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In this work, we generalize the expression of an approximate delta function (ADF), which is a finite-
order polynomial that holds identical integral properties to the Dirac delta function, particularly, when
used in conjunction with a finite-order polynomial integrand over a finite domain. By focusing on one-
dimensional configurations, we show that the use of generalized ADF polynomials can be e ective at recovering
and extending several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin
methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed
to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged
values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points.
The sharing of nodal information with surrounding elements reduces the number of degrees of freedom
compared to other compact methods at the same order. To ensure conservation, cell-averaged values are
updated using an identical approach to that adopted in the finite volume method. Presently, the updating of
nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within
the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable
at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier
analysis and through applications to two benchmark cases, namely, the linear wave and nonlinear Burgers’
equations in one-dimensional space.

1. Introduction

HE Dirac delta function represents a well-defined distribution that extends over a line of real numbers while
Tpossessing the unique property of vanishing everywhere except at the origin. Nonetheless, it still produces a unit
value when integrated over the entire real line. Moreover, one of its most distinguishing properties stands, perhaps,
in its ability to reproduce the values and derivatives of any function in integral form. In this paper, we show that
the integral properties of the delta function may be useful in a number of computational settings as an alternative
vehicle for evaluating functional values and derivatives over a finite domain. In numerical computations, however,
the theoretical delta function su ers from singularities because of its sudden vanishing and infinite distribution. In
2011 and 2014, Huynh'? introduced a very important concept, namely, that of an approximate delta function (ADF),
which serves well to overcome these limitations. Accordingly, the ADF is defined as a finite-order polynomial that is
capable of preserving the integral properties of the exact delta function in the evaluation of finite-order polynomials
over finite domains. In this study, we extend the ADF concept by allowing the ADF polynomial to contain arbitrary
coe cients and by defining ADF derivative weight functions that can be very e ective in the development of a high-
order numerical framework for solving partial di erential equations.

It is well known that, in the field of computational fluid dynamics, low-order methods are often selected because
of their simplicity and robustness, factors that jointly justify their recurrent use in engineering practice. Using similar
CPU resources, however, high-order methods can provide more accurate solutions, albeit at the cost of increased
complexity and reduced robustness. For this reason, numerous researchers have undertaken e orts to improve the
manner by which high-order techniques may be constructed, with the aim of improving their accuracy while enhancing
their stability and performance characteristics.

In this vein, the Discontinuous Galerkin (DG) method was developed because of its favourable attributes; these
have led to its acceptance as one of the most widely relied upon high-order methods for solving the Navier—Stokes
equations. The method itself was introduced in the context of the neutron transport problem by Reed and Hill,?
analysed by LaSaint and Raviart* and then extended and popularized in the fluid dynamics community by Cockburn,
Shu, Bassi, Rebay, and others (see Cockburn et al.,” Bassi and Rebay,6 Bassi and Rebay,7 Cockburn and Shu,® Shu?
and the references therein).
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One of the essential characteristics of the DG approach lies in its dependence on the Galerkin method to
approximate a partial di erential equation (PDE) that applies to a finite element. The corresponding PDE is
subsequently converted into a series of ordinary di erential equations (ODEs) that can be solved by standard methods.

Alternative approaches that seek to achieve high-order accuracy rely on di erential forms. These may be
exemplified by the pioneering work on the staggered-grid spectral method, ' as well as the spectral di erence'!!?
and spectral volume approaches, '* which have been complemented by the elegant method of flux reconstruction 1413
(FR), later evolving into the correction procedure via reconstruction '*-'% (CPR).

Among these high-order methods, di erent ways exist to appoint the degrees of freedom (DOFs) to each element
at the cell-averaged or point-wise values, as well as their derivatives, which are later refreshed during the evaluation
process. Although the Galerkin method and local reconstruction have been shown to provide formal avenues to derive
the relevant ODE:s in the context of the DG and di erential approaches, the application of ADF to formulate the local
ODEs will be used in this work as an alternative approach with particular benefits. > We further explore a generalized
ADF approach that contains arbitrary constants that can be specified in such a way to enhance the performance of the
method to be reproduced. The characteristic attributes of this approach, such as simplicity, will constitute one of the
main subjects of this article. In fact, one of the advantages of ADF implementation will be shown to be associated
with its versatility in handling di erent DOF specifications.

It should also be noted that, in recent years, a well-developed constrained interpolation profile (CIP) with multi-
moment finite volume (MFV) method has been developed (see Xie et al.'” and the references therein). Apart from
the cell-averaged value of a given element, MFV introduces additional DOFs on the element’s edge and nodal points.
The ability to share this supplementary information with neighboring elements transforms MFV into a more e cient
scheme for saving the number of DOFs compared to other high-order methods of comparable accuracy. Pursuant
to this approach, the sharing of additional DOFs within the context of continuity leads to the enhancement of the
scheme’s robustness. In fact, a similar concept may be attributed to the Active Flux (AF) method,?*?! where the
unknown values at edge-based flux points are treated as independent DOFs and updated at every time step.

Because nodal points undergo the highest sharing rate, being shared by more elements than edges, it proves
more e cient to increase the amount of information that is being communicated with a given element by placing
all additional DOFs on the nodes only. As such, it is possible to augment the nodal information and extend the MFV
and AF approaches by adding not only the unknown functional values at the nodal points, but also their derivatives. In
this process, the updating of cell-averaged values may be accomplished in a manner that mirrors the traditional finite
volume (FV) approach, thus guaranteeing the conservation of the scheme.

In practice, the manner by which additional information is updated on nodal points and edges constitutes the most
distinguishing features in the MFV and AF schemes. We presently rely on an ADF procedure and set the integral
domain to encompass all of the elements surrounding the point in question. This increases the radius of influence, as it
were, that accompanies each update. Our nodal updating procedure may hence be likened to the case of an overlapped
DG, where nodal values and derivatives can provide su cient information for the high-order reconstruction of the
unknown quantity in each element. As for the order of the “DG on the node,” it is no longer constrained by the DOFs
on the nodal point itself. The nodal updating becomes comparable to the PnPm procedure.?? Furthermore, since the
precision of the method may be improved by increasing the amount of information that is assigned to the nodal points,
we call this strategy a point-value enhanced finite volume method (PFV). As to the temporal updating, a conventional
third-order total variation diminishing (TVD) Runge—Kutta scheme can be conveniently employed.

In this article, the approximate delta function is revisited and extended in Section II to comprise arbitrary constants.
This is followed by applying the extended ADF to recover and generalize Taylor-based DG, nodal-based DG, and
FR CPR methods in Sections III, IV, and V, respectively. In Section VI, the ADF-based point value enhanced finite
volume method is defined, implemented, and verified numerically. We retire in Section VII with some conclusions
and recommendations for future work.

I1. Reviewing and Extending the Approximate Delta Function (ADF)

To set the stage, we recall that a delta function exhibits the following integral property:

fOrC xnd  fx (1)

where f(x) stands for a continuous function of compact support. In 2011 and 2014, Huynh'? introduced an
approximate delta function (ADF) in the form of a finite-order polynomial that can mirror the integral property of a
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Dirac delta function over a finite domain, x [ 1 1]. In this work, we find it useful to change the domain boundaries
to the generalized interval x [a b] and write

b
Py( ) n( 2d  Py() 2)

a

where Py( ) is any Nth-order polynomial and ~y(x z) represents an ADF polynomial of order N. The present analysis
begins by reviewing the ADF formulation introduced by Huynh? while extending it to the case of x [a b]. We also
consider generalized ADF forms that have orders higher than N and that enable us to retrieve the derivatives of Py( ).

A. Revisiting Huynh’s ADF Concept

According to Eq. (3.4) used by Huynh,? a Legendre polynomial expansion may be used to express the ADF of
order N explicitly as
N

- 1
n(x 2) 7 (2i DL )Li( )
i 0

Xc X
h?2 h 2

3)

where the present notation is used with x, %(a b) representing the domain center, 7 b a denoting the domain
width, and L;( ) standing for the Legendre polynomial of order i.

