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In this work, we generalize the expression of an approximate delta function (ADF), which is a finite-
order polynomial that holds identical integral properties to the Dirac delta function, particularly, when
used in conjunction with a finite-order polynomial integrand over a finite domain. By focusing on one-
dimensional configurations, we show that the use of generalized ADF polynomials can be e ective at recovering
and extending several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin
methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed
to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged
values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points.
The sharing of nodal information with surrounding elements reduces the number of degrees of freedom
compared to other compact methods at the same order. To ensure conservation, cell-averaged values are
updated using an identical approach to that adopted in the finite volume method. Presently, the updating of
nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within
the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable
at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier
analysis and through applications to two benchmark cases, namely, the linear wave and nonlinear Burgers’
equations in one-dimensional space.

I. Introduction

T
he Dirac delta function represents a well-defined distribution that extends over a line of real numbers while

possessing the unique property of vanishing everywhere except at the origin. Nonetheless, it still produces a unit

value when integrated over the entire real line. Moreover, one of its most distinguishing properties stands, perhaps,

in its ability to reproduce the values and derivatives of any function in integral form. In this paper, we show that

the integral properties of the delta function may be useful in a number of computational settings as an alternative

vehicle for evaluating functional values and derivatives over a finite domain. In numerical computations, however,

the theoretical delta function su ers from singularities because of its sudden vanishing and infinite distribution. In

2011 and 2014, Huynh1,2 introduced a very important concept, namely, that of an approximate delta function (ADF),

which serves well to overcome these limitations. Accordingly, the ADF is defined as a finite-order polynomial that is

capable of preserving the integral properties of the exact delta function in the evaluation of finite-order polynomials

over finite domains. In this study, we extend the ADF concept by allowing the ADF polynomial to contain arbitrary

coe cients and by defining ADF derivative weight functions that can be very e ective in the development of a high-

order numerical framework for solving partial di erential equations.

It is well known that, in the field of computational fluid dynamics, low-order methods are often selected because

of their simplicity and robustness, factors that jointly justify their recurrent use in engineering practice. Using similar

CPU resources, however, high-order methods can provide more accurate solutions, albeit at the cost of increased

complexity and reduced robustness. For this reason, numerous researchers have undertaken e orts to improve the

manner by which high-order techniques may be constructed, with the aim of improving their accuracy while enhancing

their stability and performance characteristics.

In this vein, the Discontinuous Galerkin (DG) method was developed because of its favourable attributes; these

have led to its acceptance as one of the most widely relied upon high-order methods for solving the Navier–Stokes

equations. The method itself was introduced in the context of the neutron transport problem by Reed and Hill, 3

analysed by LaSaint and Raviart4 and then extended and popularized in the fluid dynamics community by Cockburn,

Shu, Bassi, Rebay, and others (see Cockburn et al., 5 Bassi and Rebay,6 Bassi and Rebay,7 Cockburn and Shu,8 Shu 9

and the references therein).
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One of the essential characteristics of the DG approach lies in its dependence on the Galerkin method to

approximate a partial di erential equation (PDE) that applies to a finite element. The corresponding PDE is

subsequently converted into a series of ordinary di erential equations (ODEs) that can be solved by standard methods.

Alternative approaches that seek to achieve high-order accuracy rely on di erential forms. These may be

exemplified by the pioneering work on the staggered-grid spectral method,10 as well as the spectral di erence11,12

and spectral volume approaches,13 which have been complemented by the elegant method of flux reconstruction1,14,15

(FR), later evolving into the correction procedure via reconstruction16–18 (CPR).

Among these high-order methods, di erent ways exist to appoint the degrees of freedom (DOFs) to each element

at the cell-averaged or point-wise values, as well as their derivatives, which are later refreshed during the evaluation

process. Although the Galerkin method and local reconstruction have been shown to provide formal avenues to derive

the relevant ODEs in the context of the DG and di erential approaches, the application of ADF to formulate the local

ODEs will be used in this work as an alternative approach with particular benefits.1,2 We further explore a generalized

ADF approach that contains arbitrary constants that can be specified in such a way to enhance the performance of the

method to be reproduced. The characteristic attributes of this approach, such as simplicity, will constitute one of the

main subjects of this article. In fact, one of the advantages of ADF implementation will be shown to be associated

with its versatility in handling di erent DOF specifications.

It should also be noted that, in recent years, a well-developed constrained interpolation profile (CIP) with multi-

moment finite volume (MFV) method has been developed (see Xie et al. 19 and the references therein). Apart from

the cell-averaged value of a given element, MFV introduces additional DOFs on the element’s edge and nodal points.

The ability to share this supplementary information with neighboring elements transforms MFV into a more e cient

scheme for saving the number of DOFs compared to other high-order methods of comparable accuracy. Pursuant

to this approach, the sharing of additional DOFs within the context of continuity leads to the enhancement of the

scheme’s robustness. In fact, a similar concept may be attributed to the Active Flux (AF) method,20,21 where the

unknown values at edge-based flux points are treated as independent DOFs and updated at every time step.

Because nodal points undergo the highest sharing rate, being shared by more elements than edges, it proves

more e cient to increase the amount of information that is being communicated with a given element by placing

all additional DOFs on the nodes only. As such, it is possible to augment the nodal information and extend the MFV

and AF approaches by adding not only the unknown functional values at the nodal points, but also their derivatives. In

this process, the updating of cell-averaged values may be accomplished in a manner that mirrors the traditional finite

volume (FV) approach, thus guaranteeing the conservation of the scheme.

In practice, the manner by which additional information is updated on nodal points and edges constitutes the most

distinguishing features in the MFV and AF schemes. We presently rely on an ADF procedure and set the integral

domain to encompass all of the elements surrounding the point in question. This increases the radius of influence, as it

were, that accompanies each update. Our nodal updating procedure may hence be likened to the case of an overlapped

DG, where nodal values and derivatives can provide su cient information for the high-order reconstruction of the

unknown quantity in each element. As for the order of the “DG on the node,” it is no longer constrained by the DOFs

on the nodal point itself. The nodal updating becomes comparable to the PnPm procedure.22 Furthermore, since the

precision of the method may be improved by increasing the amount of information that is assigned to the nodal points,

we call this strategy a point-value enhanced finite volume method (PFV). As to the temporal updating, a conventional

third-order total variation diminishing (TVD) Runge–Kutta scheme can be conveniently employed.

In this article, the approximate delta function is revisited and extended in Section II to comprise arbitrary constants.

This is followed by applying the extended ADF to recover and generalize Taylor-based DG, nodal-based DG, and

FR CPR methods in Sections III, IV, and V, respectively. In Section VI, the ADF-based point value enhanced finite

volume method is defined, implemented, and verified numerically. We retire in Section VII with some conclusions

and recommendations for future work.

II. Reviewing and Extending the Approximate Delta Function (ADF)

To set the stage, we recall that a delta function exhibits the following integral property:

f ( ) ( x) d f (x) (1)

where f (x) stands for a continuous function of compact support. In 2011 and 2014, Huynh1,2 introduced an

approximate delta function (ADF) in the form of a finite-order polynomial that can mirror the integral property of a
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Dirac delta function over a finite domain, x [ 1 1]. In this work, we find it useful to change the domain boundaries

to the generalized interval x [a b] and write

b

a
PN( )˜N( z) d PN(z) (2)

where PN( ) is any Nth-order polynomial and ˜N(x z) represents an ADF polynomial of order N. The present analysis

begins by reviewing the ADF formulation introduced by Huynh2 while extending it to the case of x [a b]. We also

consider generalized ADF forms that have orders higher than N and that enable us to retrieve the derivatives of PN( ).

