Improving Information Extraction from
Visually Rich Documents using Visual Span Representations

Ritesh Sarkhel
The Ohio State Universtiy
Columbus, Ohio
sarkhel.5@osu.edu

ABSTRACT

Along with textual content, visual features play an essential role
in the semantics of visually rich documents. Information extrac-
tion (IE) tasks perform poorly on these documents if these visual
cues are not taken into account. In this paper, we present Artemis
- a visually aware, machine-learning-based IE method for heteroge-
neous visually rich documents. Artemis represents a visual span
in a document by jointly encoding its visual and textual context
for IE tasks. Our main contribution is two-fold. First, we develop
a deep-learning model that identifies the local context boundary of
a visual span with minimal human-labeling. Second, we describe
a deep neural network that encodes the multimodal context of
a visual span into a fixed-length vector by taking its textual and
layout-specific features into account. It identifies the visual span(s)
containing a named entity by leveraging this learned representation
followed by an inference task. We evaluate Artemis on four hetero-
geneous datasets from different domains over a suite of information
extraction tasks. Results show that it outperforms state-of-the-art
text-based methods by up to 17 points in F1-score.

PVLDB Reference Format:

Ritesh Sarkhel and Arnab Nandi. Improving Information Extraction from
Visually Rich Documents using Visual Span Representations. PVLDB, 14(5):
822 - 834, 2021.

doi:10.14778/3446095.3446104

1 INTRODUCTION

A significant number of documents we encounter every day are
visually rich in nature. Along with linguistic cues, they employ
several explicit (e.g., relative positioning, font-size, font-color) and
implicit (e.g., negative distance, whitespace balance) visual fea-
tures to augment or highlight the information they disseminate.
Whether ordering from a restaurant-menu, comparing properties in
real-estate flyers, or looking up events in a poster, the information
contained in these documents is often ad-hoc i.e., they cannot be
retrieved from an indexed database quite easily. Text-based meth-
ods fail to address the challenges of information extraction (IE) in
these scenarios, as they do not consider the contribution of visual
features on the semantics of these documents, thus leaving the user
with little choice than mentally parsing the entire document to
extract relevant information. What makes the task of automated

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.
doi:10.14778/3446095.3446104

822

Arnab Nandi

The Ohio State University
Columbus, Ohio
nandi.9@osu.edu

A L . - es o L s

Figure 1: Samples of visually rich documents. Visual fea-
tures play an important role in augmenting their semantics

extraction more challenging is the heterogeneous nature of these
documents. Real-world documents can be diverse in terms of layout,
format, and content. These challenges accumulate to motivate the
need for a generalized method for IE from visually rich documents.
Before we present our method, to explain our contributions better,
we demonstrate the limitations of a text-only method for IE from
visually rich documents in an example below.

Example 1.1: Alice, an analyst studying tobacco addiction, wants
to perform a longitudinal study on the coverage of adverse effects of
tobacco usage in print-media. She has collected some articles from
national newspapers and magazines on this topic published in the
last three decades. The documents in Alice’s collection are visually
rich and heterogeneous in nature i.e., they have diverse layouts,
formats, and content. While most recently published articles are
born-digital and available in HTML format, the older articles are
only available as high-resolution scanned copies. Alice wants to
extract three named entities from each document in her collection:
N ={'Name of the Tobacco product’, ‘Manufacturer’s Name’, ‘Listed
side effects’}. For each named entity n; € N, i = {1, 2, 3}, she wants
to identify where in the document the named entity appears, tran-
scribe it, and store it in a CSV file. A text-based IE method, in such
scenarios, typically starts with cleaning the document first. This
includes perspective warping, skew correction, and blurring. The
document is then transcribed, its text is normalized, and stopwords
are removed. Finally, named entities are extracted by identifying
spans of text that contain specific syntactic or semantic patterns
representing a named entity n; € N.