By assuming a solution interval that is bracketed by [a b] [ 1 1] as before,? and for N 4, one may readily
deduce from Eq. (3) that

B 1 - 1 3z - 9 1572 3 4572 15
¥ 5 D 5 T Gk —e T ey
S 9 1572 75z 1057 457 15, 17573 105z 4
e 8 g g g
- 225 10507% 945z* 1057 75z 525 441077 472574 ,
4(x 2) X x
128 8 64
1 3 2 4
757 1051x3 945 945072 11025z y @
8 128
Note that at z 0, we recover four terms with two identical expressions,
B . 1 . - 15
0@ 0 x5 @0 &0 g gxz
gy 25 SBL %S ©
4 128 64 128
Similarly at z %, we extract,
. 11 - 1 1 3 . 1129 3 195,
LI T S T S I LT S S DY
. 1 129 195x% 1095x 1505x°
30X — (6)
4 128 512
- 1 41745 101745x*  1095x 1505x°  68565x”
! 32768 512 16384

For the reader’s convenience, the shapes of the approximate delta functions, y(x z) for | N 4 are illustrated in
Fig. l atbothz Oandz }1. It should be noted that identical ADF distributions are provided by Huynh? for ~y(x 0)
(N 01 8and y(x ) (N 45 8).

B. Defining a Generalized ADF Expression

At this point, it may be helpful to specify the di erence between ADFs at two distinct orders N and M by
introducing the gap function, §(x z), where
) . A
wx 2 Nx ) Tmx 2 7 (2 DL()L( ), N M )
i M1
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Figure 1. The syape of the apprgximate delta functign (ADF) for (a) "1(x 0) (—), “2(x 0) ( ), and “4(x 0) ( ), as well as (b)
16 D), 2 DO )3 PO dand ax HC ).

It is then possible to define a generalized ADF, ~y x(x z), as a polynomial of order N K, namely, by superimposing

a function, y(x z), of order N, and a sum of gap functions, Ni(x z),fori 12 K. This may be accomplished
by taking
Nk(x2) N2 oy '(x2 e N f(x2) ek n K(x 2) (8)

where the arbitrary coe cients are given by ¢; R,i 123 K. In the foregoing, the indices N K denote a
generalized ADF polynomial of order (N  K). By virtue of the ADF integral property, one may readily substitute
"y k(x 2) back into Eq. (2) to show that

b
Py( ) nk( 22d  Py(2) )

a

where not only the order of the polynomial in ~yx(x z) is raised to N K, but also K arbitrary coe cients are
introduced. Equation (9) can also be viewed as an integral-form definition of ADF other than the one given by Eq. (8).
It can thus be seen that the function ~4;(x z) not only satisfies

b
Py( ) m( 2d  Py() (10)

a

but also possesses an infinite number of solutions, when M N. Furthermore, one can write “wC 2D Tvm NG 2
when M N, thus leading to yo(x 2) N 2).

C. Defining ADF Polynomial Derivative Weight Functions

Besides the functions themselves, it is possible to define (N K)th-order ADF weight functions to generate the
actual derivatives of an Nth-order polynomial. This may be achieved by specifying ~ ~ix( 2 and ) ~x( 2) with the
following integral properties:

b dPN(Z) dsz(Z)

b
Pn( )~NK( 2)d

Pn( )" 11
. N() NK( 2)d dz . a2 (11)
Then based on Eq. (9), one can deduce that
- “vk(x ) - vk(x 2)
vk = Ty o (12)

More generally, for a given nth-order derivative d"Py(z) dz”, one may specify a corresponding ADF derivative weight
function using
o~
~ N k(X Z)
W) (13)
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a) b)

Figure 2. The shape of the ADF derivative weight functions for (a) ~ @ 0)(—) and - L 0)( ), as well as (b) ~ NE: D" L )
() ,aDC dand & HC ).

For example, using the Legendre polynomial expression in Eq. (3), ~ (X 2) can be written as

~ N
_nxg 1 (2i 1)L )% (14)

2iO

~N()C 2)

which, for the special case of [a b] [ 1 1]and N 4, yields the following sequence of B yx 2O 01 4):

B N 3. 15 3 45
oxz2) 0 (x2) 7% »(x 2) R szz
- 15 75 31572 45z, 52572 105 ;4
3(x 2) —_—7 —X —X _—X
4 8 4 8 (15)
~ 2 94573 525z 75 31522 2205z 47257 ,
Atz 32 g 16 o
5257 105 , 110257 47252 4
8 32
Similarly, forz 0Oand z }‘, we have
3 . 3
(x 0 L,x0) =x
2 (16)
. . 75x  105x%°
(0) @0 e
and
LU S N E B N
Loy 27 274 16 27 16
| 15 885 45, 1155 ,
- = =y = — ) 17
35y 6 128 167 128" an
| 7455 885 30555 , 1155 5 64575
4%y 2048 128" 1024 128 2048 "

The shapes of the ADF derivative weight functions, y(x 2 forl N 4 are illustrated in Fig. 2 at bothz 0
and z }T. It should be noted that the scales and shapes of ~ n(x 2) are completely di erent from those of the ADF
introduced by Huynh? and illustrated in Fig. 1.
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III. ADF in Relation to the Taylor-Based DG Method for the Scalar 1-D Wave Equation

A. Second- and Third-Order Taylor-Based DG Schemes for the One-Dimensional Wave Equation

We begin by briefly reviewing the DG method in the context of the linear, one-dimensional, scalar wave equation.
Using standard nomenclature, we consider:
L))

X

0; fw) au a 0 x [0 1] (18)

To proceed, we first subdivide the [0 1] interval uniformly into multiple elements ¢ , and then use Taylor expansion
to discretize u(x) over each element by taking

2 2 B2
[ (x 1) 10 _Z(x ) TZ (x 2xc) -
w(HBo(x) ui(H)Bi(x) uy(t)Ba(x) (19)

where i denotes the cell-averaged u, x, refers to the location of the cell-center, and / alludes to the width of the cell.
Being a normal polynomial, the Taylor basis (x x.)' (i 12 ) can be modified through subtraction to produce

B(x)dx 0 i 1 (20)

Next, Eq. (18) may be multiplied term by term by the Taylor bases

(x x)? K
[Bo() Bi(x) Bo(x) ] 1x xe —0— - 2D
then integrated over the cell ¢ to obtain the weak form
ut e e ¢ Bj ,
[Bjdx au’Bjr au’B; au —xdx 0 j 012 22)

where R and L refer to the adjacent right and left points. To produce a third-order scheme, the Taylor-series expansion
in Eq. (19) may be inserted into the weak form Eq. (22). Then using the upwind flux with a 0 at the cell interface,
we can put

da
PR e 0000
12 s dr W
0 0 o5 4 0 55 0%,
7200 T4
[ i (23)

1

h
a(it %hul %hzuz)i a(it %h’/‘l %hzuz)” 2 0
hZ

Sl —

12

The resulting assortment of ordinary di erential equations with respect to the variables 7(f) u;(f) uy(f) may be handled
using standard ODE solvers. In this context, the second and third-order schemes may be directly written as

daj a(w @) aluii uii)
dr h 2
24
duy;  6a(; 4 1) 3aluy; 1 ury) 24
dr h? h
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and

da; a(a; v w) a(u;1 wy)  ah(ua; v u2g)

dr h 2 12

dup;  6a(@; ;1) 3a(u; 1 ury) aluz; 1 uy) 25)
dr h? h 2

dup;  60a(i; ;) 30a(uy; 1 wry) Salur; 1 uzj)

dr h3 h? h

B. ADF-Based Scheme Underlying a Taylor-Based Solution

In what follows, we show how the derivatives may be updated using a generalized ADF. The ensuing scheme may
be viewed as a DG variant that implements the ADF concept instead of the Galerkin approach to derive the updating
ODEs, thus leading to an ADF-DG method. On any interval x  [x, %h Xe %h], it is straightforward to evaluate
generalized ADF polynomials for the first-order derivatives from Eq. (13), namely,

Txxo) 12h3(x x)

Trx) T(xx) 6CIx x)* K 12]h 3 (26)

where C represents an arbitrary constant. In the interest of simplicity, because the only point of interest is x,, all of the
related ﬁ\',')M(x xi) are abPreViated by g\’;)M(x). In general, | ,(x) will contain N arbitrary constants. In like fashion,
we may retrieve ,(x) ,(x), and so,

1 L0 6C1R0(x  x) 3R (x x))h ] (27)
Along similar lines, the ADF weight functions for the second-order derivatives may be evaluated to be

T,(x)  30n 3 360h (x  x.)?