A. Revisiting Huynh’s ADF Concept

According to Eq. (3.4) used by Huynh,2 a Legendre polynomial expansion may be used to express the ADF of

order N explicitly as

˜N(x z)
1

h

N

i 0

(2i 1)Li( )Li( )
x xc

h 2

z xc

h 2
(3)

where the present notation is used with xc
1
2
(a b) representing the domain center, h b a denoting the domain

width, and Li( ) standing for the Legendre polynomial of order i.
By assuming a solution interval that is bracketed by [a b] [ 1 1] as before,2 and for N 4, one may readily

deduce from Eq. (3) that

˜
0(x z)

1

2
˜

1(x z)
1

2

3z
2

x ˜
2(x z)

9 15z2

8

3z
2

x
45z2 15

8
x2

˜
3(x z)

9 15z2

8

75z 105z3

8
x

45z2 15

8
x2 175z3 105z

8
x3

˜
4(x z)

225 1050z2 945z4

128

105z3 75z
8

x
525 4410z2 4725z4

64
x2

175z3 105z
8

x3 945 9450z2 11025z4

128
x4 (4)

Note that at z 0, we recover four terms with two identical expressions,

˜
0(x 0) ˜

1(x 0)
1

2
˜

2(x 0) ˜
3(x 0)

9

8

15

8
x2

˜
4(x 0)

225

128

525

64
x2 945

128
x4

(5)

Similarly at z 1
4
, we extract,

˜
0 x

1

4

1

2
˜

1 x
1

4

1

2

3

8
x ˜

2 x
1

4

129

128

3

8
x

195

128
x2

˜
3 x

1

4

129 195x2

128

1095x 1505x3

512

˜
4 x

1

4

41745 101745x4

32768

1095x 1505x3

512

68565x2

16384

(6)

For the reader’s convenience, the shapes of the approximate delta functions, ˜N(x z) for 1 N 4 are illustrated in

Fig. 1 at both z 0 and z 1
4
. It should be noted that identical ADF distributions are provided by Huynh2 for ˜N(x 0)

(N 0 1 8) and ˜N(x 1) (N 4 5 8).

B. Defining a Generalized ADF Expression

At this point, it may be helpful to specify the di erence between ADFs at two distinct orders N and M by

introducing the gap function, N
M(x z), where

N
M(x z) ˜N(x z) ˜M(x z)

1

h

i N

i M 1

(2i 1)Li( )Li( ); N M (7)
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Figure 1. The shape of the approximate delta function (ADF) for (a) ˜1(x 0) (——), ˜2(x 0) ( ), and ˜4(x 0) ( ), as well as (b)
˜1(x 1

4 ) (——), ˜2(x 1
4 ) ( ), ˜3(x 1

4 ) ( ), and ˜4(x 1
4 ) ( ).

It is then possible to define a generalized ADF, ˜N K(x z), as a polynomial of order N K, namely, by superimposing

a function, ˜N(x z), of order N, and a sum of gap functions, N i
N (x z), for i 1 2 K. This may be accomplished

by taking

˜N K(x z) ˜N(x z) c1
N 1
N (x z) c2

N 2
N (x z) cK

N K
N (x z) (8)

where the arbitrary coe cients are given by ci R, i 1 2 3 K. In the foregoing, the indices N K denote a

generalized ADF polynomial of order (N K). By virtue of the ADF integral property, one may readily substitute
˜N K(x z) back into Eq. (2) to show that

b

a
PN( )˜N K( z) d PN(z) (9)

where not only the order of the polynomial in ˜N K(x z) is raised to N K, but also K arbitrary coe cients are

introduced. Equation (9) can also be viewed as an integral-form definition of ADF other than the one given by Eq. (8).

It can thus be seen that the function ˜M(x z) not only satisfies

b

a
PN( )˜M( z) d PN(z) (10)

but also possesses an infinite number of solutions, when M N. Furthermore, one can write ˜M( z) ˜N M N(x z)

when M N, thus leading to ˜N 0(x z) ˜N(x z).

C. Defining ADF Polynomial Derivative Weight Functions

Besides the functions themselves, it is possible to define (N K)th-order ADF weight functions to generate the

actual derivatives of an Nth-order polynomial. This may be achieved by specifying ˜
N K( z) and ˜

N K( z) with the

following integral properties:

b

a
PN( )˜

N K( z) d
dPN(z)

dz

b

a
PN( )˜

N K( z) d
d2PN(z)

dz2
(11)

Then based on Eq. (9), one can deduce that

˜
N K(x z)

˜N K(x z)

z
˜

N K(x z)
2 ˜N K(x z)

z2
(12)

More generally, for a given nth-order derivative dnPN(z) dzn, one may specify a corresponding ADF derivative weight

function using

˜(n)

N K(x z)
n ˜N K(x z)

zn (13)
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Figure 2. The shape of the ADF derivative weight functions for (a) ˜
1
(x 0) (——) and ˜

3
(x 0) ( ), as well as (b) ˜

1
(x 1

4 ) (——), ˜
2
(x 1

4 )
( ), ˜

3
(x 1

4 ) ( ), and ˜
4
(x 1

4 ) ( ).

For example, using the Legendre polynomial expression in Eq. (3), ˜
N(x z) can be written as

˜
N(x z)

˜N(x z)

z
1

2

N

i 0

(2i 1)Li( )
dLi( )

d
(14)

which, for the special case of [a b] [ 1 1] and N 4, yields the following sequence of ˜
N(x z) (N 0 1 4):

˜
0(x z) 0 ˜

1(x z)
3

2
x ˜

2(x z)
15

4
z

3

2
x

45

4
zx2

˜
3(x z)

15

4
z

75 315z2

8
x

45z
4

x2 525z2 105

8
x3

˜
4(x z)

945z3 525z
32

75 315z2

8
x

2205z 4725z3

16
x2

525z2 105

8
x3 11025z3 4725z

32
x4

(15)

Similarly, for z 0 and z 1
4
, we have

˜
1(x 0) ˜

2(x 0)
3

2
x

˜
3(x 0) ˜

4(x 0)
75x 105x3

8

(16)

and

˜
1 x

1

4

3

2
x ˜

2 x
1

4

15

16

3

2
x

45

16
x2

˜
3 x

1

4

15

16

885

128
x

45

16
x2 1155

128
x3

˜
4 x

1

4

7455

2048

885

128
x

30555

1024
x2 1155

128
x3 64575

2048
x4

(17)

The shapes of the ADF derivative weight functions, ˜
N(x z) for 1 N 4 are illustrated in Fig. 2 at both z 0

and z 1
4
. It should be noted that the scales and shapes of ˜

N(x z) are completely di erent from those of the ADF

introduced by Huynh2 and illustrated in Fig. 1.
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III. ADF in Relation to the Taylor-Based DG Method for the Scalar 1-D Wave Equation

A. Second- and Third-Order Taylor-Based DG Schemes for the One-Dimensional Wave Equation

We begin by briefly reviewing the DG method in the context of the linear, one-dimensional, scalar wave equation.

Using standard nomenclature, we consider:

u
t

f (u)

x
0; f (u) au a 0 x [0 1] (18)

To proceed, we first subdivide the [0 1] interval uniformly into multiple elements e , and then use Taylor expansion

to discretize u(x) over each element by taking

[ll]ue(x t) ū(t)
u
x

(x xc)
2u
x2

(x xc)2

2

h2

24

ū(t)B0(x) u1(t)B1(x) u2(t)B2(x) (19)

where ū denotes the cell-averaged u, xc refers to the location of the cell-center, and h alludes to the width of the cell.

Being a normal polynomial, the Taylor basis (x xc)i (i 1 2 ) can be modified through subtraction to produce

e
Bi(x) dx 0 i 1 (20)

Next, Eq. (18) may be multiplied term by term by the Taylor bases

[B0(x) B1(x) B2(x) ] 1 x xc
(x xc)2

2

h2

24
(21)

then integrated over the cell e to obtain the weak form

e

ue

t
Bj dx aueBj R aueBj L

e
aue Bj

x
dx 0 j 0 1 2 (22)

where R and L refer to the adjacent right and left points. To produce a third-order scheme, the Taylor-series expansion

in Eq. (19) may be inserted into the weak form Eq. (22). Then using the upwind flux with a 0 at the cell interface,

we can put

[ll]

h 0 0

0
h3

12
0

0 0
h5

720

dū
dt

du1

dt
du2

dt i

a

0 0 0

h 0 0

0
h3

12
0

ū

u1

u2
i

a(ū 1
2
hu1

1
12

h2u2)i

1

h
2
h2

12

a(ū 1
2
hu1

1
12

h2u2)i 1

1

h
2
h2

12

0

(23)

The resulting assortment of ordinary di erential equations with respect to the variables ū(t) u1(t) u2(t) may be handled

using standard ODE solvers. In this context, the second and third-order schemes may be directly written as

dūi

dt
a(ūi 1 ūi)

h
a(u1 i 1 u1 i)

