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We revisit the concept of an approximate delta function (ADF), introduced by Huynh
(2011) [1], in the form of a finite-order polynomial that holds identical integral properties
to the Dirac delta function when used in conjunction with a finite-order polynomial
integrand over a finite domain. We show that the use of generic ADF polynomials can be
effective at recovering and generalizing several high-order methods, including Taylor-based
and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via
Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value
enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values
inside each element as well as the unknown quantities and, if needed, their derivatives
on nodal points. The sharing of nodal information with surrounding elements saves the
number of degrees of freedom compared to other compact methods at the same order.
To ensure conservation, cell-averaged values are updated using an identical approach to
that adopted in the finite volume method. Here, the updating of nodal values and their
derivatives is achieved through an ADF concept that leverages all of the elements within
the domain of integration that share the same nodal point. The resulting scheme is shown
to be very stable at successively increasing orders. Both accuracy and stability of the PFV
method are verified using a Fourier analysis and through applications to the linear wave
and nonlinear Burgers’ equations in one-dimensional space.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Dirac delta function represents a well-defined distribution that extends over a line of real numbers while possessing
the unique property of vanishing everywhere except at the origin. Nonetheless, it still produces a unit value when integrated
over the entire real line. Moreover, one of its most distinguishing properties stands, perhaps, in its ability to reproduce
the values and derivatives of any function in integral form. In this paper, we show that the integral properties of the
delta function may be useful in a number of computational settings as an alternative vehicle for evaluating functional
values and derivatives over a finite domain. In numerical computations, however, the theoretical delta function suffers from
singularities because of its sudden vanishing and infinite distribution. In 2011 and 2014, Huynh [1,2] introduced a very
important concept, namely, that of an approximate delta function (ADF), which serves well to overcome these limitations.
Accordingly, the ADF is defined as a finite-order polynomial that is capable of preserving the integral properties of the exact
delta function in the evaluation of finite-order polynomials over finite domains. In this study, we extend the ADF concept
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by allowing the ADF polynomial to contain arbitrary coefficients and by defining ADF derivative weight functions that can
be very effective in the development of a high-order numerical framework for solving partial differential equations.

It is well known that, in the field of computational fluid dynamics, low-order methods are often selected because of their
simplicity and robustness, factors that jointly justify their recurrent use in engineering practice. Using similar CPU resources,
however, high-order methods can provide more accurate solutions, albeit at the cost of increased complexity and reduced
robustness. For this reason, numerous researchers have undertaken efforts to improve the manner by which high-order
techniques may be constructed, with the aim of improving their accuracy while enhancing their stability and performance
characteristics.

In this vein, the Discontinuous Galerkin (DG) method was developed because of its favorable attributes; these have led
to its acceptance as one of the most widely relied upon high-order methods for solving the Navier-Stokes equations. The
method itself was introduced in the context of the neutron transport problem by Reed and Hill [3], analyzed by LaSaint and
Raviart [4] and then extended and popularized in the fluid dynamics community by Cockburn, Shu, Bassi, Rebay, and others
(see [5-9], and the references therein).

One of the essential characteristics of the DG approach lies in its dependence on the Galerkin method to approximate a
partial differential equation (PDE) that applies to a finite element. The corresponding PDE is subsequently converted into a
series of ordinary differential equations (ODEs) that can be solved by standard methods.

Alternative approaches that seek to achieve high-order accuracy rely on differential forms. These may be exemplified
by the pioneering work on the staggered-grid spectral method [10], as well as the spectral difference [11,12] and spectral
volume approaches [13], which have been complemented by the elegant method of flux reconstruction [14,15,1] (FR), later
evolving into the correction procedure via reconstruction [16-18] (CPR).

Among these high-order methods, different ways exist to appoint the degrees of freedom (DOFs) to each element at
the cell-averaged or point-wise values, as well as their derivatives, which are later refreshed during the evaluation process.
Although the Galerkin method and local reconstruction have been shown to provide formal avenues to derive the relevant
ODEs in the context of the DG and differential approaches, the application of ADF to formulate the local ODEs will be used in
this work as an alternative approach with particular benefits [1,2]. We further explore a generic ADF approach that contains
arbitrary constants that can be specified in such a way to enhance the performance of the method to be reproduced. The
characteristic attributes of this approach, such as simplicity, will constitute one of the main subjects of this article. In fact,
one of the advantages of ADF implementation will be shown to be associated with its versatility in handling different DOF
specifications.

It should also be noted that, in recent years, a well-developed constrained interpolation profile (CIP) with multi-moment
finite volume (MFV) method has been developed (see Xie et al.[19] and the references therein). Apart from the cell-averaged
value of a given element, MFV introduces additional DOFs on the element’s edge and nodal points. The ability to share this
supplementary information with neighboring elements transforms MFV into a more efficient scheme for saving the number
of DOFs compared to other high-order methods of comparable accuracy. Pursuant to this approach, the sharing of additional
DOFs within the context of continuity leads to the enhancement of the scheme’s robustness. In fact, a similar concept may
be attributed to the Active Flux (AF) method [20,21], where the unknown values at edge-based flux points are treated as
independent DOFs and updated at every time step.

Because nodal points undergo the highest sharing rate, being shared by more elements than edges, it proves more
efficient to increase the amount of information that is being communicated with a given element by placing all additional
DOFs on the nodes only. As such, it is possible to augment the nodal information and extend the MFV and AF approaches by
adding not only the unknown functional values at the nodal points, but also their derivatives. In this process, the updating
of cell-averaged values may be accomplished in a manner that mirrors the traditional finite volume (FV) approach, thus
guaranteeing the conservation of the scheme.

In practice, the manner by which additional information is updated on nodal points and edges constitutes the most
distinguishing features in the MFV and AF schemes. We presently rely on an ADF procedure and set the integral domain
to encompass all of the elements surrounding the point in question. This increases the radius of influence, as it were, that
accompanies each update. Our nodal updating procedure may hence be likened to the case of an overlapped DG, where
nodal values and derivatives can provide sufficient information for the high-order reconstruction of the unknown quantity
in each element. As for the order of the “DG on the node,” it is no longer constrained by the DOFs on the nodal point itself.
The nodal updating becomes comparable to the PnPm procedure [22]. Furthermore, since the precision of the method may
be improved by increasing the amount of information that is assigned to the nodal points, we call this strategy a point-value
enhanced finite volume method (PFV). As to the temporal updating, a conventional third-order total variation diminishing
(TVD) Runge-Kutta scheme can be conveniently employed.

In this article, the approximate delta function is revisited and extended in Section 2 to comprise arbitrary constants.
This is followed by applying the extended ADF to recover and generalize Taylor-based DG, nodal-based DG, and FR/CPR
methods in Sections 3, 4, and 5, respectively. In Section 6, the ADF-based point value enhanced finite volume method is
defined, implemented, and verified numerically. We retire in Section 7 with some conclusions and recommendations for
future work.
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2. Reviewing and extending the approximate delta function (ADF)

To set the stage, we recall that a delta function exhibits the following integral property:

+00
/ fsy —xdy = f0), (1)

where f(x) stands for a continuous function of compact support. In 2011 and 2014, Huynh [1,2] introduced an approximate
delta function (ADF) in the form of a finite-order polynomial that can mirror the integral property of a Dirac delta function
over a finite domain, x € [—1, 1]. In this work, we find it useful to change the domain boundaries to the generic interval
x € [a, b] and write

b
/ PN(y)Sn(y,2)dy = Pn(2), 2)

a

where Py(y) is any Nth-order polynomial and Sy(x,z) represents an ADF polynomial of order N. The present analysis
begins by reviewing the ADF formulation in [2] while extending it to the case of x € [a, b]. We also consider generic ADF
forms that have orders higher than N and that enable us to retrieve the derivatives of Py (y).

2.1. Revisiting Huynh'’s ADF concept
According to (3.4) in Ref. [2], a Legendre polynomial expansion may be used to express the ADF of order N explicitly as

— Xc Z— X

h/2 n= h/2 "’ (3)

N
~ 1
N 2= Y @i+ DLEL), £="

i=0

where the present notation is used with x, = %(a +b) representing the domain center, h = b —a denoting the domain width,
and L;(&) standing for the Legendre polynomial of order i.