1 (0 60C[120(x  x.)? 3RA(x  x)lh ° (28)

In the implementation of the ADF-DG approach, the cell-averaged values can be updated in a DG manner, while
rewriting the ODEs for the updating derivatives using

dl/ll i ~N1(x)

dt

u- - -
- v1(0)dx au dx  (au® g au® 1) (29)

e

Here N 1 corresponds to the second-order scheme, where one may use ~1 ,(x), reduce the Taylor expansion to a
linear polynomial, and substitute the outcome into Eq. (29). This operation yields,
duy;  6a(i; u; Clul;) 3aui; 1 uii)
dr h? h

(30)

where the interface jump term may be readily determined from the expression [u];  (u Uy ,, I %hul i
(; 1 %hul i 1)- In general, it is possible to employ a higher-order ADF derivative weight function, ~1 y WithM 1,
thus leading to additional constants and, therefore, greater flexibility to enhance the scheme’s capabilities. The ensuing
analysis, however, falls beyond the scope of the present study and will be deferred to later work. We can see that when
C 0, the ADF-DG approach reproduces the second-order Taylor-based DG formulation identically.

To obtain a third-order scheme, the same procedure may be followed by first applying the ADF concept to derive
the updating ODEs for the first and second-order derivatives using

dlxl]i u~ ”‘21(x) o~ o~
“a - 51 () dx au < dx (au® ,, g au® 5,1)
’ L @31
du i u-~ 2 ()C) o~ o~
dj - 51 (x)dx au—=1""dx (au® 5, r au® 45, p)
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and then substituting a quadratic polynomial expansion of « to retrieve

dup;  6a(@; w1 Cilul) 3a(i; 1 w) aluz; 1 uzy)

dr h? h 2 (32)
dug;  60a(i; +  w; Coluly) 30a(uy; v wi)  Sa(ua; v wuzy)
dr h3 h? h

where the interface jump term may be identified as [ul; («  w )y ,, @ Shuy; < 5hPu>; (i Shuy;

Lhuy ;).

” Here too, by setting C, C 0, the third-order ADF-DG scheme returns the third-order Taylor-based
DG expressions given by Eq. (25). Moreover, not only do the ADF-DG relations recover the Taylor-based DG
approximations as special cases, their second- and third-order ADF-DG formulations contain arbitrary coe cients that
may be judiciously adjusted to enhance the properties of the resulting scheme, specifically, by controlling dispersive
and dissipative errors.

C. Fourier Stability Verification of the Taylor-Based ADF-DG Method

At this juncture, a conventional Fourier analysis is undertaken to assess the stability of a half-discretized ODE

system of both second and third-order ADF-DG schemes. Letting j 1 and refer to the imaginary unit and a
wave number such that [0 1. the solution of the ODE system using Fourier analysis may be written as

U /A (33)
where the integer i represents the cell index and A denotes the vector amplitude such that Uj; [i; uy; v

corresponds to the unknown vector stored in each element. By substituting Eq. (33) into the half-discretized, second-
order ADF-DG system of ODEs, one arrives at

dA
— MA 34
a (34
where the coe cient matrix M consists of
e’ 1 L i 1
5 ( ) (35)

6(C e’ 1) 3(C e’ 1

Figure 3 displays the real parts of the first and second eigenvalues ( | ;) of M using di erent coe cients, namely,
C 05,0, and 05. As one may infer graphically, the negative eigenvalues confirm the stability of the scheme for
all three coe cients. Furthermore, the present analysis enables us to realize that the scheme tends to be more di usive
for the first eigenvalue when C 0 5. The flexibility in selecting C can therefore be used to optimize the second-order
Taylor-based DG, a task that can be relegated to a future study.

For the third-order ADF-DG, the problem may be simplified by taking C;, C, C. Then following a similar
procedure as before, the real parts of the first, second, and third eigenvalues, i.e. ( | » 3), may be extracted and
shown in Fig. 4. Forthwith, it may be immediately seen that the scheme remains stable for C 0 and 0 5, although it
exhibits a slightly di usive behavior for C 0 5.

IV. ADF in Relation to the Nodal DG Method for the Scalar 1-D Wave Equation

A. Nodal Discontinuous Galerkin Method

For the second-order scheme, it is possible to introduce the shape functions

. h2 . h2
o 1 e S ) e T2 (36)
h h
thus prescribing the base functions, B;(x),i 1 2, where
[Bi(x) B2(x)] [ 1(x) 2] (37)
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Figure 3. The real parts of the two eigenvalues corresponding to the coe cient matrix M for a second-order Taylor-based ADF-DG using

the constant coe cients of C 05,0,and 0 5.
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Figure 4. The real parts of the three eigenvalues corresponding to the coe cient matrix M for a third-order Taylor-based ADF-DG using

the constant coe cients of C 05,0,and 0 5.

To make further headway, we follow a similar procedure to the one we pursued in the Taylor-based DG formulation.
Here, the updating ODEs for the second-order nodal DG approach may be expressed as

duy; a(Bur; v 3wy uzy)
dr h
dus;  aQGBuy; wuy; 2u; 1)
dr h

The shape functions associated with a third-order scheme may be similarly compacted into

[Bi(x) Ba(x) B3(x)] 2 ([ 1(x)

11410 20 2 2] 2(x) 1]

Lastly, the updating ODEs may be derived and re-arranged into

duy;  a(us; 6ur; 9uz;i 1 4uy)
dr h
dus; a5 2uy; wuz; 3 2uz; )
dr h
duz; a@Buz; 1 4uy; 3uz; 4uyy)
dr h
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B. ADF-Based Scheme Underlying the Nodal DG Solution
For the second-order representation, the solution on each cell may be reconstructed from
i u 1(x) up 2(x) (41)

In this case, we may use |1(x z) to obtain the updating di erential relations. First, the ADF expressions may be
determined at the left and right points using

~ 1 6 6 , 1
"R R h 12
(42)
~ 1 6 o6 , 1
"R R h 12
where z hx‘ and 1;; T x) i 1 2 represent the generalized ADF polynomials on points 1 and 2,
respectively. Then, by virtue of the integral property, we may write
duy U~ RERICY) ~ ~
~a — 1dx au———dx (au® 111r au’ 1111) (43)
[ e t e x
and retrieve
duy; a4 Chuzir 3 Chuy; uzl (44)

dr h
We may similarly multiply " | »(x) by the linear wave equation Eq. (18) and perform integration by parts to deduce
dup;  al3 Couyi wai (2 Crup; o]
dr h

As usual, the jump term may be taken to be [u]; u;; up; 1 such that the ODEs for the second-order ADF-DG
approach may be simplified into

(45)

duy; a(dur; v 3u; ux; Ciluly)

dr h
dus; aQGBui; uy; 2ux; 1 Coluly) (46)
dr h

Here too, by taking C; C, 0, the second-order ADF-DG formulation may be seen to reproduce the second-order
nodal DG expressions identically. Furthermore, the use of higher-order ADF representations of the type 1, M 1,
will immediately give rise to additional coe cients and, hence, additional ways to improve the scheme.