Challenges: Although reasonable for plain-text documents, fol-
lowing a similar approach Alice’s collection can be challenging. First,
if the document layout is not known beforehand, text-based extrac-
tors do not always lead to a reliable extraction performance [51].
Errors introduced during optical character recognition and serial-
ization of the transcribed text lead to incorrect semantic parsing,
which affects the downstream IE task. Furthermore, the contribu-
tion of visual features (see Fig. 1) on the semantics such as relative
positioning and font-size similarity are often not captured during

https://doi.org/10.14778/3446095.3446104
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3446095.3446104

T B

Loriland Tebacco
Company's ‘Taks10"

Pointers For Parents
Stan Talxing To Stop Your
]

@]

List of Candidate program I5 part of fts
natienal volunieer
effort aimed at
regucing youth
SMokIng (runcared)

Visual spans

I

g N £
[TTTT] (I |

Feature vector encading global context Feature vector encoding local visual and

toxtual contaxt

Filtering and Named Entity Recognition

| Labelling functions |

Input document

{"Name of the tobacco
produet™,
“Manufacturer’s Name",
“Listed side affacts™}

“Manufacturers”
name”

Candidate Generation

List of named entities

Figure 2: Overview of Artemis’ extraction workflow. It takes
a document D & a list of named entities N as input, and gen-
erates a list of candidate visual spans. Each candidate span
(shown within rectangle) is represented using context vec-
tors in a multimodal encoding space. The span containing a
named entity is identified by an inference task

transcription. This motivates the need to encode a visual span (de-
fined in Section 3) in the document by taking both its textual and
visual modality into account. Second, a generalized method for in-
formation extraction should be robust [48] towards diverse layouts
and formats (e.g., XML, HTML). It should also be flexible enough
to be extended for various extraction tasks on different datasets.

Our hypotheses: Recent works have shown the importance
of incorporating context information on the performance of text-
based IE methods. From carefully designed syntactic/semantic fea-
tures [29, 58, 60] to deep neural networks [25], state-of-the-art
performances have been reported by encoding contextual signals
from phrase-level, sentence-level, and paragraph-level abstractions
of a text document. We postulate that incorporating similar con-
textual cues can boost extraction performance from visually rich
documents too. It is well-known that the human cognitive system
integrates context information from multiple modalities [43] to
make sense of real-world data. We hypothesize that mimicking
this behavior to encode multimodal context information can help
address some of the challenges faced by text-based IE methods
mentioned before. For example, a visual span appearing near the
top of a news article is likely to be a date field. Therefore it is
more likely to be transcribed as “11 Nov” than “Il Gov”. We argue
that representing a visual span by encoding such contextual cues
can enhance the performance of IE methods on such documents.
Unfortunately, while deep-learning models such as recurrent neu-
ral networks [1] are effective in modeling context information for
text documents, they fall short if contextual cues span across both
textual and visual modalities [23]. Following Doan et al. [9], we
define the IE task addressed in this paper as a key-value retrieval
task on the input document. Each key represents a named entity
to be extracted, and its value denotes the smallest visual span that
contains a true mention (defined in Section 3) of that named entity.

Contributions and Overview: We present Artemis — a gener-
alized method for information extraction from heterogeneous, visu-
ally rich documents in this paper. It takes a document D, and a list of
named entity types N as input and returns the smallest visual span
in the document that contains a named entity n; € N, Vi. Artemis
works in two phases. First, it identifies a set of candidate visual

823

spans in D that are likely to contain the named entities n; € N, Vi.
Then, it identifies the smallest visual spans within these candidates
that contain the named entities in the second phase of its work-
flow. We represent each visual span using two fixed-length context
vectors in our workflow. To encode its local context information,
we extend a bidirectional long short-term memory (LSTM) net-
work (detailed in Section 4.3) - the de-facto deep-learning standard
in natural language processing [33]. It encodes both visual and
textual properties of a visual span from its local context bound-
ary (defined in Section 3). To identify the local context boundary
of a visual span , we develop a machine-learning model [12] based
on an adversarial neural network (detailed in Section 4.2) that in-
corporates domain-specific knowledge to identify the visual cues
that act as local concept boundaries. An overview of our extrac-
tion workflow is presented in Fig. 2. Artemis builds upon existing
works that either do not incorporate domain-specific contextual
cues [51] or relies on format/layout-specific [4, 28, 59] features to
identify named entities in a visually rich document. Contrary to
these efforts, we do not leverage any format-specific features or
assume explicit knowledge about the document layout at any stage
of our workflow. Through exhaustive experiments on four cross-
domain datasets we show that: (a) existing deep-learning models
tailored for text-based information extraction e.g., long short-term
memory (LSTM) networks [1] struggle to capture the multimodal-
ity of visually rich documents, and (b) ingesting domain-specific
information to learn visual span representation boosts end-to-end
extraction performance. Our main contributions are as follows:

e We describe Artemis, a visually-aware IE method for het-
erogeneous visually rich documents

e We propose a contextualized representation for a visual span
in the document. To identify the context boundary of a visual
span while incorporating domain-specific knowledge, we
develop a machine-learning model based on an adversarial
neural network.

