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We establish global well-posedness and scattering results for the logarithmically

energy-supercritical nonlinear wave equation, under the assumption that the initial

data satisfies a partial symmetry condition. These results generalize and extend work

of Tao in the radially symmetric setting. The techniques involved include weighted

versions of Morawetz and Strichartz estimates, with weights adapted to the partial

symmetry assumptions. In an appendix, we establish a corresponding quantitative

result for the energy-critical problem.

1 Introduction

The goal of this paper is to show how partial symmetry assumptions on initial data can

lead to enhanced global well-posedness results for nonlinear wave equations posed on

Euclidean spaces Rd, d ≥ 4. For the sake of simplicity, we restrict our considerations to

R4, however, we expect that our results can be extended to higher dimensional settings

without much difficulty. We focus our attention on the nonlinear wave equation,

(NLW)

{
utt − �u + F(u) = 0, (t, x) ∈ R × R4

(u, ut)|t=0 = (u0, u1),
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5944 A. Bulut and B. Dodson

with defocusing nonlinearity F in the slightly energy-supercritical regime,

F : u �→ u3 log(3 + u2). (1)

To explain this terminology, we recall that when F is a defocusing power-type nonlin-

earity given by F(u) = |u|pu, the problem is energy-subcritical for p < 2 and energy-

critical for p = 2; in these two cases, solutions (starting, e.g., from sufficiently regular

and decaying initial data) are known to be globally well-posed, with a corresponding

scattering result, while when p > 2 the problem is energy-supercritical, and the long-

time behavior of solutions remains a prominent open question (see [5–8, 11, 15–18], and

references cited in these works, for results showing that a priori control over a critical

norm implies global well-posedness, as well as [32] where energy-supercritical blowup

is shown to be possible for certain systems of defocusing nonlinear wave equations; see

also [2, 3, 9, 10, 19] for other results in energy-supercritical settings).

Here, a key ingredient in long-time control over solutions is the energy associ-

ated with (NLW),

E[u, ut] = 1

2

∫
R4

|∇u|2 + |ut|2 dx +
∫
R4

G(u) dx,

where G is given by

G(u) =
∫ u

0
F(t) dt,

and which is conserved in time for solutions of (NLW). When F is given by (1), one has

G(u) ≈ u4 log(3 + u2), while when F is of power-type |u|pu, G(u) = 1
p+2 |u|p+2.

In recent years, beginning with work of Tao [30], several authors have studied

the global well-posedness and scattering problem for various cases of the 3D nonlinear

wave equation with slightly energy-supercritical nonlinearity, obtaining striking results

that show that the global well-posedness theory can be extended from the energy-

subcritical and energy-critical settings into the slightly energy-supercritical regime (i.e.,

admitting the inclusion of logarithmic factors). While in the discussion that follows

we focus on (NLW), we make note of the works [24–26] on the nonlinear Schrödinger

equation, and [1, 14, 31] on variants of the Navier–Stokes system.

In [30], Tao established global well-posedness for (NLW) posed on R3 with

F(u) = u5 log(3 + u2), under the assumption that the initial data (u0, u1) has radial

symmetry (note that in this 3D setting, the energy-critical power-type nonlinearity is

F(u) = u5). The technique in [30] is based on a quantitative scattering bound obtained
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NLW with Partial Symmetry 5945

by Ginibre, Soffer, and Velo in [12], valid for radially symmetric solutions, which relies

on a combination of the Morawetz estimate with decay properties guaranteed by the

radial case of the Sobolev embedding. See also work of Shih [28], where the method is

refined to treat F(u) = u5 logc(3 + u2), 0 < c ≤ 4/3.

The nonradial case was studied by Roy [23]. The result in [23] (see also [27]) is

based on a nonradial quantitative form [29] of the energy-critical global well-posedness

result for 3D (NLW) (closely related to the induction on energy technique of Bourgain [4],

originally developed in the nonlinear Schrödinger setting). Whereas the radial energy-

critical bound of [12] gives control that is polynomial in the energy, the nonradial result

of [29] gives an estimate that exhibits double-exponential dependence on the energy. As

a consequence, the results in [23] apply to nonlinearities of “log-log supercritical” type,

F(u) = u5 logc(log(3 + u2)) for c sufficiently small (in particular, [23] treats the case

c ∈ (0, 8/225)), while “log-supercritical” nonlinearities of type (1) have so far remained

out of reach in the non-radial case.

In the present paper, we consider (NLW) on R4, and show that partial symmetry

assumptions can lead to results that apply to logarithmically supercritical nonlin-

earities, giving an improvement over general non-radial methods as used in [23]. For

comparison, we begin with the R4 analog of Tao’s 3D log-energy-supercritical result. To

fix notation, for s > 1 let

H̃s(R4) := Ḣs(R4) ∩ Ḣ1(R4).

Theorem 1.1 (Radial log-supercritical NLW on R4). Suppose that u : I × R4 → R is

a solution to (NLW) with nonlinearity (1) and radially symmetric initial data (u0, u1) ∈
H̃9/4(R4) × H5/4(R4). Then

‖(u, ut)‖L∞
t (H̃9/4

x ×H5/4
x )

� 1,

with constant independent of the time interval I. In particular, combining this estimate

with the usual local theory for (NLW), radial solutions to (NLW) with nonlinearity (1)

exist globally in time and scatter at ±∞.

For the convenience of the reader, we sketch a proof of Theorem 1.1 in Section 2

below.

Our main result is the following theorem, which shows that this global well-

posedness property persists when the assumption of radial initial data is relaxed to the
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5946 A. Bulut and B. Dodson

assumption that u0 and u1 obey a symmetry condition of the form

u(x) = ũ(|x′|, x4), x ∈ R4, (2)

with ũ : R+ × R → R, where x′ = (x1, x2, x3) for x = (x1, . . . , x4) ∈ R4.