For the third-order scheme, the solution on a cell may be synthesized from

i 200 10 3l 400 2wy 2 200 2(x) 3]us (47)

As before, the ADF polynomials corresponding to the left side, center, and right side of the element may be
subsequently evaluated and consolidated into

- 3 6 302 6C
= . = = 93

Yo h Th 003
- 9 152 6C

= 903 48
212 7 A Y 0 3 (48)

2

.36 302 6C g

2h h h h
These ADF relations enable us to express the updating ODEs as

duy; a(uz; 6ur; 9uzi 4wy Ciluly)

dr h

duy; a5 2wy wuz; 3 2uz; 1 Coluly) (49)
dr h

dus; aQBuz;i 1 4uy; 3uz; 4ur;  Cilul)

dr h

where the interface jump term is prescribed by [u]; u;; u3; 1. As expected, by setting C; C, Cz; 0, the
third-order ADF-DG restores the third-order nodal DG formulation.
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C. Fourier Stability Verification of the Nodal-Based ADF-DG Method

Here too, the standard Fourier analysis may be carried out for the second-order ADF-based nodal DG using, for
example, C; C, C. The real parts of the two eigenvalues for the cases of C 05 0,and 0 5 may be retrieved and
plotted in Fig. 5. As one may observe, the stability of the scheme is confirmed for the three representative coe cients
of C. Moreover, the ability to adjust C in a manner to control the stability properties of the scheme seems to o er an
added benefit.

0 — ,
Re(2) Re(4,)
0.2 ‘\\:\\\?\\ -2
0.4 0
N
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W
-0.6 1 \'\\\\\
C \9\\\ [
gl 03 %
= n W .-
81 0.0 ] -6
~-- 05 \
\ L
-1.0
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0o 05 10 15 20 25 30 0
a a

a) First eigenvalue b) Second eigenvalue

Figure 5. The real parts of the two eigenvalues corresponding to the coe cient matrix M for a second-order nodal-based ADF-DG using
the constant coe cients of C 05,0,and 0 5.

For the third-order ADF-based nodal DG approach, we may take, as before, C;, C, C3  C. The real parts
of three eigenvalues of the coe cient matrix M may be extracted and displayed in Fig. 6 for the three representative
cases of C 05 0, and 05. Clearly, the scheme remains stable for all three values of C, although it appears to be
slightly di usive for the first eigenvalue and C 0 5.
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a) First eigenvalue b) Second eigenvalue ¢) Third eigenvalue

Figure 6. The real parts of the three eigenvalues corresponding to the coe cient matrix M for a third-order nodal-based ADF-DG using
the constant coe cients of C 05,0,and 0 5.

V. ADF in Relation to the One-Dimensional Flux Reconstruction (FR) Method

It is well recognized that the Flux-Reconstruction (FR) method and its variant Correction Procedure via
Reconstruction (CPR) incorporate into their schemes the nodal DG approach as a special case. Furthermore, both
approaches tend to be more e cient to implement than the integral DG form. For example, the main concept in the
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FR method is to store, on every cell i, the values at the solution points u;, for k 1 N 1, and then reconstruct
the flux function F(x) using the flux values at both solution points and boundary interfaces. With this reconstructed
F(x),adi erential form may be developed to obtain the right-hand side of the updating ODEs. Specifically in FR, the
flux function may be reconstructed via

Fi(x) fi(x) [Fr fix)] (x) [Fr fi(xg)] re(x) (50)

where F denotes the numerical flux at the interface (e.g., upwind-flux), while x; and xg refer to the locations of the
left and right interfaces, respectively; as for , it stands for the correction function with indices LB for ‘left boundary’
and RB for ‘right boundary.” Here f;(x) may be reconstructed from f;r  f(u;) at the solution points.

For the kth-solution point, the right-hand side of the updating ODEs may be formulated as

dF; df; A .
G dr g [Fr filxo)] g()  [Fro fixr)] rp(xk) (51)
Then the updating ODEs become simply
du; drF; .
—_ k 52
d dr 62

Consequently, based on the ADF concept, the updating ODEs may be readily determined for the solution-point values
viz.
du; i Ry R d(x xp) .~ .o~
i — T x)da fO g dx Frm ) Fu O ) (53)

XL XL

The foregoing procedure may be viewed as an ADF-FR scheme, as it combines the generalized ADF approach with a
Flux Reconstruction base solution.

Assuming that on the right-hand side of Eq. (53) the reconstruction of f(x) may be obtained from the flux at the
solution points f;, then from Eq. (50), it is possible to extract

fx) Fix) [Fr fio)] () [Fr fi(xp)] ze(x) (54)
Subsequently, we can put
a f(x)m P F(X)M dc
XL dx XL dx
R d” (x X ) R d"(x x) (53)
[(FL fitx)] BO)——dx [Fr fi(w)] RB(x>d—x" dx

Then through the use of F;(x;) Fr Fi(xg) Fr, we can write

R d"(x xp) - .~ ® dF(x) -~ dF(x)

F(X)d— dx  Fr (xgp xx) Fr (xz xi) (x x)dx (56)
0 X X dx dx o,
With these expressions in hand, the substitution of Eq. (55) into Eq. (53) leads to
du; R d (x x .~ L
Tk f(x)de Fr (xg x)  Fr (xp x)
t X dx
d"(x xp) - o~
Fey—g—dx P Ox x)  Fu'(u x)
N R d” (x X ) R d” (x X ) (57)
(Fr fiap]l  m@——2dx [Fr filw)]  re()——
X XL
dF(x . R d (x x . R d"(x x
e el w0 S e e el w0
X X dx X dx
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According to the FR method, in the case of N 1 solution points, 1p(x) becomes a polynomial of order (N 1) that
satisfies

g(xz) 1 and w(xg) O (58)

In the context of the FR-DG approach, the ;g(x) polynomial is taken to be orthogonal to Py (x).

Presently, for the Nth-order u(x), the appropriate ADF will be "y, (M  0). Thenif weuse n(x x)  yo(x xz),
which represents an Nth-order polynomial, the derivative d y(x x;) dxbecomes an (N 1)th-order polynomial. This
enables us to put

XR d~ XR d~
LB@)M dx RB(x)M dx 0 (59)
X dx X dx
whence, based on Eq. (57), we have
du,‘k dFi
—_— 60
dr dx (60)

It can thus be seen that the present ADF-FR formulation gives rise to the same FR-DG expression.
When considering other cases where 1g(x) is no longer orthogonal to Py |, the flexibility of y /(x x), which is
enhanced by its inclusion of M arbitrary coe cients, enables us to solve for the coe cients from the linear integrals

XR

0 re(X)

XL

xR d"’
Nm(x xp) dx

&
L) . N m(x xi) dx
X

P 0 (61)

XL

This straightforward evaluation allows the complete determination of ~y(x X;) in a manner that reproduces the
corresponding FR formulation identically. However, by selecting ~np(x x;) di erently, it is possible to devise
schemes that di er from the FR method, namely, in their ability to incorporate additional capabilities. Moreover,
extensions of this ADF-FR method to two and three dimensions can be accomplished with similar ease, thus leading
to identical conclusions to those realized here. In short, the ability of the ADF-FR method to extend the FR and CPR
approaches is plausible.

VI. Point-Value Enhanced Finite Volume Method (PFV)

Based on the foregoing discussions, it may be safely argued that approximate delta functions may be viewed
as e ective tools for deriving the updating ODEs associated with di erent schemes through the use of a rigorous
mathematical formalism. In this context, it is clear that the ADF approach o ers a fresh and e cient strategy for
updating the unknown information associated with a given element irrespective of the underlying scheme. Another
advantage of this approach stands in its simplicity and flexibility in the placement of DOFs at any desired point in the
element such as the nodal points and edges.

Since nodes undergo the highest sharing rate, the assignment of additional information at the nodes maximizes the
number of neighbors with whom this information may be communicated. When information is added at one node, it
is systematically shared by all of the surrounding nodes, thus leading to one of the most e ective DOF strategies. For
example, in the case of a triangular mesh, the addition of a single quantity at the nodes of one element enables us to
immediately gain three values for this element. Furthermore, to ensure the scheme’s conservation, the cell-averaged
values are stored and updated identically to the manner used by the finite volume method.

Presently, both nodal values and derivatives are introduced to enhance the scheme’s overall accuracy by achieving
a high-order and compact representation of the unknown quantity in each element. To emphasize this property, we dub
this scheme “Point-value enhanced Finite Volume (PFV).” The PFV method can, therefore, be compact, high-order,
and stable, because of the continuity of the solution being enhanced by the sharing of nodal information.

