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Abstract

We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL)
framework for nonconvex optimization with nonlinear equality constraints. When an approx-
imate first-order (second-order) optimal point is obtained in the subproblem, an € first-order
(second-order) optimal point for the original problem can be guaranteed within O(1/€27")
outer iterations (where 7 is a user-defined parameter with 1 € [0, 2] for the first-order result
and n € [1, 2] for the second-order result) when the proximal term coefficient 8 and penalty
parameter p satisfy 8 = O(e) and p = §2(1/€"), respectively. We also investigate the total
iteration complexity and operation complexity when a Newton-conjugate-gradient algorithm
is used to solve the subproblems. Finally, we discuss an adaptive scheme for determining a
value of the parameter p that satisfies the requirements of the analysis.

Keywords Optimization with nonlinear equality constraints - Nonconvex optimization -
Proximal augmented Lagrangian - Complexity analysis - Newton-conjugate-gradient

Mathematics Subject Classification 68Q25 - 90C06 - 90C26 - 90C30 - 90C60

1 Introduction

Nonconvex optimization problems with nonlinear equality constraints are common in some
areas, including matrix optimization and machine learning, where such requirements as
normalization, orthogonality, or consensus must be satisfied. Relevant problems include
dictionary learning [34], distributed optimization [26], and spherical PCA [28]. We consider
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the formulation
min f(x) subjectto c(x) =0, (1)

where f : R" — R, c(x) £ (c1(x),....,cmNT, ;i : R* - R,i =1,2,...,m, and all
functions are twice continuously differentiable.

We have the following definitions related to points that satisfy approximate first- and
second-order optimality coniditions for (1). (Here and throughout, | - || denotes the Euclidean
norm of a vector.)

Definition 1 (e-10) We say that x is an €-10 solution of (1) if there exists A € R™ such that
IVFx)+ Verll <€, lle(x)ll <e.
Definition 2 (e-20) We say that x is an €-20 solution of (1) if there exists A € R” such that:

[VF(x) +Verll <€, lle@)l <, (2a)

a’ <v2f<x) +Y Vi (x)) d > —e|d|?, (2b)

i=1
forany d € S(x) 2 {d e R" | Ve(x)Td = 0}.

These definitions are consistent with those of ¢-KKT and €-KKT?2 in [11], and similar to
those of [23], differing only in choice of norm and use of ||c(x)|| < € rather than c¢(x) = 0.
The following theorem is implied by several results in [4,11], which consider a larger class
of problem than (1). (A proof tailored to (1) is supplied in the “Appendix”.)

Theorem 1 If x* is an local minimizer of (1), then there exists €, — 07 and x;, — x* such
that xy is €x-20, thus €;-1o.

Theorem 1 states that being the limit of a sequence of points satisfying Definitions 1
or 2 for a decreasing sequence of € is a necessary condition of a local minimizer. When
certain constraint qualifications hold, a converse of this result is also true: x* satisfies first-
order (KKT) conditions when x is €;-10 and second-order conditions when x; is €-20 (See
[4,5]). These observations justify our strategy of seeking points that satisfy Definitions 1 or
2.

The augmented Lagrangian (AL) framework is a penalty-type algorithm for solving (1),
originating with Hestenes [25] and Powell [31]. Rockafellar proposed in [32] the proximal
version of this method, which has both theoretical and practical advantages. The monograph
[7] summarizes development of this method during the 1970s, when it was known as the
“method of multipliers”. Interest in the algorithm has resurfaced in recent years because of
its connection to ADMM [13].

The augmented Lagrangian of (1) is defined as:

Lo, ) 2 f()+ Y hici(x) + g; @) = f@) +2Te@) + Slel?,

i=1

where A £ (A1, ..., An)T. The (ordinary) Lagrangian of (1) is Lo(x, A).
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1.1 Complexity Measures

In this paper, we discuss measures of worst-case complexity for finding points that satisfy
Definitions 1 and 2. Since our method has two nested loops — an outer loop for the Proximal
AL procedure, and an inner loop for solving the subproblems — we consider the following
measures of complexity.

— Outer iteration complexity, which corresponds to the number of outer-loop iterations of
Proximal AL or some other framework;

— Total iteration complexity, which measures the total number of iterations of the inner-
loop procedure that is required to find points satisfying approximate optimality of the
subproblems;

— Operation complexity, which measures the number of some unit operation (in our case,
computation of a matrix-vector product involving the Hessian of the Proximal augmented
Lagrangian) required to find approximately optimal points.

We also use the term “total iteration complexity” in connection with algorithms that have
only one main loop, such as those whose complexities are shown in Table 1.

We prove results for all three types of complexity for the Proximal AL procedure, where
the inner-loop procedure is a Newton-conjugate-gradient (Newton-CG) algorithm for the
unconstrained nonconvex subproblems. Details are given in Sect. 1.3.

Algorithm 1 Augmented Lagrangian (AL)

0. Initialize xq, Ag and pg > 0, A S [Amin, Amax], T € (0, 1),y > 1; Setk < 0;

1. Update x;: Find approximate solution xj 1 to miny Ly, (x, Ag);

2. Update Ag: Agt1 <= PA(Ag + prc(xp+1));

3. Update pi:if k = 0 or |[c(xg41)lloo = Tllc(xk) lloo, S€t px41 = pk; otherwise, set px41 = Y0k;
. If termination criterion is satisfied, STOP; otherwise, k <— k 4+ 1 and return to Step 1.

