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Abstract

Performance variability is an important measure for a reliable high performance com-

puting (HPC) system. Performance variability is affected by complicated interactions

between numerous factors, such as CPU frequency, the number of input/output (IO)

threads, and the IO scheduler. In this paper, we focus on HPC IO variability. The

prediction of HPC variability is a challenging problem in the engineering of HPC sys-

tems and there is little statistical work on this problem to date. Although there are

many methods available in the computer experiment literature, the applicability of ex-

isting methods to HPC performance variability needs investigation, especially, when the

objective is to predict performance variability both in interpolation and extrapolation

settings. A data analytic framework is developed to model data collected from large-

scale experiments. Various promising methods are used to build predictive models for

the variability of HPC systems. We evaluate the performance of the methods by mea-

suring prediction accuracy at previously unseen system configurations. We also discuss

a methodology for optimizing system configurations that uses the estimated variability

map. The findings from method comparisons and developed tool sets in this paper yield

new insights into existing statistical methods and can be beneficial for the practice of

HPC variability management. This paper has supplementary materials online.

Key Words: Approximation Methods; Computer Experiments; Design Analysis;

Gaussian Process; Reliability; System Design.
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1 Introduction

1.1 The Problem

High performance computing (HPC) commonly refers to the aggregation of computing power

to obtain much higher performance than a typical desktop computer or workstation. HPC

is widely used to solve large-scale problems in various areas such as science, engineering,

and business. While improving the performance of HPC systems attracts lots of research,

managing the performance variability of HPC systems is also an important dimension of

HPC system management that can not be ignored. A common manifestation of performance

variability is the variation from run to run in the execution time for a particular task.

In a more specific example, the middle panel of Figure 1 shows the performance variability

of input/output (IO) throughput (data transfer speed, in units of 107 KB/s) as a function

of CPU frequency with other system parameters fixed. Following Cameron et al. (2019), we

use the standard deviation of IO throughput from multiple runs as a performance variability

measure (PVM). While deferring the details of Figure 1 to later sections, Figure 1 shows

that the performance variability increases as the CPU frequency increases. Although one

can generally obtain higher throughput when increasing the CPU frequency as shown in the

top panel of Figure 1, the variability of the throughput from different runs also increases

when the CPU frequency increases. For high CPU frequencies, the variability is high and the

standard deviation can exceed 50% of the mean performance as shown by the bottom panel

of Figure 1, which plots the ratio of the standard deviation over the mean throughput. Thus,

high performance variability can be a hindrance for system development because it makes

the evaluation of a system challenging when the performance is inconsistent across individual

runs. There are also other factors such as imbalanced tasks caused by variability that can

affect overall system performance and efficiency.

In the big picture, performance variability in HPC systems is common and critical. Ex-

ponential increases in complexity and scale make variability a growing threat to sustaining

HPC performance at exascale. However, the performance variability is affected by complicat-

ed interactions of numerous factors, such as CPU frequency, the number of threads, and the

IO scheduler. The study of performance variability is an emerging area in computer science.

The fundamental questions are: how do system variables affect the performance variability,

can we predict performance variability for new system design/configurations, and how can we

manage performance variability?

To answer these questions, computer scientists have completed large scale experiments

to collect the necessary data. In this paper, we present the statistical modeling of HPC IO

variability. The prediction and management of variability is a challenging problem in the
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Figure 1: Example of performance variability of IO throughput (in units of KB/s×107) as

a function of CPU frequency, while keeping other variables fixed. The top panel shows the

mean throughput, which is the performance measure. The middle panel shows the standard

deviation (SD), which is used as the performance variability measure (PVM). The bottom

panel shows the ratio of the SD over the mean, which is referred to as the coefficient of

determination in statistics.

engineering of HPC systems and there is little statistical work on this problem. Specifically,

the objective is to conduct statistical modeling and make predictions about performance vari-

ability. In particular, we use various statistical methods to describe system variability with

system configuration variables as inputs, which we refer to as a variability map construction.

With the variability map, we make predictions for new design points (i.e., new system configu-

rations). We examine two types of predictions: interpolation and extrapolation, both of which

are of interest to computer scientists. Using prediction accuracy as the criterion, we evaluate

and compare the performance of different methods. This comparison provides insights into

the effectiveness of different methods for predicting HPC performance variability. While it is

impossible to eliminate variability, the statistical models and predictions can help manage the

variability. Being able to predict variability allows one to identify system configurations that

can lead to large variability. Thus, one can avoid these system configurations and design a

system in which performance and variability are both optimized.
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1.2 Related Literature and the Contribution of This Work

In the area of statistics, computer experiments are constructed to emulate a physical system.

Because these are meant to replicate some aspects of a system in detail, they often do not

yield an analytic solution. Due to the complexity and expense of evaluating system behavior,

a surrogate model is usually used to describe the system behavior under some configuration. A

surrogate model is an engineering method used when an outcome of interest can not be easily

or directly measured, so a model of the outcome is used instead. Popular surrogate models

(Chen et al. 2006) include response surface models, Kriging, gradient-enhanced Kriging,

support vector machines, space mapping, and artificial neural networks (Bandler et al. 2004).

In our work, we mainly focus on the following surrogate models: response surface models,

Gaussian process based methods, inverse distance weighting methods, and non-parametric

regression models. A good reference book on response surface models is Myers, Montgomery,

and Anderson-Cook (2016).