2
du1 i

dt
6a(ūi ūi 1)

h2

3a(u1 i 1 u1 i)

h

(24)
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and

dūi

dt
a(ūi 1 ūi)

h
a(u1 i 1 u1 i)

2

ah(u2 i 1 u2 i)

12
du1 i

dt
6a(ūi ūi 1)

h2

3a(u1 i 1 u1 i)

h
a(u2 i 1 u2 i)

2
du2 i

dt
60a(ūi 1 ūi)

h3

30a(u1 i 1 u1 i)

h2

5a(u2 i 1 u2 i)

h

(25)

B. ADF-Based Scheme Underlying a Taylor-Based Solution

In what follows, we show how the derivatives may be updated using a generalized ADF. The ensuing scheme may

be viewed as a DG variant that implements the ADF concept instead of the Galerkin approach to derive the updating

ODEs, thus leading to an ADF-DG method. On any interval x [xc
1
2
h xc

1
2
h], it is straightforward to evaluate

generalized ADF polynomials for the first-order derivatives from Eq. (13), namely,

˜
1(x xc) 12h 3(x xc)

˜
1 1(x xc) ˜

1(x xc) 6C[(x xc)2 h2 12]h 3
(26)

where C represents an arbitrary constant. In the interest of simplicity, because the only point of interest is xc, all of the

related ˜(n)

N M(x xc) are abbreviated by ˜(n)

N M(x). In general, ˜
1 N(x) will contain N arbitrary constants. In like fashion,

we may retrieve ˜
2(x) ˜

1(x), and so,

˜
2 1(x) ˜

2(x) 6C[20(x xc)3 3h2(x xc)]h 5 (27)

Along similar lines, the ADF weight functions for the second-order derivatives may be evaluated to be

˜
2 (x) 30h 3 360h 5(x xc)2

˜
2 1(x) ˜

2 (x) 60C[20(x xc)3 3h2(x xc)]h 6
(28)

In the implementation of the ADF-DG approach, the cell-averaged values can be updated in a DG manner, while

rewriting the ODEs for the updating derivatives using

du1 i

dt e

u
t

˜
N 1(x) dx

e
au

˜
N 1

(x)

x
dx (aue ˜

N 1 R aue ˜
N 1 L) (29)

Here N 1 corresponds to the second-order scheme, where one may use ˜
1 1

(x), reduce the Taylor expansion to a

linear polynomial, and substitute the outcome into Eq. (29). This operation yields,

du1 i

dt
6a(ūi ūi 1 C[u]i)

h2

3a(u1 i 1 u1 i)

h
(30)

where the interface jump term may be readily determined from the expression [u]i (u u )xi 1 2
ūi

1
2
hu1 i

(ūi 1
1
2
hu1 i 1). In general, it is possible to employ a higher-order ADF derivative weight function, ˜

1 M with M 1,

thus leading to additional constants and, therefore, greater flexibility to enhance the scheme’s capabilities. The ensuing

analysis, however, falls beyond the scope of the present study and will be deferred to later work. We can see that when

C 0, the ADF-DG approach reproduces the second-order Taylor-based DG formulation identically.

To obtain a third-order scheme, the same procedure may be followed by first applying the ADF concept to derive

the updating ODEs for the first and second-order derivatives using

du1 i

dt e

u
t

˜
2 1(x) dx

e
au

˜
2 1

(x)

x
dx (aue ˜

2 1 R aue ˜
2 1 L)

du2 i

dt e

u
t

˜
2 1(x) dx

e
au

˜
2 1

(x)

x
dx (aue ˜

2 1 R aue ˜
2 1 L)

(31)
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and then substituting a quadratic polynomial expansion of u to retrieve

du1 i

dt
6a(ūi ūi 1 C1[u]i)

h2

3a(u1 i 1 u1 i)

h
a(u2 i 1 u2 i)

2
du2 i

dt
60a(ūi 1 ūi C2[u]i)

h3

30a(u1 i 1 u1 i)

h2

5a(u2 i 1 u2 i)

h

(32)

where the interface jump term may be identified as [u]i (u u )xi 1 2
ūi

1
2
hu1 i

1
12

h2u2 i (ūi 1
1
2
hu1 i 1

1
12

h2u2 i 1).

Here too, by setting C1 C2 0, the third-order ADF-DG scheme returns the third-order Taylor-based

DG expressions given by Eq. (25). Moreover, not only do the ADF-DG relations recover the Taylor-based DG

approximations as special cases, their second- and third-order ADF-DG formulations contain arbitrary coe cients that

may be judiciously adjusted to enhance the properties of the resulting scheme, specifically, by controlling dispersive

and dissipative errors.

C. Fourier Stability Verification of the Taylor-Based ADF-DG Method

At this juncture, a conventional Fourier analysis is undertaken to assess the stability of a half-discretized ODE

system of both second and third-order ADF-DG schemes. Letting j 1 and refer to the imaginary unit and a

wave number such that [0 ], the solution of the ODE system using Fourier analysis may be written as

Ui ei jA (33)

where the integer i represents the cell index and A denotes the vector amplitude such that Ui [ūi u1 i ]T

corresponds to the unknown vector stored in each element. By substituting Eq. (33) into the half-discretized, second-

order ADF-DG system of ODEs, one arrives at

dA

dt
MA (34)

where the coe cient matrix M consists of

M
e j 1 1

2
(e j 1)

6(C 1)(e j 1) 3(C 1)(e j 1)
(35)

Figure 3 displays the real parts of the first and second eigenvalues ( 1 2) of M using di erent coe cients, namely,

C 0 5, 0, and 0 5. As one may infer graphically, the negative eigenvalues confirm the stability of the scheme for

all three coe cients. Furthermore, the present analysis enables us to realize that the scheme tends to be more di usive

for the first eigenvalue when C 0 5. The flexibility in selecting C can therefore be used to optimize the second-order

Taylor-based DG, a task that can be relegated to a future study.

For the third-order ADF-DG, the problem may be simplified by taking C1 C2 C. Then following a similar

procedure as before, the real parts of the first, second, and third eigenvalues, i.e. ( 1 2 3), may be extracted and

shown in Fig. 4. Forthwith, it may be immediately seen that the scheme remains stable for C 0 and 0 5, although it

exhibits a slightly di usive behavior for C 0 5.

IV. ADF in Relation to the Nodal DG Method for the Scalar 1-D Wave Equation

A. Nodal Discontinuous Galerkin Method

For the second-order scheme, it is possible to introduce the shape functions

1(x) 1
x xc h 2

h
and 2(x)

x xc h 2

h
(36)

thus prescribing the base functions, Bi(x), i 1 2, where

[B1(x) B2(x)] [ 1(x) 2(x)] (37)
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b) Second eigenvalue

Figure 3. The real parts of the two eigenvalues corresponding to the coe cient matrix M for a second-order Taylor-based ADF-DG using
the constant coe cients of C 0 5, 0, and 0 5.
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c) Third eigenvalue

Figure 4. The real parts of the three eigenvalues corresponding to the coe cient matrix M for a third-order Taylor-based ADF-DG using
the constant coe cients of C 0 5, 0, and 0 5.

To make further headway, we follow a similar procedure to the one we pursued in the Taylor-based DG formulation.