By assuming a solution interval that is bracketed by [a, b] =[—1, 1] as in Ref. [2], and for N < 4, one may readily deduce
from (3) that

5o, 2) 1 502 = 1 +3zx 55(x Z)_9—1522 +3zx+4522—15xz
0, = 2, 1A, = 2 2 s 02(AX, = 8 2 3 s
5x2) = 9 — 1522 L 752 10523x+ 4572 — 152, 17523 — 105z
A=y 8 8 8 ’
- 225 —-1050z% +945z% 10523 — 75z 525 —44102% 4 4725z%
Sa(x,2) = — X— X

128 8 64

1752 — 105z 5 945 — 945022 + 11025z% ,
X+ x*. (4)
8 128
Note that at z=0, we recover four terms with two identical expressions,

. - 1 - < 9 15,
80(x,0) =61(x,0) ==, 8(x,0)=63(x,0) =< — —x°,

2 8 8 5)
Ba(x, 0) = 225 525X2 N 945)(4
TV T 128 64 128"

Similarly at z= J, we extract,
i X1 _1 s X1 —1+3x<§ X1 _129+3X 195X2
\"a) =2 "\"a) 7278 2\M ) T8 T8 T 1287
< 1 129 —195x%  1095x — 1505x3
B x,— )= + , (6)
4 128 512

5, (1) = 41745 +101745¢ | 1095x— 1505x°  68565x
“\ha)” 32768 512 16384

For the reader’s convenience, the shapes of the approximate delta functions, Sy (x,z) for 1 < N <4 are illustrated in Fig. 1
at both z=0 and z = }1. It should be noted that identical ADF distributions may be found in Ref. [2] for dn(x,0) (N =

0,1,---,8)and éy(x,1) (N=4,5,---,8).
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Fig. 1. The shape of the approximate delta function (ADF) for (a) 81 (x,0) (—), 82(x,0) (— — —), and 84(x,0) (— - —), as well as (b) §;(x. ) (—), 2(x. D)
(== =) 8 ) (—-—), and 8a(x, 1) (-----).

2.2. Defining a generic ADF expression

At this point, it may be helpful to specify the difference between ADFs at two distinct orders N and M by introducing
the gap function, e,{)’,(x, z), where

i=N

- ~ 1 .
nx D=8 —=bux =3 D QI+ DLEL; N>M. (7)
i=M+1
It is then possible to define a generic ADF, SM k (%, z), as a polynomial of order N + K, namely, by superimposing a function,
Sn(x,2), of order N, and a sum of gap functions, e,’f,"“ (x,2), fori=1,2,---, K. This may be accomplished by taking
SNk (%, 2) = 8N (X, 2) + cren T (X, 2) + coen T2 (X, 2) + ..+ creN TR (%, 2), (8)

where the arbitrary coefficients are given by ¢; e R, i =1, 2, 3, ..., K. In the foregoing, the indices N|K denote a generic ADF

polynomial of order (N + K). By virtue of the ADF integral property, one may readily substitute SN“( (x, z) back into (2) to
show that

b
/ Py ()inik (v, 2)dy = Py (@), (9)

a

where not only the order of the polynomial in SN\ k (x, z) is raised to N + K, but also K arbitrary coefficients are introduced.
Equation (9) can also be viewed as an integral-form definition of ADF other than the one given by (8). It can thus be seen
that the function &y (x, z) not only satisfies

b
/ PN(y)sm(y,2)dy = Pn(2) (10)

a

but also possesses an infinite number of solutions, when M > N. Furthermore, one can write Sum y,2) = SMM,N(X, z) when
M = N, thus leading to yjo(x, 2) = SN (x, 2).

2.3. Defining ADF polynomial derivative weight functions

Besides the functions themselves, it is possible to define (N + K)th-order ADF weight functions to generate the actual
derivatives of an Nth-order polynomial. This may be achieved by specifying 5;\,“( (¥,2) and B}Q‘K(y,z) with the following
integral properties:

b b
- dP « d’p
[ v ady =SR2 [ pymsierady = 42 (1)

a a

Then based on (9), one can deduce that

3Nk (%, 2)

%Nk (x.2)
9z - ’

e (X, 2) =
Nk (%, 2) 972

s g;\/”K(X, Z) (12)
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Fig. 2. The shape of the ADF derivative weight functions for (a) & (x, 0) (—) and §(x,0) (— — —), as well as (b) & (x, 1) (—), x, 1) (= — =), &t 1)
(—-—)and §;(x, §) (- ).

More generally, for a given nth-order derivative d"Py(z)/dz", one may specify a corresponding ADF derivative weight
function using

- Sk (%, 2)
(n) NIK (X,
SN\K(X’Z):T' (13)
For example, using the Legendre polynomial expression in (3), &, y (%, 2) can be written as
n(x,z) 1 dL; (n)
Sy (x,2) = T——Z@ +DLi(E) — (14)
i=0
which, for the special case of [a, b] =[—1, 1] and N < 4, yields the following sequence of S;\, x,2) (N=0,1,---,4):
- 3 15 3 45
8p(x,2) =0, 8] (x,2) = 2% 8h(X,2) = ——z+ =X+ —2zx°,
4 2 4
~ 15 75—3152 45z , 525z% — 105 3
HBx)=—2+—"—X+—X+ —X,
8 4 8 (15)
5. 2) = 94523 — 5252 L5 3152° | 22052 47252 ,
A 32 8 16
525z2 —105 ; 11025z> — 4725z ,
X+ X,
8 32
Similarly, for z=0 and z =}, we have
51 (x,0) = 85(x,0) =
16
5, 5 75x — 105x3 (16)
33(x,0) = 84(x,0) = — s
and
5 (x 1 —3x 5 (x 1\ 15+3x+45 5
N\"a) 727 72\74) " 16 16
~ 1 15 885 45 1155
S %~ ) ===+ x4+ —x* — X, (17)
4 16 128 16 128

2 1 7455 885 30555 , 1155 3 64575 4
Sgl X~ ) =—c—2 + =X X° — X — X
4 2048 128 1024 128 2048

The shapes of the ADF derivative weight functions, 5/ (x,2) for 1 < N <4 are illustrated in Fig. 2 at both z=0 and z =

It should be noted that the scales and shapes of 6’ (x, z) are different from those of the ADF introduced in Ref. [2] a
illustrated in Fig. 1.

1
4
nd
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3. ADF in relation to the Taylor-based DG method for the scalar wave equation
3.1. Second- and third-order Taylor-based DG schemes for the one-dimensional wave equation

We begin by briefly reviewing the DG method in the context of the linear, one-dimensional, scalar wave equation. Using
standard nomenclature, we consider:
ou Jf(u
du_ 9f @
at ax
To proceed, we first subdivide the [0, 1] interval uniformly into multiple elements {¢}, and then use Taylor expansion to
discretize u(x) over each element by taking

ue(xt)—ﬁ(t)+a_u(x_x)+az_u M_ﬁ +
e ax T ax? 2 24

=u(t)Bo(x) +u1(t)B1(x) + ua()Ba(x) + -, (19)

where & denotes the cell-averaged u, X, refers to the location of the cell-center, and h alludes to the width of the cell. Being
a normal polynomial, the Taylor basis (x — x;)! (i=1,2,---) can be modified through subtraction to produce

fB,-(x)dx:O, i>1. (20)
QE

=0; f(uy=au, a>0, xe[0,1]. (18)

Next, (18) may be multiplied term by term by the Taylor bases

[Bo(x), B1(x), Ba(x) ]=(1,x—x (x—x)* K (21)
0(X), b1(X), b2(X), =11 c 3 24 )
then integrated over the cell Q¢ to obtain the weak form
ou® 9B
f ﬁBjdx—i-aueBﬂR —au®Bj|, — /auea—xj dx=0, j=0,1,2,- (22)
Qe Qe

where R and L refer to the adjacent right and left points. To produce a third-order scheme, the Taylor-series expansion in
(19) may be inserted into the weak form (22). Then using the upwind flux with a > 0 at the cell interface, we can put

dii
h o3 0 ar 0 0 07rjp
h
0 —2 0 % —a h 0 0 up | +
1 5 dt h3
720 4| =~ 12 l
ar |, (23)
1 1
h —h
a(ii + ghuy + {5h%uz)i | 2 | —a(@+ Shuy + HhPug)i 4 | 3 | =0.
h2 h?
12 12