The Gaussian process model is a popular tool in computer experiments (e.g., Santner,

Williams, and Notz 2010). However, a Gaussian process only forms a stationary surface. When

the underlying surface has steep behavior, the Gaussian process may not be able to capture

those steep changes. Several methods have been proposed to extend the Gaussian process to

form a non-stationary surface. Chipman, George, and McCulloch (2002) proposed a Bayesian

treed Gaussian process that uses a reversible-jump Monte Carlo Markov chain (MCMC) to

build the tree structure. Gramacy and Lee (2008) built a treed Gaussian process and Taddy,

Gramacy, and Polson (2011) developed dynamic trees. Tree-based non-stationary Gaussian

processes in Gramacy and Lee (2008) and Taddy, Gramacy, and Polson (2011) used similar

priors to build tree structures, while the dynamic tree’s prior extended the method in Chipman,

George, and McCulloch (1998). Chipman, George, and McCulloch (2010) proposed an additive

Gaussian process. In addition, Qian, Wu, and Wu (2008) proposed a framework for building

Gaussian process models that can handle qualitative and quantitative factors. Zhang and

Notz (2014) provided a comprehensive review of computer experiments with qualitative and

quantitative variables. Deng, Hung, and Lin (2015) introduced the marginally coupled designs

for computer experiments that can consider both qualitative and quantitative variables.

Spline bases are widely used when the relationship between input and response is highly

nonlinear. In particular, the multivariate adaptive regression splines (MARS) in Friedman

(1991) is a technique that uses an iterative approach to select spline bases for the approxima-

tion of an unknown surface. The criterion used in selecting the bases is related to the entire

data. MARS only assumes a polynomial relationship between the response and the input

variables, and can capture very complex relationships adaptively. A generalized cross vali-

dation procedure is used to determine the best model. More details on the generalized cross
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validation can be found in Hastie, Tibshirani, and Friedman (2009). Adaptive splines are also

adopted in other approximations to improve accuracy, for example, in neural networks (e.g.,

Campolucci et al. 1996), and Gaussian process modeling (e.g., Kim and Gu 2004). Ben-Ari

and Steinberg (2007) compared Kriging with MARS and projection pursuit regression in the

modeling of data from computer experiments.

For inverse distance weighting methods, the assigned values to unknown points are calcu-

lated with a weighted average of the values available at the known points. The earliest inverse

distance weighting method is Shepard’s method (Shepard 1968). Many extensions have been

made based on Shepard’s work (e.g., Gordon and Wixom 1978, Renka 1988, and Berry and

Minser 1999).

Although there are many methods available in the computer experiment literature, the

applicability of existing methods to HPC performance variability is not clear. We investigate

the suitability of several methods in the literature and provide new insights into the practi-

cal application of those methods in HPC variability management. The findings of method

comparisons and developed tool sets in this paper can be beneficial for the practice of HPC

variability management and system building.

1.3 Overview

The rest of the paper is organized as follows. Section 2 introduces the experiment setup

and describes the data collection process. Section 3 introduces various methods that can be

used for variability map construction. Section 4 compares different methods for their perfor-

mance in interpolation and extrapolation. Section 5 presents the optimization of performance

variability. Section 6 contains some concluding remarks and areas for future research.

2 Experiment Setup and Data Collection

2.1 Performance Variability Measure

While HPC performance can be a general term, we focus on one specific metric, which is the

input/output (IO) throughput to persistent memory (i.e., hard disk drives and solid state

drives). The modeling and analysis approach used in this paper, however, can be extended

to other metrics. Here, the IO throughput is defined as the data transfer speed in terms

of kilobytes per second (KB/s). Even under the same system (i.e., hardware and software)

configuration, different runs of the same task will end up with different IO throughput. That

is, performance variability exists in IO throughput. Specifically, the performance variability

measure (PVM) used in this paper is the standard deviation of the IO throughput from
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multiple runs of the same task. Here, runs refer to the replicates of IOzone experiments under

a given system configuration. For each run, we run the IOzone benchmark under a fixed

configuration to obtain an IO throughput measurement. This process is repeated to obtain

multiple measurements. We use the standard deviation of those throughput measurements as

the PVM. The objective is to study how system variables affect the IO throughput, through

statistical modeling of the relationship between system variables (including hardware and

software configurations) and the performance variability.

2.2 Experiment Setup

The IO throughput to persistent memory is affected by three categories of variables: hard-

ware configurations, operating system configurations, and application configurations. To study

how the system configurations affect IO performance variability, complicated large-scale ex-

periments were conducted by computer scientists. In this section, we introduce the setup of

these experiments. The response variable is the throughput variability tested by running the

IOzone benchmark on a server under the same system configuration x, with a relatively large

number of repeated runs. In particular, 40 runs were used under budget constraints. The

server is configured with a dedicated 2TB HDD on a 2 socket/4 core Intel Xeon E5-2623 v3

(Haswell) platform. The memory is 32 GB DDR4. The number of hyperthreads is 2 per core.

The Linux operating system used is Ubuntu 14.04. More details can be found in Cameron

et al. (2019).

For system configurations, seven important variables were selected by computer scientists,

which consist of both categorical and continuous variables. Table 1 shows the summary

information for the seven variables that were used in the IOzone throughput experiments.

On the hardware configurations, changing CPU clock frequency is an important method for

adjusting system performance and energy efficiency. On the experiment server, there are 15

levels of frequencies ranging from 1.2 to 3.0 GHz. On the operating system configuration, one

can change the IO scheduling policy of the host system as well as the hypervisor by which

virtual systems are controlled. Both the host system and virtual machine (VM) have 3 levels

of IO schedulers, which are CFQ, DEAD, and NOOP.

