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Abstract
We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL)
framework for nonconvex optimization with nonlinear equality constraints.When an approx-
imate first-order (second-order) optimal point is obtained in the subproblem, an ε first-order
(second-order) optimal point for the original problem can be guaranteed within O(1/ε2−η)

outer iterations (where η is a user-defined parameter with η ∈ [0, 2] for the first-order result
and η ∈ [1, 2] for the second-order result) when the proximal term coefficient β and penalty
parameter ρ satisfy β = O(εη) and ρ = Ω(1/εη), respectively. We also investigate the total
iteration complexity and operation complexity when a Newton-conjugate-gradient algorithm
is used to solve the subproblems. Finally, we discuss an adaptive scheme for determining a
value of the parameter ρ that satisfies the requirements of the analysis.

Keywords Optimization with nonlinear equality constraints · Nonconvex optimization ·
Proximal augmented Lagrangian · Complexity analysis · Newton-conjugate-gradient

Mathematics Subject Classification 68Q25 · 90C06 · 90C26 · 90C30 · 90C60

1 Introduction

Nonconvex optimization problems with nonlinear equality constraints are common in some
areas, including matrix optimization and machine learning, where such requirements as
normalization, orthogonality, or consensus must be satisfied. Relevant problems include
dictionary learning [34], distributed optimization [26], and spherical PCA [28]. We consider
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the formulation

min f (x) subject to c(x) = 0, (1)

where f : Rn → R, c(x) � (c1(x), . . . , cm(x))T , ci : Rn → R, i = 1, 2, . . . ,m, and all
functions are twice continuously differentiable.

We have the following definitions related to points that satisfy approximate first- and
second-order optimality coniditions for (1). (Here and throughout, ‖·‖ denotes the Euclidean
norm of a vector.)

Definition 1 (ε-1o) We say that x is an ε-1o solution of (1) if there exists λ ∈ R
m such that

‖∇ f (x) + ∇c(x)λ‖ ≤ ε, ‖c(x)‖ ≤ ε.

Definition 2 (ε-2o) We say that x is an ε-2o solution of (1) if there exists λ ∈ R
m such that:

‖∇ f (x) + ∇c(x)λ‖ ≤ ε, ‖c(x)‖ ≤ ε, (2a)

dT
(

∇2 f (x) +
m∑
i=1

λi∇2ci (x)

)
d ≥ −ε‖d‖2, (2b)

for any d ∈ S(x) � {d ∈ R
n | ∇c(x)T d = 0}.

These definitions are consistent with those of ε-KKT and ε-KKT2 in [11], and similar to
those of [23], differing only in choice of norm and use of ‖c(x)‖ ≤ ε rather than c(x) = 0.
The following theorem is implied by several results in [4,11], which consider a larger class
of problem than (1). (A proof tailored to (1) is supplied in the “Appendix”.)

Theorem 1 If x∗ is an local minimizer of (1), then there exists εk → 0+ and xk → x∗ such
that xk is εk-2o, thus εk-1o.

Theorem 1 states that being the limit of a sequence of points satisfying Definitions 1
or 2 for a decreasing sequence of ε is a necessary condition of a local minimizer. When
certain constraint qualifications hold, a converse of this result is also true: x∗ satisfies first-
order (KKT) conditions when xk is εk-1o and second-order conditions when xk is εk-2o (See
[4,5]). These observations justify our strategy of seeking points that satisfy Definitions 1 or
2.

The augmented Lagrangian (AL) framework is a penalty-type algorithm for solving (1),
originating with Hestenes [25] and Powell [31]. Rockafellar proposed in [32] the proximal
version of this method, which has both theoretical and practical advantages. The monograph
[7] summarizes development of this method during the 1970s, when it was known as the
“method of multipliers”. Interest in the algorithm has resurfaced in recent years because of
its connection to ADMM [13].

The augmented Lagrangian of (1) is defined as:

Lρ(x, λ) � f (x) +
m∑
i=1

λi ci (x) + ρ

2

m∑
i=1

|ci (x)|2 = f (x) + λT c(x) + ρ

2
‖c(x)‖2,

where λ � (λ1, . . . , λm)T . The (ordinary) Lagrangian of (1) is L0(x, λ).
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1.1 Complexity Measures

In this paper, we discuss measures of worst-case complexity for finding points that satisfy
Definitions 1 and 2. Since our method has two nested loops— an outer loop for the Proximal
AL procedure, and an inner loop for solving the subproblems — we consider the following
measures of complexity.

– Outer iteration complexity, which corresponds to the number of outer-loop iterations of
Proximal AL or some other framework;

– Total iteration complexity, which measures the total number of iterations of the inner-
loop procedure that is required to find points satisfying approximate optimality of the
subproblems;

– Operation complexity, which measures the number of some unit operation (in our case,
computation of amatrix-vector product involving the Hessian of the Proximal augmented
Lagrangian) required to find approximately optimal points.

We also use the term “total iteration complexity” in connection with algorithms that have
only one main loop, such as those whose complexities are shown in Table 1.

We prove results for all three types of complexity for the Proximal AL procedure, where
the inner-loop procedure is a Newton-conjugate-gradient (Newton-CG) algorithm for the
unconstrained nonconvex subproblems. Details are given in Sect. 1.3.

Algorithm 1 Augmented Lagrangian (AL)

0. Initialize x0, λ0 and ρ0 > 0, Λ � [Λmin, Λmax], τ ∈ (0, 1), γ > 1; Set k ← 0;
1. Update xk : Find approximate solution xk+1 to minx Lρk (x, λk );
2. Update λk : λk+1 ← PΛ(λk + ρkc(xk+1));
3. Update ρk : if k = 0 or ‖c(xk+1)‖∞ ≤ τ‖c(xk )‖∞, set ρk+1 = ρk ; otherwise, set ρk+1 = γρk ;
4. If termination criterion is satisfied, STOP; otherwise, k ← k + 1 and return to Step 1.

1.2 RelatedWork

AL for nonconvex optimization.We consider first the basic augmented Lagrangian framework
outlined in Algorithm 1. When f is a nonconvex function, convergence of the augmented
Lagrangian framework has been studied in [9,11], withmany variants described in [1–3,6,19].
In [11], Algorithm 1 is investigated and generalized for a larger class of problems, showing in
particular that if xk+1 is a first-order (second-order) approximate solution of the subproblem,
with error driven to 0 as k → ∞, then every feasible limit point is an approximate first-
order (second-order) KKT point of the original problem. In [9], it is shown that when the
subproblem inAlgorithm 1 is solved to approximate global optimality with error approaching
0, the limit point is feasible and is a global solution of the original problem.

There are few results in the literature on outer iteration complexity in the nonconvex
setting. Some quite recent results appear in [12,22]. In [22], the authors apply a general ver-
sion of augmented Lagrangian to nonconvex optimization with both equality and inequality
constraints. With an aggressive updating rule for the penalty parameter, they show that the
algorithm obtains an approximate KKT point (whose exact definition is complicated, but
similar to our definition of ε-1o optimality when only equality constraints are present) within
O(ε−2/(α−1)) outer-loop iterations, where α > 1 is an algorithmic parameter. This com-
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plexity is improved to O(| log ε|) when boundedness of the sequence of penalty parameters
is assumed. Total iteration complexity measures are obtained for the case of linear equality
constraints when the subproblem is solved with a p-order method (p ≥ 2). In [12], the
authors study an augmented Lagrangian framework named ALGENCAN to problems with
equality and inequality constraints. An ε-accurate first-order point (whose precise definition
is again similar to our ε-1o optimality in the case of equality constraints only) is obtained in
O(| log ε|) outer iterations when the penalty parameters are bounded. The practicality of the
assumption of bounded penalty parameters in these two works [12,22] is open to question,
since the use of an increasing sequence of penalty parameters is critical to both approaches,
and there is no clear prior reason why the sequence should be bounded1.
Proximal AL for nonconvex optimization: Linear equality constraints. The Proximal aug-
mented Lagrangian framework, with fixed positive parameters ρ and β, is shown in
Algorithm 2.

Algorithm 2 Proximal augmented Lagrangian (Proximal AL)
0. Initialize x0, λ0 and ρ > 0, β > 0; Set k ← 0;
1. Update xk : Find approximate solution xk+1 to minx Lρ(x, λk ) + β

2 ‖x − xk‖2;
2. Update λk : λk+1 ← λk + ρc(xk+1);
3. If termination criterion is satisfied, STOP; otherwise, k ← k + 1 and return to Step 1.

For this proximal version, in the case of linear constraints c(·), outer iteration complexity
results become accessible in the nonconvex regime [24,26,27,35]. The paper [26] analyzes the
outer iteration complexity of this approach (there named “proximal primal dual algorithm
(Prox-PDA)”) to obtain a first-order optimal point, choosing a special proximal term to
make each subproblem strongly convex and suitable for distributed implementation. An
outer iteration complexity estimate of O(ε−1) is proved for an

√
ε-1o point. This result is

consistent with our results in this paper when the choice of β and ρ is independent of ε and
c(x) is linear.

The paper [24] proposes a “perturbed proximal primal dual algorithm,” a variant of Algo-
rithm 2, to obtain outer iteration complexity results for a problem class where the objective
function may be nonconvex and nonsmooth. In particular, an outer iteration complexity of
O(ε−2) is required to obtain ε-stationary solution, where the latter term is defined in a way
that suits that problem class. A modified inexact Proximal AL method is investigated in [35].
Here, an exponentially weighted average of previous updates is used as the anchor point in the
proximal term, total iteration complexity ofO(ε−2) to locate an ε stationary point similar to
ε-1o is derived and a certain kind of linear convergence is proved for quadratic programming
(QP). The paper [27] derives outer iteration complexity of O(ε−2) for a proximal ADMM
procedure to find an ε stationary solution defined for their problem class.