The resulting assortment of ordinary differential equations with respect to the variables u(t), u1(t), uz(t) may be handled
using standard ODE solvers. In this context, the second and third-order schemes may be directly written as

du; a(uig —u) | a(uyio — U0
de h 2

dup; 60— di1)  3a(uyg +upy) 24
e h2 a h

and

duj a(uj—1—ui) | a(uyi——uri) | ah(uzi1 —Uzi)
dr h 2 12

dui _ 6a(i —ui—q)  3a(uyig+uri)  alUuzi-1+Uzi) (25)
dt h2 h 2

dupi _ 60a(ui— — i) n 30a(uq,i—1 +u1,i) n 5a(ugi—1 —Uzi)
dt h3 h? h
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3.2. ADF-based scheme underlying a Taylor-based solution

In what follows, we show how the derivatives may be updated using a generic ADF. The ensuing scheme may be viewed
as a DG variant that implements the ADF concept instead of the Galerkin approach to derive the updating ODEs, thus leading
to an ADF-DG method. On any interval x € [x, — %h, Xc + %h], it is straightforward to evaluate generic ADF polynomials for
the first-order derivatives from (13), namely,

8 (%, %) =12h> (x — x¢),

8 - 26
851 (%, X¢) = 87 (%, x¢) + 6CL(x — xc)* — h?/12]h 3, (26)

where C represents an arbitrary constant. In the interest of simplicity, because the only point of interest is x., all of the

related 5N|)1v1 (x, xc) are abbreviated by 8;\7'),\,, (x). In general, 8” &) will contain N arbitrary constants. In like fashion, we may

retrieve &, () = 8/ (x), and so,
8y1(0) = 8y (%) + 6C[20(x — xc)* — 3h2(x — xc) I ~°. 27)
Along similar lines, the ADF weight functions for the second-order derivatives may be evaluated to be
85 (x) = —30h 3 4 360h > (x — x)?, (8)
81(X) = 85 (x) + 60C[20(x — x)* — 3h* (x — xc)]h~°.

In the implementation of the ADF-DG approach, the cell-averaged values can be updated in a DG manner, while rewriting
the ODEs for the updating derivatives using

dt ot
Qe Qe

duy; 9 381 (0 . -
Ui =/ 45 |](x)dx_/ u% dx—(aueé}\,an—aue(S;\,l]lL). (29)

Here N =1 corresponds to the second-order scheme, where one may use &’ H(x) reduce the Taylor expansion to a linear
polynomial, and substitute the outcome into (29). This operation yields,
dup;  6a(ui —uj—1 —Clul)  3a(uyi—1+us;)

_ _ , : 30
de h2 h ’ (30)

where the interface jump term may be readily determined from the expression [u]; = (U™ —u™)x,_ 1 =Ui— lhul i—(Ui—1+

hu1 .i—1). In general, it is possible to employ a higher-order ADF derivative weight function, 8 v With M >1, thus leading
to additional constants and, therefore, greater flexibility to enhance the scheme’s capabilities. The ensuing analysis, however,
falls beyond the scope of the present study and will be deferred to later work. We can see that when C =0, the ADF-DG
approach reproduces the second-order Taylor-based DG formulation identically.
To obtain a third-order scheme, the same procedure may be followed by first applying the ADF concept to derive the
updating ODEs for the first and second-order derivatives using

dur; [ du 885, (%) . )
L Z/ﬁ%h(x)d?‘:/au% dx — (au®&yq g —au’dyq L),

dt
i ’ 387, (%) (31)
duzl 2|1 e e
ar —/ Yy 82|1(x)dx—/au o dx — (au®sy g —ausyp L),
Qe Qe
and then substituting a quadratic polynomial expansion of u to retrieve
duyi 6a@i —ui—1+Cilul)  3auyi—1+uri)  auzi1+uz)
o " ' : (32)
dup; 60a(ui—q — u; + Caluli) N 30a(uq,i—1 +u1,i) N 5a(upi 1 — ;)
a h3 h2 h

where the interface jump term may be identified as [u]; = (u™ — u*)xi_]/2 =1 — %huu + f—zhzuzqi — (Uj_1 + %hul,iq +
f—zhzuz,iq)

Here too, by setting C; = Cy = 0, the third-order ADF-DG scheme returns the third-order Taylor-based DG expressions
given by (25). Moreover, not only do the ADF-DG relations recover the Taylor-based DG approximations as special cases, their
second- and third-order ADF-DG formulations contain arbitrary coefficients that may be judiciously adjusted to enhance the
properties of the resulting scheme, specifically, by controlling dispersive and dissipative errors.
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Fig. 3. The real parts of the two eigenvalues corresponding to the coefficient matrix M for a second-order Taylor-based ADF-DG using the constant coeffi-
cients of C =—0.5, 0, and 0.5.
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Fig. 4. The real parts of the three eigenvalues corresponding to the coefficient matrix M for a third-order Taylor-based ADF-DG using the constant coeffi-
cients of C =—0.5, 0, and 0.5.

3.3. Fourier stability verification of the Taylor-based ADF-DG method

At this juncture, a conventional Fourier analysis is undertaken to assess the stability of a half-discretized ODE system of
both second and third-order ADF-DG schemes. Letting j = +/—1 and « refer to the imaginary unit and a wave number such
that o € [0, ], the solution of the ODE system using Fourier analysis may be written as

U; =€iajA, (33)

where the integer i represents the cell index and A denotes the vector amplitude such that U; = [u;, uy;, - - 17 corresponds
to the unknown vector stored in each element. By substituting (33) into the half-discretized, second-order ADF-DG system

of ODEs, one arrives at

da =MA (34)
d
where the coefficient matrix M consists of
e je —1 L e -1
_ 5 ( ) (35)

6(C—1)(e 1 *—1) 3(C—1)(e /¥ +1)

Fig. 3 displays the real parts of the first and second eigenvalues (A1, ) of M using different coefficients, namely, C =
—0.5, 0, and 0.5. As one may infer graphically, the negative eigenvalues confirm the stability of the scheme for all three
coefficients. Furthermore, the present analysis enables us to realize that the scheme tends to be more diffusive for the first
eigenvalue when C = 0.5. The flexibility in selecting C can therefore be used to optimize the second-order Taylor-based DG,
a task that can be relegated to a future study.

For the third-order ADF-DG, the problem may be simplified by taking C; = C; = C. Then following a similar procedure
as before, the real parts of the first, second, and third eigenvalues, i.e. (A1, A2, A3), may be extracted and shown in Fig. 4.
Forthwith, it may be immediately seen that the scheme remains stable for C =0 and 0.5, although it exhibits a slightly
diffusive behavior for C =0.5.
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4. ADF in relation to the nodal DG method for the scalar, one-dimensional wave equation
4.1. Nodal discontinuous Galerkin method

For the second-order scheme, it is possible to introduce the shape functions

- h/2 - h/2
Mx) =1— % and Ay(x) = %’ (36)
thus prescribing the base functions, B;(x), i =1, 2, where
[B1(x), B2(x)] = [A1(X), A2(X)]. (37)

To make further headway, we follow a similar procedure to the one we pursued in the Taylor-based DG formulation. Here,
the updating ODEs for the second-order nodal DG approach may be expressed as

duii a(4upi—g —3uyi—uz;)

dt h
. (38)
dupi aQBuyi—uzi—2uyi1)
dt h
The shape functions associated with a third-order scheme may be similarly compacted into
[B1(x), B2(x), B3(x)] = {221 (X)[A1(x) — 31, 421 (0)A2(x), 22(X)[A2(x) — 31} (39)
Lastly, the updating ODEs may be derived and re-arranged into
duy; a(us;—6uy;i+9usi1 —4uy;)
dt h
duzi _a(5/2u1i—usi—3/2u3i-1) (40)
dt h
dus; aBusz;1+4ux;—3us;—4ur;)
dt h
4.2. ADF-based scheme underlying the nodal DG solution
For the second-order representation, the solution on each cell may be reconstructed from
U =ujAri(x) + uzr2(x). (41)