~

1.2 Related Work

AL for nonconvex optimization. We consider first the basic augmented Lagrangian framework
outlined in Algorithm 1. When f is a nonconvex function, convergence of the augmented
Lagrangian framework has been studied in [9,11], with many variants described in [1-3,6,19].
In[11], Algorithm 1 is investigated and generalized for a larger class of problems, showing in
particular that if xj is a first-order (second-order) approximate solution of the subproblem,
with error driven to 0 as k — oo, then every feasible limit point is an approximate first-
order (second-order) KKT point of the original problem. In [9], it is shown that when the
subproblem in Algorithm 1 is solved to approximate global optimality with error approaching
0, the limit point is feasible and is a global solution of the original problem.

There are few results in the literature on outer iteration complexity in the nonconvex
setting. Some quite recent results appear in [12,22]. In [22], the authors apply a general ver-
sion of augmented Lagrangian to nonconvex optimization with both equality and inequality
constraints. With an aggressive updating rule for the penalty parameter, they show that the
algorithm obtains an approximate KKT point (whose exact definition is complicated, but
similar to our definition of €-10 optimality when only equality constraints are present) within
O(e~%/@=D) outer-loop iterations, where @ > 1 is an algorithmic parameter. This com-
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plexity is improved to O(| log €|) when boundedness of the sequence of penalty parameters
is assumed. Total iteration complexity measures are obtained for the case of linear equality
constraints when the subproblem is solved with a p-order method (p > 2). In [12], the
authors study an augmented Lagrangian framework named ALGENCAN to problems with
equality and inequality constraints. An e-accurate first-order point (whose precise definition
is again similar to our e-1o optimality in the case of equality constraints only) is obtained in
O(|log€|) outer iterations when the penalty parameters are bounded. The practicality of the
assumption of bounded penalty parameters in these two works [12,22] is open to question,
since the use of an increasing sequence of penalty parameters is critical to both approaches,
and there is no clear prior reason why the sequence should be bounded'.

Proximal AL for nonconvex optimization: Linear equality constraints. The Proximal aug-
mented Lagrangian framework, with fixed positive parameters p and S, is shown in
Algorithm 2.

Algorithm 2 Proximal augmented Lagrangian (Proximal AL)
0. Initialize xg, Ag and p > 0, B > 0; Set k < 0;

1. Update xy: Find approximate solution xj41 to miny £, (x, Ag) + gllx — Xk 12
2. Update Ag: Agy1 < Ak + pc(xg41);
3. If termination criterion is satisfied, STOP; otherwise, k <— k + 1 and return to Step 1.

For this proximal version, in the case of linear constraints c(-), outer iteration complexity
results become accessible in the nonconvex regime [24,26,27,35]. The paper [26] analyzes the
outer iteration complexity of this approach (there named “proximal primal dual algorithm
(Prox-PDA)”) to obtain a first-order optimal point, choosing a special proximal term to
make each subproblem strongly convex and suitable for distributed implementation. An
outer iteration complexity estimate of @(e~!) is proved for an ,/e-10 point. This result is
consistent with our results in this paper when the choice of g and p is independent of € and
c(x) is linear.

The paper [24] proposes a “perturbed proximal primal dual algorithm,” a variant of Algo-
rithm 2, to obtain outer iteration complexity results for a problem class where the objective
function may be nonconvex and nonsmooth. In particular, an outer iteration complexity of
O(e7?) is required to obtain e-stationary solution, where the latter term is defined in a way
that suits that problem class. A modified inexact Proximal AL method is investigated in [35].
Here, an exponentially weighted average of previous updates is used as the anchor point in the
proximal term, total iteration complexity of O (e ~2) to locate an € stationary point similar to
e-lois derived and a certain kind of linear convergence is proved for quadratic programming
(QP). The paper [27] derives outer iteration complexity of O™ ?) fora proximal ADMM
procedure to find an € stationary solution defined for their problem class.

To our knowledge, outer iteration complexity of Proximal AL in the case of nonlinear
c(x) and its complexity for convergence to second-order optimal points have not yet been
studied.

Complexity for constrained nonconvex optimization. For constrained nonconvex optimiza-
tion, worst-case total iteration complexity results of various algorithms to find e-perturbed
first-order and second-order optimal points have been obtained in recent years. If only first-
derivative information is used, total iteration complexity to obtain an e-accurate first-order

I Circumstances under which the penalty parameter sequence of ALGENCAN is bounded are discussed in [1,
Section 5].
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optimal point may be O (e —2Y18,23,29]. If Hessian information is used (either explicitly or via
Hessian-vector products), total iteration complexity for an e-accurate first-order point can be
improved to 0(6_3/ 2) [8,23,30], while the total iteration complexity to obtain an e-accurate
second-order point is typically O(e~3) [8,23,29,30]. More details about these results can be
found in Table 1.

Other approaches focus on nonlinear equality constraints and seek evaluation complex-
ity bounds (“Evaluation complexity” refers to the number of evaluations of f and ¢ and
their derivatives required, and corresponds roughly to our “total iteration complexity”.) for
approximate first-order optimality. An algorithm based on linear approximation of the exact
penalty function for (1) is described in [14], and attains a worst-case evaluation complexity
of O(¢~>) by using only function and gradient information. Two-phase approaches, which
first seek an approximately feasible point by minimizing the nonlinear least-squares objective
lle(x) II% (or equivalently ||c(x)]|), and then apply a target-chasing method to find an approx-
imate first-order point for (1), are described in [16,17]. (See Table 1.) Extensions of these
techniques to approximate second-order optimality is not straightforward; most such efforts
focus on special cases such as convex constraints. A recent work that tackles the general
case is [18], which again considers the two-phase approach and searches for approximate
first-, second-, and third-order critical points. Specific definitions of the critical points are
less interpretable; we do not show them in Table 1. They are related to scaled KKT conditions
for the first order point, and to local optimality with tolerance of a function of € for second
and third order points.