Here, the updating ODEs for the second-order nodal DG approach may be expressed as

du1 i

dt
a(4u2 i 1 3u1 i u2 i)

h
du2 i

dt
a(3u1 i u2 i 2u2 i 1)

h

(38)

The shape functions associated with a third-order scheme may be similarly compacted into

[B1(x) B2(x) B3(x)] 2 1(x)[ 1(x) 1
2
] 4 1(x) 2(x) 2 2(x)[ 2(x) 1

2
] (39)

Lastly, the updating ODEs may be derived and re-arranged into

du1 i

dt
a(u3 i 6 u1 i 9 u3 i 1 4 u2 i)

h
du2 i

dt
a(5 2 u1 i u3 i 3 2 u3 i 1)

h
du3 i

dt
a(3 u3 i 1 4 u2 i 3 u3 i 4 u1 i)

h

(40)
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B. ADF-Based Scheme Underlying the Nodal DG Solution

For the second-order representation, the solution on each cell may be reconstructed from

ũ u1 1(x) u2 2(x) (41)

In this case, we may use ˜
1 1(x z) to obtain the updating di erential relations. First, the ADF expressions may be

determined at the left and right points using

˜
1 1 1

1

h
6

h
6C
h

2 1

12

˜
1 1 2

1

h
6

h
6C
h

2 1

12

(42)

where x xc
h and ˜

1 1 i ˜
1 1(x xi) i 1 2 represent the generalized ADF polynomials on points 1 and 2,

respectively. Then, by virtue of the integral property, we may write

du1 i

dt e

u
t

˜
1 1 1 dx

e
au

˜
1 1 1(x)

x
dx (aue ˜

1 1 1 R aue ˜
1 1 1 L) (43)

and retrieve

du1 i

dt
a[(4 C1)u2 i 1 (3 C1)u1 i u2 i]

h
(44)

We may similarly multiply ˜
1 1 2(x) by the linear wave equation Eq. (18) and perform integration by parts to deduce

du2 i

dt
a[(3 C2)u1 i u2 i (2 C2)u2 i 1]

h
(45)

As usual, the jump term may be taken to be [u]i u1 i u2 i 1 such that the ODEs for the second-order ADF-DG

approach may be simplified into

du1 i

dt
a(4u2 i 1 3u1 i u2 i C1[u]i)

h
du2 i

dt
a(3u1 i u2 i 2u2 i 1 C2[u]i)

h

(46)

Here too, by taking C1 C2 0, the second-order ADF-DG formulation may be seen to reproduce the second-order

nodal DG expressions identically. Furthermore, the use of higher-order ADF representations of the type ˜
1 M M 1,

will immediately give rise to additional coe cients and, hence, additional ways to improve the scheme.

For the third-order scheme, the solution on a cell may be synthesized from

ũ 2 1(x)[ 1(x) 1
2
]u1 4 1(x) 2(x)u2 2 2(x)[ 2(x) 1

2
]u3 (47)

As before, the ADF polynomials corresponding to the left side, center, and right side of the element may be

subsequently evaluated and consolidated into

˜
2 1 1

3

2h
6

h
30 2

h
6C
h

20 3 3

˜
2 1 2

9

4h
15 2

h
6C
h

20 3 3

˜
2 1 3

3

2h
6

h
30 2

h
6C
h

20 3 3

(48)

These ADF relations enable us to express the updating ODEs as

du1 i

dt
a(u3 i 6 u1 i 9 u3 i 1 4 u2 i C1[u]i)

h
du2 i

dt
a(5 2 u1 i u3 i 3 2 u3 i 1 C2[u]i)

h
du3 i

dt
a(3 u3 i 1 4 u2 i 3 u3 i 4 u1 i C3[u]i)

h

(49)

where the interface jump term is prescribed by [u]i u1 i u3 i 1. As expected, by setting C1 C2 C3 0, the

third-order ADF-DG restores the third-order nodal DG formulation.
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C. Fourier Stability Verification of the Nodal-Based ADF-DG Method

Here too, the standard Fourier analysis may be carried out for the second-order ADF-based nodal DG using, for

example, C1 C2 C. The real parts of the two eigenvalues for the cases of C 0 5 0, and 0 5 may be retrieved and

plotted in Fig. 5. As one may observe, the stability of the scheme is confirmed for the three representative coe cients

of C. Moreover, the ability to adjust C in a manner to control the stability properties of the scheme seems to o er an

added benefit.

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00

- 1 . 0

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0

R e ( �
1
)
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- 0 . 5
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0 . 5

�

a) First eigenvalue

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00
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- 4

- 2

R e ( �
2
)

C

- 0 . 5
0 . 0
0 . 5

�

b) Second eigenvalue

Figure 5. The real parts of the two eigenvalues corresponding to the coe cient matrix M for a second-order nodal-based ADF-DG using
the constant coe cients of C 0 5, 0, and 0 5.

For the third-order ADF-based nodal DG approach, we may take, as before, C1 C2 C3 C. The real parts

of three eigenvalues of the coe cient matrix M may be extracted and displayed in Fig. 6 for the three representative

cases of C 0 5 0, and 0 5. Clearly, the scheme remains stable for all three values of C, although it appears to be

slightly di usive for the first eigenvalue and C 0 5.
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c) Third eigenvalue

Figure 6. The real parts of the three eigenvalues corresponding to the coe cient matrix M for a third-order nodal-based ADF-DG using
the constant coe cients of C 0 5, 0, and 0 5.

V. ADF in Relation to the One-Dimensional Flux Reconstruction (FR) Method

It is well recognized that the Flux-Reconstruction (FR) method and its variant Correction Procedure via

Reconstruction (CPR) incorporate into their schemes the nodal DG approach as a special case. Furthermore, both

approaches tend to be more e cient to implement than the integral DG form. For example, the main concept in the
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FR method is to store, on every cell i, the values at the solution points ui k, for k 1 N 1, and then reconstruct

the flux function F(x) using the flux values at both solution points and boundary interfaces. With this reconstructed

F(x), a di erential form may be developed to obtain the right-hand side of the updating ODEs. Specifically in FR, the

flux function may be reconstructed via

Fi(x) fi(x) [F̂L fi(xL)] LB(x) [F̂R fi(xR)] RB(x) (50)

where F̂ denotes the numerical flux at the interface (e.g., upwind-flux), while xL and xR refer to the locations of the

left and right interfaces, respectively; as for , it stands for the correction function with indices LB for ‘left boundary’

and RB for ‘right boundary.’ Here fi(x) may be reconstructed from fi k f (ui k) at the solution points.

For the kth-solution point, the right-hand side of the updating ODEs may be formulated as

dFi

dx k

d fi
dx k

[F̂L fi(xL)] LB(xk) [F̂R fi(xR)] RB(xk) (51)

Then the updating ODEs become simply

dui k

dt
dFi

dx k
; i k (52)

Consequently, based on the ADF concept, the updating ODEs may be readily determined for the solution-point values

viz.

dui k

dt

xR

xL

u
t

˜(x xk) dx
xR

xL

f (x)
d˜(x xk)

dx
dx F̂R ˜(xR xk) F̂L ˜(xL xk) (53)

The foregoing procedure may be viewed as an ADF-FR scheme, as it combines the generalized ADF approach with a

Flux Reconstruction base solution.

Assuming that on the right-hand side of Eq. (53) the reconstruction of f (x) may be obtained from the flux at the

solution points fi k, then from Eq. (50), it is possible to extract

f (x) Fi(x) [F̂L fi(xL)] LB(x) [F̂R fi(xR)] RB(x) (54)

Subsequently, we can put

xR

xL

f (x)
d˜(x xk)

dx
dx

xR

xL

F(x)
d˜(x xk)

dx
dx

[F̂L fi(xL)]
xR

xL

LB(x)
d˜(x xk)

dx
dx [F̂R fi(xR)]

xR

xL

RB(x)
d˜(x xk)

dx
dx

(55)

Then through the use of Fi(xL) F̂L Fi(xR) F̂R, we can write

xR

xL

F(x)
d˜(x xk)

dx
dx F̂R ˜(xR xk) F̂L ˜(xL xk)

xR

xL

dF(x)

dx
˜(x xk) dx

dF(x)

dx xk

(56)

With these expressions in hand, the substitution of Eq. (55) into Eq. (53) leads to

dui k

dt

xR

xL

f (x)
d˜(x xk)

dx
dx F̂R ˜(xR xk) F̂L ˜(xL xk)

xR

xL

F(x)
d˜(x xk)

dx
dx F̂R ˜(xR xk) F̂L ˜(xL xk)

[F̂L fi(xL)]
xR

xL

LB(x)
d˜(x xk)

dx
dx [F̂R fi(xR)]

xR

xL

RB(x)
d˜(x xk)

dx
dx

dF(x)

dx xk

[F̂L fi(xL)]
xR

xL

LB(x)
d˜(x xk)

dx
dx [F̂R fi(xR)]

xR

xL

RB(x)
d˜(x xk)

dx
dx

(57)
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According to the FR method, in the case of N 1 solution points, LB(x) becomes a polynomial of order (N 1) that

satisfies

LB(xL) 1 and LB(xR) 0 (58)

In the context of the FR-DG approach, the LB(x) polynomial is taken to be orthogonal to PN 1(x).