In this case, we may use Sm (x, ) to obtain the updating differential relations. First, the ADF expressions may be determined
at the left and right points using

N 1 66 6C(, 1
51|1,1=——7+7 E_ﬁ’

h
1 68 6C(, 1
31|1,2—h+ p + p (S 12>,

(42)

where & = (x — xc)/h and SHH = Sm(x, Xi),i=1, 2 represent the generic ADF polynomials on points 1 and 2, respectively.
Then, by virtue of the integral property, we may write

duq ; A~ 38111,1 (%) N 5

= —$ dx= | au———"""=dx — (au®s —au®s , 43

ar /at 11,1 / ™ (au®s11,11R 11,11L) (43)
Qe Qe

and retrieve

dupi al(4+Cuzi1— B+ Cuyi —uyl

de h (44)
We may similarly multiply Sm,z(x) by the linear wave equation (18) and perform integration by parts to deduce
dugi _ al@ = Curi —uzi— (2~ Cz)uz,i—l]. (45)

dt h

As usual, the jump term may be taken to be [u]; = uj; — up,;—1 such that the ODEs for the second-order ADF-DG approach
may be simplified into
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Fig. 5. The real parts of the two eigenvalues corresponding to the coefficient matrix M for a second-order nodal-based ADF-DG using the constant coeffi-
cients of C = —0.5, 0, and 0.5.

duy; a(4uz i1 —3uqi —uzi+ Cilul)

dt h
. 46
dup; aBuyi—uzi—2ug i1 — Colul) (40)
d h

Here too, by taking C1 = C; =0, the second-order ADF-DG formulation may be seen to reproduce the second-order nodal DG
expressions identically. Furthermore, the use of higher-order ADF representations of the type SH M, M > 1, will immediately
give rise to additional coefficients and, hence, additional ways to improve the scheme.

For the third-order scheme, the solution on a cell may be synthesized from

=201 (01 (0) — 1lur + 40 (A2 (X)uz + 2A2(X) A2 (x) — $lus. (47)

As before, the ADF polynomials corresponding to the left side, center, and right side of the element may be subsequently
evaluated and consolidated into

< 3 6t 3082 6C 3
o= TR + A + . (205 35),
< 9 1582 6C 3
= - = 4+ — - 48
82)1,2 T p + p (205 3%“), (48)
3 6t 3062 6C

o3 =—

= >~ (206 -3 ) .
2h + h + h + h ( § §
These ADF relations enable us to express the updating ODEs as

duy; a(us;—6uy;+9usi1 —4uz;+ Ciluly)

de h

duy i =a(5/2ul,i —u3;—3/2u3; 1+ Cz[uly) (49)
dt h '

dus; aQuszi—1+4uz;—3us;—4uq;+C3luly)
dt h

where the interface jump term is prescribed by [u]; = uq ; —u3 ;—1. As expected, by setting C; = C; = C3 =0, the third-order
ADF-DG restores the third-order nodal DG formulation.

4.3. Fourier stability verification of the nodal-based ADF-DG method

Here too, the standard Fourier analysis may be carried out for the second-order ADF-based nodal DG using, for example,
C1 = Cy =C. The real parts of the two eigenvalues for the cases of C = —0.5,0, and 0.5 may be retrieved and plotted in
Fig. 5. As one may observe, the stability of the scheme is confirmed for the three representative coefficients of C. Moreover,
the ability to adjust C in a manner to control the stability properties of the scheme seems to offer an added benefit.

For the third-order ADF-based nodal DG approach, we may take, as before, C; = C; = C3 = C. The real parts of three
eigenvalues of the coefficient matrix M may be extracted and displayed in Fig. 6 for the three representative cases of
C=-0.5,0, and 0.5. Clearly, the scheme remains stable for all three values of C, although it appears to be slightly diffusive
for the first eigenvalue and C =0.5.
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Fig. 6. The real parts of the three eigenvalues corresponding to the coefficient matrix M for a third-order nodal-based ADF-DG using the constant coefficients
of C=-0.5, 0, and 0.5.

5. ADF in relation to the one-dimensional Flux Reconstruction (FR) method

It is well recognized that the Flux-Reconstruction (FR) method and its variant Correction Procedure via Reconstruction
(CPR) incorporate into their schemes the nodal DG approach as a special case. Furthermore, both approaches tend to be
more efficient to implement than the integral DG form. For example, the main concept in the FR method is to store, on
every cell i, the values at the solution points u;y, for k=1,---, N + 1, and then reconstruct the flux function F(x) using
the flux values at both solution points and boundary interfaces. With this reconstructed F(x), a differential form may be
developed to obtain the right-hand side of the updating ODEs. Specifically in FR, the flux function may be reconstructed via

Fi(x) = fix) + [FL — fix)]gus ) + [Fr — fi(Xp)1gr (), (50)

where F denotes the numerical flux at the interface (e.g., upwind-flux), while x; and xg refer to the locations of the left
and right interfaces, respectively; as for g, it stands for the correction function with indices LB for ‘left boundary’ and RB
for ‘right boundary.” Here f;(x) may be reconstructed from f; = f(u;\) at the solution points.

For the kth-solution point, the right-hand side of the updating ODEs may be formulated as

dF; dfi

W +[FL— fix)]gh i) 4 [Fr — fi(XR)1gks (Xk)- (51)

Then the updating ODEs become simply

duj i dF; .
— =— —1 : Vi,k. 52
dt dx |, (52)
Consequently, based on the ADF concept, the updating ODEs may be readily determined for the solution-point values viz.
d XR XR d~
Uik ou < S(X, Xk) - P
— = [ —5(x, x)dx = X)——=dx — Fré(xg, x Fré(xp, x). 53
ar /at( ) /f() i RO(XR, Xg) + FLE (XL, Xg) (53)
XL

The foregoing procedure may be viewed as an ADF-FR scheme, as it combines the generic ADF approach with a Flux
Reconstruction base solution.

Assuming that on the right-hand side of (53) the reconstruction of f(x) may be obtained from the flux at the solution
points f;x, then from (50), it is possible to extract

fX) =Fi(x) — [FL — fi(x)1grs(®) — [Fr — fi(xr)]gra(X). (54)

Subsequently, we can put

/ﬂmwﬁw) ‘/H)M@Mu
X dx

XL

(55)

ds(x, x)

XR XR
. dd(x, x
— fitx)] f g0 dx = [Fr — filxe)] / grn () L E )

dx

dx.

Then through the use of Fi(x;) = EL, Fi(xg) = Fr, we can write
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XR

ds P ~ o~ d dF
/ F(x)— X (" M) G — Frd(xr, 20 + FL8(x, x0) = — / d(")a(x, x) dx = df(") . (56)
Xie

XL XL

With these expressions in hand, the substitution of (55) into (53) leads to

XR ~
du; dé(x, x . -
— Lk =/f(X)MdX—FRS(XR,Xk)+FL5(XL7XI<)
dt dx

ds X, X, o~ o~
/F() DX e BrBixg, x0) + B8 (e 1)

XL

(57)
—[F - fl(xl)]/gLB(X) B — [Fr —f,(XR)]/gRB(x) B0 4
dF " G
- S| -t e / 1209 2O 4 (7 — i) / g0 T g
Xk

According to the FR method, in the case of N+ 1 solution points, grg(x) becomes a polynomial of order (N + 1) that satisfies
gre(xy)=1 and grp(xg) =0. (58)

In the context of the FR-DG approach, the grz(x) polynomial is taken to be orthogonal to Py_1 (). ~

Presently, for the Nth-order u(x), the appropriate ADF will be §yjm (M > 0). Then if we use éy (X, X;) = énjo(X, X), which
represents an Nth-order polynomial, the derivative ddy(x, x¢)/ dx becomes an (N — 1)th-order polynomial. This enables us
to put

I ds I dén (%, X
/gLB( )M /gRB( )MdX:O, (59)

dx
XL XL

whence, based on (57), we have
dui,k dF,

det dx

It can thus be seen that the present ADF-FR formulation gives rise to the same FR-DG expression.