o Through exhaustive evaluation on four heterogeneous datasets
for separate tasks, we show that IE using our contextualized
span representation outperforms text-only baselines

We formalize the IE task addressed in this paper in Section 2,
and describe our method in Section 4. We evaluate our method on
four separate IE tasks and discuss our findings in Section 5.

2 PROBLEM FORMULATION & DEFINITION

Given a document D and a list of named entity types N = {ny, ..., ng }
as input, our objective is to identify the smallest visual spans in D
that contains a named entity in N. We formulate this informa-
tion extraction task as a two-phase process. In the first phase, we
identify a set of candidate visual spans (V;) in D that are likely to
contain a named entity n; € N, Vi. We search for the smallest visual
span(s) within V; that contains the named entity n; € N during the
second phase of our workflow. Therefore formally, we define our
information extraction task as a composition of two sub-tasks.

1. First sub-task: For each named entity type n; € N, Vi,
identify a set of candidate visual spans V; in D that may contain n;.

2. Second sub-task: For every named entity type n; € N, Vi,
find the smallest visual span within each V; that contains n;.

For the first sub-task, we employ a number of weakly super-
vised [44, 45] functions (Section 4.2). We formulate the second sub-
task as a binary classification problem (Section 4.3) in a multimodal
encoding space. Before presenting our extraction workflow, we re-
view some of the background concepts in the following section first.

3 BACKGROUND CONCEPTS & DEFINITIONS

A. Visual Span: A visual span represents a contiguous area in a
visually rich document. Assuming a rectangular coordinate system,
we can represent a visual span as the tuple {x, y, w, h}. Here, (x,y)
represents the coordinates of the left-top corner of the smallest
bounding-box that encloses the visual span, w represents the width
of the bounding-box, and h represents its height. The local context
boundary of a visual span is the smallest, semantically coherent
area in the document that contains that visual span (see Fig. 4).

B. Named Entity Recognition: We describe named entity
recognition tasks by adopting terminology from the natural lan-
guage processing community [22]. Two types of objects play central
roles in a named entity recognition task: (a) entity and (b) entity
mention. An entity e represents a distinct real-world person, place,
or object. Entities can be grouped into different entity types. A
mention v is a visual span containing text that refers to an entity.
A candidate visual span or candidate span represents a non-empty
visual span in the document that may contain a potential instance
of an entity. If a candidate visual span is classified as true, it is
deemed to be a mention. The input to a named entity recognition
task is a visually rich document D and a list of entity types N = {nj,
ny...,ng }. It outputs the smallest visual span(s) that contains entity
mentions of a named entity n; € N in D.

C. Adversarial Neural Network: Given an input distribu-
tion @ and a target distribution {, the goal of an adversarial network
is to learn a transformation function f such that ® : f — (. For
most real-world applications, the true form of the input distribution
and/or the target distribution is typically not known beforehand.
In such cases, the transformation function f is approximated using
a pair of neural networks trained on separate but complementary
learning objectives. Given a finite set of data-points Sp sampled
from the input distribution @ and their respective representations Sy
in the target distribution {, the learning objective of one of the net-
works, referred to as the Generator network to learn a function]fg
that transforms S to Sy ie., S : fg — S;. The second network
referred to as the Discriminator network, on the other hand, learns
an inverse function f; to transform the data-points S; sampled
from the target distribution { to their corresponding representa-
tions S in the input distribution ® i.e., Sy : fg — S¢. Hence, the
transformation function f is learned by training both networks
jointly on a parallel corpus containing data-points from the input
and target distribution in an alternating way. The respective goal
of these two networks is complimentary but opposite to each other.
Adversarial networks have been recently used for speech enhance-
ment [41], network representation learning [6], and medical image
analysis [62]. However, their effectiveness in modeling context in-
formation for document information extraction remains unclear.
We describe a machine-learning model based on an adversarial
neural network that plays an important role in modeling context
information in visually rich documents in Section 4.3.