To our knowledge, outer iteration complexity of Proximal AL in the case of nonlinear
c(x) and its complexity for convergence to second-order optimal points have not yet been
studied.
Complexity for constrained nonconvex optimization. For constrained nonconvex optimiza-
tion, worst-case total iteration complexity results of various algorithms to find ε-perturbed
first-order and second-order optimal points have been obtained in recent years. If only first-
derivative information is used, total iteration complexity to obtain an ε-accurate first-order

1 Circumstances under which the penalty parameter sequence of ALGENCAN is bounded are discussed in [1,
Section 5].
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optimal pointmay beO(ε−2) [8,23,29]. If Hessian information is used (either explicitly or via
Hessian-vector products), total iteration complexity for an ε-accurate first-order point can be
improved to O(ε−3/2) [8,23,30], while the total iteration complexity to obtain an ε-accurate
second-order point is typically O(ε−3) [8,23,29,30]. More details about these results can be
found in Table 1.

Other approaches focus on nonlinear equality constraints and seek evaluation complex-
ity bounds (“Evaluation complexity” refers to the number of evaluations of f and c and
their derivatives required, and corresponds roughly to our “total iteration complexity”.) for
approximate first-order optimality. An algorithm based on linear approximation of the exact
penalty function for (1) is described in [14], and attains a worst-case evaluation complexity
of O(ε−5) by using only function and gradient information. Two-phase approaches, which
first seek an approximately feasible point byminimizing the nonlinear least-squares objective
‖c(x)‖22 (or equivalently ‖c(x)‖), and then apply a target-chasing method to find an approx-
imate first-order point for (1), are described in [16,17]. (See Table 1.) Extensions of these
techniques to approximate second-order optimality is not straightforward; most such efforts
focus on special cases such as convex constraints. A recent work that tackles the general
case is [18], which again considers the two-phase approach and searches for approximate
first-, second-, and third-order critical points. Specific definitions of the critical points are
less interpretable; we do not show them in Table 1. They are related to scaled KKT conditions
for the first order point, and to local optimality with tolerance of a function of ε for second
and third order points.

1.3 Contributions

We apply the Proximal AL framework of Algorithm 2 to (1) for nonlinear constraints
c(x). Recalling Definitions 1 and 2 of approximately optimal points, we show that when
approximate first-order (second-order) optimality is attained in the subproblems, the outer
iteration complexity to obtain an ε-1o (ε-2o) point is O(1/ε2−η) if we let β = O(εη) and
ρ = Ω(1/εη), where η is a user-defined parameter with η ∈ [0, 2] for the first-order result
and η ∈ [1, 2] for the second-order result. We require uniform boundedness and full rank
of the constraint Jacobian on a certain bounded level set, and show that the primal and dual
sequence of Proximal AL is bounded and the limit point satisfies first-order KKT conditions.

We also derive total iteration complexity of the algorithmwhen the Newton-CG algorithm
of [33] is used to solve the subproblem at each iteration of Algorithm 2. The operation com-
plexity for this overall procedure is also described, taking as unit operation the computation
of a Hessian-vector product. When c(x) is linear and η = 2, the total iteration complexity
matches the known results in literature for second-order algorithms: O(ε−3/2) for an ε-1o
point and O(ε−3) for an ε-2o point.

Finally, we present a scheme for determining the algorithmic parameter ρ adaptively,
by increasing it until convegence to an approximately-optimal point is identified within the
expected number of iterations.

1.4 Organization

In Sect. 2, we list the notations and main assumptions used in the paper. We discuss outer
iteration complexity of Proximal AL in Sect. 3. Total iteration complexity and operation
complexity are derived in Sect. 4. A framework for determining the parameter ρ in Proximal
AL is proposed in Sect. 5. We summarize the paper and discuss future work in Sect. 6.
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Most proofs appear in the main body of the paper; some elementary results are proved in the
“Appendix”.

2 Preliminaries

Notation.Weuse ‖·‖ to denote the Euclidean norm of a vector and ‖·‖2 to denote the operator
2-norm of a matrix. For a given matrix H , we denote by σmin(H) its minimal singular value
and by λmin(H) its minimal eigenvalue. We denote steps in x and λ as follows:

Δxk+1 � xk+1 − xk, Δλk+1 � λk+1 − λk . (3)

In estimating complexities, we use order notation O(·) in the usual sense, and Õ to hide
factors that are logarithmic in the arguments.We use β(α) = Ω(γ (α)) (where β(α) and γ (α)

are both positive) to indicate that β(α)/γ (α) is bounded below by a positive real number for
all α sufficiently small.
Assumptions.

The following assumptions are used throughout this work.

Assumption 1 Suppose that there exists ρ0 ≥ 0 such that f (x) + ρ0
2 ‖c(x)‖2 has compact

level sets, that is, for all α ∈ R, the set

S0α �
{
x
∣∣∣ f (x) + ρ0

2
‖c(x)‖2 ≤ α

}
(4)

is empty or compact.

Assumption 1 holds in any of the following cases:

1. f (x) + ρ0
2 ‖c(x)‖2 is coercive for some ρ0 ≥ 0.

2. f (x) is strongly convex.
3. f (x) is bounded below and c(x) = xT x−1, as occurs in orthonormal dictionary learning

applications.
4. f (x) � 1

2 x
T Qx − pT x , c(x) � Ax − b, Q is positive definite on null(A) � {x | Ax =

0}.
An immediate consequence of this assumption is the following, proof of which appears

in the “Appendix”.

Lemma 1 Suppose that Assumption 1 holds, then f (x) + ρ0
2 ‖c(x)‖2 is lower bounded.

Therefore, Assumption 1 implies

L̄ � inf
x∈Rn

{
f (x) + ρ0

2
‖c(x)‖2

}
> −∞. (5)

We use this definition of L̄ throughout this paper whenever Assumption 1 holds.
The second assumption concerns certain smoothness and nondegeneracy assumptions on

f and c over a compact set.

Assumption 2 Given a compact set S ⊆ R
n , there exist positive constants M f , Mc, σ , Lc

such that the following conditions on functions f and c hold.

(i) ‖∇ f (x)‖ ≤ M f , ‖∇ f (x) − ∇ f (y)‖ ≤ L f ‖x − y‖, for all x, y ∈ S.
(ii) ‖∇c(x)‖2 ≤ Mc, σmin(∇c(x)) ≥ σ > 0 for all x ∈ S.
(iii) ‖∇c(x) − ∇c(y)‖2 ≤ Lc‖x − y‖, for all x, y ∈ S.
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This assumption may allow a general class of problems; in particular, (i) holds if f (x) is
smooth and ∇ f (x) is locally Lipschitz continuous on a neighborhood of S. (ii) holds when
c(x) is smooth on a neighborhood of S and satisfies an LICQ condition over S, and (iii) holds
if ∇c(x) is locally Lipschitz continuous on S.

Assumption 3 Suppose that f (x) ≤ Ū for any x ∈ {x | ‖c(x)‖ ≤ 1}.

A sufficient condition for Assumption 3 to hold is the compactness of {x | ‖c(x)‖ ≤ 1}. This
assumption is not needed if c(x0) = 0, that is, the initial point is feasible.

3 Outer Iteration Complexity of Proximal AL

In this section, we derive the outer iteration complexity of Proximal AL (Algorithm 2) when
the subproblem is solved inexactly. We assume that xk+1 in Step 1 of Algorithm 2 satisfies
the following approximate first-order optimality condition:

∇xLρ(xk+1, λk) + β(xk+1 − xk) = r̃k+1, for all k ≥ 0, (6)

where r̃k+1 is some error vector. We additionally assume that

Lρ(xk+1, λk) + β

2
‖xk+1 − xk‖2 ≤ Lρ(xk, λk), for all k ≥ 0. (7)

This condition can be achieved if we choose xk as the initial point of the subproblem in Step
1 of Algorithm 2, with subsequent iterates decreasing the objective of this subproblem. To
analyze convergence, we use a Lyapunov function defined as follows for any k ≥ 1, inspired
by [26]:

Pk � Lρ(xk, λk) + β

4
‖xk − xk−1‖2. (8)

For any k ≥ 1, we have that

Pk+1 − Pk = Lρ(xk+1, λk+1) − Lρ(xk, λk) + β

4
‖Δxk+1‖2 − β

4
‖Δxk‖2

= Lρ(xk+1, λk+1) − Lρ(xk+1, λk) + Lρ(xk+1, λk) − Lρ(xk, λk)

+ β

4
‖Δxk+1‖2 − β

4
‖Δxk‖2

= (λk+1 − λk)
T c(xk+1) + Lρ(xk+1, λk) − Lρ(xk, λk)

+β

4
‖Δxk+1‖2 − β

4
‖Δxk‖2

= 1

ρ
‖Δλk+1‖2 + Lρ(xk+1, λk) − Lρ(xk, λk) + β

4
‖Δxk+1‖2 − β

4
‖Δxk‖2

(7)≤ 1

ρ
‖Δλk+1‖2 − β

2
‖Δxk+1‖2 + β

4
‖Δxk+1‖2 − β

4
‖Δxk‖2

= 1

ρ
‖Δλk+1‖2 − β

4
‖Δxk+1‖2 − β

4
‖Δxk‖2, (9)

where the fourth equality holds because of Step 2 in Algorithm 2. We start with a technical
result on bounding ‖Δλk+1‖2 = ‖λk+1 − λk‖2.
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Lemma 2 (Bound for ‖λk+1 − λk‖2) Consider Algorithm 2 with (6) and (7). Suppose that
for a fixed k ≥ 1, Assumption 2 holds for some set S and that xk, xk+1 ∈ S. Then,

‖λk+1 − λk‖2 ≤ C1‖Δxk+1‖2 + C2‖Δxk‖2 + 16M2
c

σ 4 ‖r̃k‖2 + 4

σ 2 ‖r̃k+1 − r̃k‖2, (10)

where C1 and C2 are defined by

C1 � 4

σ 2

(
L f + LcM f

σ
+ β

)2

, C2 � 4

σ 2

(
β + 2Mcβ

σ

)2

. (11)

Proof The first-order optimality condition (6) for Step 1 implies that for all t ≥ 0, we have

∇ f (xt+1) + ∇c(xt+1)λt + ρ∇c(xt+1)c(xt+1) + β(xt+1 − xt ) = r̃t+1.