When considering other cases where grz(x) is no longer orthogonal to Py_1, the flexibility of SN\M(X, X¢), which is
enhanced by its inclusion of M arbitrary coefficients, enables us to solve for the coefficients from the linear integrals

XR - XR ~
dénim (%, X, dé X, Xi)
/gLB(x)%k) dx=0, f&m(@% dx=0. (61)

XL XL

(60)

This straightforward evaluation allows the complete determination of SMM(X, X¢) in a manner that reproduces the corre-
sponding FR formulation identically. However, by selecting 5N|M(x, xy) differently, it is possible to devise schemes that differ
from the FR method, namely, in their ability to incorporate additional capabilities. Moreover, extensions of this ADF-FR
method to two and three dimensions can be accomplished with similar ease, thus leading to identical conclusions to those
realized here. In short, the ability of the ADF-FR method to extend the FR and CPR approaches is plausible.

6. Point-value enhanced finite volume method (PFV)

Based on the foregoing discussions, it may be safely argued that approximate delta functions may be viewed as effec-
tive tools for deriving the updating ODEs associated with different schemes through the use of a rigorous mathematical
formalism. In this context, it is clear that the ADF approach offers a fresh and efficient strategy for updating the unknown
information associated with a given element irrespective of the underlying scheme. Another advantage of this approach
stands in its simplicity and flexibility in the placement of DOFs at any desired point in the element such as the nodal points
and edges.

Since nodes undergo the highest sharing rate, the assignment of additional information at the nodes maximizes the
number of neighbors with whom this information may be communicated. When information is added at one node, it is
systematically shared by all of the surrounding nodes, thus leading to one of the most effective DOF strategies. For example,
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Fig. 7. Comparison between the DOF arrangement and integral domain of (a) the Point-value enhanced Finite Volume (PFV) method and (b) the Taylor-based
DG method.

in the case of a triangular mesh, the addition of a single quantity at the nodes of one element enables us to immediately
gain three values for this element. Furthermore, to ensure the scheme’s conservation, the cell-averaged values are stored
and updated identically to the manner used by the finite volume method.

Presently, both nodal values and derivatives are introduced to enhance the scheme’s overall accuracy by achieving a
high-order and compact representation of the unknown quantity in each element. To emphasize this property, we dub this
scheme “Point-value enhanced Finite Volume (PFV).” The PFV method can, therefore, be compact, high-order, and stable,
because of the continuity of the solution being enhanced by the sharing of nodal information.

Similar strategies may be seen in the multi-moment finite volume method (see [19] and the references therein), as well
as the active flux method [20,21]. In these, however, the values, without the derivatives, are stored and updated on the
edges and, in some cases, the nodes. The distinguishing characteristic of these approaches rests in the manner by which the
updating of point information, values and derivatives can be performed. Unlike the differential form used by Xie et al. [19],
the PFV relies on approximate delta functions to derive the updating ODEs for the additional DOFs at each point.

Simple sketches that compare the DOF arrangement and integral domain within the PFV to those associated with the
Taylor-based DG method are furnished in Fig. 7. Although both PFV and Taylor-based DG methods seek to update the
cell-averaged value in each element consistently with the finite volume method, the updating of derivatives is performed
quite differently. In the PFV case, the weak integral form is implemented in the region [X;_1,2, Xi13/2], while in DG method,
the integration domain is restricted to [X;_1,2, Xi+1,2]. The doubling of the domain width as well as the overlapping of PFV’s
integration interval enhances its stability relative to the DG scheme. As to the element-wise unknown reconstruction, the
Taylor-based DG method possesses element-wise DOFs of the type {u, du/dx,---};. In contrast, every element within the
PFV scheme carries multiple DOF quantities, namely, {u, du/0x,---};_1,,, U;, and {u, du/dx, ---};;q,. Another avenue for
comparison is this. If we were to compare the DG scheme with N x DOFs in every element to a PFV formulation taken at
the same order on the nodes, the PFV would possess (2N + 1) x DOFs for each element. It can hence be seen that for the
same number (or order) of DOFs in one-dimensional space, the PFV strategy can double the order of the scheme compared
to the DG formulation. In fact, the same argument not only holds but can be more beneficial when contemplating the
extension of this approach to multiple dimensions.

In the interest of clarity, we refer to the PFV approach as PoFV when only the unknown value is stored at the nodal point.
As such, the term P,FV may be used when the coefficients of an nth-order polynomial are saved on each nodal point. Ac-
cordingly, the use of P1FV will imply that both the unknown quantity u and its first-order derivative are saved on the nodal
point. Along similar lines, the term P,FV;; will be used to describe the approach in the presence of an mth-order polynomial
reconstruction within the element. The mth-order polynomial in the element is typically reconstructed using the method of
least squares and information that is stored on the cell and nodal points. At times, a weighted least-squares method may
be implemented to ensure a suitable reconstruction while providing an additional avenue for controlling stability.

6.1. PyFV for the linear, one-dimensional, scalar wave equation

To illustrate the application of the PgFV, we begin by considering a classical example, namely, that of the linear wave
equation in one-dimensional space as given by (18). To solve this hyperbolic equation, we construct a uniform mesh, store
and update the cell-averaged values ii;, as well as the point values u;, 1/, at the interfaces. Based on the PoFV construct,
the updating equations become

du; ﬁi+l/2 - ﬁi—1/2
dt h ’
Xi+3/2 _ )
dujyip dd(x, Xi11/2) - < - < (62)
i f(X)T dx — Fiy3/28(Xi+3/2, Xiv1/2) + Fim1/20(Xi—12, Xit1/2).
Xi—1/2

6.1.1. Second-order PyFVy formulation
At every cell i, the solution may be expressed using a first-order polynomial, viz.

Uir12 —Ui-1/2

ui(x) =u; + p

(x —xi). (63)
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Then at the interface, i + 1/2, the left and right-hand side values may be computed using

uiL+1/2 =U;i(Xi11/2), U,R+1/2 =1 (Xiy1/2)- (64)
Subsequently, the upwind numerical flux may be consolidated into

Fipip= %[auiL-H/Z + a“zR-H/z - |a|(”:R+1/2 - ”iL+1/2)]’ (65)

and then inserted into (62). Because ii;(x) is linear, we may use &; (x) = %h‘1 for the updating of the point values. In this

case, the domain integral in (62) vanishes by virtue of d§;/dx = 0. As such, the updating expression for the point values
simplifies into

dujyip Fissp—Fisip

dt 2h (86)

6.1.2. Third-order PyFV, formulation
For every cell i, the solution may be synthesized from (u;_1, ;, uj+1) and (uj—1,2, uit+1/2), using the method of least
squares. Accordingly, the solution in each cell may be written as

B =+ mg +az (367 - ). (67)

Hence, the problem becomes that of minimizing the total deviation from the cell-averaged value and the values at the
interface and neighboring cells. By taking

~1/2 2 3/2 2
lo = [f1(=1/2) — i1 21 + [6:(1/2) — tis1 21 + / G dE — @iy | + / B~ | . (68)
~3/2 12

one obtains the linear system
al al
o _ o, 3o _,

, 69
0aq daax (69)
Subsequently, by solving (69), the reconstructed second-order polynomial takes the form
~ _ U —Uj—1/2 + 2(Uj+1 — Uj—1)
0(E) = i + i+1/2 i-1/2 i+1 i—1 £
> (70)
N 36(Uiv1 +ii—1) +6ir1/2 +Uiz1/2) — 84 (2 1
37 2 24)°
where & = (x — x;)/h. Then at the interface, i + 1/2, the left and right-hand sides values may be evaluated from
uiLH/z =1i(Xi112) and uﬁ]/z = Ui11(Xi4+1/2)- (71)
The corresponding upwind-based numerical flux becomes
Fiy1p= %[a“iL+1/2 + a“zRH/z - |a|(”1R+1/2 - “iL+1/2)]- (72)
In this case, the ADF formulation yields
- 15 5
82 (X, Xi =— — —(X—xj . 73
2(X, Xit1/2) sh 8h3( i+1/2) (73)
When (73) is substituted into the domain integral in (62), it may be evaluated separately on each cell by taking
Xi+3/2 d~ Xi+1/2 d~ Xi+3/2 d~
8 8 8
[t Za= [ rwZae [ reoRax (74)
dx dx dx
Xi—1/2 Xi—1/2 Xit+1/2

which can be readily computed using a two-point Gaussian-Legendre quadrature on each cell. In this exercise, the two Gaus-

sian points consist of &1 5 = i‘/Tg, and the corresponding weight equals %h. For each cell i, the Gaussian point corresponds
to xx = &h + x;, and so the derivatives and integrals over the cell domain may be evaluated sequentially using

ds;
dx |,
k

L

5 1/ déy
- 4h2 k /7

15
= — 4 G+ 1/2), (75)
i+1,k

and so
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Xit3/2 -
/ f(X)%dx = —g[(& 12 fir+GE—1/2) fiz+ & +1/2) fir11 + 2+ 1/2) fiz12], (76)
Xi—1/2
where f; 1= f[#i(§1)], and f; » = f[u;(&2)] represent the fluxes at the Gaussian points in element i. Forthwith, the updating
equation for u;y1/2 reduces to
duiyip
dt