Theorem 1.2 (Axially symmetric log-supercritical NLW on R4). Suppose that u : I ×
R4 → R is a solution to (NLW) with nonlinearity (1) and initial data (u0, u1) ∈ H̃5/2(R4)×
H3/2(R4) with each of u0 and u1 satisfying the symmetry condition (2). Then

‖(u, ut)‖L∞
t (H̃5/2

x ×H3/2
x )

� 1,

with constant independent of the time interval I. In particular, solutions to (NLW) with

nonlinearity (1) and initial data having axial symmetry of the form (2) exist globally in

time and scatter at ±∞.

The proof of Theorem 1.2 is based on a bootstrap procedure and continuity

argument. The key long-time estimates are provided by a variant of the Morawetz

estimate adapted to weights in the symmetric variables, complemented with a class

of weighted Strichartz estimates. These weighted estimates of Morawetz and Strichartz

type are the new ingredients that allow us to fully exploit the anisotropic decay satisfied

by solutions in our setting (i.e., decay arising from the symmetry assumption (2)).

We remark that our techniques can be extended to other partially symmetric

settings. As an example, we give a related global well-posedness result when the initial

data u0 and u1 has product-type symmetry

u(x) = ũ(|(x1, x2)|, |(x3, x4)|), x = (x1, . . . , x4) ∈ R4, (3)

with ũ : R2+ → R.

Theorem 1.3. Suppose that u : I × R4 → R is a solution to (NLW) with nonlinearity

(1) and initial data (u0, u1) ∈ H̃5/2(R4) × H3/2(R4) with each of u0 and u1 satisfying the

symmetry condition (3). Then

‖(u, ut)‖L∞
t (H̃5/2

x ×H3/2
x )

� 1,
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NLW with Partial Symmetry 5947

with constant independent of the time interval I. In particular, solutions to (NLW) with

nonlinearity (1) and initial data having symmetry of the form (3) exist globally in time

and scatter at ±∞.

As we alluded to in our discussion of the works of Tao [30] and Roy [23] above,

there is a close connection between global well-posedness results for slightly energy-

supercritical (NLW) and quantitative estimates for the energy-critical problem. This

viewpoint carries over to our partially symmetric setting, and we include one such

result in Appendix A. In particular, for solutions to energy-critical (NLW) satisfying the

symmetry condition (2), we present a global well-posedness and scattering result with

bounds that have polynomial dependence on the energy.

To the best of our knowledge, Theorems 1.2 and 1.3 (as well as the energy-critical

results discussed in the appendix) are among the 1st instances where partial symmetry

assumptions are exploited to improve global well-posedness results for (NLW); in this

context, we note also the works of Martel [21] that uses a similar philosophy to establish

blow-up results for the nonlinear Schrödinger equation, as well as Liu–Wang [20] on

axisymmetric Navier–Stokes. We expect that this philosophy can be broadly applied in

settings where radial symmetry arises as a useful hypothesis. We plan to revisit the

question of extending these results to a 3D setting in a future work.

1.1 Outline

We now describe the structure of the rest of this article. In Section 2, we prove the radial

R4 result, Theorem 1.1, with an argument (as in [30]) based on Strichartz estimates, the

Morawetz estimate, and the radial Sobolev embedding. The subsequent Sections 3–5

deal with our main results concerning global well-posedness under partial symmetry

assumptions. In Section 3 we establish a class of weighted Strichartz estimates for

solutions to (NLW) under the symmetry assumptions (2) and (3). These are used in

Section 4 to prove Theorem 1.2, where they are combined with a suitable form of the

Morawetz estimate adapted to the symmetry condition (2), and, similarly in Section 5 to

prove Theorem 1.3. In the appendix, we establish an associated result for the energy-

critical problem.

2 Proof of Theorem 1.1

In this section, we prove the radial global well-posedness result, Theorem 1.1. The

argument is largely similar to the 3D case of [30] and [28], and is based on Strichartz

estimates, the Morawetz estimate for (NLW), and the radial Sobolev embedding.
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5948 A. Bulut and B. Dodson

We begin by specifying a few notational conventions: we write A � B to mean

A ≤ CB for some constant C > 0, and allow for the constants C to change from line to

line unless otherwise indicated. For s ≥ 0, we use Hs
x and Ḣs

x to refer to the usual

(L2-based) inhomogeneous and homogeneous Sobolev spaces, respectively. In addition,

we use subscripts on the spaces Lp, Hs, and Ḣs to indicate the variables of integration

for the appropriate norm.

2.1 Strichartz estimates for (NLW)

We recall the usual Strichartz estimates for solutions to the inhomogeneous wave

equation (NLW) on R4. These estimates read

‖|∇|su‖Lq
t Lr

x
� ‖(u(0), ut(0))‖Ḣμ

x ×Ḣμ−1
x

+ ‖|∇|s̃F‖La′
t Lb′

x
,

where (q, r), (a, b) ∈ [2, ∞] × [2, ∞) satisfy

1

q
+ 4

r
= 2 − (μ − s),

1

q
+ 3

2r
≤ 3

4
,

1

a
+ 4

b
= 2 − (1 + s̃ − μ),

1

a
+ 3

2b
≤ 3

4
,

1

a
+ 1

a′ = 1,
1

b
+ 1

b′ = 1.

For the convenience of the reader, we record the particular instances of these

estimates that we use below. In Section 2, we use

‖(u, ut)‖L∞
t (I;Ḣ9/4

x ×Ḣ5/4
x )

� ‖(u(t0), ut(t0))‖
Ḣ9/4

x ×Ḣ5/4
x

+ ‖D2F‖
L20/11

t L5/4
x

,

‖∇u‖
L20/7

t L10
x

� ‖(u(t0), ut(t0)‖
Ḣ9/4

x ×Ḣ5/4
x

+ ‖D2F‖
L20/11

t L5/4
x

,

‖D2u‖
L20/3

t L5/2
x

� ‖(u(t0), ut(t0)‖
Ḣ9/4

x ×Ḣ5/4
x

+ ‖D2F‖
L20/11

t L5/4
x

.