�⇒ ∇ f (xt+1) + ∇c(xt+1)λt+1 + β(xt+1 − xt ) = r̃t+1. (12)

Likewise, by replacing t with t − 1, for t ≥ 1, we obtain

∇ f (xt ) + ∇c(xt )λt + β(xt − xt−1) = r̃t . (13)

By combining (12) and (13) and using the notation (3) along with Δr̃t+1 � r̃t+1 − r̃t , we
have for any t ≥ 1 that

∇ f (xt+1) − ∇ f (xt ) + ∇c(xt+1)Δλt+1

+ (∇c(xt+1) − ∇c(xt ))λt + β(Δxt+1 − Δxt ) = Δr̃t+1,

which by rearrangement gives

−∇c(xt+1)Δλt+1 = ∇ f (xt+1) − ∇ f (xt ) + (∇c(xt+1) − ∇c(xt ))λt

+ β(Δxt+1 − Δxt ) − Δr̃t+1.

For the given k ≥ 1, since σ is a lower bound on the smallest singular value of ∇c(xk+1) by
Assumption 2, we have that

‖Δλk+1‖ ≤ 1

σ

(‖∇ f (xk+1) − ∇ f (xk)‖ + ‖∇c(xk+1) − ∇c(xk)‖‖λk‖
+ β(‖Δxk+1‖ + ‖Δxk‖) + ‖Δr̃k+1‖

)
. (14)

We have from (13) that

∇c(xk)λk = −∇ f (xk) − β(xk − xk−1) + r̃k,

so that

‖λk‖ ≤ 1

σ
(‖∇ f (xk)‖ + β‖Δxk‖ + ‖r̃k‖) ≤ 1

σ

(
M f + β‖Δxk‖ + ‖r̃k‖

)
. (15)

We also have from Assumption 2 that

‖∇c(xk+1) − ∇c(xk)‖ ≤ Lc‖xk+1 − xk‖, ‖∇c(xk+1) − ∇c(xk)‖ ≤ 2Mc. (16)

By substituting Assumption 2(i), (15), and (16) into (14), we obtain the following for the
given k ≥ 1.

‖Δλk+1‖ ≤ 1

σ

(
L f ‖Δxk+1‖ + β‖Δxk+1‖ + β‖Δxk‖

+ ‖∇c(xk+1) − ∇c(xk)‖2
(
1

σ
M f + β

σ
‖Δxk‖ + 1

σ
‖r̃k‖

)
+ ‖Δr̃k+1‖

)
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≤ 1

σ

(
L f ‖Δxk+1‖ + β‖Δxk+1‖ + β‖Δxk‖ + LcM f

σ
‖Δxk+1‖ + 2Mcβ

σ
‖Δxk‖

+ 2Mc

σ
‖r̃k‖ + ‖Δr̃k+1‖

)

≤ 1

σ

(
L f + LcM f

σ
+ β

)
‖Δxk+1‖ + 1

σ

(
β + 2Mcβ

σ

)
‖Δxk‖

+ 2Mc

σ 2 ‖r̃k‖ + 1

σ
‖Δr̃k+1‖.

By using the bound (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2) for positive scalars a, b, c, d ,
and using the definition (11), we obtain the result. ��

For the rest of this section, we use the following definitions for c1 and c2:

c1 � β

4
− C1

ρ
, c2 � β

4
− C2

ρ
, (17)

whereC1 andC2 are defined in (11). Next we show that sequences {xk} and {λk} are bounded
and {Pk}k≥1 satisfies certain properties under Assumption 1–3, for suitable choices of the
algorithmic parameters.

Lemma 3 Consider Algorithm 2 with conditions (6) and (7). Choose {r̃k}k≥1 such that∑∞
k=1 ‖r̃k‖2 ≤ R < +∞ and ‖r̃k‖ ≤ 1, for all k ≥ 1. Let {Pk}k≥1 be defined as in

(8). Suppose that Assumptions 1 and 3 hold and define

α̂ � 7Ū + 7C0 − 6L̄ + 13‖λ0‖2 + 2, (18)

where C0 > 0 is any fixed constant. Suppose that Assumption 2 holds with S = S0
α̂
. Choose

ρ and β such that

ρ ≥ max

{
(M f + βDS + 1)2

2σ 2 + ρ0,
16(M2

c + σ 2)R

σ 4 , 3ρ0, 1

}
, (19)

where

DS � max{‖x − y‖ | x, y ∈ S0
α̂
}, (20)

and that c1 and c2 defined in (17) are both positive. Suppose that x0 satisfies ‖c(x0)‖2 ≤
min{C0/ρ, 1}, where C0 is the constant appearing in (18). Then

{xk}k≥0 ⊆ S0
α̂

and ‖λk‖ ≤ M f + βDS + 1

σ
, for all k ≥ 1. (21)

Furthermore, (10) and the following inequality hold for any k ≥ 1,

Pk+1 − Pk ≤ −c1‖Δxk+1‖2 − c2‖Δxk‖2 + 16M2
c

ρσ 4 ‖r̃k‖2 + 4

ρσ 2 ‖r̃k+1 − r̃k‖2. (22)

Proof Note that Assumption 3 implies that

f (x0) ≤ Ū , (23)

since ‖c(x0)‖ ≤ 1. Therefore,

Lρ(x0, λ0) = f (x0) + λT
0 c(x0) + ρ

2
‖c(x0)‖2
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≤ f (x0) + ‖λ0‖2
2ρ

+ ρ

2
‖c(x0)‖2 + ρ

2
‖c(x0)‖2

(23)≤ Ū + 1

2ρ
‖λ0‖2 + C0. (24)

and

Ū + C0 − L̄
(24)≥ f (x0) + λT

0 c(x0) + ρ

2
‖c(x0)‖2 − ‖λ0‖2

2ρ
− L̄

(ρ≥3ρ0)≥ f (x0) + ρ0

2
‖c(x0)‖2 − L̄ + λT

0 c(x0) + ρ

3
‖c(x0)‖2 − ‖λ0‖2

2ρ

≥ 0 + ρ

3

∥∥∥∥c(x0) + 3λ0
2ρ

∥∥∥∥
2

− 3

4ρ
‖λ0‖2 − ‖λ0‖2

2ρ
(ρ≥1)≥ −5

4
‖λ0‖2 (25)

We prove the theorem by induction. We show that the following bounds hold for all i ≥ 1:

xi ∈ S0
α̂
, (26a)

‖λi‖2 ≤ (M f + βDS + 1)2

σ 2 ≤ 2(ρ − ρ0), (26b)

Pi ≤ 7Ū + 7C0 − 6L̄ + 13‖λ0‖2 + 16M2
c

ρσ 4

i−1∑
t=1

‖r̃t‖2 + 4

ρσ 2

i−1∑
t=1

‖r̃t+1 − r̃t‖2. (26c)

We verify first that (26) holds when i = 1. From (7) we have

f (x1) + λT
0 c(x1) + ρ

2
‖c(x1)‖2 + β

2
‖x1 − x0‖2

≤ f (x0) + λT
0 c(x0) + ρ

2
‖c(x0)‖2

(24)≤ Ū + ‖λ0‖2
2ρ

+ C0, (27)

so that for i = 0 and 1, we have

f (xi ) + ρ

6
‖c(xi )‖2

(24),(27)≤ Ū + ‖λ0‖2
2ρ

+ C0 − λT
0 c(xi ) − ρ

3
‖c(xi )‖2

= Ū + ‖λ0‖2
2ρ

+ C0 − ρ

3

∥∥∥∥c(xi ) + 3λ0
2ρ

∥∥∥∥
2

+ 3‖λ0‖2
4ρ

(ρ≥3ρ0)�⇒ f (xi ) + ρ0

2
‖c(xi )‖2 ≤ Ū + 5‖λ0‖2

4ρ
+ C0

((25),ρ≥1)≤ Ū + C0 + 5

4
‖λ0‖2 + 6

(
Ū + C0 − L̄ + 5

4
‖λ0‖2

)

≤ 7Ū + 7C0 − 6L̄ + 35

4
‖λ0‖2 (18)

< α̂.

Thus, x0, x1 ∈ S0
α̂
, verifying that (26a) holds for i = 1.

Approximate first-order optimality (6) indicates that

∇ f (x1) + ∇c(x1)λ1 + β(x1 − x0) = r̃1.

123



Journal of Scientific Computing (2021) 86 :38 Page 13 of 30 38

Since x0, x1 ∈ S0
α̂
, we have by Assumption 2 and (20) that

σ‖λ1‖ ≤ ‖∇c(x1)λ1‖ = ‖∇ f (x1) + β(x1 − x0) − r̃1‖ ≤ M f + βDS + 1.

�⇒ ‖λ1‖2 ≤ (M f + βDS + 1)2

σ 2

(19)≤ 2(ρ − ρ0).

Thus, (26b) holds for i = 1.
Next, we verify (26c) when i = 1. Note that

P1 = Lρ(x1, λ1) + β

4
‖x1 − x0‖2

= Lρ(x1, λ1) − Lρ(x1, λ0) + Lρ(x1, λ0) − Lρ(x0, λ0) + Lρ(x0, λ0)

+ β

4
‖x1 − x0‖2

(7)≤ 1

ρ
‖λ1 − λ0‖2 − β

2
‖x1 − x0‖2 + Lρ(x0, λ0) + β

4
‖x1 − x0‖2

= ρ‖c(x1)‖2 − β

4
‖x1 − x0‖2 + Lρ(x0, λ0)

(24)≤ ρ‖c(x1)‖2 + Ū + 1

2ρ
‖λ0‖2 + C0,

(ρ≥1)≤ ρ‖c(x1)‖2 + Ū + 1

2
‖λ0‖2 + C0, (28)

In addition, (27) indicates that

ρ

6
‖c(x1)‖2

≤ Ū + 1

2ρ
‖λ0‖2 + C0 − λT

0 c(x1) − ρ

6
‖c(x1)‖2 − f (x1) − ρ

6
‖c(x1)‖2

= Ū + 1

2ρ
‖λ0‖2 + C0 − ρ

6
‖c(x1) + 3λ0/ρ‖2 + 3‖λ0‖2

2ρ
− f (x1) − ρ

6
‖c(x1)‖2

(ρ≥3ρ0)≤ Ū + 1

2ρ
‖λ0‖2 + C0 + 3‖λ0‖2

2ρ
− f (x1) − ρ0

2
‖c(x1)‖2

≤ Ū + 2

ρ
‖λ0‖2 + C0 − L̄

(ρ≥1)≤ Ū + 2‖λ0‖2 + C0 − L̄.