15 3 . N
—g[(& —1/2)fi1+E—1/2) fiz+ &1 +1/2) fix11+ (2 +1/2) fiq1 2]+ E(Fiu/z — Fi_12477)

6.1.3. Fourth-order PoFV3 formulation
At every cell i, the solution may be deduced, as usual, from (il;_1, i;, Uj1) and (uj—12, Uiy1/2), using the method of
least squares. As before, by writing the solution in each cell as

§i(§) =i +ar +az (367 - &) +asé?, (78)

minimizing the total deviation between the cell value and the values at the interface and neighboring cells can be captured
through

~12 N Y 2
Io = [Gi(=1/2) — uj—120* + [0i(1/2) — uir121* + / Uj(g)ds —ui—q | + / Ui (g)dg —ijyq | - (79)
_32 172

Minimizing the deviation will hence require setting
al al al
9_0, Z%-0 Z%-0

oo _o 0o _, 0o (80)
day day das
By solving the linear system given by (80), one arrives at a third-order polynomial of the form
- _ Ujpq — Uj—1 — 10(u; —Uuj_
iy (8) = il — i+1 — Uj—1 8( i+1/2 — Ui 1/2)‘§
. 36(Ujp1 + Ui—1) + 6(Uitr1/2 +Uj—1/2) — 84U; ﬁ 1 (81)
37 2 24
. 3(Ujp1 — Ui—1) — 2(Uiy12 — ui—1/2)%_3.

6
As for the flux at the interface, its computation may be accomplished using a procedure that mirrors our evaluation at pre-
vious orders. At this particular order, however, two ADFs, namely, 8(x, Xit1/2) = 83(x, Xi+1,2), must be used in conjunction
with three Gaussian points in order to suitably resolve the domain integrals. To proceed, these quantities may be substituted
into the domain integrand of (62) and evaluated term-by-term to produce

Xi4+3/2 _ 3 3
déss 15
/ foo-g dx=—c [Z wiE —1/2) fie+ Y wili + 1/2>f,-+1,k} : (82)
X1 k=1 k=1
where the Gaussian weights consist of wq = w3 = g, and wy = %, while the Gaussian points comprise &1 3 = i*{—}?s, and
& =0. At this fourth order, the updating equation for u;q/> may be rearranged into
3 3
duit1,2 15 3 . o
& 2 - —gr | 2o WkE = 1/2) fise+ 3 wie+1/2) fiai | + g (Fisp = Ficapo). (83)
k=1 k=1

6.2. P{FV for the linear, one-dimensional, scalar wave equation

In this case, apart from the two equations that arise in (62), a third relation will be necessary in order to adequately
update the first-order derivative on each node. This expression is

Xit3/2 -

dvit1)2 ds’(x, xiy1/2) . < A <

ld+t 2 _ / hf(X)dixwr/ dx — hFiz3/28' (Xiy3/2, Xit12) + hFi—128' (Xi—1/2, Xit1/2), (84)
Xi—1/2
where

du

Vit1/2 =h — . (85)

l dx |ii1/2
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6.2.1. Third-order P1FV, formulation

As we gradually increase the order, the solution at every cell can be reconstructed from the quantities and derivatives, u;
and (ui—1/2, Uit+1/2, Vi—1/2, Vi+1/2), retrieved from the method of weighted least squares. In this case, the solution in each
cell may be expanded into

B =i +mg +az (36— %), (86)
and so the distance to the values and derivatives at interfaces may be expressed as
. 2 - 2
To = s[ii(—=1/2) — ui—1/20* + s[ii(1/2) — uir1/21° + [%—?(—1/2) - Vi71/2] + [%—%’(1/2) - Vi+1/2] . (87)

Naturally, minimizing the total deviation requires taking
al ol
Ao o o _

=0, 88
aaq aap (88)
Thus by solving (88), the reconstructed second-order polynomial becomes
~ _ o os(u —Uj—172) +2(vi +Vi_1/2)

0(E) = i + i+1/2 i 1/24+S i+1/2 i-1/2 £
_ 89
n 6 [(Sttit1/2 + Sui—1/2 — 25 + 6(Vit12 — Vi—1/2) ] ﬁ 1 (89)

36+s 2 24)°

where s = 106 denotes the least-squares weight associated with the nodal values. The remaining procedure to obtain the
updating ODE for u;1/,2 proves to be identical to that already developed for PoFV5. To illustrate the manner by which the

updating of v;, 1,2 may be accomplished, we consider the ADF polynomial for the derivative weight function Sg (x), namely,
3x
2h3°
In this case, two Gaussian points will be necessary in the evaluation of the domain integral. After some algebra, we retrieve
the updating equation for vi;1/,, namely,

8h(x) = (90)

2 2
dv; 3 3 . .
’d+t”2 = [2 Wik — 1/2) fir+ Y wiEe+ 1/2)fi+1$k:| — o (Fiasp + Fiopo), (91)
k=1 k=1

where the Gaussian weights may be set at unity with w; =wy =1.

6.2.2. Fourth-order P1FV3 formulation

The highest order that we will describe in this study consists of using the method of weighted least-squares at every cell
i for the values of (it;_1, uj, j11) and (uij_1/2, Uiy1/2, Vi—1/2, Vi+1,2) to arrive at a fourth-order formulation. For the solution
in each cell

0i(6) =1 +ar +az (367 — 3 ) +asé”, (92)
the total deviation that must be minimized can be estimated from
_ 2 . 2
lo= sliii(=1/2) = 12 +s1i(1/2) = w12 + [ S0 -1/ = vica | +[ G2/ = viyap| . (93)

and so, its extrema may be found by taking
al al al
° _p 0 _p 0

09, 20, 22 (94)
daq aa; das
After solving (94), the reconstructed third-order polynomial can be written as
- _ 6(u; —Uj_ — (vi Vi_
i (6) = il + (Uit1/2 — U 1/2)4 (Vig1/2 + Vi 1/2)%_
L 6 [Suir1/2 + Sui—1/2 — 25l +6(Viz1/2 — Vi—1/2)] i 1 (95)
36+s 2 24
3(Ujp1 — Uj—1) — 2(u; — Uj_
n (Ui —Uj—1) — 2(Uit1/2 — U; 1/2)%_3’

6

where s = 107% stands for the least-squares weight ascribed to the nodal values. We replace a3 from (81), which makes
scheme stable. Here too, three Gaussian points may be effectively used following the procedure that we developed for the
PoFV3 formulation. At the outset, the updating equation for vy, may be extracted and compacted into
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Fig. 8. The real parts of the two eigenvalues of the coefficient matrix M corresponding to PoFV, (n =1, 2, 3).

dvigrp 15
dt ~ 16h

3 3
15 . N
> wil5 =215 — 1/21 fik + ) ,‘wk[s—21<sk+1/2)2]fi+1,k} + g (Fisp+ Ficapa). (96)
k=1 k=1

6.3. Fourier stability verification of the PFV method

To further confirm the viability of the PFV method, a Fourier stability analysis is carried out as in the case of ADF-DG
method. Here the unknown vectors are specified as U; = [ﬂj,uH]/z]T and U; =[uj, uji1/2, vj+1/2]T for the PoFV, and
P1FV,, respectively. As before, the coefficient matrices M at different orders may be readily evaluated along with the real
parts of the corresponding eigenvalues. In what follows, we use Fig. 8 to display the real parts of the two eigenvalues for
PoFVy,, and Fig. 9 to provide the real parts of the three eigenvalues for P1FVj,. In all cases considered, it may be seen that
the PoFV, scheme remains stable in its half-discretized form. The stability of the P1FV; solution is also confirmed, although
P1FV3 exhibits a small region of o with weakly positive eigenvalues. This instability may be readily suppressed by the TVD
Runge-Kutta time-matching technique, which is known for its effectiveness in stabilizing the scheme. The ensuing behavior
will be illustrated in the forthcoming numerical examples.