The application configuration has four variables, which are the IO Operation Mode, the

Number of Threads, File Size (KB), and Record Size (KB). The IO Operation Mode has 13

levels, which cover almost all the common IO operations on HPC systems. For example, Fread

and Fwrite represent different types of reading and writing tasks, respectively. The Number

of Threads has 9 levels, ranging from 1 to 256 by powers of 2. The values of File Size and

Record Size are chosen in pairs as there are some constraints on the selection of values. In

particular, the File Size has to be larger than the Record Size, and has to be a multiple of the
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Table 1: Summary information for variables that are used in the IOzone throughput experi-

ments to collect the training set and extrapolation test set. Note in the File Size by Record

Size row, the first number is File size and the second number is Record Size. The number of

all the combinations in this table is 13×3×3×15×9×6 = 94770. The settings, at which the

Frequency and the Number of Threads are (2.8, 256), (2.9, 256), (3.0, 256), (3.0, 64), and (3.0,

128) given the File Size and Record Size is (256, 32), are set aside for extrapolation test set,

which excludes 13× 3× 13× 5× 1 = 585 settings with large values on the Frequency and the

Number of Threads. Thus, the number of points in the training set is 94770− 585 = 94185.

Category Variable
No. of

Values
levels

Hardware CPU Clock Frequency
15

1.2, 1.4, 1.5, 1.6, 1.8, 1.9, 2.0, 2.1

(GHz) 2.3, 2.4, 2.5, 2.7, 2.8, 2.9, 3.0

Operating IO Scheduler 3 CFQ, DEAD, NOOP

System VM IO Scheduler 3 CFQ, DEAD, NOOP

Application

IO Operation Mode 13

Fread, Pread, Re-read, Randomread

Read, ReverseRead, Strideread

Fwrite, Pwrite, Randomwrite, Rewrite

Initialwrite, Mixedworkload

Number of Threads 9 1, 2, 4, 8, 16, 32, 64, 128, 256

File Size (KB) by
6

(64, 32), (256, 32), (256, 128)

Record Size (KB) (1024, 32), (1024, 128), (1024, 512)

Record Size. For example, the sixth row of Table 1 shows the valid combinations of File Size

and Record Size used in the training set.

2.3 Prediction Problems and Data Collection

Two kinds of predictions arise in the setting of HPC variability management, which are inter-

polation and extrapolation. To test the predictability of different methods, we collect three

sets of data: the training set (St), the interpolation test set (Si), and the extrapolation test

set (Se). Let x be the vector representing the system variables (i.e., system parameters). We

build a prediction model based on the training set St, and we then use the built prediction

model to make a prediction for the PVM under a new configuration xw. A prediction problem

is called an interpolation if xw lies within the convex hull of St, and a prediction problem is

called an extrapolation if xw falls outside the convex hull of St.
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Figure 2: Illustration of design points for File Size, Record Size, Number of Threads, and

Frequency. The points marked by black dots are for the training set. The points marked by

black dots with a square are for the extrapolation test set, and the points marked by diamonds

are for the interpolation test set.

Regarding St, Si, and Se, each dataset contains eight columns with one column for the

PVM, which is the response/output variable, and seven columns for the explanatory/input

variables. The IO Scheduler, VM IO Scheduler, and IO Operation Mode are treated as

categorical variables, and the Frequency, Number of Threads, File Size and Record Size are

treated as continuous variables.

The training set, St, is used to build a model for predicting variability. As explained in

the caption of Table 1, the training set consists of

13× 3× 3× 15× 9× 6− 13× 3× 3× 5× 1 = 94185 (1)

points. The training set consists of all combinations of the variables (i.e., 13×3×3×15×9×6 =

94770) with 13× 3× 3× 5× 1 = 585 points excluded for the extrapolation test set. Figure 2

illustrates the design points for File Size, Record Size, Number of Threads, and Frequency, as

shown by black dots.

The subtracted points in (1) are those at which the Frequency and the Number of Threads

are (2.8, 256), (2.9, 256), (3.0, 256), (3.0, 64), and (3.0, 128) given the File Size and Record

Size is (256, 32), which are used for extrapolation testing. Figure 2 displays the points that

are used for extrapolation testing purposes, which are marked by squares. Note that the

points are on the right upper corner of the combination of Frequency and the Number of
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Table 2: Summary of the experimental setup for the collections of the two test sets.

Variable
Interpolation Extrapolation

Test Set Si Test Set Se

IO Scheduler All 3 levels All 3 levels

VM IO Scheduler All 3 levels All 3 levels

IO Operation Mode All 13 levels All 13 levels

File Size by (512, 32), (512, 128), (512, 256) 256

Record Size (768, 32), (768, 128) 32

Frequency 2.5 (2.8, 256), (2.9, 256), (3.0, 256)

Number of Threads 128 (3.0, 64), (3.0, 128)

Total No. of Points 585 585

Threads, representing large values of the two variables. Thus, the main purpose is to test the

extrapolation of the Frequency and the Number of Threads to large values.

There are an additional 3× 3× 13× 5× 1× 1 = 585 points used for interpolation testing

purposes. Those points are marked by diamonds in Figure 2. Specifically, the chosen points

are the File Size and Record Size at (512, 32), (512, 128), (512, 256) (768, 32), and (768,

128), given the Number of Threads is 128 and the Frequency is 2.5 GHz. The points lie in the

interior of or on the convex hull of File Size and Record Size points. Thus, the main purpose

is to test the interpolation of the File Size and Record Size.

Table 2 shows the summary of the experimental setup for the collections of the two test

sets, Si and Se. In our data collection, we have more points on the Frequency and Number

of Threads combinations than that of the File Size and Record Size combination. Because

extrapolation is usually more challenging than interpolation, we chose to test the ability of

extrapolation on the Frequency and Number of Threads combinations. For interpolation, we

chose to test the ability on the File Size and Record Size combination. Although there were

only six combinations for the File Size and Record Size combination, interpolation can still

be made based on this information provided by the data.