By substituting this bound into (28), we have that

P1 ≤ Ū + ‖λ0‖2
2

+ C0 + ρ‖c(x1)‖2 ≤ 7Ū + 7C0 − 6L̄ + 13‖λ0‖2, (29)

so (26c) holds for i = 1 also.
We now take the inductive step, supposing that (26) holds when i = k ≥ 1, and proving

that these three conditions continue to hold for i = k + 1. By inequality (7), we have

Lρ(xk+1, λk) ≤ Lρ(xk, λk) ≤ Pk

�⇒ f (xk+1) + ρ

2
‖c(xk+1)‖2 + λT

k c(xk+1) ≤ Pk

�⇒ f (xk+1) + ρ

2
‖c(xk+1)‖2 − ‖λk‖2

2(ρ − ρ0)
− (ρ − ρ0)‖c(xk+1)‖2

2
≤ Pk
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�⇒ f (xk+1) + ρ0

2
‖c(xk+1)‖2 ≤ Pk + ‖λk‖2

2(ρ − ρ0)

(26b)≤ Pk + 1

(26c)≤ 7Ū + 7C0 − 6L̄ + 13‖λ0‖2 + 16M2
c

ρσ 4

k−1∑
t=1

‖r̃t‖2 + 4

ρσ 2

k−1∑
t=1

‖r̃t+1 − r̃t‖2 + 1

≤ 7Ū + 7C0 − 6L̄ + 13‖λ0‖2 + 16M2
c

ρσ 4

k−1∑
t=1

‖r̃t‖2 + 8

ρσ 2

k−1∑
t=1

(‖r̃t+1‖2 + ‖r̃t‖2) + 1

≤ 7Ū + 7C0 − 6L̄ + 13‖λ0‖2 + 16M2
c

ρσ 4

∞∑
t=1

‖r̃t‖2 + 16

ρσ 2

∞∑
t=1

‖r̃t‖2 + 1

≤ 7Ū + 7C0 − 6L̄ + 13‖λ0‖2 + 16(M2
c + σ 2)R

ρσ 4 + 1

(19)≤ 7Ū + 7C0 − 6L̄ + 13‖λ0‖2 + 2 = α̂,

where the inequality on the third line holds because of − r
2‖a‖2 − 1

2r ‖b‖2 ≤ aT b, for any
r > 0, a, b ∈ R

m . Therefore, xk+1 ∈ S0
α̂
, so we have proved (26a).

By approximate first-order optimality (6) and the hypothesis xk ∈ S0
α̂
, the argument to

establish that ‖λk+1‖2 ≤ (M f +βDS+1)2

σ 2 ≤ 2(ρ − ρ0) is the same as for the case of i = 1, so
(26b) holds for i = k + 1.

Since xk and xk+1 both belong to S0
α̂
, Lemma 2 indicates that (10) holds. By combining

(10) with (9), we obtain (22). Therefore,

Pk+1
(22)≤ Pk + 16M2

c

ρσ 4 ‖r̃k‖2 + 4

ρσ 2 ‖r̃k+1 − r̃k‖2

(26)≤ 7Ū + 7C0 − 6L̄ + 13‖λ0‖2 + 16M2
c

ρσ 4

k∑
t=1

‖r̃t‖2 + 4

ρσ 2

k∑
t=1

‖r̃t+1 − r̃t‖2.

Thus we have established (26c) for i = k + 1. Note that (10) and (22) hold for all k ≥ 1, so
we have completed the proof. ��
First-order complexity. With the properties of {Pk}k≥1 established to this point, we can
analyze the complexity of obtaining an ε-1o solution. For any given ε > 0, we define two
quantities which will be referred to repeatedly in subsequent sections:

Tε � inf{t ≥ 1 | ‖∇xL0(xt , λt )‖ ≤ ε, ‖c(xt )‖ ≤ ε}. (30a)

T̂ε � inf{t ≥ 1 | xt is an ε − 1o solution of (1)}. (30b)

Note that T̂ε is independent of the Proximal AL method. Meanwhile, by the definition of
L0(x, λ), we know that xTε is an ε-1o solution and λTε is the associated multiplier, indi-
cating that T̂ε ≤ Tε . The definition of Tε also suggests the following stopping criterion for
Algorithm 2:

If ‖∇xL0(xt , λt )‖ ≤ ε and ‖c(xt )‖ ≤ ε then STOP. (31)

Under this criterion, Algorithm 2 will stop at iteration Tε − 1 and output xTε as an ε-1o
solution.

Part (i) of the following result shows subsequential convergence of the generated sequence
to the first-order optimal point. Part (ii) describes the speed of such convergence by obtaining
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an estimate of Tε in terms of ε. In this result, we make a specific choice β = εη/2 for the
proximality parameter. We could choose β to be any fixed multiple of this value (the multiple
not depending on ε) and obtain a similar result with only trivial changes to the analysis.

Theorem 2 (First-order complexity) Consider Algorithm 2 with conditions (6) and (7), and
let {Pk}k≥1 be defined as in (8). Suppose that Assumptions 1, 3 and 2 hold with S = S0

α̂
(with

α̂ defined in (18)), and that ε ∈ (0, 1] and η ∈ [0, 2] are given. Suppose that the residual
sequence {r̃k}k≥1 is chosen such that

∑∞
k=1 ‖r̃k‖2 ≤ R ∈ [1,∞) and ‖r̃k‖ ≤ ε/2 for all

k ≥ 1.
Define β = εη/2 and

ρ ≥ max

{
16max{C1,C2}

εη
,
(M f + βDS + 1)2

2σ 2 + ρ0,
16(M2

c + σ 2)R

σ 4 , 3ρ0, 1

}
, (32)

where C1 and C2 are defined as in (11), and DS is the diameter of S0
α̂
, as defined in (20).

Suppose that x0 satisfies ‖c(x0)‖2 ≤ min{C0/ρ, 1}, where C0 is the constant appearing in
(18). Then we have the following.

(i) A subsequence of {(xk, λk)}k≥1 generated by Algorithm 2 converges to a point (x∗, λ∗)
satisfying first-order optimality conditions for (1), namely,

∇ f (x∗) + ∇c(x∗)λ∗ = 0, c(x∗) = 0.

(ii) For Tε and T̂ε defined in (30), we have T̂ε ≤ Tε = O(1/ε2−η). In particular, if η = 2,
then T̂ε = O(1).

Proof Wefirst prove (i).Checking thepositivity of c1 and c2, given theparameter assignments,
we have

c1 = β

4
− C1

ρ

(32)≥ εη

8
− εη

16
> 0, c2 = β

4
− C2

ρ

(32)≥ εη

16
> 0. (33)

Pk ≥ f (xk) + ρ

2
‖c(xk)‖2 + λT

k c(xk)

≥ f (xk) + ρ

2
‖c(xk)‖2 − ‖λk‖2

2(ρ − ρ0)
− (ρ − ρ0)‖c(xk)‖2

2

= f (xk) + ρ0

2
‖c(xk)‖2 − ‖λk‖2

2(ρ − ρ0)

(Lemma 3)≥ f (xk) + ρ0

2
‖c(xk)‖2 − (M f + βDS + 1)2

2σ 2(ρ − ρ0)

(5),(32)≥ L̄ − 1. (34)

Therefore, using (22) from Lemma 3, we have the following for any k ≥ 1:

k∑
i=1

[
c1‖Δxi+1‖2 + c2‖Δxi‖2

]

≤ P1 − Pk+1 + 16M2
c

ρσ 4

k∑
i=1

‖r̃i‖2 + 4

ρσ 2

k∑
i=1

‖r̃i+1 − r̃i‖2

≤ P1 − Pk+1 + 16M2
c

ρσ 4

k∑
i=1

‖r̃i‖2 + 8

ρσ 2

k∑
i=1

(‖r̃i+1‖2 + ‖r̃i‖2)
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≤ P1 − Pk+1 + 16(M2
c + σ 2)

ρσ 4

∞∑
i=1

‖r̃i‖2

≤ P1 − Pk+1 + 16(M2
c + σ 2)R

ρσ 4 (35)

(34)≤ P1 − (
L̄ − 1

)+ 16(M2
c + σ 2)R

ρσ 4

(32)≤ P1 − L̄ + 2

(29)≤ 7Ū + 7C0 − 6L̄ + 13‖λ0‖2 − L̄ + 2 = α̂ − L̄. (36)

Because of (21) in Lemma 3 and compactness of S0
α̂
, the sequence {(xk, λk)}k≥1 is bounded,

so there exists a convergent subsequence {(xk, λk)}k∈K with limit (x∗, λ∗). Since (36) holds
for any k ≥ 1 and c1 > 0, c2 > 0, we have that lim

k→∞ ‖Δxk‖ = 0. Moreover, finiteness of∑∞
k=1 ‖r̃k‖2 implies that lim

k→∞ ‖r̃k‖ = 0. Therefore, we have

∇ f (x∗) + ∇c(x∗)λ∗ = lim
k∈K(∇ f (xk) + ∇c(xk)λk)

= lim
k∈K(∇ f (xk) + ∇c(xk)(λk−1 + ρc(xk))) = lim

k∈K∇xLρ(xk, λk−1)

(6)= lim
k∈K(−βΔxk + r̃k) = 0.