2.2 Morawetz estimate and the radial Sobolev embedding

The usual Morawetz estimate for (NLW) (on R4) with nonlinearity given by (1) is

∫
I

∫
R4

u(t, x)4 log(3 + u(t, x)2)

|x| dx dt ≤ CE[u0, u1]
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NLW with Partial Symmetry 5949

for some constant C > 0 independent of u, where u : I × R4 → R is a solution of (NLW).

Combining this with the radial Sobolev bound

‖|x|u(t, x)‖L∞
t,x

� ‖u‖Ḣ1
x (R4) (4)

(see, for instance, [22]), one obtains

∫
I

∫
R4

|u(t, x)|5 log(3 + u(t, x)2) dx dt ≤ CE[u0, u1]3/2.

2.3 Sketch of the proof of Theorem 1.1

As in [30], the argument used to prove Theorem 1.1 is based on an iterative application of

Strichartz estimates. We sketch the key estimate in this section, a conditional bound on

the Strichartz norm for short-time intervals, which is then used inductively to establish

the result. We postpone the details of this inductive argument to Section 5, where it is

performed in the setting of the proof of Theorem 1.2.

Fix an interval I = [t0, t1] ⊂ Imax, where Imax denotes the maximal interval of

existence, and define

A(t0, t1) :=
∫ t1

t0

∫
R4

|u(t, x)|5 log(3 + u(t, x)2) dx dt,

along with

Z(t) := ‖∇u‖
L20/7

t ([t0,t];L10
x )

+ ‖D2u‖
L20/3

t ([t0,t];L5/2
x )

+ sup
t0≤t′≤t

‖(u(t′), ut(t
′))‖

Ḣ9/4
x (R4)×Ḣ5/4

x (R4)
, t ∈ I.

Let t ∈ I be given. By Strichartz,

Z(t) � ‖u(t0)‖
Ḣ9/4

x (R4)
+ ‖ut(t0)‖

Ḣ5/4
x (R4)

+ ‖D2
x[u3 log(3 + u2)]‖

L20/11
t L5/4

x

� Z(t0) + ‖u|∇xu|2 log(3 + u2)‖
L20/11

t L5/4
x

+ ‖u2(D2u) log(3 + u2)‖
L20/11

t L5/4
x

,

where we have used the bounds u3|∇u|2/(3 + u2) � u|∇u|2 � u|∇u|2 log(3 + u2) and

u5|∇u|2/(3 + u2)2 � u|∇u|2 � u|∇u|2 log(3 + u2).
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5950 A. Bulut and B. Dodson

Using the Hölder inequality, the right-hand side of (5) is bounded by a

multiple of

Z(t0) + ‖∇u‖L∞
t L2

x
‖∇u‖

L20/7
t L10

x
‖u log1/5(3 + u2)‖L5

t,x
log4/5(3 + ‖u‖2

L∞
t,x

)

+ ‖D2u‖
L20/3

t L5/2
x

‖u2 log2/5(3 + u2)‖
L5/2

t,x
log3/5(3 + ‖u‖2

L∞
t,x

)

� Z(t0) + E[u0, u1]1/2Z(t)A(t0, t1)1/5 log4/5(3 + E[u0, u1] + Z(t)2)

+ Z(t)A(t0, t1)2/5 log3/5(3 + E[u0, u1] + Z(t)2)

� Z(t0) + (1 + E[u0, u1]1/2)Z(t)A(t0, t1)1/5 log4/5(3 + E[u0, u1] + Z(t)2),

provided A(t0, t1) ≤ 1, where we have also used the bound log(3 + E[u0, u1] + Z(t)2) ≥ 1.

A standard continuity argument now shows that if one has a bound of the form

A(t0, t1) ≤ ε

log4(3+E[u0,u1]+Z(t0)2)
with ε sufficiently small (depending on (u0, u1)), then one

can conclude

Z(t) ≤ CZ(t0), t ∈ I,

as desired. To finish the proof of Theorem 1.1, one argues as in [30], appealing to a

partitioning argument based on dividing a given time interval [0, T] into a collection of

subintervals [ti, ti+1], i = 0, ..., m, on which the desired control on A(ti, ti+1) holds. Since

we give a full discussion of a closely related variant of this argument in Section 4 below,

we omit the details.

3 Weighted Strichartz estimates with symmetry

In this section, as preparation for our proofs of Theorems 1.2 and 1.3, we prove several

weighted Strichartz estimates adapted to the symmetry conditions (2) and (3). In fact,

both of the relevant estimates originate in a Strichartz bound for a 3rd symmetry

condition,

u(x) = ũ(|(x1, x2)|, x3, x4). (6)

with ũ : R+ × R × R → R, expressed in the following lemma.
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NLW with Partial Symmetry 5951

Lemma 3.1. Suppose that u is a solution to (NLW) that satisfies the symmetry

assumption (6) for all t ∈ I. Then one has the estimate

‖(x2
1 + x2

2)1/8u‖L4
t,x(I×R4) � ‖u0‖Ḣ1/2 + ‖u1‖Ḣ−1/2 + ‖(x2

1 + x2
2)−1/8F‖

L4/3
t,x (I×R4)

.

Proof. To simplify notation, for x = (x1, x2, x3, x4) ∈ R4, let r = (x2
1 + x2

2)1/2, w =
(x1, x2) ∈ R2 and y = (x3, x4) ∈ R2. Let ξ denote the Fourier variable dual to x, and

for each ξ ∈ R4 set s = (ξ2
1 + ξ2

2 )1/2, u = (ξ1, ξ2), and v = (ξ3, ξ4). Moreover, we write

u(r, y) = u(w, y) = u(x) for x ∈ R4 and û(s, v) = û(u, v) = û(ξ) for ξ ∈ R4).