6.4. Numerical verification

In order to test the accuracy and stability of the PFV scheme, two benchmark cases will be considered: the linear wave
equation given by (18) with a =1 as well as the nonlinear Burgers’ equation. In this process, periodic boundary conditions
will be imposed at both ends of the computational domain, which will be bracketed over the interval [0, 1]. Two different
initial conditions will be tested in the context of the linear wave equation by specifying two forms of the initial function,
uo(x). For simplicity, a uniform mesh is considered. Subsequently, to verify the successive orders of the PFV scheme in the
context of the one-dimensional wave equation, the number of grid points will be taken to be 8, 16, 32, and 64, respectively.
In analyzing Burgers’ equation, an additional stencil of 128 points is considered to fully confirm the convergence order. To
quantify the error, we define the residual to be R; = |Uexact — Unumeric| and use both the Ly = > R;dx and L., = maxR;
error measurements of the cell-averaged values to quantify the error. Furthermore, a third-order TVD-Runge-Kutta method
is relied upon for time matching.

6.5. Linear wave equation with an initial function of ug(x) = sin(2wx)

Using ug(x) = sin(2x), the problem is run for one period of time, until t = 1. The errors entailed in the PFV scheme at
different orders are cataloged and compared in Tables 1, 2, and 3. Everywhere, h denotes the grid step size.

We refer the reader to Fig. 10 where the left and right subsets provide a useful comparison of the base 10 logarithms,
Ig(L1) and Ig(Ls), at different PFV orders. Based on these findings, it may be ascertained that the intended orders are
secured. Nonetheless, PoFV3 appears to slightly under-perform its projected fourth order, unlike the P;FV; result which
displays an accelerated convergence rate. These findings demonstrate that, when taken at the same order n, the P{1FV,
formulation outperforms the PgFV, result in the attainable degree of precision.

In these numerical experiments, the critical CFL, which represents the maximum CFL number to keep the scheme stable,
is computed numerically, although it can be alternatively determined using Fourier analysis. Specifically for the case of 16
grid points, the code is executed in time up to t = 1000. In principle, the scheme is deemed stable when the maximum
value of u over the entire domain, x € [0, 1], continues to depreciate with the passage of time. This test also enables us to
determine the critical CFL, which is evaluated and posted in Table 4. Based on these results, it may be seen that the PFV
scheme is highly stable. Another characteristic that may be inferred from these results concerns the critical CFL, which does
not decrease monotonically with successive increases in the order of the solver, contrarily to its variation within most other
methods.
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Table 1
Characteristics of the linear wave equation with a =1, up = sin(2wx), and
t € [0,1]. The decimal logarithms, 1g(L1) and 1g(L,), refer to the errors
entailed in the second-order PoFV; scheme.
1g(h) Ig(L1) Order 1g(Loo) Order
—0.903 —0.685 - —0.480 -
—1.204 —1.278 1.98 —1.076 1.98
—1.505 —1.886 2.02 —1.689 2.04
—1.806 —2.492 2.01 —2.295 2.01
Table 2
Characteristics of the linear wave equation with a =1, ug = sin(27x), and t € [0, 1]. Here 1g(L1) and Ig(L~,) refer to the third-order PoFV;, and P;FV; errors.
PoFV3 P1FV3
Ig(h) lg(Lq) Order lg(Loo) Order lg(Lq) Order lg(Loo) Order
—0.903 —0.980 - —0.771 - —1.153 - —0.952 -
—1.204 —1.785 2.68 —1.595 2.90 —2.271 3.71 -2.077 3.74
—1.505 —2.665 2.92 —2.468 2.90 —3.452 3.92 —3.258 3.92
—1.806 —3.539 2.90 —3.343 2.90 —4.648 3.98 —4.452 3.97
Table 3

Characteristics of the linear wave equation with a =1, ug

and P1FV3 schemes.

=sin(2mx), and t € [0, 1]. Here 1g(L1) and 1g(L,) refer to the errors

in the fourth-order PoFV3

PoFV3 PiFV3

1g(h) lg(Ly) Order lg(Loo) Order lg(Ly) Order lg(Loo) Order
—0.903 —2.485 - —2.304 - —2.777 - —2.606 -
—1.204 —3.556 3.56 —3.366 3.53 —4.099 4.39 —3.908 433
—1.505 —4.614 3.51 —4.419 3.50 —5.356 418 —5.161 416
—1.806 —5.714 3.65 —5.518 3.65 —6.579 4.06 —6.383 4.06

6.6. Linear wave equation with an initial function of uo(x) = sin? (27 x)

In comparison to the previous case, using an initial condition of ug(x) = sin?(2x) leads to a more complex distribution,
namely, one that engenders more extrema. By running the problem over one period of time, t = 1, the errors at different
PFV orders are collected and compared in Tables 5, 6, and 7. Furthermore, the left and right subsets of Fig. 11 compare the
logarithmic Ig(L1) and 1g(Ls,) variations at successive PFV orders.

Upon close examination of the tabular and graphical results, it may be confidently ascertained that the expected orders
have been very closely reproduced. Two exceptions may be noted, as the PgFV3 solution appears at a slightly lower order
than the expected fourth order, whereas the P1FV; solution converges more rapidly than expected. Here too, for the same
order scheme, the P;FV, approximation displays a better degree of precision than its PoFV, counterpart.

6.7. Burgers equation with an initial function of ug(x) = % + sin(27 x)

To further verify the consistent accuracy of the PFV approach in the solution of nonlinear equations, the standard Burgers’
equation is considered with an initial function of ug(x) = % + sin(2m x). This hyperbolic PDE may be written as
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Fig. 10. Convergence behavior of the PFV errors at differently specified orders. Results correspond to the linear wave equation with a =1 and ug = sin(27x)
at t = 1. Here we show (a) Ig(Ly) (O) and (b) lg(Ls) (o) for the errors in the P,FV;, scheme at successive levels of accuracy: PoFV; (—), PoFV, (— — —),
P1FVy (—- =), PoFV3 (----), and P1FV3 (—--—).

Table 6

Table 4

Critical CFL using the PFV scheme at different orders in conjunction with
the linear wave equation with a =1, up =sin(2mx), and a time resolution
leading up to t = 1000.

PoFVy PoFV3 PoFV3 P1FV; P1FV3
CFL 1.20 1.61 0.88 1.67 0.74

Table 5

Characteristics of the linear wave equation with a =1, ug = sin? (2mx), and
t € [0,1]. Here 1g(L1) and 1g(L~) correspond to the errors in the second-
order PoFV; scheme.

Ig(h) Ig(L1) Order Ig(Leo) Order
—0.903 —0.456 - —0.379 -
—1.204 —0.767 1.03 —0.549 0.56
—1.505 —1.285 172 —1.087 1.49
—1.806 —1.887 2.00 —1.690 2.00

Characteristics of the linear wave equation with a =1,up = sin®(27x), and t € [0, 1]. Here Ig(L1) and 1g(Ly) refer to the third-order PoFV, and P{FV;

errors.