3 Variability Map Construction

3.1 Data Visualization and Variability Map

In this section, we first do some data visualization to explore the data. Figure 3 shows one

example of a set of system variables before and after log transformation using the training
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set. Note that the scale of the IO throughput is in the magnitude of 107. Because a variable

and its standard deviation have the same scale, the PVM (i.e., the standard deviation of IO

throughputs) is also in the magnitude of 107. The system configuration for the dataset shown

in the figure is chosen as follows: the IO Operation Mode is Fwrite, IO Scheduler is CFQ, and

the VM IO Scheduler is NOOP. These categorical configurations were chosen by computer

scientists as the most likely selection to be used in practice. With this configuration, Figure 3

shows that the PVM of the 805 points (i.e., configurations) is right skewed. After the log

transformation, the PVM of the 805 points shows a bimodal behavior. Figure 3(b) also allows

us to see that for certain configurations, the variability tends to be small, while for other

configurations, the variability tends to be large.

To further visualize how the PVM changes across different system configurations, Figure 4

shows the perspective plots of the PVM as a function of CPU Frequency and the Number of

Threads, before and after taking a log transformation. The IO Operation Mode is Fwrite,

IO Scheduler is CFQ, the VM IO Scheduler is NOOP, the File Size is 1024, and the Record

Size is 512. The figure shows that, in general, the PVM increases as the Frequency and the

Number of Threads increase. However, the exact relationship is complicated, and cannot be

described by simple functional relationships. While the figures can only show the pattern for

two variables, the actual relationship is more complicated due to many other variables that

affect the PVM. Note that Figure 4 only shows the pattern for one slice of the data. The

shapes of the perspective plots could differ for different configurations.

We introduce the concept of the variability map to describe the functional relationship

between the system configuration and the PVM. The variability map is defined as a function

f(x) that gives the PVM at x. With the variability map f(x) estimated from the training

dataset, one can use it to characterize and predict variability for a given configuration x.

We focus on the modeling of continuous variables in this paper. For categorical variables,

we do a separate estimation for the variability map for each unique combination of the variables

for all candidate prediction methods, except for the categorial Gaussian process (CGP) model.

In particular, the IO operation Mode, IO Scheduler, and VM IO Scheduler have 117 unique

combinations for their levels. Thus, 117 separate variability maps will be constructed. For

certain prediction techniques, such as the linear Shepard (LSP) method, they are not designed

for categorical variables. Thus, we need to handle each level of categorical variables separately.

This treatment, however, does not limit their practical use because one has to specify the level

of the categorical variable in the prediction. That is, we can still use the separate variability

maps to generate the prediction, given the level of the categorical variable. The CGP model

is able to handle categorical variables to some extent.

Without loss of generality, we only describe the construction of one particular variability
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Figure 3: One example of a set of system variability before and after log transformation (in

a scale of 107). The IO Operation Mode is Fwrite, IO Scheduler is CFQ, and the VM IO

Scheduler is NOOP, with all combinations of File Size and Record size.

map. We define xi as follows,

xi =(Log of File Size, Log of Record Size, Log of No. of Threads, CPU Frequency)′

=(xi1, xi2, xi3, xi4)
′. (2)

The training set is denoted by {yi,xi}, i = 1, · · · , n, where yi is the PVM under the system

configuration xi = (xi1, xi2, xi3, xi4)
′ for a particular combination of the IO operation Mode,

IO Scheduler, and VM IO Scheduler. Here n = 805 is the number of data points for each

variability map.

3.2 Description of Candidate Methods

In this section, we give a short description of candidate methods that will be used for the

construction of the variability map. We first consider a multiple linear regression model,

which is a simple model. We also consider several popular classes of surrogate models as the

candidate methods, which are the Gamma generalized linear model (GLM) with a polyno-

mial structure, the linear Shepard (LSP) method that is based on inverse distance weight,

the multivariate adaptive regression splines (MARS), Gaussian process based methods, tree

based models such as the Bayesian additive regression trees (BART), and categorical Gaussian

process (CGP). These methods are flexible and can automatically capture globally complex
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Figure 4: Perspective plots of PVM as a function of CPU Frequency and the Number of

Threads, before and after taking a log transformation. The IO Operation Mode is Fwrite, IO

Scheduler is CFQ, the VM IO Scheduler is NOOP, the File Size is 1024, and the Record Size

is 512.

relationships, potentially uncovering interactions between variables that have dominant effects

on IO variability.

Linear Model. For the linear model (LM), the response yi is modeled as

yi = β0 + x′

iβ + εi,

where the variability map f(x) is modeled as f(x) = β0 + x′β, β0 and β are the regression

coefficients, and εi is the error term. The parameter estimation is done by using the least-

squares method.

Gamma GLM. In some applications, the LM can be insufficient for modeling standard

deviation as mentioned in Chapter 11 of Myers, Montgomery, and Anderson-Cook (2016).

Hence, we further consider a Gamma GLM (GAMGLM) with a polynomial mean structure.

In the GAMGLM setting, we assume yi follows a Gamma distribution with mean µi. Through

the log link function, the mean µi is linked to the linear predictor ηi as µi = log(ηi). We use

a polynomial structure for ηi as follows for the HPC dataset,

ηi = β0 +

4∑

j=1

βjxij +

4∑

j=3

γjx
2

ij +

4∑

j=3

j−1∑

k=1

βjkxijxik +

4∑

j=3

δjx
3

ij .

Here, the covariates are defined in (2) and {β0, βj, γj, βjk, δj} are regression coefficients. Note

that we only consider the linear terms for xi1 (Log of File Size) and xi2 (Log of Record Size)

12



because there are only six unique combinations for the two variables. The variability map f(x)

is estimated as µ, which is the mean of the Gamma distribution at point x. The parameters

can be estimated by using the maximum likelihood method.