We perform decompositions in both space and frequency. Let φ ∈ C∞
c (R2) be

radially symmetric and such that φ(x) = 1 for |x| ≤ 1 and supp φ ⊂ {x : |x| ≤ 2}.
For k ∈ Z, let χk : R2 → R be the characteristic function of the ball {w ∈ R2 : 2k ≤
|w| ≤ 2k+1}, and set φk(x) = φ(2−kx), ψ(x) = φ(x) − φ(2x), and ψk(x) = ψ(2−kx) for

x ∈ R2. Moreover, for f ∈ S(R4), let Pkf and P>kf be defined by P̂kf (ξ) = ψk(u)̂f (ξ) and

P̂>kf (ξ) = ∑
j>k φj(u)̂f (ξ), respectively. Then

‖r1/4eit|∇|u0‖L4
t,x

=
( ∑

k∈Z

∫∫
rχk(r)|eit|∇|u0(t, x)|4 dx dt

)1/4

�
(∑

k∈Z

∫∫
r2χk(r)|eit|∇x|u0(r, y)|4 dr dy dt

)1/4

�
(∑

k∈Z
22k‖χk(r)eit|∇x|u0(r, y)‖4

L4
t,r,y

)1/4

�

⎛⎜⎝∑
k

⎡⎣ ∑
j≤−k

2k/2‖χk(r)eit|∇x|Pju0(r, y)‖L4
t,r,y

+ 2k/2‖χk(r)eit|∇x|P>−ku0(r, y)‖L4
t,r,y

⎤⎦4
⎞⎟⎠

1/4

.

(7)
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5952 A. Bulut and B. Dodson

We begin by estimating the contributions of terms corresponding to (k, j) with

j ≤ −k. For such terms, one has

‖χk(r)eit|∇x|Pju0(r, y)‖L4
t,r,y

=
∥∥∥∥∫ 2π

0

∫
χk(r)seirs cos(θ)+iv·y+it(s2+|v|2)1/2

ψj(s)û0(s, v) ds dv dθ

∥∥∥∥
L4

t,r,y

�
∫ 2π

0

∥∥∥∥∫
seirs cos(θ)+iv·y+it(s2+|v|2)1/2

ψj(s)û0(s, v) ds dv

∥∥∥∥
L4

t,r,y

dθ

�
∫ 2π

0
| cos(θ)|−1/4

∥∥∥∥∫
eirs+iv·y+it(s2+|v|2)1/2

sψj(s)û0(s, v) ds dv

∥∥∥∥
L4

t,r,y

dθ , (8)

where we’ve used the change of variables r �→ r/ cos(θ) in the last inequality. Invoking

3D Strichartz estimates for the wave equation, we obtain

(8) �
∫ 2π

0
| cos(θ)|−1/4‖(s2 + |v|2)1/4sψj(s)û0(s, v)‖L2

s,v
dθ

�
∫ 2π

0
| cos(θ)|−1/4‖(|u|2 + |v|2)1/4|u|1/2ψj(u)û0(u, v)‖L2

u,v
dθ

� 2j/2‖Pju0‖
Ḣ1/2

x
.

Fixing k ∈ Z, we now turn to the P>−ku0 contribution. By standard estimates for

oscillatory integrals, there exists g ∈ C∞([0, 2π ]) such that

∫ 2π

0
eisr cos(θ) dθ = (sr)−1

∫ 2π

0
g(θ)eisr cos(θ) dθ + C1eisr(sr)−1/2 + C2e−isr(sr)−1/2.

This gives

‖χk(r)eit|∇x|P>−ku0(r, y)‖L4
t,r,y

� (I)k + (II)k,

with

(I)k :=
∫ 2π

0

∥∥∥∥χk(r)r−1
∫

eirs cos(θ)+iv·y+it(s2+|v|2)1/2 · ψ>−k(s)û0(s, v) ds dv

∥∥∥∥
L4

t,r,y

|g(θ)| dθ ,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/8/5943/5315997 by Johns H
opkins U

niversity user on 03 July 2021



NLW with Partial Symmetry 5953

and

(II)k :=
∑


∈{−1,1}
2−k/2

∥∥∥∥χk(r)
∫

s1/2ei
rs+iv·y+it(s2+|v|2)1/2 · ψ>−k(s)û0(s, v) ds dv

∥∥∥∥
L4

t,r,y

,

where we have used the definition ψ>−k := ∑
j>−k ψk.

To estimate (I)k, note that, as before, using the change of variables r �→ r/ cos(θ)

and invoking 3D Strichartz estimates,

(I)k � 2−k
∑

j>−k

‖(s2 + |v|2)1/4ψj(s)û0(s, v)‖L2
s,v

� 2−k
∑

j>−k

‖(|u|2 + |v|2)1/4|u|−1/2ψj(s)û0(s, v)‖L2
u,v

�
∑

j>−k

2−k−j/2‖Pju0‖
Ḣ1/2

x
.

Collecting these bounds, we get

(7) �

⎛⎜⎝∑
k

⎡⎣∑
j∈Z

2−|j+k|/2‖Pju0‖
Ḣ1/2

x

⎤⎦4
⎞⎟⎠

1/4

+
(∑

k

[
2k/2(II)k

]4
)1/4

. (9)

Recalling the definition of the functions χk, k ∈ Z, as characteristic functions,

(∑
k

[
2k/2(II)k

]4
)1/4

�
∑


∈{−1,1}

∥∥∥∥∫
s1/2ei
rs+iv·y+it(s2+|v|2)1/2

ψ>−k(s)û0(s, v) ds dv

∥∥∥∥
L4

t,r,y

� ‖(s2 + |v|2)1/4s1/2ψ>−k(s)û0(s, v)‖L2
s,v

� ‖(|u|2 + |v|2)1/4ψ>−k(u)û0(s, v)‖L2
u,v

� ‖P>−ku0‖
Ḣ1/2

x

� ‖u0‖
Ḣ1/2

x
. (10)

Combining (9) and (10) and using Young’s inequality, we obtain

‖r1/4eit|∇|u0‖L4
t,x

� ‖u0‖
Ḣ1/2

x
.

The desired result now follows from duality considerations and the Christ–Kiselev

lemma. �
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5954 A. Bulut and B. Dodson

We now give a weighted Strichartz estimate associated to the symmetry condi-

tion (2).