824

D. Pretraining: To mitigate labeling effort to train our adversar-
ial neural network on a new corpus, we train it on a different corpus
with readily available, large-scale labeled data. Once trained, we ini-
tialize the network with parameters obtained from this process and
continue training it on our target corpus [40]. We show in Section 5
that following this approach we can train a network on a minimal
labeled samples and obtain satisfactory extraction performance.

E. Long Short-Term Memory Network: The machine-learning
model we utilize in this paper to encode the local context of a visual
span is based on a Long Short Term Memory (LSTM) network [1]. It
is a type of recurrent neural network (RNN). RNN’s take sequential
data X = {x1,x2...,x;} as input. For each element in X, previous
inputs can affect the output for the current element. The structure
of an RNN is formally described as follows.

hy = F(xt, he-1)
y=G({h1, ha.... ht})

ey
@)

Here, h; represents the hidden state updated by the element x;,
and y denotes the sequence of hidden states generated till that
timestep. The functions F and G are nonlinear transformations.
For RNN’s, F is defined as follows, F = tanh(Wyx; + Uphs—1 + by,),
where Wy, Uy, and by, are all learnable parameter matrices. The
function G is typically specific to the downstream IE task. LSTM
networks are a type of RNN that introduces a new structure called
gates to learn long-term dependencies between different elements
in the input sequence. An LSTM network typically has three types
of gates: input-gates (I;) that decide which values are updated in
a memory cell, forget-gates (F;) that decide which values stay in
the memory, and output-gates (O;) that decide upon the values in
memory that going to be used to compute the output of the cell.
The final structure of an LSTM network is defined as follows.

It = o (Wix; + Uihy-y + by) (©)

F; = O'(fot + Ufht_l + bf) (4)

O = 0(Woxt + Uoht—1 + bo) (5)

Ct = Fp 0Cy1+ I o tanh(Wexy + Uchy—1 + be) (6)
hy = O¢ o tanh(Cy) (7)

C; denotes the state vector of the memory cell, W, U, and b
denote parameter matrices, o denotes the sigmoid function, and o
denotes Hadamard product. A bidirectional LSTM network consists
of a forward-LSTM and a backward LSTM network. The forward-
LSTM network reads an input sequence X = {x1, x3..., x; } from x1
to x; and updates its hidden sequence hf, whereas the backward-
LSTM network reads the input sequence backward from x; to x; and
updates its hidden sequence hP. The hidden vector representation
of the bidirectional LSTM network is a concatenation of the forward
and backward hidden sequences [nf, RP].

F. Attention: To represent a potentially long input sequence
without squashing it to a fixed-length internal representation and
losing important information, the attention mechanism leverages a
soft word-selection process conditioned on the global information
of the input sequence [1]. Instead of truncating or pooling informa-
tion from long sequences, this mechanism allows an LSTM network
to pay more attention to a subset of elements in the input sequence

where the most relevant information is concentrated. We develop a
multimodal bidirectional LSTM network with attention to encode
the local context information of a visual span in Section 4.3.

4 THE ARTEMIS FRAMEWORK

Artemis works in two phases. In the first phase, it identifies a set of
candidate visual spans for every named entity to be extracted. Each
of these candidate spans are then searched to identify the smallest
visual spans within them containing a named entity in the second
phase. The key enabler of both phases is a data model that represents
heterogeneous documents in a principled way. We describe it below.

4.1 Artemis’ Data Model

We represent a document as a nested tuple (V, T), where V denotes
the set of atomic elements in the document, and T denotes their
visual organization. We describe both of them below.

4.1.1 Atomic element

An atomic element refers to the smallest visual element in a visually
rich document. There can be two types of atomic elements in a
document: text element and image element.

A. Text element: It is the smallest visual element in a document
with a text-attribute. Assuming a rectangular coordinate system
with the origin at the left-top corner, we can represent a text el-
ement a; as a nested tuple (text-data, x,y, w, h). Here, text-data
represents the transcription of the visual span covered by a;, h
& w denote the height and width of the smallest bounding-box
enclosing a;. x & y represent coordinates of the top-left corner of
the bounding-box. We transcribe a visual span using Tesseract [54],
a popular open-source transcription engine. We deem each word
as a text element in our data model.