The Linear Shepard Method. The LSP method is an approximation algorithm based

modification of the original Shepard algorithm (e.g., Thacker et al. 2010). The LSP approx-

imation is constructed using linear combinations of locally linear fits. To introduce LSP, we

need to define some notation first. Let p be the length of x, n be the number of data points

and m = min{n, 3p/2} as set in Thacker et al. (2010). Let di(x) = ‖x−xi‖2 be the distance

between x and xi and let d = maxi,j di(xj) be the maximum distance among all pairs of xi.

Let ri be the smallest radius of the closed ball around xi such that at least m number of

data points are included in the ball. Let ui = min{d/2, ri} and vi = 1.1ri, also as designed in

Thacker et al. (2010).

In LSP, for an arbitrary point x, the variability f(x) is estimated as f̂(x). In particular,

f̂(x) =

∑n

i=1
wi(x)pi(x)∑n

i=1
wi(x)

,

where wi(x) = {[1/di(x) − 1/ui]+}
2. That is, the weight is set as wi(x) for those x’s are

within the ball for xi with radius ui and is set to 0 for those x’s are outside the ball for xi.

Here [x]+ = x if x ≥ 0 and [x]+ = 0 if x < 0.

We use the locally weighted least-squares fit to obtain the pi(x) with the following form,

pi(x) = yi+(x−xi)
′βi, where βi is the vector for coefficients. The weight used in the locally

weighted least-squares fit is defined as ωij = {[1/di(xj)− 1/vj]+}
2. That is, the weight is set

as ωij if xi is within the ball for xj with radius vj and is set to zero if xi is outside the ball for

xj. Then, the coefficient βi can be obtained by solving the weighted least-squares problem.

Multivariate Adaptive Regression Splines (MARS). Let xi = (xi1, · · · , xij , · · · , xip)
′.

For any x = (x1, · · · , xj , · · · , xp)
′, MARS bases are defined as, C =

{
(xj − t)

+
, (t− xj)+

}
,

for t ∈ {x1j , x2j , . . . , xnj}, j = 1, 2, . . . , p. Using the MARS method, the variability map

f(x) is estimated as,

f̂(x) = β̂0 +

m∑

l=1

β̂lhl(x),

where β0 and βl are coefficients, and hl(X) is a function in C or a product of two or more

functions in C. A step-wise procedure is used for the selection of bases from the set C. One

starts with constant function h0(x) = 1 in the model. At each step, one adds a term of the

following form which minimizes the squared errors most to the current model,

β̂m+1hl(x) · (xj − t)+ + β̂m+2hl(x) · (t− xj)+,
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where hl(x) are the terms in the current model. At the end of the step-wise procedure, a large

model may result and thus a backward procedure is performed to eliminate some terms. To

determine the best model, the generalized cross-validation procedure is used.

Bayesian Treed Gaussian Process. Treed Gaussian processes (TGP) are widely used

methods in modeling and prediction of data collected from computer experiments. In general,

TGP uses Bayesian methods to build a CART model, and it partitions the parameter space

into disjoint regions using a tree structure. In each region, a local Gaussian process is fit to

the data from that region. Thus, a TGP typically consists of a tree structure construction

and local Gaussian process fitting, which provide the potential to capture complex relations

between system configuration x and the performance variability f(x). We consider three

types of TGP in this paper, which are TGP with a linear trend (denoted as TGPlm), TGP

with a constant mean (denoted as TGPcart), and dynamic trees (denoted as DynaTree).

The treed partition models use binary splits on the value of univariate variables to divide

the input space. Each partition is recursive, and a new partition can occur in previously

divided regions. Other tree construction methods such as swapping, pruning, rotation can

take place after the splitting.

For a specific region, the data from a specific region j are denoted by Xj and yj, where

each row of Xj contains one system configuration and yj is a vector for the corresponding

outputs from region j. For each region, we use the following Gaussian process model,

yj ∼ N[µ(Xj, θj),Σj ].

Here µ(Xj, θj) is the mean structure which is a function of Xj with unknown parameters

θj , and Σj is the variance-covariance matrix. With the specification of priors, the parameters

can be estimated through Gibbs sampling. The estimation and prediction of f(x) at any x

can be done using the posterior distribution.

TGPlm uses a linear trend Gaussian process in local partition while TGPcart uses a

constant mean. Dynamic trees can explore posterior tree space by stochastically proposing

incremental modifications to the tree structure (such as splitting, pruning, and swapping) in

each terminal leaf.

Bayesian Additive Regression Trees. The BART consists of two components, which

are a sum-of-trees model and a regularization prior on the sum-of-tree model parameters. For

a BART model with m trees, the variability map f(x) can be modeled as

yi = f(xi) + εi =

m∑

j=1

g(xi; Tj ; θj) + εi.

Here the error term εi ∼ N(0, σ2), and Tj is a binary regression tree that partitions the param-

eter space. The associated terminal leaf parameters for tree Tj is denoted by θj . The function
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g(x; Tj ; θj) provides the output values for x according to tree Tj . With the specification of

the prior distributions, the Bayesian back-fitting MCMC algorithm can be used for model

estimation and prediction.

Gaussian process with qualitative and quantitative factors. The categorical Gaus-

sian process (CGP) is used to handle qualitative and quantitative factors input variables, which

is a modification to the classic Gaussian process. We use the CGP model in Zhou, Qian, and

Zhou (2011). Starting from the original Gaussian process model, y ∼ N [µ,Σ(X, θ)], where

µ is the global mean, X is the design matrix for continuous variables, and Σ(X, θ) is the

covariance matrix with parameters θ. We consider two categorical variables, the IO scheduler

and the VMIO scheduler, as the categorical input variables, in addition to those continuous

variables. With the consideration of the IO scheduler and the VMIO scheduler, the length of

y is 805 × 3 × 3 × 3 = 7245. Due to computational constraints, we still model the levels of

the IO Operation Mode separately. Thus, we have 13 separate variability maps under CGP

model.