Lemma 3.2. If u is a solution the wave equation (NLW) on a time interval I that

satisfies the symmetry condition (2), that is,

u(t, x1, x2, x3, x4) = u(t, x2
1 + x2

2 + x2
3, x4),

then one has the estimate

‖|x′|1/4u‖L4
t,x(I×R4) � ‖u0‖Ḣ1/2(R4) + ‖u1‖Ḣ−1/2(R4) + ‖|x′|−1/4F‖

L4/3
t,x (I×R4)

, (11)

where x = (x1, x2, x3, x4) ∈ R4 and x′ = (x1, x2, x3).

Proof. Let S(t) be the solution operator to the wave equation, that is, S(t)(f , g) = u(t)

is the solution to the linear wave equation

utt − �u = 0, u(0) = f , ut(0) = g.

Now, by Lemma 3.1,

‖(x2
1 + x2

2)1/8u‖L4
t,x′ ,y

+ ‖(x2
1 + x2

3)1/8u‖L4
t,x′ ,y

+ ‖(x2
2 + x2

3)1/8u‖L4
t,x′ ,y

� ‖f ‖Ḣ1/2 + ‖g‖Ḣ−1/2 . (12)

In view of this, we observe that the dual of the estimate (12) is

∥∥∥∥∫
S(−t)(0, F)dt

∥∥∥∥
Ḣ1/2×Ḣ−1/2

� ‖|x′|−1/4F‖
L4/3

t,x′ ,y
.

The desired estimate (11) now follows by the Christ–Kiselev lemma. �

As another corollary, which will be useful in the next section, we obtain a

Strichartz bound involving second derivatives.

Corollary 3.3. For solutions u of (NLW) as in Lemma 3.2, one has the estimate

‖|x′|1/4D2u‖L4
t,x(I×R4) � ‖u0‖Ḣ5/2(R4) + ‖u1‖Ḣ3/2(R4) + ‖|x′|−1/4D2F‖

L4/3
t,x (I×R4)

. (13)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/8/5943/5315997 by Johns H
opkins U

niversity user on 03 July 2021



NLW with Partial Symmetry 5955

4 Proof of Theorem 1.2

In this section, we prove our main result, Theorem 1.2, on global well-posedness for

solutions with initial data satisfying the symmetry condition (2), that is,

u(x) = ũ(|x′|, x4), x ∈ R4,

with x = (x1, x2, x3) ∈ R3. We first introduce a variant of the Morawetz estimate adapted

to this axially symmetric setting.

Proposition 4.1. If u solves (NLW) on I × R4 and satisfies the symmetry condition (2),

then

∫∫
I×R4

u(t, x)4 log(3 + u(t, x)2)

|x′| dt dx � E[u0, u1].

Proof. Define the Morawetz potentials,

M1(t) =
∫

ut(t, x′, y)
x′

|x′| · ∇x′u(t, x′, y) dx′ dy

and

M2(t) =
∫

ut(t, x′, y)u(t, x′, y)
1

|x′| dx′ dy.

This leads to

d

dt
M1(t) =

∫
utt(t, x′, y)

x′

|x′| · ∇x′u(t, x′, y) dx′ dy +
∫

ut(t, x′, y)
x′

|x′| · ∇x′ut(t, x′, y) dx′ dy,

so that, integrating by parts and using (NLW),

d

dt
M1(t) = −

∫
1

|x′|ut(t, x′, y)2 dx′ dy +
∫

�u(t, x′, y)
x′

|x′| · ∇x′u(t, x′, y) dx′ dy

−
∫

u3 log(3 + u2)(t, x′, y)
x′

|x′| · ∇x′u(t, x′, y) dx′ dy.
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5956 A. Bulut and B. Dodson

Writing �u = �x′u + �yu and integrating by parts again,

∫
�u(t, x′, y)

x′

|x′| · ∇x′u(t, x′, y) dx′ dy

=
∫

�yu(t, x′, y)
x′

|x′| · ∇x′u(t, x′, y) dx′ dy +
∫

�x′u(t, x′, y)
x′

|x′| · ∇x′u(t, x′, y) dx′ dy

= −
∫

∇yu(t, x′, y)
x′

|x′| · ∇x′∇yu(t, x′, y) dx′ dy +
∫

�x′u(t, x′, y)
x′

|x′| · ∇x′u(t, x′, y) dx′ dy,

which is in turn equal to

∫ |∇yu(t, x′, y)|2
|x′| dx′ dy +

∫
�x′u(t, x′, y)

x′

|x′| · ∇x′u(t, x′, y) dx′ dy.

Next, adopting the Einstein summation convention and integrating by parts once

more,

∫
�x′u(t, x′, y)

x′

|x′| · ∇x′u(t, x′, y) dx′ dy

=
∫

∂2
k u(t, x′, y)

x′
j

|x′|∂ju(t, x′, y) dx′ dy

= −
∫

∂ku(t, x′, y)[
δjk

|x′| −
x′

jx
′
k

|x′|3 ]∂ju(t, x′, y) dx′ dy

−
∫

∂ku(t, x′, y)
x′

j

|x′|∂j∂ku(t, x′, y) dx′ dy.

Evaluating the summation, this expression is equal to

∫
∂ku(t, x′, y)[

x′
jx

′
k

|x′|3 ]∂ju(t, x′, y) dx′ dy,

which (again integrating by parts) is the same as

∫
(∂rx′ u(t, x′, y))2

|x′| dx′ dy.
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Therefore,

d

dt
M1(t) = −

∫
1

|x′|ut(t, x′, y)2 dx′ dy +
∫

1

|x′| |∇yu(t, x′, y)|2 dx′ dy

+
∫

1

|x′| (∂rx′ u(t, x′, y))2 dx′ dy −
∫

u3 log(3 + u2)(t, x′, y)
x′

|x′|
· ∇x′u(t, x′, y) dx′ dy.

We next estimate the derivative of M2, writing

d

dt
M2(t) =

∫
(�u − u3 log(3 + u2))(t, x′, y)u(t, x′, y)

1

|x′| dx′ dy

+
∫

ut(t, x′, y)2 1

|x′| dx′ dy.