Similar strategies may be seen in the multi-moment finite volume method (see Xie et al.'” and the references
therein), as well as the active flux method.?%2! In these, however, the values, without the derivatives, are stored and
updated on the edges and, in some cases, the nodes. The distinguishing characteristic of these approaches rests in the
manner by which the updating of point information, values and derivatives can be performed. Unlike the di erential
form used by Xie et al.,'? the PFV relies on approximate delta functions to derive the updating ODE:s for the additional
DOFs at each point.
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Figure 7. Comparison between the DOF arrangement and integral domain of (a) the Point-value enhanced Finite Volume (PFV) method
and (b) the Taylor-based DG method.

Simple sketches that compare the DOF arrangement and integral domain within the PFV to those associated with
the Taylor-based DG method are furnished in Fig. 7. Although both PFV and Taylor-based DG methods seek to
update the cell-averaged value in each element consistently with the finite volume method, the updating of derivatives
is performed quite di erently. In the PFV case, the weak integral form is implemented in the region [x; | » x; 3 2],
while in DG method, the integration domain is restricted to [x; | » x; 1 2]. The doubling of the domain width as well as
the overlapping of PFV’s integration interval enhances its stability relative to the DG scheme. As to the element-wise

unknown reconstruction, the Taylor-based DG method possesses element-wise DOFs of the type # u x ;- In
contrast, every element within the PFV scheme carries multiple DOF quantities, namely, u u x i 12, U;, and
u u x i 1 2. Another avenue for comparison is this. If we were to compare the DG scheme with N DOFs in

every element to a PFV formulation taken at the same order on the nodes, the PFV would possess (2N 1) DOFs for
each element. It can hence be seen that for the same number (or order) of DOFs in one-dimensional space, the PFV
strategy can double the order of the scheme compared to the DG formulation. In fact, the same argument not only
holds but can be more beneficial when contemplating the extension of this approach to multiple dimensions.

In the interest of clarity, we refer to the PFV approach as PoFV when only the unknown value is stored at the nodal
point. As such, the term P,FV may be used when the coe cients of an nth-order polynomial are saved on each nodal
point. Accordingly, the use of P;FV will imply that both the unknown quantity « and its first-order derivative are
saved on the nodal point. Along similar lines, the term P,FV,, will be used to describe the approach in the presence
of an mth-order polynomial reconstruction within the element. The mth-order polynomial in the element is typically
reconstructed using the method of least squares and information that is stored on the cell and nodal points. At times, a
weighted least-squares method may be implemented to ensure a suitable reconstruction while providing an additional
avenue for controlling stability.

A. PyFV for the Linear, One-Dimensional, Scalar Wave Equation

To illustrate the application of the PyFV, we begin by considering a classical example, namely, that of the linear
wave equation in one-dimensional space as given by Eq. (18). To solve this hyperbolic equation, we construct a
uniform mesh, store and update the cell-averaged values i;, as well as the point values u; | , at the interfaces. Based
on the PyFV construct, the updating equations become

diz; Fii2 Fiia

dt h
du; 12 a2 d(x x; 12) A - A - 62)
q JOO)————dx Fizo (xiz2x12) Fir2 (12X 12)
! Xi12 dx
1. Second-Order PyFV, Formulation
At every cell 7, the solution may be expressed using a first-order polynomial, viz.
u; u;
B B e ) (63)
Then at the interface, i 1 2, the left and right-hand side values may be computed using
ub |, (1 2) ul o, i (1 0) (64)
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Subsequently, the upwind numerical flux may be consolidated into
Fi s slauf o auf 5 a@f, upy )] (65)

and then inserted into Eq. (62). Because i;(x) is linear, we may use (x) %h ! for the updating of the point values.
In this case, the domain integral in Eq. (62) vanishes by virtue of d"; dx 0. As such, the updating expression for
the point values simplifies into

A N

du; 1 - Fizo Fiia
dr 2h

(66)

2. Third-Order PyFV, Formulation

For every cell 7, the solution may be synthesized from (#; | #; #; 1) and (¢; | » u; 1 2), using the method of least
squares. Accordingly, the solution in each cell may be written as

() moar a2 % (67)

Hence, the problem becomes that of minimizing the total deviation from the cell-averaged value and the values at the
interface and neighboring cells. By taking

12 2 32 2
Io [@C 12) wio (a1 2) uigof m()d m()d (68)
32 12
one obtains the linear system
I I
=2 0 22 0 (69)
ai a

Subsequently, by solving Eq. (69), the reconstructed second-order polynomial takes the form

wi12 w2 20y @) 360 @) 612 w12 84w 21

i; i; N — 70
() 5 37 2 24 (70)
where % Then at the interface, i 1 2, the left and right-hand sides values may be evaluated from
L ~ R ~
w5, wi(x; 12) and w5, B o(x12) (71)

The corresponding upwind-based numerical flux becomes

A

Fiva glaufyy aufyy aG, uiy )] (72)
In this case, the ADF formulation yields

9 15

0 %(x xi 12)° (73)

2(x X 12)

When Eq. (73) is substituted into the domain integral in Eq. (62), it may be evaluated separately on each cell by taking

Xi 32 Xi12 Xi 32

d~2 d~2 d~2
f (X)E dx f (X)E dx f (X)E dx (74)

Xi12 Xi12 Xi12

which can be readily computed using a two-point Gaussian-Legendre quadrature on each cell. In this exercise, the two
Gaussian points consist of |, ?3, and the corresponding weight equals %h For each cell i, the Gaussian point
corresponds to x;  xh  x;, and so the derivatives and integrals over the cell domain may be evaluated sequentially
using

d, 15

dx 42

15

el 12 (75)

d>
12 —
(x ) &
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and so

Xi 32

d” 15
f(X)—dzdx S 1T2)fin (2 12Dfia (1 12)firn (2 12)fi12] (76)
X 8h

Xi12

where f;1  fli;( )], and fi»  f[it;( 2)] represent the fluxes at the Gaussian points in element i. Forthwith, the
updating equation for u; | , reduces to

du; 12
dr

15 3 4 .
@[(1 L2)fir (2 12)fin (1 12)firr (2 12)fii2] 4_h(Fi32 Fi12) 77

3. Fourth-Order PyFV3 Formulation

At every cell i, the solution may be deduced, as usual, from (&z; | #; @; ;) and (4; | » u; | 2), using the method of
least squares. As before, by writing the solution in each cell as

() o oar a3 & a3’ (78)

minimizing the total deviation between the cell value and the values at the interface and neighboring cells can be
captured through

12 2 32 2
Iy lw( 12 w2 [@(12) w2l a( )d i a()d @ (79)
32 12
Minimizing the deviation will hence require setting
I I I
0 209 22 9 (30)
aj ap as

By solving the linear system given by Eq. (80), one arrives at a third-order polynomial of the form

oy iy 10(u; 12 ui12)

() i 3
36@; i 1) 612 wup12) 84 _2 1 1)
37 2 24
3@ 1 1) 2Wi 12 Ui12) 4

6

As for the flux at the interface, its computation may be accomplished using a procedure that mirrors our evaluation
at previous orders. At this particular order, however, two ADFs, namely, “o(x xi 12)  3(x x; | 2), must be used in
conjunction with three Gaussian points in order to suitably resolve the domain integrals. To proceed, these quantities
may be substituted into the domain integrand of Eq. (62) and evaluated term-by-term to produce

Xi 32

d- 15 ° ’
3
fO)—=dx  — WCx 12 fik e 12k (82)
Xi 12 dx 8h
i k1 k1
where the Gaussian weights consist of 3 g, and > g while the Gaussian points comprise |3 l—lf, and

2 0. At this fourth order, the updating equation for u; | , may be rearranged into

3 3

3 4 .
Wr 1 2)fik W 12Dfive —WEiz2 Figa) (83)
kol Kl 4h

du,- 12 15
dr 8h

B. PFYV for the Linear, One-Dimensional, Scalar Wave Equation

In this case, apart from the two equations that arise in Eq. (62), a third relation will be necessary in order to
adequately update the first-order derivative on each node. This expression is

dii2 R d~(xxi12)dx

hf(x) hE: 32" (xis2 X 12) hEiv2 (612 % 12) (84)
dr dx

Xi 12
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where

du

ai 12 (85)