B. Image element: It denotes an image-attribute in the docu-
ment. We represent an image element a; as a nested tuple (image-
data, x,y, w, h). Here, image-data represents the pixel-map, h & w
denote the height and width, and x & y represent coordinates of
the top-left corner of the smallest bounding box that encloses a;.

4.1.2 Visual organization

We represent the visual organization of a document using a tree-like
structure (T). Each node in T represents a visual span at various lev-
els of layout hierarchy. Following the hOCR specification format by
Breuel et al. [2], we define T with five levels of hierarchy. Each level
corresponds to a specific level of abstraction. We define the hierar-
chy as follows: each document is made up of several columns, every
column is divided into some paragraphs, every paragraph is split into
text-lines, and every text-line consists of multiple words. We repre-
sent T by leveraging this hierarchy. A node (v1) is a child of another
node (v2) in T if the visual span represented by v; is enclosed by the
span represented by v2. Leaf nodes of T represent individual words,
whereas the root node represents the visual area covered by the
single page of the document. We use an open-source page segmen-
tation algorithm [54] to construct the layout-tree of a document.!

Our data model helps represent documents with diverse layouts
and formats in a principled way. Leveraging the structure presented

!we construct the layout-tree of a document from its rendered image rather than

utilizing DOM tree-structures as it helps us to extend our method to document formats
that do not support DOM-tree specifications

825

above, we can represent any visual span in the document as a nested
tuple (v, t), where v C V denotes the set of atomic elements appear-
ing within the visual span and ¢ denotes the smallest sub-tree of the
document layout-tree T that contains all the atomic elements in v.

4.2 Candidate Visual Span Generation

Artemis relies on a number of weakly supervised functions to in-
troduce domain-specific knowledge for identifying the candidate
visual spans where a named entity may appear. We implement these
as Python functions that accept a named entity, a list of mentions
and where they appeared in the training corpus, and the test docu-
ment D. Each function returns a set of candidate visual spans in D.
These functions can range from simple regular expressions, pub-
licly available libraries [13, 14] to complex functions that account
for signals across both visual and textual modality. We provide
examples of some of the functions used in our experiments below.

WSF1: Approximate string matching based candidate generation

def text_matcher(ne_lst,D,T){
candidate_span_lst = []
text = transcribe(D)
for ne in ne_lst:
if ne in text:
span_coords = T.lookup(approx_match(text,ne))
candidate_span_lst.append(span_coords)
return candidate_span_lst

Example 4.1: WSF1 follows an approximate string matching
approach to identify candidate visual spans in a document. For each
named entity n; € N, it constructs a dictionary of all the entity
mentions of n; from the training corpus and finds a match in the
transcribed text from D. We consider a phrase p in the transcribed
text to be a match to an entity mention ne, if (a) they contain the
same number of words, and (b) the minimum edit-distance between
all word-pairs in p and ne is less than or equal to 3. If p is deemed
a match, we look up the layout-tree T of the test document D and
return the smallest visual span where p appears.

WSF2: Parts-of-speech based candidate generation

def parts_of_speech_tag_matcher(ne_lst,D,T){
candidate_span_1st [1]
text = transcribe(D)
tagged_text = tagger(text)
for ne in ne_lst:
seq = pos_tagger(ne)
span_coords = T.lookup(match(tag_text,seq))
candidate_span_1st.append(span_coords)
return candidate_span_lst

Example 4.2: WSF2 utilizes a publicly available parts-of-speech
tagger [13] to construct unique tag sequences representing a named
entity n; from its mentions in the training corpus. A phrase p ap-
pearing in the transcribed text of a test document D is deemed a
match if the tag sequence obtained from p appears in the set of
tag sequences representing n;. Once a match is found, we look up

the smallest visual span where p appears in D from its document
layout-tree and return it as a candidate visual span.

WSF3: Visual positioning based candidate generation

def position_matcher(ne_pos_1st,D,T){
candidate_span_lst = []
for ne_pos in pos_lst:
text_line_coords = T.traverse(ne_pos)
span_coords = pad(text_line_coords,50)
candidate_span_lst.append(span_coords)
return candidate_span_lst

Example 4.3: Finally, the function WSF3 takes the visual modal-
ity of a document into account to identify candidate visual spans.
Given a named entity n; and a list of where each of its mentions
appears in a training document, it traverses up the layout-tree of
the training document to identify the text-lines (see Section 4.1)
where the mention appears, dilates [42] the visual span enclosing
those text-lines by 50 pixels (along both dimensions) and returns
the resulting visual span.