1.3 Contributions

We apply the Proximal AL framework of Algorithm 2 to (1) for nonlinear constraints
c(x). Recalling Definitions 1 and 2 of approximately optimal points, we show that when
approximate first-order (second-order) optimality is attained in the subproblems, the outer
iteration complexity to obtain an e-10 (e-20) point is O(1/€>~7) if we let § = O(e") and
p = 2(1/€m), where 7 is a user-defined parameter with n € [0, 2] for the first-order result
and n € [1, 2] for the second-order result. We require uniform boundedness and full rank
of the constraint Jacobian on a certain bounded level set, and show that the primal and dual
sequence of Proximal AL is bounded and the limit point satisfies first-order KKT conditions.

We also derive total iteration complexity of the algorithm when the Newton-CG algorithm
of [33] is used to solve the subproblem at each iteration of Algorithm 2. The operation com-
plexity for this overall procedure is also described, taking as unit operation the computation
of a Hessian-vector product. When c(x) is linear and n = 2, the total iteration complexity
matches the known results in literature for second-order algorithms: O(e~3/2) for an e-1o
point and O (e ~3) for an €-20 point.

Finally, we present a scheme for determining the algorithmic parameter p adaptively,
by increasing it until convegence to an approximately-optimal point is identified within the
expected number of iterations.

1.4 Organization

In Sect. 2, we list the notations and main assumptions used in the paper. We discuss outer
iteration complexity of Proximal AL in Sect. 3. Total iteration complexity and operation
complexity are derived in Sect. 4. A framework for determining the parameter p in Proximal
AL is proposed in Sect. 5. We summarize the paper and discuss future work in Sect. 6.

@ Springer



Journal of Scientific Computing (2021) 86:38

38 Page6o0of30

B (uerssoH) [(x)211P> > [[(x)2(x)2All 10
o1l 0=00 () 22,20 110172 = 028 + () LAl 4> 5 (1))
_ [I(x)2]|30 yurod [eonuo srewrxoidde ue six
[yl 0= (uapess) (-0 10 55 (095 = (X2 + )/ Al
- JEZA=D (CIF S ¢
e UeISS El - -
Loe] 0= (UetssoH) (z/g-2)Q 25 M) SAX] -2 (0fA 0<x
0> (P ()SA)
XOAUOD pUE (uersso) Hy> |y 1> lpll ‘L£ap+xrs
l6z] PasOPD SLL (.Hs Sz P()f A yp Pum
L£3x e so_||rslsl Los+xs
= (s“(x) / A) Sun
{fo=prxvIpr}>ra
. 0= P+ X0 [ AX) P
e =X UeISSS El —
ldd 0=xia=xy (WSSO (g/¢-2)0 55 (v + O X
P V+M®SA 0<xg=xy
_ 2> (¢, v+ @S AXI
Xg=x yuorpess) (,_ > _ £z
[ezl 0<x'q=xy (uarpessd) (,_3)0 D= S v+ (OfA 0 < ¥ q=1xy
(8l 0<x (uetssoH) (;/e_2)0 YN = XX S AX 2> RN LAX]
_ q(z/>—1) < 'xp 2> 1(0) S Al
X juarpeis) (,_> _
18] =50 (uapesd) (20 q9@Z/>—1D > 55 1L AX]
N ad£) yurensuo) Knxordwo) ad£) yutog

wvHSUDOOHQ EOENNMEEQO X9AUOdUOU paurensuod I0J sajew)sa %ﬁxo—QEOO uonenjeAs I0 uonerair [ejo], | sjqer

pringer

as



Page70f30 38

Journal of Scientific Computing (2021) 86:38

IopIo (id 0) dn SIATIBALIOP UOTIOUNJ AJBN[EBAD 0) SPAAU WIILIOT[L ) JBY) SUBIW JANBALIIP Y1d "A[AN92dsal ‘UONBULIOJUT URISSOH pU® JULIpeI3 [joq
10 Juarpers AJuo sasn wiyLIoS[e Y ey} suedw sisayuared ur URISSOH IO JULIPRID) "UAPPIY SI030R] WILeSo] Pim () sjussardar () ({1 ‘x}uru)Serp = x pue (x)Seip = x oI0H

(eAnRALIOp Y3 b)
( 1—bz— 2)0

(oaneatIop yid)
(d/+a)-2)O

(uarpers) (,_3)0

.m %N r—, = w
[I(x)2]| 30 10 wajqoid paurensuod ay) jo
jutod [eonuo Jopio yyhajewrxorddes st x

[ (x)2]|30 10 wojqoid paurensuod Ay} jo
jutod [eonud 1opio Is1y Aewrxorddes st x

21 Z (|32 2 > 17 (0)aal
10 2> [[(0)2] 2 > [v()2A + (D)L Al

X9AUOD pue

(81l PosO[d ST
£22x0=(x)0

XOAUOD pue

(81l Paso[o st £
£3x0=(x)0
[L1] 0= (x)2
iy adAy Jurensuo)

Kyxordwo)

ad£) yutog

panunuod | ajqeL

pringer

Qs



38 Page8of30 Journal of Scientific Computing (2021) 86:38

Most proofs appear in the main body of the paper; some elementary results are proved in the
“Appendix”.

2 Preliminaries

Notation. We use || - || to denote the Euclidean norm of a vector and || - || 2 to denote the operator
2-norm of a matrix. For a given matrix H, we denote by oy (H) its minimal singular value
and by Apin(H) its minimal eigenvalue. We denote steps in x and A as follows:

AXp1 = Xpp1 — Xk A1 = g1 — Ak 3)

In estimating complexities, we use order notation O(-) in the usual sense, and O to hide
factors that are logarithmic in the arguments. We use (o) = $2(y (o)) (where B(«) and y (@)
are both positive) to indicate that S(«)/y («) is bounded below by a positive real number for
all o sufficiently small.