1. Third-Order P1FV, Formulation

As we gradually increase the order, the solution at every cell can be reconstructed from the quantities and
derivatives, #; and (u; 12 ; 12 ;12 i 12), retrieved from the method of weighted least squares. In this case, the
solution in each cell may be expanded into

() moar a2 % (86)
and so the distance to the values and derivatives at interfaces may be expressed as
i 2 i 2
Iy sl 12w slm(2) wooP FC1) 20 FAD e (87)

Naturally, minimizing the total deviation requires taking

oy Do, (88)

a ap

Thus by solving Eq. (88), the reconstructed second-order polynomial becomes

. sty ui12) 20512 i12)
()
4 s 89)
6 (suj 12 suj12 2si; 6(;12 12 2 1 (
36 s 2 24

where s 10 9 denotes the least-squares weight associated with the nodal values. The remaining procedure to obtain
the updating ODE for u; | , proves to be identical to that already developed for PoFV,. To illustrate the manner by
which the updating of ; ; , may be accomplished, we consider the ADF polynomial for the derivative weight function
~(x), namely,

2

3x
2h3
In this case, two Gaussian points will be necessary in the evaluation of the domain integral. After some algebra, we
retrieve the updating equation for ; | », namely,

NEY) (90)

dirta 3 ° ? 3
— = Cr 1 2Dfik e 12D fie 7Fisza Figo) on
dr 4h 2h
k1 k1
where the Gaussian weights may be set at unity with » L

2. Fourth-Order P, FV5; Formulation

The highest order that we will describe in this study consists of using the method of weighted least-squares at
every cell i for the values of (&t; | u; #; 1) and (u; 12 u; 12 ;12 i 12)toarrive at a fourth-order formulation. For
the solution in each cell

w() aoar a3’ g @’ 92)
the total deviation that must be minimized can be estimated from
oSl 1) wiaP sl D) wiaP B2 0 S (93)
and so, its extrema may be found by taking

I I I

0y 0 9 DO

ag ay as
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After solving Eq. (94), the reconstructed third-order polynomial can be written as

~ 612 uir2) Citz2 12
() i
4
6 suj 12 Suppo2 2si; 6(; 12 i12) _2 1 95)
36 s 2 24
3@ v i) 22 ui12) 5
6

where s 10 © stands for the least-squares weight ascribed to the nodal values. We replace a3 from Eq. (81),
which makes scheme stable. Here too, three Gaussian points may be e ectively used following the procedure that we
developed for the PyFV; formulation. At the outset, the updating equation for ; | , may be extracted and compacted
into

dj12 15 ° ) } ) 15 . .
— 5 21Cx 1 2)°]fix 5 21Ck 1 270fitxe —Wiza Figr2) (96)
dr 16h ol o 4h

C. Fourier Stability Verification of the PFV Method

To further confirm the viability of the PFV method, a Fourier stability analysis is carried out as in the case of ADF-
DG method. Here the unknown vectors are specified as U;  [it; u; »]T and Ui [ujujr2 ji »]7 for the PyFV,
and P,FV,,, respectively. As before, the coe cient matrices M atdi erent orders may be readily evaluated along with
the real parts of the corresponding eigenvalues. In what follows, we use Fig. 8 to display the real parts of the two
eigenvalues for PyFV,,, and Fig. 9 to provide the real parts of the three eigenvalues for P;FV,,. In all cases considered,
it may be seen that the PoFV,, scheme remains stable in its half-discretized form. The stability of the P;FV, solution
is also confirmed, although P;FV; exhibits a small region of  with weakly positive eigenvalues. This instability
may be readily suppressed by the TVD Runge—Kutta time-matching technique, which is known for its e ectiveness in
stabilizing the scheme. The ensuing behavior will be illustrated in the forthcoming numerical examples.

D. Numerical Verification

In order to test the accuracy and stability of the PFV scheme, two benchmark cases will be considered: the
linear wave equation given by Eq. (18) with a 1 as well as the nonlinear Burgers’ equation. In this process,
periodic boundary conditions will be imposed at both ends of the computational domain, which will be bracketed
over the interval [0 1]. Two di erent initial conditions will be tested in the context of the linear wave equation by
specifying two forms of the initial function, uo(x). For simplicity, a uniform mesh is considered. Subsequently, to
verify the successive orders of the PFV scheme in the context of the one-dimensional wave equation, the number of
grid points will be taken to be 8, 16, 32, and 64, respectively. In analyzing Burgers’ equation, an additional stencil
of 128 points is considered to fully confirm the convergence order. To quantify the error, we define the residual to be
Ri  Uexact Unumeric and use both the L; R;dx and L max R; error measurements of the cell-averaged values
to quantify the error. Furthermore, a third-order TVD-Runge—Kutta method is relied upon for time matching.

E. Linear Wave Equation with an Initial Function

Using up(x)  sin(2 x), the problem is run for one period of time, until # 1. The errors entailed in the PFV
scheme at di erent orders are cataloged and compared in Tables 1, 2, and 3. Everywhere, i denotes the grid step size.

We refer the reader to Fig. 10 where the left and right subsets provide a useful comparison of the base 10 logarithms,
lg(L;) and 1g(L ), at di erent PFV orders. Based on these findings, it may be ascertained that the intended orders are
secured. Nonetheless, PoFV3 appears to slightly under-perform its projected fourth order, unlike the P{FV, result
which displays an accelerated convergence rate. These findings demonstrate that, when taken at the same order n, the
P,FV,, formulation outperforms the PoFV,, result in the attainable degree of precision.

In these numerical experiments, the critical CFL, which represents the maximum CFL number to keep the scheme
stable, is computed numerically, although it can be alternatively determined using Fourier analysis. Specifically for
the case of 16 grid points, the code is executed in time up to #  1000. In principle, the scheme is deemed stable when
the maximum value of u over the entire domain, x [0 1], continues to depreciate with the passage of time. This test
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Table 1. Characteristics of the linear wave equation witha 1 u9 sin(2 x),and ¢t [0 1]. The decimal logarithms, Ig(L;) and 1g(L ),
refer to the errors entailed in the second-order PyFV; scheme.

lg(h) Ig(L;) Order Ig(L ) Order
-0.903  -0.685 - -0.480 -
-1.204 -1.278 198 -1.076 1.98
-1.505 -1.886 2.02 -1.689 2.04
-1.806 -2.492 2.01 -2.295 2.01

Table 2. Characteristics of the linear wave equation witha 1 u9 sin(2 x),and¢ [0 1]. Herelg(L;) and Ig(L ) refer to the third-order
PoFV; and P FV,; errors.

PoFV, P FV,
Ig(h) lg(L;) Order 1g(L ) Order Ig(L;) Order 1g(L ) Order
-0.903 -0.980 - -0.771 - -1.153 - -0.952 -
-1.204  -1.785 2.68 -1.595 2.90 -2.271  3.71 -2.077 3.74
-1.505 -2.665 2.92 -2.468 2.90 -3452 392 -3.258 3.92
-1.806  -3.539 2.90 -3.343  2.90 -4.648 3.98 -4.452 397

also enables us to determine the critical CFL, which is evaluated and posted in Table 4. Based on these results, it may
be seen that the PFV scheme is highly stable. Another characteristic that may be inferred from these results concerns
the critical CFL, which does not decrease monotonically with successive increases in the order of the solver, contrarily
to its variation within most other methods.

F. Linear Wave Equation with an Initial Function

In comparison to the previous case, using an initial condition of ug(x)  sin*(2 x) leads to a more complex
distribution, namely, one that engenders more extrema. By running the problem over one period of time, ¢ 1, the
errors at di erent PFV orders are collected and compared in Tables 5, 6, and 7. Furthermore, the left and right subsets
of Fig. 11 compare the logarithmic Ig(L;) and 1g(L ) variations at successive PFV orders.

Upon close examination of the tabular and graphical results, it may be confidently ascertained that the expected
orders have been very closely reproduced. Two exceptions may be noted, as the PyFV3 solution appears at a slightly
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Figure 8. The real parts of the two eigenvalues of the coe cient matrix M corresponding to PoFV,(n 1 2 3).
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Figure 9. The real parts of the three eigenvalues of the coe cient matrix M corresponding to P{FV,(n 2 3).