The main objective of these functions in our extraction work-
flow is to identify candidate visual spans that are likely to contain
a named entity n; € N, Vi with high-recall. Using a combination
of these functions, we were able to identify candidate visual spans
that contained true mentions of the named entities n; € N to be
extracted with an average recall-score? ranging from 92.75% to
97.50% on our datasets (see Fig. 3). Identifying the smallest visual
span within each candidate span is the responsibility of the second
phase of our workflow.

Quality of the Candidate Visual Spans

Precision (%) ® Recall (%)
97 9275 94.55

975
62.25
495 5088
a7
0
D1 D2 D3 D4

Experimental Dataset

Figure 3: Weakly supervised functions identify visual spans
containing true entity mentions with high recall

4.3 Identifying Local Context Boundaries

We represent a visual span using two fixed-length vectors f; and .
pr denotes the local context vector and fg denotes the global
context vector of the visual span. To compute 1, we need to identify
the local context boundary of the visual span first. Formally, given a
visual span v in document D, the local context boundary of v is the
smallest, semantically coherent visual span L in D that contains .
We decompose this task into two sub-problems. First, find a partition
of D i.e., a set of non-overlapping visual spans {L1, L2...Lp} in D
that are isolated from each other by explicit or implicit visual cues.

Zpercentage of true entity mentions contained within the candidate visual spans

826

Pointers For Parents
Start Talking To Stop Youth Smoking
e

Pointers For Parents
Start Talking To Stop Youth Smoking
i T o

Visual Span (v) Local context boundary (L) of the Visual Span
Figure 4: Local context boundary of a visual span appearing
in a document (resized for illustration)

Second, find the visual span from this partition that contains the
visual span v from the document layout-tree (Section 4.1). The
key insight here is to utilize visual cues as delimiters of coherent
semantic concepts to identify a visual span’s local context. The
local context boundary of a visual span within the solid rectangle
in Fig. 4 (left) is shown within the dotted rectangle on the right.

One of the main challenges in developing a robust approach to
find such a partition from a visually rich document is the inherent
heterogeneity of real-world documents. Visual cues used as concept
boundaries are often domain-specific and do not translate well to
documents belonging to other domains. For example, the vertical
space between two text-lines works as a visual delimiter in a tax-
form document (see (A) in Fig. 1), but the same cannot be said for
a news-article (see (C) in Fig. 1). Domain-agnostic visual segmenta-
tion algorithms such as [51] often do not find the optimal partition
in such scenario. Layout-specific or rule-based approaches [27]
are hard to scale. Supervised approaches, on the other hand, re-
quire large-scale labeled data that are prohibitively expensive to
prepare. To incorporate domain-specific knowledge when finding
the optimal partition without extensive feature engineering, we
develop a deep neural network. We mitigate the requirement of
human-labeled data to train this network by pretraining it on the
segmentation output of a domain-agnostic, visual segmentation
algorithm [51] on a large-scale publicly available dataset [15]. Once
training converges, we continue training this network on a min-
imal training-set from our target dataset. Our network consists
of a pair of convolutional networks, the Generator network, and
the Discriminator network. We identified the architecture of both
networks empirically.

4.3.1 The Generator Network:

The Generator network is a deep convolutional network [23]. Its
primary objective is to learn a transformation function fg that com-
putes a segmentation mask of a visually rich document. During
inference, it takes a squared? (512 x 512), rendered image of doc-
ument D as input, and outputs a segmentation mask vp (see Fig. 6).
Physically, vp is a binary image with the same dimensions as D,
where each bounding-box represents the local context boundary
of the visual spans that appear within that bounding-box.