Let zio and zvmio be the corresponding coded vectors for IO scheduler and VMIO scheduler

(i.e., CFQ, 1; DEAD, 2; and NOOP, 3). Let zioi and zvmio
i be the corresponding ith elements

in zio and zvmio, which takes values in {1, 2, 3}. For CGP model, the covariance between two

points (x′
i, z

io
i , z

vmio
i )′ and (x′

j, z
io
j , z

vmio
j )′ is further modeled as,

Σ(X, θ)ij × τ io
zio
i
zio
j
× τ vmio

zvmio
i

zvmio
j

,

where τ vmio
kl and τ iokl , k = 1, 2, 3, l = 1, 2, 3 are correlation parameters to be estimated. All the

parameters are estimated by using the maximum likelihood method.

3.3 Estimation and Visualization of Variability Maps

In this section, we use the training set in Table 1 to estimate the variability map. The

candidate methods described in Section 3.2 are used. The log-transform is applied to the

response variable. For the linear regression model, we use four predictors, namely, the log of

File Size, the log of Record Size, the log of the Number of Threads, and the CPU frequency.

For MARS, the order of the highest basis function is set to three and the exclusive method

is used to add new basis functions in each iteration. For the DynaTree method, the linear

terminal Gaussian process is used.

For each distinct combination of these categorical variables, we generate separate variabil-

ity maps, resulting in 117 variability maps, except for CGP which has 13 variability maps.

Each variability map is a four-dimensional surface. To visualize the estimated variability map,

Figure 5 shows two perspective plots of estimated variability maps as a function of CPU Fre-

quency and the Number of Threads, using the MARS algorithm. The system configuration of
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Figure 5: Perspective plots of estimated variability map as a function of CPU Frequency and

the Number of Threads, using the MARS algorithm. The IO Operation Mode is Fwrite, IO

Scheduler is CFQ, the VM IO Scheduler is NOOP, the File Size is 1024, and the Record Size

is 512.

Figure 5 is the same as in Figure 4, with IO Operation Mode fixed at Fwrite, IO Scheduler

at CFQ, VM IO Scheduler at NOOP, File Size at 1024, and Record Size at 512. From the

figure, we see that the estimated variability map by MARS can capture most patterns in raw

data as shown in Figure 4.

4 Prediction and Method Comparisons

4.1 Criteria for Comparisons

In this section, we conduct extensive comparisons to study the properties of existing methods.

In particular, we are interested in whether the models can predict the performance variability

well for a new system configuration. To evaluate the performance of the candidate methods,

we need to discuss our comparison criteria first. Let yk be the true value and ŷk be the

predicted value, for k = 1, · · · , n. Here n is both 585 for the interpolation and extrapolation

test sets, after combining the points from all variability maps. The root mean squared error

(RMSE) is defined as
√∑n

k=1
(ŷk − yk)2/n, while the mean absolute error (MAE) is defined

as
∑n

k=1
|ŷk − yk|/n. The RMSE and MAE have the same scale as the original data. Several
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other relative errors are defined as,

ER1 =

∑n

k=1
|ŷk/yk − 1|

n
, ER2 =

√∑n

k=1
(ŷk − yk)2/n∑n

k=1
yk/n

, and ER3 =

∑n

k=1
|ŷk − yk|/n∑n

k=1
yk/n

.

Note that the ER1 is the average of the point-wise error rate. However, ER1 tends to be

large when the true value is small. The ER2 is the RMSE divided by the mean
∑n

k=1
yk/n

to provide a scale-free measure of error. However, RMSE tends to be dominated by those

terms with large errors. Note that ER2 is also referred to as the coefficient of variation in

the statistical literature. The ER3 is the MAE divided by the mean to provide a scale-free

measure. Because each error measure has its pros and cons, we will present our results under

different error measures to provide a comprehensive comparison.

4.2 Interpolation

In this section, we make a comparison for predictability of different methods when a new

design point lies within the input space (i.e., interpolation). Using the training set with

94185 data points, variability maps are constructed by using the candidate methods. The

log transformation for the thread count, file size, record size and responses is used. For each

variability map, there are five points to be predicted, as shown in Table 2. In total there are

117× 5 = 585 points in the test set for interpolation.

Various error measures are then computed. Table 3 shows the RMSE, MAE, and three

error rates for the candidate methods based on the interpolation test set. The RMSE and

MAE are in the magnitude of 107. Even under different error measures, the MARS method

turns out to be the best one resulting in the smallest error rate. The LSP and BART generate

results that are best after MARS. The three TGP based methods and CGP are in the middle

based on ER1. The LM and GAMGLM tend to have large errors based on ER1 but their error

rates are smaller based on ER2 and ER3. To investigate the spread of error rates, Figure 6

shows a box plot for the 585 individual relative error rates (ŷk/yk) for the candidate methods.

One can see that the LSP method has the least spread, and MARS and TGPlm have the least

median error rates. Overall, the LSP method tends to work well for interpolation prediction

problems as it has the least error spread and a relatively low error.

4.3 Extrapolation

In this section, we make a similar comparison for predictability of different methods when a

new design point falls outside the convex hull of the input space (i.e., extrapolation). Similar to

the setting of interpolation tests, for each variability map, there are five points to be predicted,

as shown in Table 2. In total there are 117× 5 = 585 points in the test set for extrapolation.
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Table 3: The RMSE, MAE, and three error rates for the candidate methods based on the

interpolation test set. The RMSE and MAE are in the magnitude of 107.