Since (10) holds for any k ≥ 1 by Lemma 3, we have

‖c(x∗)‖2 = lim
k∈K ‖c(xk)‖2 = lim

k∈K ‖λk − λk−1‖2/ρ2

(10)≤ lim
k∈K

C1

ρ2 ‖Δxk‖2 + C2

ρ2 ‖Δxk−1‖2 + 16M2
c

ρ2σ 4 ‖r̃k−1‖2 + 4

ρ2σ 2 ‖r̃k − r̃k−1‖2 = 0,

completing the proof of (i).
We now prove (ii). Define

Co
1 � 4

σ 2

(
L f + LcM f

σ

)2

≤ C1, (37a)

Δ̂ � (α̂ − L̄)max
{
16, 1/(8Co

1 )
}
. (37b)

We want to show that Tε ≤ �Δ̂/ε2−η� + 1. Let K � �Δ̂/ε2−η�, and note that since (36)
holds for k = K , we have that there exists some k∗ ∈ {1, 2, . . . , K } such that

c1‖xk∗+1 − xk∗‖2 + c2‖xk∗ − xk∗−1‖2 ≤ (α̂ − L̄)/K . (38)

Thus, we have

‖∇L0(xk∗+1, λk∗+1)‖ = ‖∇Lρ(xk∗+1, λk∗)‖ (6.)≤ β‖xk∗+1 − xk∗‖ + ‖r̃k∗+1‖
(38)≤ β

√
(α̂ − L̄)/c1

K
+ ε

2

(33)≤ εη

2

√
(α̂ − L̄)/(εη/16)

K
+ ε

2

≤ εη

2

√
16(α̂ − L̄)/(εη)

Δ̂εη−2
+ ε

2

(37b)≤ εη

2

√
16(α̂ − L̄)

16(α̂ − L̄)ε2η−2
+ ε

2
= ε.
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For the constraint norm, we have

‖c(xk∗+1)‖2 = ‖Δλk∗+1‖2/ρ2

(10)≤ C1

ρ2 ‖Δxk∗+1‖2 + C2

ρ2 ‖Δxk∗‖2 + 16M2
c

ρ2σ 4 ‖r̃k∗‖2 + 4

ρ2σ 2 ‖r̃k∗+1 − r̃k∗‖2

≤ C1

ρ2 ‖Δxk∗+1‖2 + C2

ρ2 ‖Δxk∗‖2 + 16M2
c

ρ2σ 4 ‖r̃k∗‖2 + 8

ρ2σ 2 (‖r̃k∗‖2 + ‖r̃k∗+1‖2)

≤ C1

ρ2 ‖Δxk∗+1‖2 + C2

ρ2 ‖Δxk∗‖2 + 16(M2
c + σ 2)

ρ2σ 4 · ε2

4

≤ 1

ρ2 max

{
C1

c1
,
C2

c2

}
(c1‖Δxk∗+1‖2 + c2‖Δxk∗‖2) + 4(M2

c + σ 2)ε2

ρ2σ 4

(32),(38)≤ max{C1,C2}/(εη/16)

(16max{C1,C2}/εη))2
· α̂ − L̄

K
+ 4(M2

c + σ 2)ε2

ρ2σ 4

≤ (α̂ − L̄)εη

16max{C1,C2}K + 4(M2
c + σ 2)

ρ2σ 4 · ε2

(37a)≤ (α̂ − L̄)εη

16Co
1K

+ 4(M2
c + σ 2)

ρ2σ 4 · ε2

(32)≤ (α̂ − L̄)εη

16Co
1 Δ̂εη−2

+ ε2

4ρR

(ρ≥1,R≥1)≤ (α̂ − L̄)εη

16Co
1 Δ̂εη−2

+ ε2

4

(37b)≤ ε2

2
+ ε2

4
< ε2.

Therefore, we have

Tε ≤ k∗ + 1 ≤ K + 1 = �Δ̂/ε2−η� + 1. (39)

It follows that T̂ε ≤ Tε ≤ �Δ̂/ε2−η� + 1, completing the proof. ��

Remark 1 (i) The condition ‖c(x0)‖2 ≤ min{C0/ρ, 1} is obviously satisfied by a feasible
point, for which c(x0) = 0. In this case, we do not need Assumption 3 and can prove a
result with α̂ = 7 f (x0) + 7C0 − 6L̄ + 13‖λ0‖2 + 2. An initial phase can be applied, if
necessary, to find a point with small ‖c(x0)‖; we discuss this point in a later section.

(ii) Whenη = 0, the complexity result is consistentwith that of [26].However, our parameter
choices β = εη for η > 0 allows us to choose β to be small because, unlike [26], we
are not concerned with maintaining strong convexity of the subproblem in Step 1 of
Algorithm 2. Another benefit of small β is that it allows complexity results to be proved
for ε-2o points, which follows from part (ii) of Theorem 2, as we see next.

Second-order complexity.We further assume that in Step 1 of Algorithm 2, xk+1 satisfies the
following approximate second-order optimality conditions:

∇2
xxLρ(xk+1, λk) + β I � −εHk+1 I , for all k ≥ 0, (40)

where {εHk+1}k≥0 is a chosen error sequence.
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In corresponding fashion to the definition of T̂ε in (30b), we define T̃ε as follows:

T̃ε � inf{t ≥ 1 | xt is an ε − 2o solution of(1)}. (41)

We have the following result for complexity of obtaining an ε-2o stationary point of (1)
through Algorithm 2.

Corollary 1 (Second-order complexity) Suppose that all assumptions and settings in Theo-
rem 2 hold. Assume that, in addition, Step 1 of Algorithm 2 satisfies (40), with εHk ≡ ε/2 for
all k ≥ 1. Let η ∈ [1, 2]. Then for T̃ε defined in (41), we have T̃ε = O(1/ε2−η).

Proof Since β = εη/2 ≤ ε/2 and εHk+1 ≡ ε/2, for any k ≥ 0, we have from (40) that

∇2
xxLρ(xk+1, λk) � −(β + εHk+1)I � −ε I .

This fact indicates that

∇2 f (xk+1) +
m∑
i=1

[λk+1]i∇2ci (xk+1) + ρ∇c(xk+1)[∇c(xk+1)]T � −ε I ,

which implies that

dT (∇2 f (xk+1) +
m∑
i=1

[λk+1]i∇2ci (xk+1))d ≥ −ε‖d‖2,

for any d ∈ S(xk+1) � {d ∈ R
n | [∇c(xk+1)]T d = 0}. This is exactly condition (2b) of

Definition 2. Therefore, we have

T̃ε = inf{t ≥ 1 | ∃λ ∈ R
m, ‖∇ f (xt ) + ∇c(xt )λ‖ ≤ ε, ‖c(xt )‖ ≤ ε,

dT (∇2 f (xt ) +
m∑
i=1

λi∇2ci (xt ))d ≥ −ε‖d‖2, for all d ∈ S(xt )}

≤ inf{t ≥ 1 | ‖∇ f (xt ) + ∇c(xt )λt‖ ≤ ε, ‖c(xt )‖ ≤ ε,

dT (∇2 f (xt ) +
m∑
i=1

[λt ]i∇2ci (xt ))d ≥ −ε‖d‖2, for all d ∈ S(xt )}

= inf{t ≥ 1 | ‖∇ f (xt ) + ∇c(xt )λt‖ ≤ ε, ‖c(xt )‖ ≤ ε} = Tε .

The result now follows from Theorem 2. ��

4 Total Iteration/Operation Complexity of Proximal AL

In this section, we will choose an appropriate method to solve the subproblem and estimate
the total iteration and operation complexity of our Proximal AL approach to find an ε-1o or
ε-2o solution. To solve the subproblem at each major iteration of Algorithm 2, we can use
methods for unconstrained smooth nonconvex optimization that allow the decrease condition
(7) to hold, and approximate optimality conditions (6) or (40) to be enforced in a natural way,
finding points that satisfy such conditions within a certain number of iterations that depends
on the tolerances [10,15,20,21,33]. Among these, the Newton-CG method described in [33]
has good complexity guarantees as well as good practical performance.
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To review the properties of the algorithm in [33], we consider the following unconstrained
problem:

min
z∈Rn

F(z) (42)

where F : Rn → R is a twice Lipschitz continuously differentiable function. The Newton-
CG approach makes use of the following assumption.

Assumption 4 (a) The set {z | F(z) ≤ F(z0)} is compact, where z0 is the initial point.
(b) F is twice uniformly Lipschitz continuously differentiable on a neighborhood of {z |

F(z) ≤ F(z0)} that includes the trial points generated by the algorithm.
(c) Given εH > 0 and 0 < δ � 1, a procedure called by the algorithm to verify approximate

positive definiteness of∇2F(z) either certifies that∇2F(z) � −εH I or finds a direction
along which curvature of ∇2F(z) is smaller than −εH/2 in at most Nmeo � min{n, 1+
�Cmeoε

−1/2
H �} Hessian-vector products, with probability 1 − δ, where Cmeo depends at

most logarithmically on δ and εH .

Based on the above assumption, the following iteration complexity is indicated by [33,
Theorem 4].

Theorem 3 Suppose thatAssumption4holds. TheNewton-CG terminates at a point satisfying

‖∇F(z)‖ ≤ εg, λmin(∇2F(z)) ≥ −εH , (43)

in at most K̄ iterations with probability at least (1 − δ)K̄ , where

K̄ �
⌈
CNCG max{L3

F,H , 1}(F(z0) − Flow)max{ε−3
g ε3H , ε−3

H }
⌉

+ 2. (44)

(With probability at most 1 − (1 − δ)K̄ , it terminates incorrectly within K̄ iterations at a
point at which ‖∇F(z)‖ ≤ εg but λmin(∇2F(z)) < −εH .) Here, CNCG is a constant that
depends on user-defined algorithmic parameters, LF,H is the Lipschitz constant for ∇2F on
the neighborhood defined in Assumption 4(b), and Flow is the lower bound of F(z).

Since in the Newton-CG approach, Hessian-vector products are the fundamental oper-
ations, [33] also derives operation complexity results, in which the operations are either
evaluations of ∇F(z) or evaluations of matrix-vector products involving ∇2F(z) and an
arbitrary vector (which can be computed without actually evaluating the Hessian itself).