Assumptions.
The following assumptions are used throughout this work.

Assumption 1 Suppose that there exists pp > 0 such that f(x) + % lle(x)||? has compact
level sets, that is, for all @ € R, the set

522 fx] f0 + Zlewl? < af @
is empty or compact.

Assumption 1 holds in any of the following cases:

1. f(x)+ '0—20||c()c)||2 is coercive for some pg > 0.

2. f(x) is strongly convex.

3. f(x)isboundedbelow and c(x) = x” x —1, as occurs in orthonormal dictionary learning
applications.

4. f(x) £ 1xTQx — pTx, c(x) £ Ax — b, Q is positive definite on null(A) £ {x | Ax =
0}.

An immediate consequence of this assumption is the following, proof of which appears
in the “Appendix”.

Lemma 1 Suppose that Assumption 1 holds, then f(x) + '0—20 le()||? is lower bounded.

Therefore, Assumption 1 implies
L2 inf {f(x) n @nc(x)uz] > —o. )
xeR" 2

We use this definition of L throughout this paper whenever Assumption 1 holds.
The second assumption concerns certain smoothness and nondegeneracy assumptions on
f and ¢ over a compact set.

Assumption 2 Given a compact set S C R”, there exist positive constants Mz, M., o, L
such that the following conditions on functions f and ¢ hold.

@ IV =My, [Vf(x) = VDI < Lyllx = yll, forall x, y € S.
(i) IVe@)ll2 < Me, omin(Ve(x)) > o > 0 forallx € S.
(i) [Ve(x) = Vellz = Lellx =y, forall x, y € S.
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This assumption may allow a general class of problems; in particular, (i) holds if f(x) is
smooth and V f (x) is locally Lipschitz continuous on a neighborhood of S. (ii) holds when
c(x) is smooth on a neighborhood of S and satisfies an LICQ condition over S, and (iii) holds
if Ve(x) is locally Lipschitz continuous on S.

Assumption 3 Suppose that f(x) < U forany x € {x | |c(x)|| < 1}.

A sufficient condition for Assumption 3 to hold is the compactness of {x | [|c(x)| < 1}. This
assumption is not needed if c(xg) = 0, that is, the initial point is feasible.

3 Outer Iteration Complexity of Proximal AL

In this section, we derive the outer iteration complexity of Proximal AL (Algorithm 2) when
the subproblem is solved inexactly. We assume that x4 in Step 1 of Algorithm 2 satisfies
the following approximate first-order optimality condition:

Vi Lp(Xpg1, k) + B(xry1 — xp) = Fgq1, forallk >0, (6)
where 7 is some error vector. We additionally assume that
B
Lo X1, M) + 5|IXk+1 — xll* < Lp(x, Ap), forall k > 0. (N

This condition can be achieved if we choose xj as the initial point of the subproblem in Step
1 of Algorithm 2, with subsequent iterates decreasing the objective of this subproblem. To
analyze convergence, we use a Lyapunov function defined as follows for any £ > 1, inspired
by [26]:

B
&é@mjw+ﬂm—mqﬁ (8)
For any k > 1, we have that
_ B > B 2
Pry1 — P = Lp(Xkg1, Aig1) — Lo, M) + ZIIAXkHII - ZIIAXkII
= Lpxk41, A1) — Lo, Ae) + Lo K1, Ak) — L Xk, Ak)
+§M%HW—%MMW
= Ot — A0 Q1) + L1, M) — L (ks Ak)

B » B 2
Plia ~Pia
+3 | Axgqr ] 1 | Ax]|

_ 1 2 ﬂ 2 18 2
= E”A)\kJrl” + Lo @1 M) = Lo (ks M) + 7l A 17 = 7 [ Axe]

1 B B B
s;MMHW—EMmHW+ZMmHW—ZMmW
1 B B
= —[[Ahes1 I — SN Axks1 1P = = 1 Axicl?, )
P 4 4

where the fourth equality holds because of Step 2 in Algorithm 2. We start with a technical
result on bounding || Ahig1 |12 = IlAes1 — Akl
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Lemma2 (Bound for ||Ax1 — A||?) Consider Algorithm 2 with (6) and (7). Suppose that
for a fixed k > 1, Assumption 2 holds for some set S and that xi, xx+1 € S. Then,

16M 4
art = 2all® < Crll AxipaI” + Call Axe 1> + — <11l + 7||rk+1 — &% (10)

where C1 and C, are defined by
4 L.:My 2MC,3
o= C, £ B+ (1
o?
Proof The first-order optimality condition (6) for Step 1 implies that for all 7 > 0, we have

V1) + Vel DA + pVexp)egpr) + Bt — X)) = Trg.
= V) + Ve + By — x) =Fry1. (12)

Likewise, by replacing ¢ with # — 1, for # > 1, we obtain
V@) +Velxp)h + B(xy — xi-1) =T (13)

By combining (12) and (13) and using the notation (3) along with A7y £ 741 — 77, we
have for any ¢ > 1 that

Vf(xi+1) = Vf(xe) + Ve(xrp1) Arrg
+ (Ve(xrg1) — Ve(x))hr + B(Axi1 — Axy) = Afy,

which by rearrangement gives

—Ve(xrp1) A1 = V f(xr1) — Vf(x1) + (Ve(xr1) — Ve(xr)) A
+ B(Axi41 — Axp) — AFpy.