Method ER1 RMSE ER2 MAE ER3

LM 0.357 1.135 0.227 0.827 0.165

GAMGLM 0.481 1.407 0.281 1.116 0.223

LSP 0.216 1.269 0.254 0.891 0.178

MARS 0.223 0.913 0.183 0.695 0.139

TGPlm 0.245 1.024 0.205 0.707 0.141

TGPcart 0.268 1.519 0.304 1.072 0.214

DynaTree 0.296 2.462 0.492 1.305 0.261

BART 0.220 1.222 0.244 0.878 0.175

CGP 0.298 1.770 0.354 1.300 0.261

0

1

2

3

BART CGP DynaTree GAMGLM LM LSP MARS TGPcart TGPlm
Methods

ER
1

Interpolation ER1 Boxplot

Figure 6: Box plot for the 585 individual relative error rates for the candidate methods based

on the interpolation test set.
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Table 4: The RMSE, MAE, and three error rates for the candidate methods based on the

extrapolation test set. The RMSE and MAE are in the magnitude of 107.

Method ER1 RMSE ER2 MAE ER3

LM 0.412 7.509 0.712 5.272 0.500

GAMGLM 0.142 1.490 0.141 1.087 0.103

LSP 0.089 1.402 0.094 0.634 0.060

MARS 0.148 0.995 0.133 0.952 0.090

TGPlm 0.236 3.851 0.365 2.561 0.243

TGPcart 0.289 4.701 0.446 3.376 0.320

DynaTree 0.184 3.390 0.321 1.927 0.183

BART 0.087 0.946 0.090 0.621 0.059

CGP 0.066 0.630 0.060 0.434 0.041

We find that the models with log transformed responses tend to generate nonsensically large

errors for extrapolation due to the effect of exponentiation. Thus, for the extrapolation, we

model the response at its original scale.

Table 4 shows the various error rates based on the extrapolation test set. Among all error

measures, the CGP shows the best result. The BART and LSP methods are the next after

CGP. The MARS and GAMGLM methods are in the middle, and the TGP methods tend to

generate large errors. Figure 7 shows the box plot for the 585 individual relative error rates.

The figure shows that the CGP and LSP methods have the least amount of spread in terms of

individual errors. Most surrogate models in computer experiments are built for interpolation

and their extrapolation ability is not well studied. Surprisingly, we find that both the CGP

and LSP methods have good extrapolation ability under our current test setting. Overall,

the CGP shows potential as a good extrapolation technique. However, one should note that

extrapolation is always a difficult task and should be exercised with caution.

5 Management of Performance Variability

5.1 The System Optimization Problem

In this section, we address the problem of variability management. One method for balanc-

ing overall performance with performance variability is to minimize performance variability,

while maintaining acceptable overall performance. Let x be the system configuration, and

f̂(x) be the estimated variability map. To do the system design, one also needs to know the
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Figure 7: Box plot for the 585 individual relative error rates for the candidate methods based

on the extrapolation test set.

performance surface m(x) at any x. The performance surface is the mean throughput at x.

With the training set, m(x) can be estimated by using the methods discussed in Section 3.2,

which is denoted by m̂(x). Let D be the feasible domain of x. Let m0 be the minimum per-

formance requirement. The system optimization problem can be formulated as the following

optimization problem. That is

min
x∈D

f̂(x), subject to m̂(x) ≥ m0. (3)

Based on the results in the comparison study, we build the system variability map using LSP,

and the performance surface is estimated using LSP as well, due to its good prediction perfor-

mance and computational efficiency. For illustration, the performance requirement threshold

m0 is specified as the mean of the throughput from the 805 points in the training set for each

variability map. One can, however, specify any values for the threshold.

The objective function f̂(x) is a 4-dimensional surface. To visualize the objective function,

we show the 2-dimensional cross sections of the 4-dimensional surface. That is, one fixes two

of the four dimensions (e.g., File Size and Record Size), and draws the contour of f̂(x) as

a function of the rest two dimensions (e.g., the Number of Threads and CPU Frequency).

Figure 8 shows the contour plots of the cross sections of the objective function under the

configuration: File Size of 1024, Record Size of 128, Frequency of 2.4, Number of Threads

of 32, Operation Mode of Fread, IO Scheduler of DEAD and VM IO Scheduler of CFQ. The

plots in Figure 8 show that the objective function is complicated.

5.2 Methods for System Configuration Optimization

The optimization problem is a challenging problem due to the complexity of the multi-

dimension surface. In this paper, we use the augmented Lagrange method (e.g., Hestenes
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Figure 8: Contour plots of f̂(x) under the configuration that File Size is 1024, Record Size

is 128, Frequency is 2.4, Number of Threads is 32, Operation Mode is Fread, IO Scheduler is

DEAD and VM IO Scheduler is CFQ.
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1969) to solve the optimization problem in (3). By introducing a slack variable z, (3) is

equivalent to

min
x∈D, z

f̂(x), subject to m0 − m̂(x) + z2 = 0.

Using the augmented Lagrange method, we have the following new objective function,

L(x, z, u, c) = f̂(x) + u
[
m0 − m̂(x) + z2

]
+

c

2

[
m0 − m̂(x) + z2

]2
, (4)

where u is the Lagrange multiplier and c is an additional parameter introduced by the algo-

rithm. Note that x and z are separable. We first minimize z and obtain,

Lz(x, u, c) = f̂(x) +
1

2c
max{0, u+ c[m0 − m̂(x)]}2 − u2.

In theory, the problem in (3) can be solved in an iterative way. One can pick a sequence

of values for c, denoted by ck, such that limk→∞ ck = ∞. Then xk and uk can be updated

in the following way, xk = argminLz(x, uk, ck) and uk+1 = max{0, uk + ck [m0 − m̂(xk)]}.

The sequence xk will approach to the solution for (3). The iteration stops when the distance

between two consecutive updates of xk is small enough (e.g., 1e− 6).

In this paper, we use the VTDIRECT95 package (He, Watson, and Sosonkina 2009) which

can solve the problem with one global iteration run. We set the c parameter to be a large

value (e.g., c = 1000), and use VTDIRECT95 to solve (4) directly.