Presently, for the Nth-order u(x), the appropriate ADF will be ˜N M(M 0). Then if we use ˜N(x xk) ˜N 0(x xk),

which represents an Nth-order polynomial, the derivative d˜N(x xk) dx becomes an (N 1)th-order polynomial. This

enables us to put

xR

xL

LB(x)
d˜N(x xk)

dx
dx

xR

xL

RB(x)
d˜N(x xk)

dx
dx 0 (59)

whence, based on Eq. (57), we have

dui k

dt
dFi

dx k
(60)

It can thus be seen that the present ADF-FR formulation gives rise to the same FR-DG expression.

When considering other cases where LB(x) is no longer orthogonal to PN 1, the flexibility of ˜N M(x xk), which is

enhanced by its inclusion of M arbitrary coe cients, enables us to solve for the coe cients from the linear integrals

xR

xL

LB(x)
d˜N M(x xk)

dx
dx 0

xR

xL

RB(x)
d˜N M(x xk)

dx
dx 0 (61)

This straightforward evaluation allows the complete determination of ˜N M(x xk) in a manner that reproduces the

corresponding FR formulation identically. However, by selecting ˜N M(x xk) di erently, it is possible to devise

schemes that di er from the FR method, namely, in their ability to incorporate additional capabilities. Moreover,

extensions of this ADF-FR method to two and three dimensions can be accomplished with similar ease, thus leading

to identical conclusions to those realized here. In short, the ability of the ADF-FR method to extend the FR and CPR

approaches is plausible.

VI. Point-Value Enhanced Finite Volume Method (PFV)

Based on the foregoing discussions, it may be safely argued that approximate delta functions may be viewed

as e ective tools for deriving the updating ODEs associated with di erent schemes through the use of a rigorous

mathematical formalism. In this context, it is clear that the ADF approach o ers a fresh and e cient strategy for

updating the unknown information associated with a given element irrespective of the underlying scheme. Another

advantage of this approach stands in its simplicity and flexibility in the placement of DOFs at any desired point in the

element such as the nodal points and edges.

Since nodes undergo the highest sharing rate, the assignment of additional information at the nodes maximizes the

number of neighbors with whom this information may be communicated. When information is added at one node, it

is systematically shared by all of the surrounding nodes, thus leading to one of the most e ective DOF strategies. For

example, in the case of a triangular mesh, the addition of a single quantity at the nodes of one element enables us to

immediately gain three values for this element. Furthermore, to ensure the scheme’s conservation, the cell-averaged

values are stored and updated identically to the manner used by the finite volume method.

Presently, both nodal values and derivatives are introduced to enhance the scheme’s overall accuracy by achieving

a high-order and compact representation of the unknown quantity in each element. To emphasize this property, we dub

this scheme “Point-value enhanced Finite Volume (PFV).” The PFV method can, therefore, be compact, high-order,

and stable, because of the continuity of the solution being enhanced by the sharing of nodal information.

Similar strategies may be seen in the multi-moment finite volume method (see Xie et al. 19 and the references

therein), as well as the active flux method.20,21 In these, however, the values, without the derivatives, are stored and

updated on the edges and, in some cases, the nodes. The distinguishing characteristic of these approaches rests in the

manner by which the updating of point information, values and derivatives can be performed. Unlike the di erential

form used by Xie et al., 19 the PFV relies on approximate delta functions to derive the updating ODEs for the additional

DOFs at each point.
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a) b)

Figure 7. Comparison between the DOF arrangement and integral domain of (a) the Point-value enhanced Finite Volume (PFV) method
and (b) the Taylor-based DG method.

Simple sketches that compare the DOF arrangement and integral domain within the PFV to those associated with

the Taylor-based DG method are furnished in Fig. 7. Although both PFV and Taylor-based DG methods seek to

update the cell-averaged value in each element consistently with the finite volume method, the updating of derivatives

is performed quite di erently. In the PFV case, the weak integral form is implemented in the region [xi 1 2 xi 3 2],

while in DG method, the integration domain is restricted to [xi 1 2 xi 1 2]. The doubling of the domain width as well as

the overlapping of PFV’s integration interval enhances its stability relative to the DG scheme. As to the element-wise

unknown reconstruction, the Taylor-based DG method possesses element-wise DOFs of the type ū u x i. In

contrast, every element within the PFV scheme carries multiple DOF quantities, namely, u u x i 1 2, ūi, and

u u x i 1 2. Another avenue for comparison is this. If we were to compare the DG scheme with N DOFs in

every element to a PFV formulation taken at the same order on the nodes, the PFV would possess (2N 1) DOFs for

each element. It can hence be seen that for the same number (or order) of DOFs in one-dimensional space, the PFV

strategy can double the order of the scheme compared to the DG formulation. In fact, the same argument not only

holds but can be more beneficial when contemplating the extension of this approach to multiple dimensions.

In the interest of clarity, we refer to the PFV approach as P0FV when only the unknown value is stored at the nodal

point. As such, the term PnFV may be used when the coe cients of an nth-order polynomial are saved on each nodal

point. Accordingly, the use of P1FV will imply that both the unknown quantity u and its first-order derivative are

saved on the nodal point. Along similar lines, the term PnFVm will be used to describe the approach in the presence

of an mth-order polynomial reconstruction within the element. The mth-order polynomial in the element is typically

reconstructed using the method of least squares and information that is stored on the cell and nodal points. At times, a

weighted least-squares method may be implemented to ensure a suitable reconstruction while providing an additional

avenue for controlling stability.

A. P0FV for the Linear, One-Dimensional, Scalar Wave Equation

To illustrate the application of the P0FV, we begin by considering a classical example, namely, that of the linear

wave equation in one-dimensional space as given by Eq. (18). To solve this hyperbolic equation, we construct a

uniform mesh, store and update the cell-averaged values ūi, as well as the point values ui 1 2 at the interfaces. Based

on the P0FV construct, the updating equations become

dūi

dt
F̂i 1 2 F̂i 1 2

h
dui 1 2

dt

xi 3 2

xi 1 2

f (x)
d˜(x xi 1 2)

dx
dx F̂i 3 2

˜(xi 3 2 xi 1 2) F̂i 1 2
˜(xi 1 2 xi 1 2)

(62)

1. Second-Order P0FV1 Formulation

At every cell i, the solution may be expressed using a first-order polynomial, viz.

ũi(x) ūi
ui 1 2 ui 1 2

h
(x xi) (63)

Then at the interface, i 1 2, the left and right-hand side values may be computed using

uL
i 1 2 ũi(xi 1 2) uR

i 1 2 ũi 1(xi 1 2) (64)
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Subsequently, the upwind numerical flux may be consolidated into

F̂i 1 2
1
2
[auL

i 1 2 auR
i 1 2 a (uR

i 1 2 uL
i 1 2)] (65)

and then inserted into Eq. (62). Because ũi(x) is linear, we may use ˜
1(x) 1

2
h 1 for the updating of the point values.

In this case, the domain integral in Eq. (62) vanishes by virtue of d˜
1 dx 0. As such, the updating expression for

the point values simplifies into

dui 1 2

dt
F̂i 3 2 F̂i 1 2

2h
(66)

2. Third-Order P0FV2 Formulation

For every cell i, the solution may be synthesized from (ūi 1 ūi ūi 1) and (ui 1 2 ui 1 2), using the method of least

squares. Accordingly, the solution in each cell may be written as

ũi( ) ūi a1 a2
1
2

2 1
24

(67)

Hence, the problem becomes that of minimizing the total deviation from the cell-averaged value and the values at the

interface and neighboring cells. By taking

I0 [ũi( 1 2) ui 1 2]2 [ũi(1 2) ui 1 2]2
1 2

3 2

ũi( ) d ūi 1

2 3 2

1 2

ũi( ) d ūi 1

2

(68)

one obtains the linear system

I0

a1

0
I0

a2

0 (69)

Subsequently, by solving Eq. (69), the reconstructed second-order polynomial takes the form

ũi( ) ūi
ui 1 2 ui 1 2 2(ūi 1 ūi 1)

5

36(ūi 1 ūi 1) 6(ui 1 2 ui 1 2) 84ūi

37

2

2

1

24
(70)

where x xi
h . Then at the interface, i 1 2, the left and right-hand sides values may be evaluated from

uL
i 1 2 ũi(xi 1 2) and uR

i 1 2 ũi 1(xi 1 2) (71)