For the given k > 1, since o is a lower bound on the smallest singular value of Vc(xi41) by
Assumption 2, we have that

[AXq1ll < é(nvf(karl) =V @l + Vel — Ve [H Akl
+ BUAx+1 1l + 1 Axi ) + | AFxp1])- (14)
We have from (13) that
Ve = =V f () — Blxg — xk—1) + Ik,
so that
Akl < é(IIV.f(Xk)II + Bl Axkll + 7kl = % (Mg + Bl Axl + 117ll) . (15)
We also have from Assumption 2 that
IVe@ii) = Vel < Lellxest — xkll, [IVelayr) — Vel = 2M. (16)

By substituting Assumption 2(i), (15), and (16) into (14), we obtain the following for the
given k > 1.

1
1AMl = — (Lf [Axks1ll + Bl Axiy1ll + Bl Axkll

1 B 1. -
+ Vel = Vetxoll2 <;Mf + g”Axk” + ;”rk”) + [ AFky1 ||>
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1 LMy M.
< - L[ Axps1ll + BllAxgy1ll + Bl Axill + > | Axp+1ll + 5 1Akl
2M, | . .
+ 1751l + A7k |l
o
1 LMy 1 2M.B
<—|(Ls+ =+ B | 1Axk+1ll + = { B+ — | 1 Axk]l
o o o (o2
2M,. . 1
+ — 7kl + = | AFgqa .
(e o

By using the bound (a + b + ¢ + d)2 < 4(a2 +b2+cr+ d2) for positive scalars a, b, c, d,
and using the definition (11), we obtain the result. ]

For the rest of this section, we use the following definitions for ¢ and c:

C C
sf G 00 O (17)
4 P 4 P
where C and C, are defined in (11). Next we show that sequences {xx} and {A} are bounded
and {Py}r>1 satisfies certain properties under Assumption 1-3, for suitable choices of the

algorithmic parameters.

C1

Lemma 3 Consider Algorithm 2 with conditions (6) and (7). Choose {Fy}k>1 such that
Z,fil 172 < R < +oo and ||l < 1, for all k > 1. Let {Py}k>1 be defined as in
(8). Suppose that Assumptions 1 and 3 hold and define

& 270 +7Cy — 6L + 13| a0l|*> + 2, (18)

where Co > 0 is any fixed constant. Suppose that Assumption 2 holds with S = Sg. Choose
p and B such that

M+ BDg + 1)2 16(M%2 4+ )R
0 > max (My +BDs ) 00, (M¢ +o7) 300, 1¢, (19)
202 o4
where
Ds £ max{|lx — y| | x,y € S3}. (20)

and that ¢ and ¢, defined in (17) are both positive. Suppose that xo satisfies ||c(x0)||2 <
min{Co/p, 1}, where Cy is the constant appearing in (18). Then

My + BDs + 1
o

(k=0 € Sy and |l < , forallk = 1. 1)

Furthermore, (10) and the following inequality hold for any k > 1,
16M? 4 .
Piy1 — Po < —cillAxig1 1P = call A 1> + —E IR + — 1Fesr — Al”. (22)
po oles
Proof Note that Assumption 3 implies that

fxo) < U, (23)

since ||c(xp)|| < 1. Therefore,

£,(x0. 20) = f(x0) + AT c(xo) + gnc(xo)n2
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I o||

< fxo) + ,” Goll*+ = ||C(x0)||
23 _ 2
< U+ fllx\oll + Co. (24)
2p
and
- - 24 P I2oll> -
U+Co—L = fxo)+Ageo) + S lle@o)l* - =, L
(p=3p0) 00 - P 1011
> fxo) + S lle@o)|I* = L+ Af e(xo) + < le(xo) | —
2 3 2p
2 2
o 300 3 l2oll
>0+ % |le(o) + == | — —llxol? -
3 2p 4p 2p
(p=1) 5
> =7l (25)
We prove the theorem by induction. We show that the following bounds hold for all i > 1:
xi €Sy, (26a)
(My + BDs + 1)?
1217 < =P < 200 — po), (26b)

P <70 +7Cy — 6L +

Zn Al +—Z||rt+1—r,|| (26¢)

We verify first that (26) holds when i = 1. From (7) we have

Fo) + 28t + gnc(xl)n2 + gnxl — xol?

o 24— laoll?
Sf(XO)+)»0TC(XO)+§||C(XO)II2 = U+ -+ 0o 27)
so that for i = 0 and 1, we have
P 2H.27 —  rol? o
[+ gIIC(xi)II2 < U+ 2% + Co — Adelxi) — *||C(xi)||2
- A 3 3|rol?
:U+||0|| +c—£ o )+70 120l
2p 4p
(0z3g0) £0 S5laoll?

fxi) + EIIC(M)II <U+——+GC
4p

(@5),pz1) 5. 2 - -5 5
= U+tCotglnl”+6{U+Co—L+ il

18
<70 +7Cy — 6L + —leonz RSP

Thus, xg, x; € Sg, verifying that (26a) holds for i = 1.
Approximate first-order optimality (6) indicates that

Vf(x1) + Vel + B(x1 — xo) = 71.
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Since xq, X1 € Sg, we have by Assumption 2 and (20) that

olrll = Vel = IV f(x1) + Bx1 — x0) —71ll = My + BDs + 1.

My + ﬂDS +1)? (19>
O’

= ml? < < 2(p — po).

Thus, (26b) holds for i = 1.
Next, we verify (26c) when i = 1. Note that

B
Pr=Lp0rn, ) + 7l = xol?
= Ly(x1, A1) — Lp(x1, o) + Ly (x1, Ao) — Ly (x0, o) + L, (x0, 20)
B 2
+ 4||J61 xol|

M1 B B
< ;nxl — ol — Sl — xoll* + L, (x0, 20) + 2l — xol?