PoFV; P1FV;
1g(h) lg(L) Order 1g(Loo) Order lg(L) Order lg(Loo) Order
—0.903 —0.489 - —0.412 - —0.427 - —0.362 -
—1.204 —1.020 1.76 —0.804 130 —1.148 2.40 —0.954 197
—1.505 —-1.790 2.56 —1.600 2.64 —2.265 3.71 —2.070 3.70
—1.806 —2.666 291 —2.470 2.89 —3.449 3.93 —3.253 3.93
Table 7

Characteristics of the linear wave equation with a =1,up = sin? (2mrx), and t € [0, 1]. Here 1g(L1) and Ig(L) correspond to the errors in the fourth-order
PoFV3 and P1FV3 schemes.

PoFV3 P1FV3

1g(h) lg(Ly) Order lg(Loo) Order lg(Ly) Order lg(Loo) Order
—0.903 —1.301 - —1.187 - —1.440 - —1.438 -
—1.204 —2417 3.71 —2.266 3.59 —2.775 4.43 —2.601 3.86
—1.505 —3.490 3.56 —3.299 343 —4.101 4.40 —3.911 4.35
—1.806 —4.564 3.57 —4.367 3.55 —5.358 418 —5.164 416

au I 9 [(u? 0 [0.1] (97)

—+—(=)=0; xel0,

at 0x \ 2 ’

with periodic boundary conditions on both sides of the computational domain. To promote a smooth solution, the numer-

1

ical effort is carried out up to time t = 4. In this case, our reference solution is obtained straightforwardly using the
P1FV3 formulation in conjunction with a benchmark mesh of 256 grid points. Subsequently, the reference cell-averaged
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Fig. 11. Convergence behavior of the PFV errors at differently specified orders. Results correspond to the linear wave equation with a =1 and ug = sin® (27 x)
at t = 1. Here we show (a) Ig(L1) (O) and (b) 1g(Ls) (o) for the errors in the P,FV;, scheme at successive levels of accuracy: PoFVy (—), PoFVy (— — =),
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Table 9

Characteristics of the nonlinear Burgers’

P1FV; errors.

), and P1FVs3 (— B -—).

Table 8

Characteristics of the nonlinear Burgers’ equation with ug(x) = % +
sin(2rx), and t € [0, %]. Here Ig(L1) and Ig(L.,) refer to the second-order

PoFV; errors.

Ig(h) Ig(L1) Order Ig(Lso) Order
—0.903 —2.028 - —1.763 -
—1.204 —2.488 1.53 —1.955 0.64
—1.505 —2.963 1.58 —2.283 1.09
—1.806 —3.516 1.84 —2.768 1.61
—2.107 —4.098 1.93 —3.328 1.86

equation with ug(x) = % + sin(2wx), and t € [0, }1]. Here Ig(Ly) and 1g(L) refer to

the third-order PoFV; and

PoFV; P1FV;
lg(h) lg(Lq) Order 1g(Lso) Order 1g(L1) Order lg(Loo) Order
—0.903 —2.318 - —1.786 - —2.215 - —1.711 -
—1.204 —3.039 2.39 —2.408 2.07 —2.903 2.28 —2.365 217
—1.505 —3.861 2.73 —2.995 1.95 —3.822 3.05 —2.881 171
—1.806 —4.738 2.90 —3.832 2.78 —4.789 3.21 —3.811 3.09
—2.107 —5.637 2.99 —4.710 2.92 —5.805 3.38 —4.804 3.30
Table 10

Characteristics of the
P1FV3 errors.

nonlinear Burgers’

equation with ugp(x) = % + sin(2wx), and t € [0, }—1]. Here 1g(L1) and Ig(L) refer to the fourth-order PoFV3; and

PoFV3 P1FV3

1g(h) lg(Lq) Order lg(Loo) Order lg(Lq) Order lg(Loo) Order
—0.903 —3.125 - —2.599 - —4.043 - —3.691 -
—1.204 —3.999 2.90 —3.252 217 —4.557 171 —3.771 0.26
—1.505 —4.797 256 —3.904 217 —5.474 3.04 —4.417 214
—1.806 —5.848 3.50 —4.809 3.01 —6.608 3.77 —5.492 3.57
—2.107 —6.991 3.80 —5.882 3.56 —7.812 4.00 —6.689 3.98

values on coarser meshes are calculated using the benchmark solution. Here the numerical flux at the interface is of the
local-Lax-Friedrich (LLF) type, namely,

T 1 L R L R R L
Fitip=3 [f + f7 —max (|“i+1/2|’ |“i+1/2|> Wiy1y2 — ui+1/2)]’

where fl =] (“iL+1/2)2 and ff =3 (

2
”i+1/2) .

(98)

After several numerical runs, the errors accrued in the PFV formulations at varying orders are collected and displayed in
Tables 8, 9, and 10. The logarithmic behavior of the errors are also provided in the two subsets of Fig. 12, where I1g(L1) and
lg(Lso) are characterized at progressive PFV orders.
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Fig. 12. Convergence of the PFV errors at differently specified orders. Results correspond to the nonlinear Burgers’ equation with ug = % + sin(2wx) at

Tt= }i. Here we show (a) Ig(L1) () and (b) Ig(L) (0) for the errors in the P,FV;; scheme at different orders: PoFVy (—), PoFV, (— — =), P1FV, (—-—),
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Despite the increased complexity of Burgers’ nonlinear equation, it is gratifying that the projected orders are achieved
with a fair degree of precision. As before, two exceptions are noted and these include the PgFV3 representation, which
evolves at a slightly slower rate than the expected fourth order and, conversely, the P;FV; formulation, which seems to
converge more rapidly than its anticipated rate. It may thus be speculated, although not formally proven, that the P1FV3
will outperform the PoFV3 by exhibiting a smaller error and a higher convergence rate. In fact, this trend becomes more
noticeable at higher orders because, at the third order, the P;FV, solution may be viewed as being only slightly more
accurate than its PoFV, counterpart when comparing error magnitudes.

7. Conclusion

This work revisits and extends Huynh’s [1,2] concept of an approximate delta function (ADF), which can be expressed
in the form of a finite-order polynomial with such a distinct integral property over a finite domain that it can be used to
complement and extend the capabilities of existing computational methods. This is accomplished by providing the means
to incorporate additional coefficients that can directly enhance the properties of the scheme under consideration. ADF poly-
nomials enable the user to experiment with different arrangements of DOFs, and this feature can lead to the reconstruction
of high-order methods with favorable properties. Despite the development of this work independently of Huynh’s [1,2,23],
it shares similar characteristics.

In this study, we first show that generic ADF polynomials exhibit useful properties: an ADF polynomial of order (N + K),
which we label here as SN”(, reproduces the integral property of a delta function for an arbitrary polynomial of order N,
while providing K arbitrary constants that can be judiciously specified. At the outset, an ADF polynomial can be used to
derive the updating ODEs associated with high-order numerical schemes.

To illustrate the versatility of ADF polynomials, we show that the ADF procedure can be effectively used to reconstruct
the updating ODEs of the Taylor-based, nodal DG, and Flux Reconstruction methods identically. In this process, the ADF
technique provides the means to extend these techniques by introducing extra coefficients and functionalities that can be
optimally specified. Then using Fourier analysis, the Taylor and nodal-based ADF-DG methods are shown to be stable and
that their stability is enhanced using auxiliary coefficients.

Subsequently, by leveraging the ADF tool to handle different DOF settings, a point-value enhanced finite volume (PFV)
method is introduced, which stores and updates the cell-averaged values along with the values and derivatives of unknown
quantities at all nodal points. Within the PFV framework, the cell-averaged values are updated in the same manner as in the
finite volume method to ensure conservation. Furthermore, the nodal information is updated through ADF integration over
the entire collection of elements surrounding a given point. The updating of nodal quantities on multiple elements leads to
a stable algorithm, as confirmed using a Fourier stability analysis.

By way of verification, the PFV technique is vetted by investigating its performance in treating the linear, one-
dimensional, wave equation as well as the nonlinear, one-dimensional Burgers’ equation. In both cases considered, a careful
analysis of the logarithmic errors confirms the projected orders along with the convergence rate of error residuals. In this
process, the improved stability of the PFV method is ascertained, thus demonstrating the ability of the present approach to
enhance both stability and accuracy hand-in-hand. In future work, we hope to extend the PFV method to two and three
spatial dimensions both with and without the incorporation of viscous effects.
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