Let x∗ be the solution to (3). Due to some system requirements, some adjustments are

needed for x∗. We need to find proper file size and record size such that the ratio of file size

and record size is an integer. For a given pair of file size and record size, we find the nearest

corrected file size and record size such that the corrected file size and record size are integers,

and the ratio of corrected file size and record size is also an integer. We also round the number

of threads to the nearest integer.

5.3 System Optimization Results

For system design optimization, we aim to find the best system configurations (i.e., IO Sched-

uler, VM IO Scheduler, File Size, Record Size, Number of Threads, and CPU Frequency)

under each operation mode. For each operation mode, there are nine IO and VM IO sched-

uler combinations, we optimize the nine configurations separately and select the IO and VM

IO schedulers with the least cost function value.

Table 5 shows the optimal system configurations for the 13 operation modes. We found that

most write operations need a high number of threads to have optimal performance in terms of

stability and speed. While for the read operations, the system has the best performance when
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Table 5: Examples of system configurations for each operation mode after optimization to

minimize performance variability subject to minimum performance requirements. Here “Fs”

means File Size, “Rs” means Record Size, and “Freq” means the CPU Frequency.

Mode IO VMIO Fs Rs Thread Freq

Fread CFQ CFQ 752 376 16 1.73

Fwrite DEAD CFQ 64 32 30 1.33

Initialwrite DEAD NOOP 64 32 30 1.31

Mixedworkload CFQ NOOP 780 390 16 1.97

Pread DEAD CFQ 704 352 16 1.20

Pwrite DEAD CFQ 712 356 30 1.20

Randomread NOOP NOOP 1024 512 16 1.34

Randomwrite NOOP NOOP 308 154 16 1.73

Re-read NOOP DEAD 848 424 16 1.70

Read NOOP NOOP 752 376 16 1.20

ReverseRead CFQ NOOP 990 495 16 1.30

Rewrite DEAD NOOP 832 416 16 1.88

Strideread DEAD DEAD 752 376 16 1.66

the number of threads is 16, which is the number of physically available threads from the server.

When the number of threads is more than the number of the physically available threads, the

system typically shows more variability. The optimal file size doubles the record size, which

means smaller file size and record size ratio leads to smaller variability. Lower frequencies

typically lead to smaller variability, given that the requirement for the performance is met.

The results in Table 5 can provide useful information for configuring new systems.

6 Concluding Remarks and Areas for Future Research

In this paper, we investigate HPC variability using various statistical techniques. We fit the

variability data with different surrogate models. We show that the MARS, BART, and L-

SP methods have good performance in interpolation, and the CGP and LSP methods have

good performance in extrapolation, under several error measures. The users can choose the

corresponding methods based on the purpose of the analysis (i.e., interpolation versus extrap-

olation). Overall, the LSP method has small ER1 error rates with small error spreads for both

scenarios. In addition, we also develop an optimization procedure to manage system variabil-

ity and select the best system configuration under different modes. The tools developed in
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this paper can be useful for the practice of HPC variability management and HPC system

building.

We want to point out that our paper serves as an initial step in analyzing HPC perfor-

mance variability statistically. We demonstrate the usefulness of the particular prediction

methodologies in understanding the variability in IO. However, we want to emphasize that

more extensive work is needed in the future for studying HPC performance variability. Here

we discuss some possible areas for future research. We currently use a grid-based design for

selecting design points in the data collection stage. In the future, we can consider sequen-

tial design techniques to select the design points. Space filling design techniques can also be

considered for data collection (e.g., Joseph 2016).

Even though we can predict performance variability well, it is still important to understand

the root causes of variability. In the future, it will be interesting to collect more data, such as

the performance counter statistics which provide finer details on the IO operation, and analyze

such data to reveal the root causes of performance variability. Variable selection techniques

will be useful in finding important factors in performance variability.

We focus on the prediction of the standard deviation of the throughput in this paper.

Xu et al. (2020) show that the distribution of the throughput is multi-modal and thus it is

complicated. A more ambitious goal is to predict the system throughput distribution generally

(e.g., Lux et al. 2018). Hung, Joseph, and Melkote (2015) developed a Gibbs sampling-based

expectation-maximization algorithm for efficiently fitting a Kriging model to the functional

responses. Techniques in functional data analysis can also be considered in modeling functional

responses. In literature, single index models are used in Gaussian processes to make predictions

in the context of computer experiments (e.g., Choi, Shi, and Wang 2011, and Gramacy and

Lian 2012). It will be interesting to consider Gaussian processes with single index models to

predict performance variability in HPC setting.

In this paper, we consider a Gaussian process with categorical and continuous inputs, which

can handle two categorical variables (i.e., the IO scheduler and the VMIO scheduler). However,

we found estimating a model using all categorical variables (i.e., including IO Operation

Mode) to be challenging. Because the IO Operation Mode has 13 levels, in order to show all

interactions, we need to estimate 13 × 12/2 = 78 parameters. In addition, all observations

will be correlated (i.e., we need to invert a covariance matrix with dimension 94185× 94185).

In the future, it will be interesting to investigate methods that can handle this large scale of

data.

The developed data analytical framework for variability can be applied to areas other than

HPC in computer science. The two major areas are cloud computing and system security. In

cloud computing, large scale clouds operated by large corporations seek to provide a guar-

anteed level of service to a client. The variability management framework presented in this
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paper provides new opportunities for tradeoffs between system stability and performance. In

system security, malware attacks may impact system performance enough to create notice-

able changes in performance variability. Variability management can potentially increase the

effectiveness of these types of malware detection techniques.

Supplementary Materials

The following supplementary materials are available online.

Code and data: Computing code for data analysis, comparisons, and optimization. The

HPC datasets used in the paper are also included (zip file).
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