B
= pllex)]* — Zlho - x0l1> + £, (x0, 20)

24 S| ’
< plleGnll +U+%llkoll + Co.

(p=1) _ 1
< p||c(x1)||2+U+5||xo||2+co, (28)
In addition, (27) indicates that
P 2
g el

1
<U+ g||Ao||"‘ +Co — M e(xr) — %nc(xl)nz — flxn) — gur:(xl)n2

-1 o 3120l o
=U+ —||Ao||2 +Co = lleen) + 320/ 0% 5 flxn) — g||c<x1>||2
(0>300) - 3 xoll? Po

< U+ —nxon +Co+ —— 5y~ flxn) — 7||c(x1>||2

_ ) - (p=1) — ) -
_U+;||)\o|| +Co—L < U-+2|rll"+Co—L

By substituting this bound into (28), we have that

I20ll*
2
s0 (26c) holds for i = 1 also.

We now take the inductive step, supposing that (26) holds when i = k > 1, and proving
that these three conditions continue to hold for i = k + 1. By inequality (7), we have

P <U-+ + Co + pllcGx)? <70 +7Co — 6L + 13|20]l%, (29)

Lok, ) < Lp(xXk, Ae) < Py

P
= fx1) + §||c<xk+1)||2 + 2l eus) < Py

Ml (o — po)llcCerr )12
— flen) + Dleugnl? - o= el )T
2 2(p = po) 2
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00 Al @6b)
= fxr)+ eI < o4+ ———— < P +1
2 2( —,00)

(26c) - _ 2
< 70 +7Cy — 6L + 13]20l +

+ —anm — Rl +1

=

—1 k—1
<70 +7Co — an,n Z(nrmn + 1717 + 1
_ M? . 16 -
<70 +7Co — - Z||r,||2+ —ZantnzH
t=1 po t=1
- _ ,  16(M?2 +0%)R
<70 +7Co — 6L + 13| 20||* + ——5—— +1

pot
19 _ - . 5 .
< 70 +7Co — 6L + 13||0|*> +2 = &,

where the inequality on the third line holds because of —% lal? — % 16112 < a”b, for any
r > 0,a,b € R™. Therefore, x;4+ € Sg, so we have proved (26a).

By approximate first-order optimality (6) and the hypothesis x; € Sg, the argument to

. 2
establish that |ajq]|> < LD

(26b) holds fori =k + 1.
Since x; and x4 both belong to Sg, Lemma 2 indicates that (10) holds. By combining
(10) with (9), we obtain (22). Therefore,

22) 16M?
Piy1 < Pk+

< 2(p — po) is the same as for the case of i = 1, so

4
| 7l + ||rk+1 —Fll?

k k
16M? ., 4 3 L
04‘ > 7| +—p02§ IFerr — 7"
t=1 t=1

Thus we have established (26¢) for i = k + 1. Note that (10) and (22) hold for all k > 1, so
we have completed the proof. O

26) -
< TU+7Cy —

First-order complexity. With the properties of {Py}x>1 established to this point, we can
analyze the complexity of obtaining an €-1o solution. For any given ¢ > 0, we define two
quantities which will be referred to repeatedly in subsequent sections:

Te = inf{t > 1] |VaLo(xs, M)l < € lle(x)| < €}. (30a)

£ inf{r > 1| x; is an € — 1o solution of (1)}. (30b)

Note that fe is independent of the Proximal AL method. Meanwhile, by the definition of
Lo(x, L), we know that x7. is an e-lo solution and A7, is the associated multiplier, indi-

cating that 7, < T.. The definition of 7, also suggests the following stopping criterion for
Algorithm 2:

If || Vi Lo(xs, A)|| < € and ||c(x;)]|| < € then STOP. 31

Under this criterion, Algorithm 2 will stop at iteration 7. — 1 and output x7. as an e-1o
solution.

Part (i) of the following result shows subsequential convergence of the generated sequence
to the first-order optimal point. Part (ii) describes the speed of such convergence by obtaining
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an estimate of 7, in terms of €. In this result, we make a specific choice § = €"/2 for the
proximality parameter. We could choose B to be any fixed multiple of this value (the multiple
not depending on €) and obtain a similar result with only trivial changes to the analysis.

Theorem 2 (First-order complexity) Consider Algorithm 2 with conditions (6) and (7), and
let { Px}k>1 be defined as in (8). Suppose that Assumptions 1, 3 and 2 hold with S = Sg (with
a defined in (18)), and that € € (0, 1] and n € [0, 2] are given. Suppose that the residual
sequence {Fik>1 is chosen such that Y o 171> < R € [1,00) and ||| < €/2 for all
k> 1

Define B = €"/2 and

16 max{Cy, C2} (My + BDs + 1)? 16(M?* +o?)R
i 2 + ,O ’ 4
el 20 o

pznmx{ ,3m,q, (32)

where C1 and C; are defined as in (11), and Dg is the diameter of Sg, as defined in (20).
Suppose that xq satisfies leGxo)l? < min{Co/p, 1}, where Cy is the constant appearing in
(18). Then we have the following.

(1) A subsequence of {(x, Mi)}ix>1 generated by Algorithm 2 converges to a point (x*, A*)
satisfying first-order optimality conditions for (1), namely,

VI ")+ Vex™HA* =0, c(x*) =0.

(i) For T, and f} defined in (30), we have TA} <T. = (’)(1/62”7). In particular, if n = 2,
then T, = O(1).