Table 3. Characteristics of the linear wave equation witha 1 uy sin(2 x),and ¢ [0 1]. Here Ig(L1) and Ig(L ) refer to the errors in
the fourth-order PyFV3 and P;FV3 schemes.
PoFV3 P,FV;

Ig(h) lg(L;) Order 1g(L ) Order Ig(L;) Order 1g(L ) Order

-0903 -2485 - -2.304 - 27077 - -2.606 -

-1.204 -3.556 3.56 -3.366 3.53 -4.099 4.39 -3.908 4.33

-1.505 -4.614 3.51 -4.419 3.50 -5.356  4.18 -5.161  4.16

-1.806 -5.714 3.65 -5.518 3.65 -6.579 4.06 -6.383  4.06

lower order than the expected fourth order, whereas the PFV, solution converges more rapidly than expected. Here
too, for the same order scheme, the P;FV, approximation displays a better degree of precision than its PyFV,
counterpart.

Table 4. Critical CFL using the PFV scheme at di erent orders in conjunction with the linear wave equation with a

1uy sin2 x),

and a time resolution leading up to ¢  1000.
PoFV, PyFV, PyFV; PFV, P;FV;3
CFL 1.20 1.61 0.88 1.67 0.74
Table 5. Characteristics of the linear wave equation witha 1 u sin’(2 x),and ¢ [0 1]. Here Ig(L1) and Ig(L ) correspond to the
errors in the second-order PyFV; scheme.
Ig(h) 1g(Ly) Order 1g(L ) Order

-0.903 -0.456 - -0.379 -

-1.204 -0.767 1.03 -0.549 0.56

-1.505 -1.285 1.72 -1.087 1.49

-1.806 -1.887 2.00 -1.690 2.00
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Figure 10. Convergence behavior of the PFV errors at differently specified orders. Results correspond to the linear wave equation with
a = 1and uy = sin(2nx) at ¢ = 1. Here we show (a) 1g(L1) (o) and (b) 1g(L) (©) for the errors in the P,FV,, scheme at successive levels of

accuracy: PgFVy (—), PgFV; (- — =), P1FV2 (- - =), PgFV3 (

), and P{FV3 (= - -—).
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Figure 11. Convergence behavior of the PFV errors at differently specified orders. Results correspond to the linear wave equation with
a = 1and ug = sin?(2nx) at ¢ = 1. Here we show (a) Ig(Ly) (o) and (b) Ig(Ls) (©) for the errors in the P,FV,, scheme at successive levels of

accuracy: PgFV{ (—), PgFV; (— — =), P1FV, (- - =), PgFV3 (

), and P{FV3 (= - -—).

Table 6. Characteristics of the linear wave equation with a = 1,uy = sin2(27rx), and ¢ € [0,1]. Here Ig(L1) and 1g(L.,) refer to the
third-order PgFV; and P{FV; errors.
P,FV, P,FV,

Ig(h) lg(L;) Order lg(Ls) Order Ig(L;) Order Ig(Ls) Order

-0.903 -0489 - -0412 - -0427 - -0.362 -

-1.204  -1.020 1.76 -0.804 1.30 -1.148  2.40 -0.954  1.97

-1.505 -1.790 2.56 -1.600 2.64 -2.265  3.71 -2.070  3.70

-1.806 -2.666 291 -2.470  2.89 -3.449 3.93 -3.253 393

G. Burgers Equation with an Initial Function

To further verify the consistent accuracy of the PFV approach in the solution of nonlinear equations, the standard
Burgers’ equation is considered with an initial function of uy(x) = % + sin(27rx). This hyperbolic PDE may be written
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Table 7. Characteristics of the linear wave equation witha 1 u sin2(2 x),and ¢ [0 1]. Here lg(L1) and Ig(L ) correspond to the
errors in the fourth-order PyFV3 and P;FV3 schemes.

P()FV3 PIFV3
Ig(h) lg(L;) Order lg(L ) Order Ig(L;) Order Ig(L ) Order
-0.903 -1.301 - -1.187 - -1.440 - -1.438 -
-1.204 2417 3.71 -2.266  3.59 2775 443 -2.601 3.86
-1.505 -3490 356 -3299 343 -4.101 440  -3911 435
-1.806 -4.564 3.57  -4367 3.55 -5.358 4.18 -5.164  4.16
as
e o 97)
t x 2 ’

with periodic boundary conditions on both sides of the computational domain. To promote a smooth solution, the
numerical e ort is carried out up to time # 4i. In this case, our reference solution is obtained straightforwardly
using the P;FV3 formulation in conjunction with a benchmark mesh of 256 grid points. Subsequently, the reference
cell-averaged values on coarser meshes are calculated using the benchmark solution. Here the numerical flux at the
interface is of the local-Lax—Friedrich (LLF) type, namely,

A

1
Fivz EfL /% max ”ile ”1812 (”lez ”ile) (98)

2 2
where £ 1wl , “and R 1 uf

; sin(2 x),and ¢t [0 4i]. Here 1g(L1) and 1g(L ) refer to the

Table 8. Characteristics of the nonlinear Burgers’ equation with uy(x)
second-order PoFV; errors.

Ig(h) 1g(Ly) Order 1g(L ) Order
-0.903 -2.028 - -1.763 -
-1.204 2488 1.53 -1.955 0.64
-1.505 -2963 1.58 -2.283 1.09
-1.806 -3.516 1.84 -2.768 1.6l
-2.107  -4.098 193 -3328 1.86

Table 9. Characteristics of the nonlinear Burgers’ equation with u¢(x) L sin@2 x),and ¢t [0 4l]. Here 1g(L1) and 1g(L ) refer to the

2
third-order PgFV; and P{FV; errors.

PoFV, PFV,
Ig(h) lg(L;) Order 1g(L ) Order Ig(L;) Order 1g(L ) Order
-0.903 -2.318 - -1.786 - 2215 - -1.711 -
-1.204  -3.039 2.39 -2.408  2.07 -2.903 2.28 -2.365  2.17
-1.505 -3.861 2.73 -2.995 1.95 -3.822  3.05 -2.881 1.71
-1.806  -4.738 2.90 -3.832  2.78 -4.789  3.21 -3.811  3.09
-2.107  -5.637 2.99 -4.710 2.92 -5.805 3.38 -4.804  3.30
22

American Institute of Aeronautics and Astronautics



Table 10. Characteristics of the nonlinear Burgers’ equation with u(x) = % + sin(27rx), and ¢ € [0

fourth-order PgFV3 and P{FVj errors.

> 4r

L. Here Ig(L;) and 1g(L,) refer to the

PoFV; P FV;
Ig(h) lg(L;) Order lg(Ls) Order Ig(L;) Order Ig(Ls) Order
-0.903 -3.125 - -2.599 - -4.043 - -3.691 -
-1.204  -3.999 2.90 -3.252  2.17 -4.557 1.71 -3.771  0.26
-1.505 -4.797 2.56 -3.904  2.17 -5.474  3.04 -4.417 2.14
-1.806 -5.848 3.50 -4.809 3.01 -6.608  3.77 -5.492  3.57
-2.107  -6.991 3.80 -5.882  3.56 -7.812  4.00 -6.689  3.98
lg(L lg(L. —
2] | " —
/D/:.;/’ - 1 o/ T o
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Figure 12. Convergence of the PFV errors at differently specified orders. Results correspond to the nonlinear Burgers’ equation with
uy = % + sin(2zx) at t = ﬁ. Here we show (a) 1g(L1) (o) and (b) 1g(Ls,) (©) for the errors in the P,FV,, scheme at different orders: PyFV;
(—), PoFVy (= = =), P1FV3 (= - =), PgFV3 (-+ - -+ ), and P1FV3 (= - --).

After several numerical runs, the errors accrued in the PFV formulations at varying orders are collected and
displayed in Tables 8, 9, and 10. The logarithmic behavior of the errors are also provided in the two subsets of
Fig. 12, where 1g(L;) and 1g(L,) are characterized at progressive PFV orders.