The corresponding upwind-based numerical flux becomes

F̂i 1 2
1
2
[auL

i 1 2 auR
i 1 2 a (uR

i 1 2 uL
i 1 2)] (72)

In this case, the ADF formulation yields

˜
2(x xi 1 2)

9

8h
15

8h3
(x xi 1 2)2 (73)

When Eq. (73) is substituted into the domain integral in Eq. (62), it may be evaluated separately on each cell by taking

xi 3 2

xi 1 2

f (x)
d˜

2

dx
dx

xi 1 2

xi 1 2

f (x)
d˜

2

dx
dx

xi 3 2

xi 1 2

f (x)
d˜

2

dx
dx (74)

which can be readily computed using a two-point Gaussian–Legendre quadrature on each cell. In this exercise, the two

Gaussian points consist of 1 2
3

6
, and the corresponding weight equals 1

2
h. For each cell i, the Gaussian point

corresponds to xk kh xi, and so the derivatives and integrals over the cell domain may be evaluated sequentially

using

d˜
2

dx i k

15

4h2
( k 1 2)

d˜
2

dx i 1 k

15

4h2
( k 1 2) (75)
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and so

xi 3 2

xi 1 2

f (x)
d˜

2

dx
dx

15

8h
[( 1 1 2) fi 1 ( 2 1 2) fi 2 ( 1 1 2) fi 1 1 ( 2 1 2) fi 1 2] (76)

where fi 1 f [ũi( 1)], and fi 2 f [ũi( 2)] represent the fluxes at the Gaussian points in element i. Forthwith, the

updating equation for ui 1 2 reduces to

dui 1 2

dt
15

8h
[( 1 1 2) fi 1 ( 2 1 2) fi 2 ( 1 1 2) fi 1 1 ( 2 1 2) fi 1 2]

3

4h
(F̂i 3 2 F̂i 1 2) (77)

3. Fourth-Order P0FV3 Formulation

At every cell i, the solution may be deduced, as usual, from (ūi 1 ūi ūi 1) and (ui 1 2 ui 1 2), using the method of

least squares. As before, by writing the solution in each cell as

ũi( ) ūi a1 a2
1
2

2 1
24

a3
3 (78)

minimizing the total deviation between the cell value and the values at the interface and neighboring cells can be

captured through

I0 [ũi( 1 2) ui 1 2]2 [ũi(1 2) ui 1 2]2
1 2

3 2

ũi( ) d ūi 1

2 3 2

1 2

ũi( ) d ūi 1

2

(79)

Minimizing the deviation will hence require setting

I0

a1

0
I0

a2

0
I0

a3

0 (80)

By solving the linear system given by Eq. (80), one arrives at a third-order polynomial of the form

ũi( ) ūi
ūi 1 ūi 1 10(ui 1 2 ui 1 2)

8

36(ūi 1 ūi 1) 6(ui 1 2 ui 1 2) 84ūi

37

2

2

1

24

3(ūi 1 ūi 1) 2(ui 1 2 ui 1 2)

6
3

(81)

As for the flux at the interface, its computation may be accomplished using a procedure that mirrors our evaluation

at previous orders. At this particular order, however, two ADFs, namely, ˜
2(x xi 1 2) ˜

3(x xi 1 2), must be used in

conjunction with three Gaussian points in order to suitably resolve the domain integrals. To proceed, these quantities

may be substituted into the domain integrand of Eq. (62) and evaluated term-by-term to produce

xi 3 2

xi 1 2

f (x)
d˜

3

dx
dx

15

8h

3

k 1

k( k 1 2) fi k

3

k 1

k( k 1 2) fi 1 k (82)

where the Gaussian weights consist of 1 3
5
9
, and 2

8
9
, while the Gaussian points comprise 1 3

15
10

, and

2 0. At this fourth order, the updating equation for ui 1 2 may be rearranged into

dui 1 2

dt
15

8h

3

k 1

k( k 1 2) fi k

3

k 1

k( k 1 2) fi 1 k
3

4h
(F̂i 3 2 F̂i 1 2) (83)

B. P1FV for the Linear, One-Dimensional, Scalar Wave Equation

In this case, apart from the two equations that arise in Eq. (62), a third relation will be necessary in order to

adequately update the first-order derivative on each node. This expression is

d i 1 2

dt

xi 3 2

xi 1 2

h f (x)
d˜ (x xi 1 2)

dx
dx hF̂i 3 2

˜ (xi 3 2 xi 1 2) hF̂i 1 2
˜ (xi 1 2 xi 1 2) (84)

16

American Institute of Aeronautics and Astronautics



where

i 1 2 h
du
dx i 1 2

(85)

1. Third-Order P1FV2 Formulation

As we gradually increase the order, the solution at every cell can be reconstructed from the quantities and

derivatives, ūi and (ui 1 2 ui 1 2 i 1 2 i 1 2), retrieved from the method of weighted least squares. In this case, the

solution in each cell may be expanded into

ũi( ) ūi a1 a2
1
2

2 1
24

(86)

and so the distance to the values and derivatives at interfaces may be expressed as

I0 s[ũi( 1 2) ui 1 2]2 s[ũi(1 2) ui 1 2]2 dũi
d

( 1 2) i 1 2

2 dũi
d

(1 2) i 1 2

2
(87)

Naturally, minimizing the total deviation requires taking

I0

a1

0
I0

a2

0 (88)

Thus by solving Eq. (88), the reconstructed second-order polynomial becomes

ũi( ) ūi
s(ui 1 2 ui 1 2) 2( i 1 2 i 1 2)

4 s
6 (sui 1 2 sui 1 2 2sūi 6( i 1 2 i 1 2)

36 s

2

2

1

24

(89)

where s 10 6 denotes the least-squares weight associated with the nodal values. The remaining procedure to obtain

the updating ODE for ui 1 2 proves to be identical to that already developed for P0FV2. To illustrate the manner by

which the updating of i 1 2 may be accomplished, we consider the ADF polynomial for the derivative weight function
˜

2(x), namely,

˜
2(x)

3x
2h3

(90)

In this case, two Gaussian points will be necessary in the evaluation of the domain integral. After some algebra, we

retrieve the updating equation for i 1 2, namely,

d i 1 2

dt
3

4h

2

k 1

k( k 1 2) fi k

2

k 1

k( k 1 2) fi 1 k
3

2h
(F̂i 3 2 F̂i 1 2) (91)

where the Gaussian weights may be set at unity with 1 2 1.

2. Fourth-Order P1FV3 Formulation

The highest order that we will describe in this study consists of using the method of weighted least-squares at

every cell i for the values of (ūi 1 ūi ūi 1) and (ui 1 2 ui 1 2 i 1 2 i 1 2) to arrive at a fourth-order formulation. For

the solution in each cell

ũi( ) ūi a1 a2
1
2

2 1
24

a3
3 (92)

the total deviation that must be minimized can be estimated from

I0 s[ũi( 1 2) ui 1 2]2 s[ũi(1 2) ui 1 2]2 dũi
d

( 1 2) i 1 2

2 dũi
d

(1 2) i 1 2

2
(93)

and so, its extrema may be found by taking

I0

a1

0
I0

a2

0
I0

a3

(94)
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After solving Eq. (94), the reconstructed third-order polynomial can be written as

ũi( ) ūi
6(ui 1 2 ui 1 2) ( i 1 2 i 1 2)

4

6 sui 1 2 sui 1 2 2sūi 6( i 1 2 i 1 2)

36 s

2

2

1

24

3(ūi 1 ūi 1) 2(ui 1 2 ui 1 2)

6
3

(95)

where s 10 6 stands for the least-squares weight ascribed to the nodal values. We replace a3 from Eq. (81),

which makes scheme stable. Here too, three Gaussian points may be e ectively used following the procedure that we

developed for the P0FV3 formulation. At the outset, the updating equation for i 1 2 may be extracted and compacted

into

d i 1 2

dt
15

16h

3

k 1

k[5 21( k 1 2)2] fi k

3

k 1

k[5 21( k 1 2)2] fi 1 k
15

4h
(F̂i 3 2 F̂i 1 2) (96)

C. Fourier Stability Verification of the PFV Method

To further confirm the viability of the PFV method, a Fourier stability analysis is carried out as in the case of ADF-

DG method. Here the unknown vectors are specified as U j [ū j u j 1 2]T and U j [ū j u j 1 2 j 1 2]T for the P0FVn

and P1FVn, respectively. As before, the coe cient matrices M at di erent orders may be readily evaluated along with

the real parts of the corresponding eigenvalues. In what follows, we use Fig. 8 to display the real parts of the two

eigenvalues for P0FVn, and Fig. 9 to provide the real parts of the three eigenvalues for P1FVn. In all cases considered,

it may be seen that the P0FVn scheme remains stable in its half-discretized form. The stability of the P1FV2 solution

is also confirmed, although P1FV3 exhibits a small region of with weakly positive eigenvalues. This instability

may be readily suppressed by the TVD Runge–Kutta time-matching technique, which is known for its e ectiveness in

stabilizing the scheme. The ensuing behavior will be illustrated in the forthcoming numerical examples.