Again writing �u = �x′u + �yu and integrating by parts,

∫
�u(t, x′, y)

1

|x′|u(t, x′, y) dx′ dy

= −
∫

|∇yu(t, x′, y)|2 1

|x′| dx′ dy −
∫

|∇x′u(t, x′, y)|2 1

|x′| dx′ dy

+ 1

2

∫
u(t, x′, y)2�x′(

1

|x′| ) dx′ dy.

Now, since �x′( 1
|x′| ) ≤ 0,

d

dt
(M1(t) + M2(t)) ≤ − u4 log(3 + u2)(t, x′, y)

1

|x′| dx′ dy

−
∫

u3 log(3 + u2)(t, x′, y)
x′

|x′| · ∇x′u(t, x′, y) dx′ dy.

Integrating by parts and using

∫ u

0
(x′)3 log(3 + (x′)2) dx′ ≤ 1

4
u4 log(3 + u2),

one obtains

d

dt
(M1(t) + M2(t)) ≤ −1

2

∫
log(3 + u2)u4 1

|x′| dx′ dy.
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5958 A. Bulut and B. Dodson

Therefore, by the fundamental theorem of calculus,

∫
I

∫
u4 log(3 + u2)(t, x′, y)

|x′| dx′ dy dt � sup
t∈I

|M1(t)| + |M2(t)|.

Now, since x′
|x′| ≤ 1, one has

|M1(t)| ≤ ‖ut(t, x′, y)‖L2(R4)‖∇x′u(t, x′, y)‖L2(R4) ≤ ‖ut‖L2(R4)‖∇u‖L2(R4).

Also, by Hardy’s inequality, for any y ∈ R,∥∥∥∥ 1

|x′|u(t, x′, y)

∥∥∥∥
L2

x′ (R3)

� ‖∇x′u(t, ·, y)‖L2
x′ (R3),

so that ∫ |u(t, x′, y)|2
|x′|2 dx′ dy � ‖∇u(t)‖2

L2(R4)
.

�

We now turn to the proof of Theorem 1.2. The proof is based on a bootstrap

procedure and continuity argument.

Proof of Theorem 1.2. For t ∈ I, define

Zt0
(t) := ‖|x′|1/4D2u‖L4

t,x([t0,t]×R4) + sup
t0≤t′≤t

‖|∇|5/2u(t′)‖L2
x(R4) + ‖|∇|3/2ut(t

′)‖L2
x(R4). (14)

We first establish a result for general intervals I ⊂ Imax, analogous to the

estimate shown in Section 2 above. For t0, t1 ∈ R and I = [t0, t1], define

Ã(t0, t1) :=
∫ t1

t0

∫
R4

|u(t, x)|4 log(3 + u(t, x)2)

|x′| dx dt.

We claim that there exist ε > 0 and C > 0 so that for all I = [t0, t1] ⊂ R, if

Ã(t0, t1) ≤ ε

log(3 + E[u0, u1] + Z(t0)2)
, (15)

then Zt0
(t) ≤ CZt0

for all t ∈ [t0, t1], where

Zt0
:= ‖|∇|5/2u(t0)‖L2

x(R4) + ‖|∇|3/2ut(t0)‖L2
x(R4). (16)
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NLW with Partial Symmetry 5959

To see this claim, fix t0 ≤ t1 so that [t0, t1] ⊂ Imax, and suppose that (15) is

satisfied. Let t ∈ [t0, t1] be given. Then, by the Strichartz estimate of Corollary 3.3, we

have

Zt0
(t1) � Zt0

(t0) + ‖|x′|−1/4∇2
x′,y(u3 log(3 + u2))‖

L4/3
t,x′ ,y

. (17)

By the product rule,

∇2
x′,y(u3 log(3 + u2)) = 3u2 log(3 + u2)∇2

x′,yu + 6u log(3 + u2)|∇x′,yu|2 + 14u3

(3 + u2)
|∇x′,yu|2

+ 2u4

(3 + u2)
∇2

x′,yu − 4u5

(3 + u2)2 |∇x′,yu|2, (18)

and the right-hand side of (17) is bounded by a multiple of

Zt0
+ ‖|x′|−1/4u2 log(3 + u2)∇2

x′,yu‖
L4/3

t,x′ ,y
+ ‖|x′|−1/4u log(3 + u2)|∇x′,yu|2‖

L4/3
t,x′ ,y

+
∥∥∥∥ u3

|x′|1/4(3 + u2)
|∇x′,yu|2

∥∥∥∥
L4/3

t,x′ ,y
+

∥∥∥∥ u4

|x′|1/4(3 + u2)
∇2

x′,yu

∥∥∥∥
L4/3

t,x′ ,y

+
∥∥∥∥ u5

|x′|1/4(3 + u2)2 |∇x′,yu|2
∥∥∥∥

L4/3
t,x′ ,y

.

Now, by Sobolev embedding,

‖|x′|−1/4u2 log(3 + u2)∇2
x′,yu‖

L4/3
t,x′ ,y

+
∥∥∥∥|x′|−1/4 u4

(3 + u2)
∇2

x′,yu

∥∥∥∥
L4/3

t,x′ ,y

�
∥∥∥∥u2 log(3 + u2)1/2

|x′|1/2

∥∥∥∥
L2

t,x′,y
‖|x′|1/4∇2

x′,yu‖L4
t,x′ ,y

‖ log(3 + u2)1/2‖L∞
t,x′ ,y

� Zt0
(t1) log(3 + Zt0

(t1) + E[u0, u1])1/2
∥∥∥∥u2 log(3 + u2)1/2

|x′|1/2

∥∥∥∥
L2

t,x′,y(I×R4)

.