Corollary 2 Suppose that Assumption 4 holds. Let K̄ be defined as in (44). Then with proba-
bility at least (1 − δ)K̄ , Newton-CG terminates at a point satisfying (43) after at most

(max{2min{n, J (UF,H , εH )} + 2, Nmeo})K̄
Hessian-vector products, where UF,H is the upper bound for ∇2F(z) on the neighborhood
defined in Assumption 4(b) and J (·, ·) satisfies

J (UF,H , εH ) ≤ min

{
n,

⌈(√
κ + 1

2

)
log

(
144(

√
κ + 1)2κ6

ζ 2

)⌉}
, (45)

where κ � UF,H+2εH
εH

and ζ is a user-defined algorithmic parameter. (With probability at

most 1 − (1 − δ)K̄ , it terminates incorrectly within such complexity at a point for which
‖∇F(z)‖ ≤ εg but λmin(∇2F(z)) < −εH .)
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To get total iteration and operation complexity we can aggregate the cost of applying
Newton-CG to each subproblem in Algorithm 2. We present a critical lemma before deriving
the total iteration complexity and operation complexity (Theorem 4 and Corollary 3). For
these purposes, we denote the objective to be minimized at iteration k of Algorithm 2 as
follows:

ψk(x) � Lρ(x, λk) + β

2
‖x − xk‖2. (46)

Additionally, we recall from Assumption 1 that S0α � { f (x) + ρ0
2 ‖c(x)‖2 ≤ α} is either

empty or compact for all α.

Lemma 4 Suppose that assumptions and parameter settings in Theorem 2 hold. In addition,
suppose that ρ ≥ 1

2‖λ0‖2 + ρ0. Then we have

{x | ψk(x) ≤ ψk(xk)} ⊆ S0
α̂
,

and

ψk(xk) − ψ low
k ≤ α̂ − L̄, (47)

for all k ≥ 0, where ψ low
k � inf x∈Rn ψk(x) and α̂ is defined in (18). Hence {x | ψk(x) ≤

ψk(xk)} is compact for all k ≥ 0.

Proof Because of c1 > 0 and c2 > 0 and (35), we have for any k ≥ 1 that

Pk+1 ≤ P1 + 16(M2
c + σ 2)R

ρσ 4

(32)≤ P1 + 1. (48)

Thus for any k ≥ 1, we have

ψk(xk) = Lρ(xk, λk) ≤ Pk ≤ P1 + 1,

which, using (29) and (18), implies that

ψk(xk) ≤ 7Ū + 7C0 + 13‖λ0‖2 − 6L̄ + 1 = α̂ − 1. (49)

Note that (49) also holds when k = 0 since

ψ0(x0) = Lρ(x0, λ0)
(24)≤ Ū + 1

2ρ
‖λ0‖2 + C0

(25)≤ Ū + 1

2ρ
‖λ0‖2 + C0 + 6(Ū + C0 − L̄ + (5/4)‖λ0‖2)

(ρ≥1)≤ 7Ū + 7C0 − 6L̄ + 8‖λ0‖2 < α̂ − 1

Further, for any k ≥ 0, we have

ψk(x) = Lρ(x, λk) + β

2
‖x − xk‖2

= f (x) + ρ

2
‖c(x)‖2 + λT

k c(x) + β

2
‖x − xk‖2

≥ f (x) + ρ

2
‖c(x)‖2 − ‖λk‖2

2(ρ − ρ0)
− (ρ − ρ0)‖c(x)‖2

2

≥ f (x) + ρ0

2
‖c(x)‖2 − 1

2(ρ − ρ0)
max

{
‖λ0‖2, (M f + βDS + 1)2

σ 2

}
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(32)≥ f (x) + ρ0

2
‖c(x)‖2 − max

{ ‖λ0‖2
2(ρ − ρ0)

, 1

}
,

(2(ρ−ρ0)≥‖λ0‖2)= f (x) + ρ0

2
‖c(x)‖2 − 1. (50)

The second inequality holds because ‖λk‖ ≤ (M f +βDS +1)2/σ 2, ∀k ≥ 1 from Lemma 3.
Then, for any k ≥ 0, we have by combining (49) and (50) that

ψk(xk) − ψk(x) ≤ α̂ −
(
f (x) + ρ0

2
‖c(x)‖2

)
. (51)

Thus, for any k ≥ 0, we have

ψk(x) ≤ ψk(xk) �⇒ ψk(xk) − ψk(x) ≥ 0
(51)�⇒ f (x) + ρ0

2
‖c(x)‖2 ≤ α̂.

Therefore {x | ψk(x) ≤ ψk(xk)} ⊆ S0
α̂
for all k ≥ 0. For the claim (47), note that

ψk(xk) − ψ low
k = sup

x∈Rn
(ψk(xk) − ψk(x))

(51)≤ sup
x∈Rn

(
α̂ −

(
f (x) + ρ0

2
‖c(x)‖2

))
(5)= α̂ − L̄.

��
By Lemma 4, we know that if the Newton-CG method of [33] is used to minimize ψk(x)

at iteration k of Algorithm 2, Assumption 4(a) is satisfied at the initial point xk . It also shows
that the amount ψk(x) can decrease at iteration k is uniformly bounded for any k ≥ 0. This
is important in estimating iteration complexity of Newton-CG to solve the subproblem.

The following assumption is needed to prove complexity results about the Newton-CG
method. Recall from definition (46) that

∇2ψk(x)

= ∇2 f (x) +
m∑
i=1

[λk]i∇2ci (x) + ρ

m∑
i=1

ci (x)∇2ci (x) + ρ∇c(x)∇c(x)T + β I . (52)

Assumption 5 (a) There exists a bounded open convex neighborhoodNα̂ of S0
α̂
, where α̂ is

defined as in (18), such that for any k ≥ 0, the trial points of Newton-CG in iteration k of
Algorithm2 lie inNα̂ . Suppose that onNα̂ , the functions f (x) and ci (x), i = 1, 2, . . . ,m
are twice uniformly Lipschitz continuously differentiable.

(b) Given εHk+1 > 0 and 0 < δ � 1 at iteration k ≥ 0, the procedure called by Newton-CG
to verify sufficient positive definiteness of∇2ψk either certifies that∇2ψk(x) � −εHk+1 I
or else finds a vector of curvature smaller than −εHk+1/2 in at most

Nmeo � min{n, 1 + �Cmeo(ε
H
k+1)

−1/2�} (53)

Hessian-vector products, with probability 1 − δ, where Cmeo depends at most logarith-
mically on δ and εHk+1.

Boundedness and convexity ofNα̂ and Assumption 5(a) imply that ∇2ψk(x) is Lipschitz
continuous onNα̂ . Thus, Assumption 4(b) holds for each subproblem. Further, if we denote
the Lipschitz constant for ∇2ψk by Lk,H , then there exist U1 and U2 such that

Lk,H ≤ U1ρ +U2, (54)
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whereU1 andU2 depend only on f and c,Nα̂ , and the upper bound for ‖λk‖ from Lemma 3.
Moreover, if c(x) is linear, then Lk,H = LH , where LH is the Lipschitz constant for ∇2 f .

The next theorem analyzes the total iteration complexity, given the parameter settings in
Theorem 2 (with some additional requirements).

Theorem 4 Consider Algorithm 2 with stopping criterion (31), and suppose that the sub-
problem in Step 1 is solved with the Newton-CG procedure such that xk+1 satisfies (6), (7)
and with high probability satisfies (40). Suppose that Assumptions 1, 2 with S = S0

α̂
(with α̂

defined in (18)), Assumptions 3 and 5 hold. ε ∈ (0, 1] and η ∈ [1, 2] are given. In addition, let
‖r̃k‖ ≤ ε

g
k � min{1/k, ε/2}, for all k ≥ 1 (so that R = ∑∞

k=1 1/k
2 = π2/6). Let β = εη/2

and assume that ρ ∈ [ρη,Cρρη], where Cρ > 1 is constant and

ρη := max

{
16max{C1,C2}

εη
,
(M f + βDS + 1)2

2σ 2 + ρ0,

‖λ0‖2
2

+ ρ0,
16(M2

c + σ 2)R

σ 4 , 3ρ0, 1

}
,

(55)

where C1 and C2 are defined in (11) and DS is the diameter of S0
α̂
(see (20)). Suppose that

x0 satisfies ‖c(x0)‖2 ≤ min{C0/ρ, 1}, where C0 is the constant appearing in (18). Then we
have the following.

(i) If we set εHk ≡ √
ε/2, then the total number of iterations of Newton-CG before Algo-

rithm 2 stops and outputs an ε-1o solution is O(ε−2η−7/2), which is optimized when
η = 1. When c(x) is linear, this total iteration complexity is O(εη−7/2), which is opti-
mized when η = 2.

(ii) If we let εHk ≡ ε/2, then the total iteration number before Algorithm 2 stops and
outputs an ε-1o solution with probability 1 and an ε-2o solution with probability at least
(1−δ)K̄Tε isO(ε−2η−5), and K̄Tε = O(ε−3η−3), where Tε is defined in (30a) and K̄Tε is
the iteration complexity at iteration Tε −1, defined below in (56). This bound is optimized
when η = 1. When c(x) is linear, this complexity is O(εη−5), and K̄Tε = O(ε−3), so
the optimal setting for η is η = 2 in this case.

Proof We first prove (i). Note that if we use xk as the initial point for Newton-CG at iteration
k, then (7) will be automatically satisfied because Newton-CG decreases the objective ψk at
each iteration. Due to Lemma 4 and Assumption 5, we know that Assumption 4 is satisfied
for each subproblem. Thus, at iteration k, according to Theorem 3, given positive tolerances
εg = ε

g
k+1 and εH = εHk+1, Newton-CG will terminate at a point xk+1 that satisfies (6) such

that ‖r̃k+1‖ ≤ ε
g
k+1 with probability 1, and that satisfies (40) with probability (1 − δ)K̄k+1 ,

within

K̄k+1

�
⌈
CNCG max{L3

k,H , 1}(ψk(xk) − ψ low
k )max{(εgk+1)

−3(εHk+1)
3, (εHk+1)

−3}
⌉

+ 2. (56)

iterations, where Lk,H is the Lipschitz constant for ∇2ψk(x). By substituting (47) from
Lemma 4 into (56), we obtain

K̄k+1 ≤
⌈
CNCG max{L3

k,H , 1}(α̂ − L̄)max{(εgk+1)
−3(εHk+1)

3, (εHk+1)
−3}

⌉
+ 2, (57)

for any k ≥ 0. From (54) and the conditions on ρ, we have

Lk,H ≤ U1ρ +U2 = O(ε−η), (58)
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whereU1 andU2 depend only on f and c,Nα̂ , and the upper bound for ‖λk‖ from Lemma 3.
When c(x) is linear, we have Lk,H ≡ LH .