D. Numerical Verification

In order to test the accuracy and stability of the PFV scheme, two benchmark cases will be considered: the

linear wave equation given by Eq. (18) with a 1 as well as the nonlinear Burgers’ equation. In this process,

periodic boundary conditions will be imposed at both ends of the computational domain, which will be bracketed

over the interval [0 1]. Two di erent initial conditions will be tested in the context of the linear wave equation by

specifying two forms of the initial function, u0(x). For simplicity, a uniform mesh is considered. Subsequently, to

verify the successive orders of the PFV scheme in the context of the one-dimensional wave equation, the number of

grid points will be taken to be 8, 16, 32, and 64, respectively. In analyzing Burgers’ equation, an additional stencil

of 128 points is considered to fully confirm the convergence order. To quantify the error, we define the residual to be

Ri uexact unumeric and use both the L1 Ri dx and L max Ri error measurements of the cell-averaged values

to quantify the error. Furthermore, a third-order TVD-Runge–Kutta method is relied upon for time matching.

E. Linear Wave Equation with an Initial Function

Using u0(x) sin(2 x), the problem is run for one period of time, until t 1. The errors entailed in the PFV

scheme at di erent orders are cataloged and compared in Tables 1, 2, and 3. Everywhere, h denotes the grid step size.

We refer the reader to Fig. 10 where the left and right subsets provide a useful comparison of the base 10 logarithms,

lg(L1) and lg(L ), at di erent PFV orders. Based on these findings, it may be ascertained that the intended orders are

secured. Nonetheless, P0FV3 appears to slightly under-perform its projected fourth order, unlike the P1FV2 result

which displays an accelerated convergence rate. These findings demonstrate that, when taken at the same order n, the

P1FVn formulation outperforms the P0FVn result in the attainable degree of precision.

In these numerical experiments, the critical CFL, which represents the maximum CFL number to keep the scheme

stable, is computed numerically, although it can be alternatively determined using Fourier analysis. Specifically for

the case of 16 grid points, the code is executed in time up to t 1000. In principle, the scheme is deemed stable when

the maximum value of u over the entire domain, x [0 1], continues to depreciate with the passage of time. This test
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Table 1. Characteristics of the linear wave equation with a 1 u0 sin(2 x), and t [0 1]. The decimal logarithms, lg(L1) and lg(L ),
refer to the errors entailed in the second-order P0FV1 scheme.

lg(h) lg(L1) Order lg(L ) Order

-0.903 -0.685 – -0.480 –

-1.204 -1.278 1.98 -1.076 1.98

-1.505 -1.886 2.02 -1.689 2.04

-1.806 -2.492 2.01 -2.295 2.01

Table 2. Characteristics of the linear wave equation with a 1 u0 sin(2 x), and t [0 1]. Here lg(L1) and lg(L ) refer to the third-order
P0FV2 and P1FV2 errors.

P0FV2 P1FV2

lg(h) lg(L1) Order lg(L ) Order lg(L1) Order lg(L ) Order

-0.903 -0.980 – -0.771 – -1.153 – -0.952 –

-1.204 -1.785 2.68 -1.595 2.90 -2.271 3.71 -2.077 3.74

-1.505 -2.665 2.92 -2.468 2.90 -3.452 3.92 -3.258 3.92

-1.806 -3.539 2.90 -3.343 2.90 -4.648 3.98 -4.452 3.97

also enables us to determine the critical CFL, which is evaluated and posted in Table 4. Based on these results, it may

be seen that the PFV scheme is highly stable. Another characteristic that may be inferred from these results concerns

the critical CFL, which does not decrease monotonically with successive increases in the order of the solver, contrarily

to its variation within most other methods.

F. Linear Wave Equation with an Initial Function

In comparison to the previous case, using an initial condition of u0(x) sin2(2 x) leads to a more complex

distribution, namely, one that engenders more extrema. By running the problem over one period of time, t 1, the

errors at di erent PFV orders are collected and compared in Tables 5, 6, and 7. Furthermore, the left and right subsets

of Fig. 11 compare the logarithmic lg(L1) and lg(L ) variations at successive PFV orders.

Upon close examination of the tabular and graphical results, it may be confidently ascertained that the expected

orders have been very closely reproduced. Two exceptions may be noted, as the P0FV3 solution appears at a slightly
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Figure 8. The real parts of the two eigenvalues of the coe cient matrix M corresponding to P0FVn(n 1 2 3).
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Figure 9. The real parts of the three eigenvalues of the coe cient matrix M corresponding to P1FVn(n 2 3).

Table 3. Characteristics of the linear wave equation with a 1 u0 sin(2 x), and t [0 1]. Here lg(L1) and lg(L ) refer to the errors in
the fourth-order P0FV3 and P1FV3 schemes.

P0FV3 P1FV3

lg(h) lg(L1) Order lg(L ) Order lg(L1) Order lg(L ) Order

-0.903 -2.485 – -2.304 – -2.777 – -2.606 –

-1.204 -3.556 3.56 -3.366 3.53 -4.099 4.39 -3.908 4.33

-1.505 -4.614 3.51 -4.419 3.50 -5.356 4.18 -5.161 4.16

-1.806 -5.714 3.65 -5.518 3.65 -6.579 4.06 -6.383 4.06

lower order than the expected fourth order, whereas the P1FV2 solution converges more rapidly than expected. Here

too, for the same order scheme, the P1FVn approximation displays a better degree of precision than its P0FVn

counterpart.

Table 4. Critical CFL using the PFV scheme at di erent orders in conjunction with the linear wave equation with a 1 u0 sin(2 x),
and a time resolution leading up to t 1000.

P0FV1 P0FV2 P0FV3 P1FV2 P1FV3

CFL 1.20 1.61 0.88 1.67 0.74

Table 5. Characteristics of the linear wave equation with a 1 u0 sin2(2 x), and t [0 1]. Here lg(L1) and lg(L ) correspond to the
errors in the second-order P0FV1 scheme.

lg(h) lg(L1) Order lg(L ) Order

-0.903 -0.456 – -0.379 –

-1.204 -0.767 1.03 -0.549 0.56

-1.505 -1.285 1.72 -1.087 1.49

-1.806 -1.887 2.00 -1.690 2.00
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Figure 10. Convergence behavior of the PFV errors at differently specified orders. Results correspond to the linear wave equation with
a = 1 and u0 = sin(2πx) at t = 1. Here we show (a) lg(L1) (�) and (b) lg(L∞) (◦) for the errors in the PnFVm scheme at successive levels of
accuracy: P0FV1 (——), P0FV2 (− − −), P1FV2 (− · −), P0FV3 (· · · · ·), and P1FV3 (− · ·−).
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Figure 11. Convergence behavior of the PFV errors at differently specified orders. Results correspond to the linear wave equation with
a = 1 and u0 = sin2(2πx) at t = 1. Here we show (a) lg(L1) (�) and (b) lg(L∞) (◦) for the errors in the PnFVm scheme at successive levels of
accuracy: P0FV1 (——), P0FV2 (− − −), P1FV2 (− · −), P0FV3 (· · · · ·), and P1FV3 (− · ·−).

Table 6. Characteristics of the linear wave equation with a = 1, u0 = sin2(2πx), and t ∈ [0, 1]. Here lg(L1) and lg(L∞) refer to the
third-order P0FV2 and P1FV2 errors.