Next, we estimate

∥∥∥∥|x′|−1/4 u3

3 + u2 |∇x′,yu|2
∥∥∥∥

L4/3
t,x′,y

+
∥∥∥∥|x′|−1/4 u5

(3 + u2)2 |∇x′,yu|2
∥∥∥∥

L4/3
t,x′ ,y

�
∥∥∥∥ u

|x′|1/4

∥∥∥∥
L4

t,x′ ,y
‖∇x′,yu‖2

L4
t,x′ ,y

. (19)
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5960 A. Bulut and B. Dodson

Let 1 ≤ j ≤ 4 be a fixed index. Integrating by parts,

∫∫∫
(∂ju)4 dx′ dy dt = − 3

∫∫∫
u(∂2

j u)(∂ju)2 dx′ dy dt

� ‖∇x′,yu‖2
L4

t,x′ ,y
‖|x′|1/4∇2

x′,yu‖L4
t,x′ ,y

‖|x′|−1/4u‖L4
t,x′ ,y

. (19)

Summing over 1 ≤ j ≤ 4,

‖∇x′,yu‖2
L4

t,x′ ,y
� ‖|x′|1/4∇2

x′,yu‖L4
t,x′ ,y

‖|x′|−1/4u‖L4
t,x′ ,y

� ‖|x′|1/4∇2
x′,yu‖L4

t,x′ ,y

∥∥∥∥u log(3 + u2)1/4

|x′|1/4

∥∥∥∥
L4

t,x′ ,y
(20)

and we therefore obtain

(19) �
∥∥∥∥u2 log(3 + u2)1/2

|x′|1/2

∥∥∥∥
L2

t,x′,y
‖|x′|1/4∇2

x′,yu‖L4
t,x′ ,y

‖ log(3 + u2)1/2‖L∞
t,x′ ,y

� Zt0
(t1) log(3 + Zt0

(t1) + E[u0, u1])1/2
∥∥∥∥u2 log(3 + u2)1/2

|x′|1/2

∥∥∥∥
L2

t,x′,y(I×R4)

.

Finally, integrating by parts and using log(3 + u2) � 1,

∫∫∫
(∂ju)4 log(3 + u2)1/2 dx′ dy dt

= −3
∫∫∫

(∂2
j u)(∂ju)2u log(3 + u2)1/2 dx′ dy dt

−
∫∫∫

(∂ju)4 u2

(3 + u2)

1

log(3 + u2)1/2 dx′ dy dt

� ‖∇x′,yu‖4
L4

t,x′ ,y
+

⎛⎝‖ log(3 + u2)1/8∇x′,yu‖2
L4

t,x′ ,y

· ‖|x′|1/4∇2
x′,yu‖L4

t,x′ ,y

∥∥∥∥ log(3 + u2)1/4u

|x′|1/4

∥∥∥∥
L4

t,x′ ,y

⎞⎠ ,

so that, by (20),

‖|∇x′,yu| log(3 + u2)1/8‖2
L4

t,x′ ,y
� ‖|x′|1/4∇2

x′,yu‖L4
t,x′ ,y

∥∥∥∥ log(3 + u2)1/4u

|x′|1/4

∥∥∥∥
L4

t,x′ ,y
.
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Collecting the above estimates, we have shown

Zt0
(t1) � Zt0

+
(

‖|x′|−1/2 log(3 + u2)1/2u2‖L2
t,x′ ,y(J×R4)

· Zt0
(t1) log(3 + Zt0

(t1) + E[u0, u1])1/2
)

,

so that, for ε > 0 sufficiently small (independent of t0 and t1), (15) implies, via a

continuity argument,

Zt0
(t1) � Zt0

,

which completes the proof of the claim.

Now, let ε and C be as in the claim, and note that the Morawetz estimate of

Proposition (4.1) implies

∫∫
I×R4

|u(t, x)|4 log(3 + u(t, x)2)

|x′| dx dt ≤ C′E[u0, u1] < ∞.

Following [30], we partition the interval I into finitely many consecutive inter-

vals Jk, k = 1, · · · , K, with each Jk of the form Jk = [tk, tk+1], where

inf I = t1 < t2 < · · · < tK+1 = sup I.

Setting t1 = inf I and Z = Zt1
, and noting that

K∑
k=1

ε

log(3 + E[u0, u1] + C2kZ2)
� log(3 + N/ log(3 + Z2)),

it follows that one can form a partition (Jk) with K � (3 + Z2)C′E[u0,u1] such that

∫
Jk×R4

|u(t, x)|4 log(3 + u(t, x)2)

|x′| dx dt ≤ ε

log(3 + E[u0, u1] + C2kZ2)
(21)

for all 1 ≤ k ≤ K.

Setting Z(Jk) = supt∈[tk,tk+1] Ztk
(t) for each k, we now inductively show the bound

Z(Jk) ≤ CkZ. Indeed, for k = 1 this is a straightforward application of the claim we

established above, with (15) verified via the k = 1 case of (21). Suppose now that k ≥ 1
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5962 A. Bulut and B. Dodson

and that we have Z(Jk) ≤ CkZ. This implies

ε

log(3 + E[u0, u1] + C2kZ2)
≤ ε

log(3 + E[u0, u1] + Z(Jk)2)
,

so that, in view of (21), an application of the claim for the interval I = Jk+1 gives

Z(Jk+1) ≤ CZtk
≤ CZ(Jk) ≤ Ck+1Z,

which is the desired inductive bound.

Assembling the estimates for Z(Jk), we obtain

‖ |x′|1/4D2u ‖L4
t,x(I×R4) ≤ C(E[u0, u1], ‖u0‖Ḣ5/2 + ‖u1‖Ḣ3/2),

which implies the desired global well-posedness and scattering result. �

5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3, which is the global well-posedness result

for solutions u to (NLW) with log-supercritical nonlinearity (1) under the symmetry

condition (3), that is,

u(t, x1, x2, x3, x4) = u(t, x2
1 + x2

2, x2
3 + x2

4).

The relevant Strichartz estimate in this setting is given by Lemma 3.1.

Proof of Theorem 1.3. This time the standard Morawetz estimate implies that if J is

an interval on which (NLW) is well-posed, then

∫
J

∫
1

|x′| + |y|u(t, x′, y)4 log(3 + u2(t, x′, y)) dx′ dy dt � E[u0, u1].