Proof We first prove (i). Checking the positivity of ¢1 and ¢, given the parameter assignments,
we have
Cy 32) ¢ n Cy 32) €
gl e B _ed (33)
4 P 8 16 4 P 16
P
Pz f0a) + S leGoll? + A e0u)

I o = po)lle@o)l?

zf@m+§wuww—

2(p — po) 2
£0 > Ak lI*
= f) + S llecxll” — =———
Y 2 2(p — po)
(Lemma 3) £0 (Mys + ,BDS + 1)2
> 7 Fo0 + De? - L5
2 20%(p — po)
5),32) _
( )z( L—1. (34)

Therefore, using (22) from Lemma 3, we have the following for any k > 1:

[c1lAxis1]? + c2llAxi)1?]
1

k k
16M? ., 4 By 5
=P — P+ P ;_] 7~ + 202 ;_1 I7ie1 —rill

k
i=

16M2 & 8 &

¢ =2 S 2 E 2

<P — P+ P El 17 1- + 202 E 1(I|h+1|| + 117 117)
1= 1=
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16(M? +02) o= . »
SPI_PkJrl‘f‘TZ”ri”

i=1

16(M? + 0®)R

< Py — Py + 7 (35)
PO
34 _ 16(M? +o)R
< P —(L- 1)_‘_(57—}_40)
po
(32) _
< PI—-L+2
29 __ - , - L -
< 70 +7Cy—6L+ 13|[Ag)>—L+2=6—L. (36)

Because of (21) in Lemma 3 and compactness of Sg, the sequence {(xx, Ax)}x>1 is bounded,

so there exists a convergent subsequence {(xx, Ax)} ke With limit (x*, A*). Since (36) holds

forany k > 1 and ¢; > 0, ¢ > 0, we have that klirn | Axi || = 0. Moreover, finiteness of
— 00

352, 7 lI? implies that klim I7 |l = 0. Therefore, we have
— 00
Vf(x™) + Ve@x™r* = %in}%(Vf(xk) + Ve(xp)ir)
€
= llief}lc(vf(xk) + Ve(xp) (k-1 + pc(xp))) = %IEI}IC Vi Lp (X, Ax—1)

O -
= 1 — A =0.
klen’%( BAXk + T)

Since (10) holds for any k£ > 1 by Lemma 3, we have

) . 2 . 2,2
= lim = lim |[|Ax — Ap—
leGx™) lim lleGe)l lim lAe = Ak—1ll"/p

ao ¢ , C2 , lem?* 4
< Iller}lC ?”Axk” + P”Axk—l” + P -1 1" + W”rk —r—1ll” =0,
completing the proof of (i).
We now prove (ii). Define
4 L:Mp\?
cgéfz(ijL d f) <c, (37a)
o o
A2 (@ — Lymax {16,1/(8C)} . (37b)
We want to show that 7T, < fAA/ez”ﬂ +1.LetK & fAA/ez"’l, and note that since (36)
holds for k = K, we have that there exists some k* € {1, 2, ..., K} such that
cillxeer — xes 2+ eallves — w1 11? < @ — L)/K. (38)

Thus, we have

©.) -
IV Lo 1, M DIl = IVLp O g1, M) | <0 Bllxer 1 — x| 4+ 1P |l

38 [@—L)/cr € B33 e [(a—L)/(e]16) €
= ﬁVTJ“E = ?V#Jﬁ

€ [16(& — L)/(eM) L€ <3Zb> en 16(a¢ — L) €
Y e — - T == — — €.
2 Aen—2 2 7 2V16@—Lyen2 2

=
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For the constraint norm, we have

le@re D I? = | Adr 41112/ 0°

10y ¢, , O , leM?* 4 .

= ?||Axk*+l|| + ?”A)Ck*ﬂ + 224 7117 + W””k*ﬂ — ||
Ci C 16M> 8 _

< A1 P + =5 1A 12 + =<1 1P + —— (Fe 17 + [ Feeg1 1)
P P p-o p-o
C , G 5 16(M2?+0?) €

< = | Axpr == || Axpr —_— .

= p2 ” k*+1 ” + pz ” k ” + p204 4

HM? +o?)e?

p2a*

RS {Q 9} 2 2
< — max . (cilAxist1ll” + call Axpe 1) +
1Y 1
(32.68) max{Cy. C2}/(€"/16) & —L  4(MZ +0)e
(16 max{Cq, C3}/e")? K pro?
N G L)e" 4M; +0%) 2
~ 16max{Cy, C2}K p2ot
(3111) @—L)ye"  4(M?+a?) 2
- 16C{K pot

G2 @—Lye" &

16C{Aen~2  4pR
(bz1.R=D) (& —Lye" &
16C Aen=2 4

37h) 2 &,
= 5 + T <€’
Therefore, we have

T.<k*+1<K+1=[A/* " +1.

It follows that YA} <T. < (AA /62_'71 + 1, completing the proof.

(39

m}

Remark 1 (i) The condition ||c(xp)||?> < min{Cy /p, 1} is obviously satisfied by a feasible
point, for which ¢(xp) = 0. In this case, we do not need Assumption 3 and can prove a
result with @ = 7 f (xo) + 7Co — 6L + 13|40/l + 2. An initial phase can be applied, if
necessary, to find a point with small ||c(xp)||; we discuss this point in a later section.

(ii)) Whenn = 0, the complexity resultis consistent with that of [26]. However, our parameter
choices 8 = €" for n > 0 allows us to choose B to be small because, unlike [26], we
are not concerned with maintaining strong convexity of the subproblem in Step 1 of
Algorithm 2. Another benefit of small § is that it allows complexity results to be proved
for e-20 points, which follows from part (ii) of Theorem 2, as we see next.

Second-order complexity. We further assume that in Step 1 of Algorithm 2, x4 satisfies the

following approximate second-order optimality conditions:
Vi Lo(tit, M) + BI = —ef 1, forallk > 0,

H .
where {€;’,  }x>0 is a chosen error sequence.

(40)
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In corresponding fashion to the definition of f} in (30b), we define i as follows:
i £ inf{r > 1 | x, is an € — 20 solution of(1)}. 41)

We have the following result for complexity of obtaining an €-20 stationary point of (1)
through Algorithm 2.