Since ‖r̃k‖ ≤ ε
g
k = min{1/k, ε/2} for all k ≥ 1, the definition of Tε in (30a) and the

result of Theorem 2 imply that Tε = O(1/ε2−η). Therefore, for any k ≤ Tε and η ∈ [1, 2],
we have

1/k ≥ 1/Tε = Ω(ε2−η) �⇒ ε
g
k = Ω(ε) �⇒ (ε

g
k )−1 = O(ε−1). (59)

Thus, when εHk ≡ √
ε/2, the term involving ε

g
k+1 and εHk+1 on the right-hand sides of (56)

and (57) are O(ε−3/2). Therefore, we have from the bound for K̄k , the estimate (58), and
Tε = O(1/ε2−η) that the total iteration complexity to obtain an ε-1o solution is

Tε∑
k=1

K̄k =
Tε∑
k=1

max{L3
k−1,H , 1}O(ε−3/2) = TεO(ε−3η)O(ε−3/2) = O(ε−2η−7/2).

This bound is optimized when η = 1.When c(x) is linear, we have from Lk,H = LH = O(1)
that the complexity is

Tε∑
k=1

K̄k =
Tε∑
k=1

max{L3
H , 1}O(ε−3/2) = TεO(ε−3/2) = O(εη−7/2).

This bound is optimized when η = 2.
We turn now to (ii). Since Algorithm 2 stops at iteration Tε − 1, Newton-CG will stop at

the point xTε satisfying (6) with probability 1 and (40) with probability at least (1 − δ)K̄Tε .
Since εHTε

= ε/2, η ∈ [1, 2], and β = εη/2 ≤ ε/2, the following conditions are satisfied

with probability at least (1 − δ)K̄Tε :

∇2
xxLρ(xTε , λTε−1)

(40)� −(β + εHTε
)I � −ε I ,

�⇒ ∇2 f (xTε ) +
m∑
i=1

[λTε ]i∇2ci (xTε ) + ρ∇c(xTε )∇c(xTε )
T � −ε I ,

�⇒ dT
(

∇2 f (xTε ) +
m∑
i=1

[λTε ]i∇2ci (xTε )

)
d ≥ −ε‖d‖2,

for any d ∈ S(xTε ) � {d ∈ R
n | [∇c(xTε )]T d = 0},

whichmatches condition (2b) ofDefinition 2. Therefore, xTε is an ε-1o solutionwith probabil-

ity 1 and an ε-2o solutionwith probability at least (1−δ)K̄Tε . Sincewe have (ε
g
k )−1 = O(ε−1)

for k ≤ Tε as in (59), and εHk = ε/2, the term involving ε
g
k+1 and εHk+1 on the right-hand side

of (56) and (57) is O(ε−3). Recalling that Tε = O(1/ε2−η), the total iteration complexity to
obtain xTε

Tε∑
k=1

K̄k
(57)=

Tε∑
k=1

max{L3
k−1,H , 1}O(ε−3)

(58)= TεO(ε−3η)O(ε−3) = O(ε−2η−5).

This bound is optimized when η = 1. Note that

K̄Tε

(57)= max{L3
Tε−1,H , 1}O(ε−3)

(58)= O(ε−3η−3).
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When c(x) is linear, Lk,H = LH = O(1) and the complexity to get xTε is

Tε∑
k=1

K̄k
(57)=

Tε∑
k=1

max{L3
H , 1}O(ε−3) = TεO(ε−3) = O(εη−5),

which is optimized when η = 2. Note that in this case

K̄Tε

(57)= max{L3
H , 1}O(ε−3) = O(ε−3).

��
Remark 2 (i). A feasible point, if available, will satisfy ‖c(x0)‖2 ≤ min{C0/ρ, 1} for all ρ.
Otherwise, a “Phase I” procedure may be applied to the problem of minimizing ‖c(x)‖2.
Since ρ = O(ε−η), we have thatC0/ρ = Ω(εη), η ∈ [1, 2]. Thus the Newton-CG algorithm
could be use to find an approximate first-order point x̄ such that ‖∇x (‖c(x)‖2) |x=x̄ ‖ =
‖2∇c(x̄)c(x̄)‖ ≤ min{ε,√C0/ρ, 1} = Ω(ε). If ‖c(x̄)‖ ≤ min{√C0/ρ, 1}, we can set x0 =
x̄ . Otherwise, ‖c(x̄)‖ > min{√C0/ρ, 1} = Ω(ε), and we can terminate at the approximate
infeasible critical point of ‖c(x)‖2, as in [17].WhenAssumption 4 holds for F(z) = ‖c(z)‖2,
Theorem 3 indicates that the iteration complexity of Newton-CG to find x̄ isO(ε−3/2) (where
εg = min{ε,√C0/ρ, 1}, εH = √

εg). Thus, the total iteration complexity of Proximal AL is
not affected when we account for Phase 1.

(ii). Note that when c(x) is linear, the optimized total iteration complexity bounds to obtain
ε-1o and ε-2o point are O(ε−3/2) and O(ε−3), respectively. These bounds match the best
known ones in literature for linear constraints (see Table 1 and corresponding discussion in
Sect. 1.2). When c(x) is nonlinear, the optimized total iteration complexity bounds to locate
ε-1o and ε-2o point are O(ε−11/2) and O(ε−7), respectively. These bound are not compet-
itive with the evaluation complexity bounds derived for two-phase second-order methods
in [16,18] (see Table 1). These methods require solving a cubic regularization subproblem
or minimizing a nonconvex program to global optimality per evaluation, which are poten-
tially expensive computational tasks. The Newton-CG algorithm used for our inner loop
has standard iterative linear algebra subproblems, and is equipped with worst-case operation
complexity guarantees. We take up the issue of total operation complexity next.

Recalling the formula for ∇2ψk in (52), we define a constant UH such that

‖∇2ψk(x)‖ ≤ UH , ∀k ≥ 0, ∀x ∈ Sα̂ . (60)

Since f (x) and ci (x), i = 1, 2, . . . ,m are twice continuously differentiable on a neighbor-
hoodNα̂ ⊇ Sα̂ (byAssumption 5), andSα̂ is compact and λk is upper bounded (by Lemma 3),
then such a UH > 0 exists. Moreover, there exist quantities Ũ1, Ũ2 such that

UH ≤ Ũ1ρ + Ũ2, (61)

where Ũ1, Ũ2 depend only f (·), c(·), Sα̂ , β (which is bounded if equals to εη/2 for all ε ≤ 1
and η ≥ 0), and the upper bound for ‖λk‖ in Lemma 3.

We conclude this section with the result concerning operation complexity of Algorithm 2
in which the subproblems are solved inexactly with Newton-CG.

Corollary 3 Suppose that the setup and assumptions of Theorem 4 are satisfied. UH is a
constant satisfying (60) and (61). J (·, ·) and Nmeo are specified in Corollary 2 and Assump-
tion 5(b), respectively. Let K̄total �

∑Tε

k=1 K̄k denote the total iteration complexity for
Algorithm 2 with Newton-CG applied to the subproblems, where K̄k is defined as in (56).
Then the following claims are true.
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(i) When εHk ≡ √
ε/2, then the total number of Hessian-vector products before Algorithm 2

stops and outputs an ε-1o solution is bounded by

max{2min{n, J (UH ,
√

ε/2)} + 2, Nmeo}K̄total.

For all n sufficiently large, this bound is Õ(ε−5η/2−15/4)

(which reduces to Õ(εη/2−15/4) when c(x) is linear).
(ii) If we let εHk ≡ ε/2, then the total number of Hessian-vector products before Algorithm 2

stops and outputs an ε-1o solution with probability 1 and ε-2o with probability at least
(1 − δ)K̄Tε is bounded by

max{2min{n, J (UH , ε/2)} + 2, Nmeo}K̄total.

For all n sufficiently large, this bound is Õ(ε−5η/2−11/2)

(which reduces to Õ(εη/2−11/2) when c(x) is linear).