P0FV2 P1FV2

lg(h) lg(L1) Order lg(L∞) Order lg(L1) Order lg(L∞) Order

-0.903 -0.489 – -0.412 – -0.427 – -0.362 –

-1.204 -1.020 1.76 -0.804 1.30 -1.148 2.40 -0.954 1.97

-1.505 -1.790 2.56 -1.600 2.64 -2.265 3.71 -2.070 3.70

-1.806 -2.666 2.91 -2.470 2.89 -3.449 3.93 -3.253 3.93

G. Burgers Equation with an Initial Function

To further verify the consistent accuracy of the PFV approach in the solution of nonlinear equations, the standard

Burgers’ equation is considered with an initial function of u0(x) = 1
2
+ sin(2πx). This hyperbolic PDE may be written
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Table 7. Characteristics of the linear wave equation with a 1 u0 sin2(2 x), and t [0 1]. Here lg(L1) and lg(L ) correspond to the
errors in the fourth-order P0FV3 and P1FV3 schemes.

P0FV3 P1FV3

lg(h) lg(L1) Order lg(L ) Order lg(L1) Order lg(L ) Order

-0.903 -1.301 – -1.187 – -1.440 – -1.438 –

-1.204 -2.417 3.71 -2.266 3.59 -2.775 4.43 -2.601 3.86

-1.505 -3.490 3.56 -3.299 3.43 -4.101 4.40 -3.911 4.35

-1.806 -4.564 3.57 -4.367 3.55 -5.358 4.18 -5.164 4.16

as

u
t x

u2

2
0; x [0 1] (97)

with periodic boundary conditions on both sides of the computational domain. To promote a smooth solution, the

numerical e ort is carried out up to time t 1
4

. In this case, our reference solution is obtained straightforwardly

using the P1FV3 formulation in conjunction with a benchmark mesh of 256 grid points. Subsequently, the reference

cell-averaged values on coarser meshes are calculated using the benchmark solution. Here the numerical flux at the

interface is of the local-Lax–Friedrich (LLF) type, namely,

F̂i 1 2

1

2
f L f R max uL

i 1 2 uR
i 1 2 (uR

i 1 2 uL
i 1 2) (98)

where f L 1
2

uL
i 1 2

2
and f R 1

2
uR

i 1 2

2
.

Table 8. Characteristics of the nonlinear Burgers’ equation with u0(x) 1
2 sin(2 x), and t [0 1

4 ]. Here lg(L1) and lg(L ) refer to the
second-order P0FV1 errors.

lg(h) lg(L1) Order lg(L ) Order

-0.903 -2.028 – -1.763 –

-1.204 -2.488 1.53 -1.955 0.64

-1.505 -2.963 1.58 -2.283 1.09

-1.806 -3.516 1.84 -2.768 1.61

-2.107 -4.098 1.93 -3.328 1.86

Table 9. Characteristics of the nonlinear Burgers’ equation with u0(x) 1
2 sin(2 x), and t [0 1

4 ]. Here lg(L1) and lg(L ) refer to the
third-order P0FV2 and P1FV2 errors.

P0FV2 P1FV2

lg(h) lg(L1) Order lg(L ) Order lg(L1) Order lg(L ) Order

-0.903 -2.318 – -1.786 – -2.215 – -1.711 –

-1.204 -3.039 2.39 -2.408 2.07 -2.903 2.28 -2.365 2.17

-1.505 -3.861 2.73 -2.995 1.95 -3.822 3.05 -2.881 1.71

-1.806 -4.738 2.90 -3.832 2.78 -4.789 3.21 -3.811 3.09

-2.107 -5.637 2.99 -4.710 2.92 -5.805 3.38 -4.804 3.30
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Table 10. Characteristics of the nonlinear Burgers’ equation with u0(x) = 1
2 + sin(2πx), and t ∈ [0, 1

4π ]. Here lg(L1) and lg(L∞) refer to the
fourth-order P0FV3 and P1FV3 errors.

P0FV3 P1FV3

lg(h) lg(L1) Order lg(L∞) Order lg(L1) Order lg(L∞) Order

-0.903 -3.125 – -2.599 – -4.043 – -3.691 –

-1.204 -3.999 2.90 -3.252 2.17 -4.557 1.71 -3.771 0.26

-1.505 -4.797 2.56 -3.904 2.17 -5.474 3.04 -4.417 2.14

-1.806 -5.848 3.50 -4.809 3.01 -6.608 3.77 -5.492 3.57

-2.107 -6.991 3.80 -5.882 3.56 -7.812 4.00 -6.689 3.98
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Figure 12. Convergence of the PFV errors at differently specified orders. Results correspond to the nonlinear Burgers’ equation with
u0 =

1
2 + sin(2πx) at t = 1

4π . Here we show (a) lg(L1) (�) and (b) lg(L∞) (◦) for the errors in the PnFVm scheme at different orders: P0FV1
(——), P0FV2 (− − −), P1FV2 (− · −), P0FV3 (· · · · ·), and P1FV3 (− · ·−).

After several numerical runs, the errors accrued in the PFV formulations at varying orders are collected and

displayed in Tables 8, 9, and 10. The logarithmic behavior of the errors are also provided in the two subsets of

Fig. 12, where lg(L1) and lg(L∞) are characterized at progressive PFV orders.

Despite the increased complexity of Burgers’ nonlinear equation, it is gratifying that the projected orders are

achieved with a fair degree of precision. As before, two exceptions are noted and these include the P0FV3

representation, which evolves at a slightly slower rate than the expected fourth order and, conversely, the P1FV2

formulation, which seems to converge more rapidly than its anticipated rate. It may thus be speculated, although not

formally proven, that the P1FV3 will outperform the P0FV3 by exhibiting a smaller error and a higher convergence

rate. In fact, this trend becomes more noticeable at higher orders because, at the third order, the P1FV2 solution may

be viewed as being only slightly more accurate than its P0FV2 counterpart when comparing error magnitudes.

VII. Conclusion

This work revisits and extends Huynh’s concept of an approximate delta function (ADF),1,2 which can be expressed

in the form of a finite-order polynomial with such a distinct integral property over a finite domain that it can be used

to complement and extend the capabilities of existing computational methods. This is accomplished by providing the

means to incorporate additional coefficients that can directly enhance the properties of the scheme under consideration.

ADF polynomials enable the user to experiment with different arrangements of DOFs, and this feature can lead to

the reconstruction of high-order methods with favorable properties. Despite the development of this work totally

independently of Huynh’s,1,2,23 it shares similar characteristics.

In this study, we first show that generalized ADF polynomials exhibit useful properties: an ADF polynomial of

order (N + K), which we label here as δ̃N|K , reproduces the integral property of a delta function for an arbitrary

polynomial of order N, while providing K arbitrary constants that can be judiciously specified. At the outset, an ADF
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polynomial can be used to derive the updating ODEs associated with high-order numerical schemes.

To illustrate the versatility of ADF polynomials, we show that the ADF procedure can be e ectively used to

reconstruct the updating ODEs of the Taylor-based, nodal DG, and Flux Reconstruction methods identically. In

this process, the ADF technique provides the means to extend these techniques by introducing extra coe cients and

functionalities that can be optimally specified. Then using Fourier analysis, the Taylor and nodal-based ADF-DG

methods are shown to be stable and that their stability is enhanced using auxiliary coe cients.

Subsequently, by leveraging the ADF tool to handle di erent DOF settings, a point-value enhanced finite volume

(PFV) method is introduced, which stores and updates the cell-averaged values along with the values and derivatives

of unknown quantities at all nodal points. Within the PFV framework, the cell-averaged values are updated in the same

manner as in the finite volume method to ensure conservation. Furthermore, the nodal information is updated through

ADF integration over the entire collection of elements surrounding a given point. The updating of nodal quantities on

multiple elements leads to a stable algorithm, as confirmed using a Fourier stability analysis.

By way of verification, the PFV technique is vetted by investigating its performance in treating the linear, one-

dimensional, wave equation as well as the nonlinear, one-dimensional Burgers’ equation. In both cases considered,

a careful analysis of the logarithmic errors confirms the projected orders along with the convergence rate of error

residuals. In this process, the improved stability of the PFV method is ascertained, thus demonstrating the ability of

the present approach to enhance both stability and accuracy hand-in-hand. In future work, we hope to extend the PFV

method to two and three spatial dimensions both with and without the incorporation of viscous e ects.
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