Despite the increased complexity of Burgers’ nonlinear equation, it is gratifying that the projected orders are
achieved with a fair degree of precision. As before, two exceptions are noted and these include the PoFV;
representation, which evolves at a slightly slower rate than the expected fourth order and, conversely, the P;FV,
formulation, which seems to converge more rapidly than its anticipated rate. It may thus be speculated, although not
formally proven, that the P;FV5; will outperform the PoFV; by exhibiting a smaller error and a higher convergence
rate. In fact, this trend becomes more noticeable at higher orders because, at the third order, the P;FV, solution may
be viewed as being only slightly more accurate than its Po)FV, counterpart when comparing error magnitudes.

VII. Conclusion

This work revisits and extends Huynh’s concept of an approximate delta function (ADF), > which can be expressed
in the form of a finite-order polynomial with such a distinct integral property over a finite domain that it can be used
to complement and extend the capabilities of existing computational methods. This is accomplished by providing the
means to incorporate additional coefficients that can directly enhance the properties of the scheme under consideration.
ADF polynomials enable the user to experiment with different arrangements of DOFs, and this feature can lead to
the reconstruction of high-order methods with favorable properties. Despite the development of this work totally
independently of Huynh’s, '>?? it shares similar characteristics.

In this study, we first show that generalized ADF polynomials exhibit useful properties: an ADF polynomial of
order (N + K), which we label here as dyx, reproduces the integral property of a delta function for an arbitrary
polynomial of order N, while providing K arbitrary constants that can be judiciously specified. At the outset, an ADF
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polynomial can be used to derive the updating ODEs associated with high-order numerical schemes.

To illustrate the versatility of ADF polynomials, we show that the ADF procedure can be e ectively used to
reconstruct the updating ODEs of the Taylor-based, nodal DG, and Flux Reconstruction methods identically. In
this process, the ADF technique provides the means to extend these techniques by introducing extra coe cients and
functionalities that can be optimally specified. Then using Fourier analysis, the Taylor and nodal-based ADF-DG
methods are shown to be stable and that their stability is enhanced using auxiliary coe cients.

Subsequently, by leveraging the ADF tool to handle di erent DOF settings, a point-value enhanced finite volume
(PFV) method is introduced, which stores and updates the cell-averaged values along with the values and derivatives
of unknown quantities at all nodal points. Within the PFV framework, the cell-averaged values are updated in the same
manner as in the finite volume method to ensure conservation. Furthermore, the nodal information is updated through
ADF integration over the entire collection of elements surrounding a given point. The updating of nodal quantities on
multiple elements leads to a stable algorithm, as confirmed using a Fourier stability analysis.

By way of verification, the PFV technique is vetted by investigating its performance in treating the linear, one-
dimensional, wave equation as well as the nonlinear, one-dimensional Burgers’ equation. In both cases considered,
a careful analysis of the logarithmic errors confirms the projected orders along with the convergence rate of error
residuals. In this process, the improved stability of the PFV method is ascertained, thus demonstrating the ability of
the present approach to enhance both stability and accuracy hand-in-hand. In future work, we hope to extend the PFV
method to two and three spatial dimensions both with and without the incorporation of viscous e ects.

Acknowledgements

This work is supported partly by Adaptive Delta Analytics, LLC, and partly by the Hugh and Loeda Francis Chair
of Excellence, Department of Aerospace Engineering, Auburn University.

References

"Huynh, H. T., “High-Order Methods Including Discontinuous Galerkin by Reconstructions on Triangular Meshes,” 49th AIAA Aerospace
Sciences Meeting, AIAA Paper 2011-44, Orlando, FL, January 2011.

2Huynh, H. T., “On Formulations of Discontinuous Galerkin and Related Methods for Conservation Laws,” NASA/TM2014-218135, 2014.

3Reed, W. H. and Hill, T. R., “Triangular Mesh Methods for the Neutron Transport Equation,” Los Alamos Scientific Laboratory Report,
LA-UR-73-479, Vol. LA-UR-73, 1973, pp. 479.

“LaSaint, P. and Raviart, P. A., On a Finite Element Method for Solving the Neutron Transport Equation. Mathematical Aspects of Finite
Elements in Partial Differential Equations, Academic Press, 1974, p. 89-145.

5Cockburn, B., Karniadakis, G., and Shu, C. W., editors, Discontinuous Galerkin Methods: Theory, Computation, and Application, Springer,
2000.

%Bassi, F. and Rebay, S., “A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible
Navier—Stokes Equations,” Journal of Computational Physics, Vol. 131, 1997, pp. 267-279.

7Bassi, F. and Rebay, S., “High-Order Accurate Discontinuous Finite Element Solution for the 2D Euler Equations,” Journal of Computational
Physics, Vol. 138, 1997, pp. 251-285.

8Cockburn, B. and Shu, C.-W., “The Local Discontinuous Galerkin Methods for Time Dependent Convection Di usion Systems,” SIAM
Journal on Numerical Analysis, Vol. 35, 1998, pp. 2440-2463.

9Shu, C.-W., Discontinuous Galerkin Method for Time Dependent Problems: Survey and Recent Developments, Springer, 2012.

10Kopriva, D. A. and Kolias, J. H., “A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows.” Journal of
Computational Physics, Vol. 125, 1996, pp. 244-261.

UL iy, Y., Vinokur, M., and Wang, Z. J., “Discontinuous Spectral Di erence Method for Conservation Laws on Unstructured Grids,” Journal
of Computational Physics, Vol. 216, 2006, pp. 780-801.

12Wang, Z.]., Liu, Y., and May, G., “Spectral Di erence Method for Unstructured Grids II: Extension to the Euler Equations,” Journal of
Scientific Computing, Vol. 32, 2007, pp. 45-71.

13Wang, Z.1]., Zhang, L., and Liu, Y., “Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids IV: Extension to
Two-Dimensional Euler Equations,” Journal of Computational Physics, Vol. 194, No. 2, 2004, pp. 716-741.

4Huynh, H. T., “A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods,” 18th AIAA
Computational Fluid Dynamics Conference, AIAA Paper 2007-4079, Miami, FL, June 2007.

I5Huynh, H. T., “A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Di usion,” 47th AIAA Aerospace
Sciences Meeting, AIAA Paper 2009-4303, Orlando, FL, January 2009.

1Wang, Z. J. and Gao, H., “A Unifying Lifting Collocation Penalty Formulation Including the Discontinuous Galerkin, Spectral
Volume Di erence Methods for Conservation Laws on Mixed Grids,” Journal of Computational Physics, Vol. 228, No. 2, 2009, pp. 8161-8186.

7Wang, Z. J. and Gao, H., “A High-Order Lifting Collocation Penalty Formulation for the Navier—Stokes Equations on 2-D Mixed Grids,”
19th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2009-3784, San Antonio, TX, June 2009.

24
American Institute of Aeronautics and Astronautics



18Gao, H., Wang, Z. J., and Huynh, H. T., “Di erential Formulation of Discontinuous Galerkin and Related Methods for the Navier—Stokes
Equations,” Communications in Computational Physics, Vol. 13, No. 4, April 2013, pp. 1013-1044.

9Xie, B., Li, S., Ikebata, A., and Xiao, F, “A Multi-Moment Finite Volume Method for Incompressible Navier—Stokes Equations on
Unstructured Grids: Volume-Average Point-Value Formulation,” Journal of Computational Physics, Vol. 277, 2014, pp. 138-162.

20Eymann, T. A., Active Flux Schemes, Ph.D. thesis, University of Michigan, 2013.

2lEymann, T. A. and Roe, P. L., “Multidimensional Active Flux Schemes,” 2/st AIAA Computational Fluid Dynamics Conference, ATAA
Paper 2013-2940, San Diego, CA, June 2013.

22Dumbser, M., “Arbitrary High Order PyPy; Schemes on Unstructured Meshes for the Compressible Navier—Stokes Equations,” Computers
& Fluids, Vol. 39, No. 1, January 2010, pp. 60-76.

ZHuynh, H. T., “On High-Order Upwind Methods for Advection,” 23rd AIAA Computational Fluid Dynamics Conference, AIAA Paper
2009-4303, Denver, CO, May 2017.

25
American Institute of Aeronautics and Astronautics