Proof Since {ψk(x) ≤ ψk(xk)} ⊆ S0
α̂
(Lemma 4), then ‖∇2ψk(x)‖ ≤ UH on {ψk(x) ≤

ψk(xk)} for each k ≥ 0. Therefore, from Corollary 2, to solve the subproblem in iteration
k − 1 of Algorithm 2 (for k ≥ 1), Newton-CG requires at most

(max{2min{n, J (UH , εHk )} + 2, Nmeo})K̄k (62)

Hessian-vector products, where K̄k is defined in (56), and J (·, ·) is bounded as in (45). From
the latter definition and the fact that UH = O(ρ) = O(ε−η), we have for sufficiently large
n that

J (UH , εHk ) ≤ min
(
n, Õ((UH/εHk )1/2)

)
= Õ

(
(εHk )−1/2ε−η/2

)
. (63)

From (53), we have at iteration k − 1, for sufficiently large n, that

Nmeo = min
(
n, Õ((εHk )−1/2)

)
= Õ((εHk )−1/2). (64)

By noting that the bound in (63) dominates that of (64), we have from (62) that the number
of Hessian-vector products needed at iteration k − 1 is bounded by

Õ
(
(εHk )−1/2ε−η/2

)
K̄k . (65)

To prove (i), we have εHk = √
ε/2, so by substituting into (65) and summing over k =

1, 2, . . . , Tε , we obtain the following bound on the total number of Hessian-vector products
before termination:

Õ(ε−η/2−1/4)K̄total, (66)

where K̄total = O(ε−2η−7/2) fromTheorem4(i).By substituting into (66),weprove the result.
When c(x) is linear, we obtain the tighter bound by using the estimate K̄total = O(εη−7/2)

that pertains to this case.
For (ii), we have from Theorem 4(ii) that xTε is an ε-1o solution with probability 1 and

an ε-2o solution with probability at least (1 − δ)K̄Tε . By substituting εHk = ε/2 into (65)
and summing over k = 1, . . . , Tε , we have that the total number of Hessian-vector products
before termination is bounded by

Õ(ε−η/2−1/2)K̄total, (67)

where K̄total = O(ε−2η−5) from Theorem 4(ii), so the result is obtained by substituting into
(67).When c(x) is linear, we obtain the tighter bound by using the estimate K̄total = O(εη−5)

that pertains to this case. ��
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5 Determining �

Our results above on outer iteration complexity, total iteration complexity, and operation
complexity for Algorithm 2 are derived under the assumption that ρ is larger than a certain
threshold. However, this threshold cannot be determined a priori without knowledge of many
parameters related to the functions and the algorithm. In this section, we sketch a framework
for determining a sufficiently large value of ρ without knowledge of these parameters. This
framework executes Algorithm 2 as an inner loop and increases ρ by a constant multiple in
an outer loop whenever convergence of Algorithm 2 has not been attained in a number of
iterations set for this outer loop. The framework is specified as Algorithm 3. The next theorem

Algorithm 3 Proximal AL with trial value of ρ

0. Choose initial multiplier Λ0, positive sequences {ρτ }τ≥1 and {Tτ }τ≥1; set τ ← 1.
1. Call Algorithm 2 with x0 = zτ , λ0 = Λ0, ρ = ρτ and run Algorithm 2 for Tτ number of iterations, or

until the stopping criteria are satisfied.
2. If the stopping criterion of Algorithm 2 are satisfied, STOP the entire algorithm and output solutions

given by Algorithm 2; otherwise, τ ← τ + 1 and return to Step 1.

shows that {ρτ }τ≥1 and {Tτ }τ≥1 can be defined as geometrically increasing sequenceswithout
any dependence on problem-related parameter, and that this choice of sequences leads to an
iteration complexity for Algorithm 3 that matches that of Algorithm 2 (from Theorem 2) to
within a logarithm factor.

Theorem 5 Suppose that all the assumptions and settings in Theorem 2 for Algorithm 2 hold
except for the choice of ρ. In particular, the values of ε ∈ (0, 1), η ∈ [0, 2], β and R are
the same in each loop of Algorithm 3, and zτ satisfies ‖c(zτ )‖2 ≤ min{C0/ρτ , 1}, where C0

is the constant appearing in (18). Suppose that Algorithm 3 terminates when the conditions
(31) are satisfied. For user-defined parameters q > 1 and T0 ∈ Z++, we define the sequences
{ρτ }τ≥1 and {Tτ }τ≥1 as follows:⎧⎪⎨

⎪⎩
ρτ = max{qτ ε2−2η, 1}, Tτ = �T0qτ � + 1, if η ∈ [0, 1),
ρτ = qτ , Tτ = �T0qτ � + 1, if η = 1,

ρτ = qτ , Tτ = max{�T0qτ ε2η−2� + 1, T0}, if η ∈ (1, 2].
ThenAlgorithm 3 stopswithin logq

(
εmin{η−2,−η})+O(1) iterations. The number of iterations

of Algorithm 2 that are performed before Algorithm 3 stops is Õ(εη−2).

Proof According to Theorem 2, at iteration τ , the stopping criterion must be satisfied within
Tτ number of iterations if ρ satisfies (32) and Tτ is greater than the upper bound for Tε

estimated in Theorem 2 (see (39)). Therefore, Algorithm 3 is guaranteed to stop when ρτ

and Tτ are large enough.
When η ∈ (0, 1), ρτ will satisfy (32) if

qτ ε2−2η ≥ max

{
16max{C1,C2}

εη
,
(M f + βDS + 1)2

2σ 2 + ρ0,
16(M2

c + σ 2)R

σ 4 , 3ρ0, 1

}
⇔ τ ≥ max

{
logq

(
16max{C1,C2}εη−2) ,

logq

(
max

{
(M f + βDS + 1)2

2σ 2 + ρ0,
16(M2

c + σ 2)R

σ 4 , 3ρ0, 1

}
ε2η−2

)}
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= logq(ε
η−2) + O(1).

Tτ will be larger than the upper bound for Tε , that is, �Δ̂εη−2�+ 1 (for Δ̂ defined in (37b)) if

T0q
τ ≥ Δ̂εη−2 ⇔ τ ≥ logq

(
Δ̂εη−2/T0

)
= logq(ε

η−2) + O(1).

Therefore, Algorithm 3 will stop in logq(ε
η−2) + O(1) number of iterations. Note that

ρτ = O(ε−η), Tτ = O(εη−2) for any τ before the algorithm stops. Therefore the total
number of iteration of Algorithm 2 is Õ(εη−2). The same result holds when η ∈ [1, 2] and
the proof is similar (thus omitted). ��
Remark 3 In Theorem 5, we almost recover the iteration complexity of Algorithm 2 derived
in Theorem 2, except for a factor of log(1/ε). The iteration complexity required to obtain
ε-2o (Corollary 1) is immediate by Algorithm 3 if Step 1 of Algorithm 2 satisfies (40). To
recover the iteration complexity of subproblem solver (Newton-CG) derived in Theorem 4,
we could use similar approach by setting a limit on the iteration of Newton-CG and increasing
this limit geometrically with respect to τ . The approach and analysis are quite similar to that
presented above, so we omit the details.

6 Conclusion

We have analyzed complexity of a Proximal AL algorithm to solve smooth nonlinear
optimization problems with nonlinear equality constraints. Three types of complexity are
discussed: outer iteration complexity, total iteration complexity and operation complexity.
In particular, we showed that if the first-order (second-order) stationary point is computed
inexactly in each subproblem, then the algorithm outputs an ε-1o (ε-2o) solution within
O(1/ε2−η) outer iterations (β = O(εη), ρ = Ω(1/εη); η ∈ [0, 2] for first-order case and
η ∈ [1, 2] for second-order case). We also investigate total iteration complexity and opera-
tion complexity when the Newton-CG method of [33] is used to solve the subproblems. A
framework for determining the appropriate value of algorithmic parameter ρ is presented,
and we show that the iteration complexity increases by only a logarithmic factor for this
approach by comparison with the version in which ρ is known in advance.

There are several possible extensions of this work. First, we may consider a framework
in which ρ is varied within Algorithm 2. Second, extensions to nonconvex optimization
problems with nonlinear inequality constraints remain to be studied.

Acknowledgements Research supported by Award N660011824020 from the DARPA Lagrange Program,
NSFAwards 1628384, 1634597, and 1740707; and Subcontract 8F-30039 fromArgonne National Laboratory.

Appendix: Proofs of Elementary Results

Proof of Theorem 1 Since x∗ is a local minimizer of (1), it is the unique global solution of

min f (x) + 1

4
‖x − x∗‖4 subject to c(x) = 0, ‖x − x∗‖ ≤ δ, (68)

for δ > 0 sufficiently small. For the same δ, we define xk to be the global solution of

min f (x) + ρk

2
‖c(x)‖2 + 1

4
‖x − x∗‖4 subject to ‖x − x∗‖ ≤ δ, (69)
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for a given ρk , where {ρk}k≥1 is a positive sequence such that ρk → +∞. Note that xk is
well defined because the feasible region is compact and the objective is continuous. Suppose
that z is any accumulation point of {xk}k≥1, that is, xk → z for k ∈ K, for some subsequence
K. Such a z exists because {xk}k≥1 lies in a compact set, and moreover, ‖z − x∗‖ ≤ δ. We
want to show that z = x∗. By the definition of xk , we have for any k ≥ 1 that

f (x∗) = f (x∗) + ρk

2
‖c(x∗)‖2 + 1

4
‖x∗ − x∗‖4

≥ f (xk) + ρk

2
‖c(xk)‖2 + 1

4
‖xk − x∗‖4 ≥ f (xk) + 1

4
‖xk − x∗‖4. (70)

By taking the limit over K, we have f (x∗) ≥ f (z) + 1
4‖z − x∗‖4. From (70), we have

ρk

2
‖c(xk)‖2 ≤ f (x∗) − f (xk) ≤ f (x∗) − inf

k≥1
f (xk) < +∞. (71)

By taking limits over K, we have that c(z) = 0. Therefore, z is the global solution of (68),
so that z = x∗.

Without loss of generality, suppose that xk → x∗ and ‖xk − x∗‖ < δ. By first and
second-order optimality conditions for (69), we have

∇ f (xk) + ρk∇c(xk)c(xk) + ‖xk − x∗‖2(xk − x∗) = 0,

∇2 f (xk) + ρk

m∑
i=1

ci (xk)∇2ci (xk) + ρk∇c(xk)[∇c(xk)]T (72)

+ 2(xk − x∗)(xk − x∗)T + ‖xk − x∗‖2 I � 0. (73)

Defineλk � ρkc(xk) and εk � max{‖xk−x∗‖3, 3‖xk−x∗‖2,√2( f (x∗) − infk≥1 f (xk))/ρk}.
Then by (71), (72), (73) and Definition 2, xk is εk-2o. Note that xk → x∗ and ρk → +∞, so
εk → 0+. ��

Proof of Lemma 1 We prove by contradiction. Otherwise for any α we could select sequence
{xk}k≥1 ⊆ S0α such that f (xk) + ρ0

2 ‖c(xk)‖2 < −k. Let x∗ be an accumulation point of
{xk}k≥1 (which exists by compactness of S0α). Then there exists index K such that f (x∗) +
ρ0
2 ‖c(x∗)‖2 ≥ −K + 1 > f (xk) + ρ0

2 ‖c(xk)‖2 + 1 for all k ≥ K , which contradicts the
continuity of f (x) + ρ0

2 ‖c(x)‖2. ��
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