior of the PFV errors at differently specified orders. Results correspond to the linear wave equation with a = 1 and u0 = sin2(2πx)
at t = 1. Here we show (a) lg(L1) (�) and (b) lg(L∞) (◦) for the errors in the PnFVm scheme at successive levels of accuracy: P0FV1 (——), P0FV2 (− − −), 
P1FV2 (− · −), P0FV3 (· · · · ·), and P1FV3 (− · ·−).

Table 8
Characteristics of the nonlinear Burgers’ equation with u0(x) = 1

2 +
sin(2πx), and t ∈ [0, 14 ]. Here lg(L1) and lg(L∞) refer to the second-order 
P0FV1 errors.

lg(h) lg(L1) Order lg(L∞) Order

−0.903 −2.028 – −1.763 –
−1.204 −2.488 1.53 −1.955 0.64
−1.505 −2.963 1.58 −2.283 1.09
−1.806 −3.516 1.84 −2.768 1.61
−2.107 −4.098 1.93 −3.328 1.86

Table 9
Characteristics of the nonlinear Burgers’ equation with u0(x) = 1

2 + sin(2πx), and t ∈ [0, 14 ]. Here lg(L1) and lg(L∞) refer to the third-order P0FV2 and 
P1FV2 errors.

lg(h)

P0FV2 P1FV2

lg(L1) Order lg(L∞) Order lg(L1) Order lg(L∞) Order

−0.903 −2.318 – −1.786 – −2.215 – −1.711 –
−1.204 −3.039 2.39 −2.408 2.07 −2.903 2.28 −2.365 2.17
−1.505 −3.861 2.73 −2.995 1.95 −3.822 3.05 −2.881 1.71
−1.806 −4.738 2.90 −3.832 2.78 −4.789 3.21 −3.811 3.09
−2.107 −5.637 2.99 −4.710 2.92 −5.805 3.38 −4.804 3.30

Table 10
Characteristics of the nonlinear Burgers’ equation with u0(x) = 1

2 + sin(2πx), and t ∈ [0, 14 ]. Here lg(L1) and lg(L∞) refer to the fourth-order P0FV3 and 
P1FV3 errors.

lg(h)

P0FV3 P1FV3

lg(L1) Order lg(L∞) Order lg(L1) Order lg(L∞) Order

−0.903 −3.125 – −2.599 – −4.043 – −3.691 –
−1.204 −3.999 2.90 −3.252 2.17 −4.557 1.71 −3.771 0.26
−1.505 −4.797 2.56 −3.904 2.17 −5.474 3.04 −4.417 2.14
−1.806 −5.848 3.50 −4.809 3.01 −6.608 3.77 −5.492 3.57
−2.107 −6.991 3.80 −5.882 3.56 −7.812 4.00 −6.689 3.98

values on coarser meshes are calculated using the benchmark solution. Here the numerical flux at the interface is of the 
local-Lax–Friedrich (LLF) type, namely,

F̂ i+1/2 = 1

2

[
f L + f R −max

(
|uL

i+1/2|, |uR
i+1/2|

)
(uR

i+1/2 − uL
i+1/2)

]
, (98)

where f L = 1
2

(
uL
i+1/2

)2
and f R = 1

2

(
uR
i+1/2

)2
.

After several numerical runs, the errors accrued in the PFV formulations at varying orders are collected and displayed in 
Tables 8, 9, and 10. The logarithmic behavior of the errors are also provided in the two subsets of Fig. 12, where lg(L1) and 
lg(L∞) are characterized at progressive PFV orders.
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Fig. 12. Convergence of the PFV errors at differently specified orders. Results correspond to the nonlinear Burgers’ equation with u0 = 1
2 + sin(2πx) at 

πt = 1
4 . Here we show (a) lg(L1) (�) and (b) lg(L∞) (◦) for the errors in the PnFVm scheme at different orders: P0FV1 (——), P0FV2 (− −−), P1FV2 (− ·−), 

P0FV3 (· · · · ·), and P1FV3 (− · ·−).

Despite the increased complexity of Burgers’ nonlinear equation, it is gratifying that the projected orders are achieved 
with a fair degree of precision. As before, two exceptions are noted and these include the P0FV3 representation, which 
evolves at a slightly slower rate than the expected fourth order and, conversely, the P1FV2 formulation, which seems to 
converge more rapidly than its anticipated rate. It may thus be speculated, although not formally proven, that the P1FV3
will outperform the P0FV3 by exhibiting a smaller error and a higher convergence rate. In fact, this trend becomes more 
noticeable at higher orders because, at the third order, the P1FV2 solution may be viewed as being only slightly more 
accurate than its P0FV2 counterpart when comparing error magnitudes.

7. Conclusion

This work revisits and extends Huynh’s [1,2] concept of an approximate delta function (ADF), which can be expressed 
in the form of a finite-order polynomial with such a distinct integral property over a finite domain that it can be used to 
complement and extend the capabilities of existing computational methods. This is accomplished by providing the means 
to incorporate additional coefficients that can directly enhance the properties of the scheme under consideration. ADF poly-
nomials enable the user to experiment with different arrangements of DOFs, and this feature can lead to the reconstruction 
of high-order methods with favorable properties. Despite the development of this work independently of Huynh’s [1,2,23], 
it shares similar characteristics.

In this study, we first show that generic ADF polynomials exhibit useful properties: an ADF polynomial of order (N + K ), 
which we label here as δ̃N|K , reproduces the integral property of a delta function for an arbitrary polynomial of order N , 
while providing K arbitrary constants that can be judiciously specified. At the outset, an ADF polynomial can be used to 
derive the updating ODEs associated with high-order numerical schemes.

To illustrate the versatility of ADF polynomials, we show that the ADF procedure can be effectively used to reconstruct 
the updating ODEs of the Taylor-based, nodal DG, and Flux Reconstruction methods identically. In this process, the ADF 
technique provides the means to extend these techniques by introducing extra coefficients and functionalities that can be 
optimally specified. Then using Fourier analysis, the Taylor and nodal-based ADF-DG methods are shown to be stable and 
that their stability is enhanced using auxiliary coefficients.

Subsequently, by leveraging the ADF tool to handle different DOF settings, a point-value enhanced finite volume (PFV) 
method is introduced, which stores and updates the cell-averaged values along with the values and derivatives of unknown 
quantities at all nodal points. Within the PFV framework, the cell-averaged values are updated in the same manner as in the 
finite volume method to ensure conservation. Furthermore, the nodal information is updated through ADF integration over 
the entire collection of elements surrounding a given point. The updating of nodal quantities on multiple elements leads to 
a stable algorithm, as confirmed using a Fourier stability analysis.

By way of verification, the PFV technique is vetted by investigating its performance in treating the linear, one-
dimensional, wave equation as well as the nonlinear, one-dimensional Burgers’ equation. In both cases considered, a careful 
analysis of the logarithmic errors confirms the projected orders along with the convergence rate of error residuals. In this 
process, the improved stability of the PFV method is ascertained, thus demonstrating the ability of the present approach to 
enhance both stability and accuracy hand-in-hand. In future work, we hope to extend the PFV method to two and three 
spatial dimensions both with and without the incorporation of viscous effects.
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