Corollary 1 (Second-order complexity) Suppose that all assumptions and settings in Theo-
rem 2 hold. Assume that, in addition, Step 1 of Algorithm 2 satisfies (40), with e,f = €/2 for
allk > 1. Let n € [1, 2]. Then for T defined in (41), we have T6 O(1/€*M).

Proof Since B = €7/2 < €/2 and EIZ—I = ¢/2, for any k > 0, we have from (40) that

V2 Ly (a1, M) = —(B+ e )T = —el.

This fact indicates that

V2 f(oes) + Z[)\k-H 1 V26 (i) + pVela D[Vt D]’ = —€l,
i=1

which implies that

m
dT(Vf () + Y a1 li Ve (ur))d = —elld|),
i=1
for any d € S(xx+1) L (d € R" | [Ve(xke1)]1Td = 0. This is exactly condition (2b) of
Definition 2. Therefore, we have

=inf{t > 13X € R", [V f(x) + Ve(x)rll <€, llcGxll <€,

m
d" (V2 f () + )2 Viei())d = —e|ld|)®, for alld € S(x))
i=l
<inf{t = 1| [Vf(x) + Ve@rll < e el < e,

d" (V2 f(x) + ) M1V (x))d = —el|d|?,  for alld € S(x;))
i=1
=inf{t > 1| [V /() + Vel <€ el < e} =T

The result now follows from Theorem 2. ]

4 Total Iteration/Operation Complexity of Proximal AL

In this section, we will choose an appropriate method to solve the subproblem and estimate
the total iteration and operation complexity of our Proximal AL approach to find an e-10 or
€-20 solution. To solve the subproblem at each major iteration of Algorithm 2, we can use
methods for unconstrained smooth nonconvex optimization that allow the decrease condition
(7) to hold, and approximate optimality conditions (6) or (40) to be enforced in a natural way,
finding points that satisfy such conditions within a certain number of iterations that depends
on the tolerances [10,15,20,21,33]. Among these, the Newton-CG method described in [33]
has good complexity guarantees as well as good practical performance.
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To review the properties of the algorithm in [33], we consider the following unconstrained
problem:
min  F(2) (42)
zeR"
where F : R" — R is a twice Lipschitz continuously differentiable function. The Newton-
CG approach makes use of the following assumption.

Assumption 4 (a) The set {z | F(z) < F(z0)} is compact, where z is the initial point.

(b) F is twice uniformly Lipschitz continuously differentiable on a neighborhood of {z |
F(z) < F(z0)} that includes the trial points generated by the algorithm.

(c) Giveney > 0and0 < § < 1, aprocedure called by the algorithm to verify approximate
positive definiteness of V2 F (z) either certifies that V2 F (z) = —eg I or finds a direction
along which curvature of V2F (z) is smaller than —e g /2 in at most Nyeo £ min{n, 1 +
[Cmeoe;/ 2'|} Hessian-vector products, with probability 1 — §, where Cpeo depends at
most logarithmically on 6 and €.

Based on the above assumption, the following iteration complexity is indicated by [33,
Theorem 4].

Theorem 3 Suppose that Assumption 4 holds. The Newton-CG terminates at a point satisfying

IVF@I < €, Amin(V>F(2) = —en, (43)
in at most K iterations with probability at least (1 — 8)1? , where

[E' 2 ’VCNCG max{L?,-’H, 1}(F(Z0) - Flow) maX{Eg_3€1§1» 6;13}-‘ + 2. (44)

(With probability at most 1 — (1 — 8)X, it terminates incorrectly within K iterations at a
point at which |VF(2)|| < €, but Amin(V2F(2)) < —ep.) Here, Cneg is a constant that
depends on user-defined algorithmic parameters, L.y is the Lipschitz constant for V> F on
the neighborhood defined in Assumption 4(b), and Fioy is the lower bound of F (7).

Since in the Newton-CG approach, Hessian-vector products are the fundamental oper-
ations, [33] also derives operation complexity results, in which the operations are either
evaluations of VF(z) or evaluations of matrix-vector products involving V2F(z) and an
arbitrary vector (which can be computed without actually evaluating the Hessian itself).

Corollary 2 Suppose that Assumption 4 holds. Let K be defined as in (44). Then with proba-
bility at least (1 — 8)X, Newton-CG terminates at a point satisfying (43) after at most

(max{2min{n, J(Ur, u, €n)} + 2, Nmeo) K

Hessian-vector products, where Ur_y is the upper bound for V2F(z) on the neighborhood
defined in Assumption 4(b) and J (-, -) satisfies

2.6
J(UF.g,€g) < min {n, {(ﬁ%—%)log <W;1)K>—H, (45)

where k £ % and ¢ is a user-defined algorithmic parameter. (With probability at

most 1 — (1 — 8)k, it terminates incorrectly within such complexity at a point for which
IVF @)l < € but hmin(V2F (2)) < —€p1.)
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To get total iteration and operation complexity we can aggregate the cost of applying
Newton-CG to each subproblem in Algorithm 2. We present a critical lemma before deriving
the total iteration complexity and operation complexity (Theorem 4 and Corollary 3). For
these purposes, we denote the objective to be minimized at iteration k of Algorithm 2 as
follows:

p
i) £ L, 06,000 + 5 Il = el (46)
Additionally, we recall from Assumption 1 that Sg L {fx)+ p—z‘) le()|? < «} is either
empty or compact for all «.

Lemma 4 Suppose that assumptions and parameter settings in Theorem 2 hold. In addition,
suppose that p > %HAOHZ ~+ po. Then we have

{x | Y (x) < 