Now, proceeding as before, for any I = [t0, t1] ⊂ Imax the Strichartz estimate of

Lemma 3.1 and the above Morawetz estimate lead to

Zt0
(t1) � Zt0

+ ‖||x′| + |y||−1/2 log(3 + u2)1/2u2‖L2
t,x′ ,y(I×R4)

× ‖(|x′| + |y|)1/4D2u‖L4
t,x′ ,y(I×R4) log(3 + ‖u‖2

L∞
t,x(I×R4)

)1/2.
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Making the same argument as before implies the global well-posedness and

scattering result. �
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Appendix A. Quantitative Strichartz Norm Estimates for the Energy-Critical (NLW)

In this appendix, we apply a variant of the method used to prove Theorem 1.2 to analysis

of the energy-critical NLW. In particular, in Proposition A2 below we obtain a partial-

symmetry analog of the radial 3D result in [12], where the Strichartz norm is controlled

by a quantity that is polynomial in the energy (c.f. Theorem 1.2 and Theorem 1.3, where

the possibility of exponential growth comes from the slightly energy-supercritical

nonlinearity).

As a preliminary tool for this analysis, we establish a weighted L5
x estimate for

functions satisfying the symmetry condition (2), that is,

ui(x) = ũi(|x′|, x4), i = 0, 1,

with

x = (x′, x4) ∈ R3 × R.

For a related bound used in the study of explicit constructions of blow-up solutions for

the 3D nonlinear Schrödinger equation, see [13].

Lemma A1. There exists C > 0 such that

‖|x′|1/5u(x′, x4)‖L5
x(R4) � ‖∇u‖L2

x(R4)

holds for all u ∈ S(R3 × R) satisfying the symmetry condition (2).

Proof. Let x = (x′, x4) ∈ R3 × R be given. By the usual radial Sobolev embedding (4)

applied to the map x′ �→ u(x′, x4), we have

|x′| |u(x′, x4)|2 � ‖∇x′u(x′, x4)‖2
L2

x′ (R3)
. (A.1)
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Combining this with the inequality

|u(x′, x4)|3 �
∫
R

|u(x′, x4)|2|∂x4
u(x′, x4)| dx4, (x′, x4) ∈ R3 × R,

we get

|x′| |u(x′, x4)|5 �
( ∫

R3
|∇x′u(x′, x4)|2 dx′

) ( ∫
R

|u(x′, x4)|2|∂x4
u(x′, x4)| dx4

)
,

for all (x′, x4) ∈ R3 × R.

Integrating in x′ and x4, we therefore obtain∫
R

∫
R3

|x′| |u(x′, x4)|5 dx′ dx4 � ‖∇x′u(x′, x4)‖2
L2

x(R4)
‖|u|2∂x4

u‖L1
x(R4)

� ‖∇u‖3
L2

x(R4)
‖u‖2

L4
x(R4)

� ‖∇u‖5
L2

x(R4)
,

where we have used the Sobolev embedding to obtain the last inequality. �

We are now ready to state and prove the quantitative energy-critical result.

Proposition A2. Suppose that u : I × R4 → R is a solution to (NLW) with nonlinearity

F : R → R given by

F(u) = u3.

There exist constants C1, C2 > 0 such that if u corresponds to initial data

(u, ut)|t=0 = (u0, u1) ∈ Ḣ1(R4) × L2(R4), with ui, i = 0, 1, satisfying the symmetry

condition (2), then

‖u(t, x)‖L5
t,x(I×R4) ≤ C1E[u0, u1]C2 .

Proof. For any solution of (NLW) with energy-critical nonlinearity F(u) = u3 that

satisfies the symmetry condition (2), the argument used to prove Proposition 4.1 shows

the Morawetz-type bound ∫∫
I×R4

u(t, x)4

|x′| dt dx � E[u0, u1].

Moreover, as a consequence of Lemma A1, one has

‖u‖
L9

t L9/2
x

� ‖|x′|1/9u5/9‖L∞
t L9

x
‖ u4/9

|x′|1/9 ‖L9
t,x

= ‖|x′|1/5u‖5/9
L∞

t L5
x
‖ u

|x′|1/4 ‖4/9
L4

t,x

� E[u0, u1]7/18.
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For t0 ≤ t1, defining Zt0
(t1) by

Zt0
(t1) := ‖u‖L2

t ([t0,t1];L8
x(R4)) + ‖u‖L5

t ([t0,t1];L5
x(R4)),

the usual Strichartz estimates on R4 give

Zt0
(t1) � E[u0, u1]1/2 + ‖u2∇u‖

L2
t ([t0,t1];L8/7

x (R4))

� E[u0, u1]1/2 + ‖u‖2
L4

t L16/3
x

‖∇u‖L∞
t L2

x

� E[u0, u1]1/2 +
[
‖u‖1/2

L9
t L9/2

x
‖u‖17/54

L2
t L8

x
‖u‖5/27

L5
t,x

]2

E[u0, u1]1/2

� E[u0, u1]1/2 +
(
‖u‖

L9
t L9/2

x
E[u0, u1]1/2

)
Zt0

(t1).

As a consequence, there exist constants C > 0 and ε > 0 such that for all t0 ≤ t1 the

condition

‖u‖
L9

t ([t0,t1];L9/2
x (R4))

≤ ε

E[u0, u1]1/2 (A.2)

implies

Zt0
(t1) ≤ CE[u0, u1]1/2.

Now, invoking an iterative argument based on partitioning the interval I into

K � E[u0, u1]8 intervals [tk, tk+1], k = 1, · · · , K, on which (A.2) is satisfied, we obtain

‖u‖L5
t ([tk,tk+1];L5

x(R4)) ≤ Ztk
(tk+1) � E[u0, u1]1/2

for each 1 ≤ k ≤ K, and thus

‖u‖L5
t (I;L5

x(R4)) � E[u0, u1]21/10

as desired. �
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