3we square a rendered document image with dimensions h X w, where w < h, by

padding both sides of its smaller dimension with }FTW pixels of same color as the
original boundary pixels in LAB colorspace

Architecture: The Generator network consists of a number
of encoder and decoder blocks. Upon input, a document is propa-
gated through the encoder blocks. Every encoder block (ENT-EN9
in Fig. 5) progressively down-samples its input from the previous
block until the bottleneck-layer (a one-dimensional vector of length
16), which feeds into a decoder block. Each decoder block (DEC1-
DEC9 in Fig. 5) progressively up-samples its input than the previous
block. An encoder block consists of a convolution layer followed by
batch-normalization and a rectified linear unit [23]. A decoder block
consists of a deconvolution layer followed by batch normalization
and a rectified linear unit. To address the vanishing gradient prob-
lem during training, skip connections are introduced [17] between
every i*h, 1 < i < 9 pair of encoder and decoder blocks. We discuss
the training of this network in Section 4.3.3. A detailed description
of the network architecture is presented in Appendix A.

4.3.2 The Discriminator Network:

The Discriminator network is a deep convolutional network [23]
whose primary objective is to learn a function f; that validates
the segmentation mask vp constructed by the Generator network.
During inference, the input to this network is a squared (512 x 512),
rendered image of the input document (D) and the segmentation
mask (vp) constructed by the Generator network. It outputs a bi-
nary number based on its belief in the validity of the segmentation
mask. If the output is 1, vp is deemed valid, and we have obtained
an optimal partition of the input document D.

Architecture: The Discriminator network consists of five dis-
criminator blocks (Disc1-Disc5 in Fig. 5). Each discriminator block
consists of a convolution layer followed by a rectified linear unit.
Once the concatenated image is introduced to the first discrimi-
nator block, the network progressively down-samples it until the
final discriminator block, which computes a validity-matrix. It is
a 16 X 16 binary matrix. Each entry of this matrix represents the
network’s belief on the validity (0/1) of a patch in the learned seg-
mentation mask. The validity of the segmentation mask is inferred
by performing a point-wise convolution (i.e., filter-size = 1 X 1) on
the validity-matrix and feeding the output to a sigmoid activation
function. If the output of the activation function is non-zero, vp is
deemed valid. A more detailed overview of the network architecture
is presented in Appendix A.

4.3.3 Joint adversarial training:

We pretrain both the Generator and Discriminator network from
scratch with an adversarial learning objective [12] on the outputs
of an unsupervised visual segmentation algorithm [51] on a large-
scale publicly available dataset [15]. It is a domain-agnostic algo-
rithm that accepts a rendered image of a document as input and
returns its segmentation mask based on a number of commonly
used visual delimiters defined beforehand. We construct a large-
scale training corpus by feeding each document in this dataset to
the segmentation algorithm [50] and saving the segmentation mask
it outputs. Then, we randomly sample 20% of the image-pairs from
this training corpus and introduce synthetic noise in them. Specifi-
cally, we use rotation based deformation and smooth deformations
with random displacements. Once the training converges on this
augmented corpus, we continue training our networks on a limited
corpus from our target dataset by sampling n = 15 documents

827

Input
documen

Segments

Input |
document

Discriminator

Figure 5: A snapshot of the Generator and Discriminator
network during inference

of each type. This corpus contains a gold-standard segmentation
mask for each sampled document. We describe the process of con-
structing these gold-standard annotations in Section 5. During both
phases of the training procedure, the input to the network-pair is
a pair of images — a squared, rendered image of the training doc-
ument and its corresponding segmentation mask. Retraining the
network-pair on human-labeled data helps incorporate knowledge
specific to the target corpus during the construction of a segmen-
tation mask. Through rigorous experiments (see Section 5), we will
show that following this pretraining method provides satisfactory
end-to-end performance on four cross-domain datasets without
requiring large-scale human-labeled data.

Training objective: We train both networks jointly with an ad-
versarial learning objective using alternating backpropagation [12],
i.e., training alternates between a gradient descent step on the
discriminator network and a step on the generator network until
convergence. We used minibatch stochastic gradient descent for
training and Adam-solver [20] for parameter optimization. The joint
training objective of the network-pair £(G, F) is defined as follows.

L(G,F) = Lgjsc(F) + Lgen(G) 8)
Lgisc (F) = Ex,y[log(F(xs y)] ©9)
Lgen(G) = EBx,z[log(1 - F(x,G(x,2)))] +aL; (10)

L1 =EBxyz[lly - G(x,2)|I1] (11)
In Eq. 8, Lgen(G) and Ly (F) represent the learning objective
of the Generator and Discriminator network, respectively. At each
training step, the Generator network tries to minimize Lgen(G),
whereas the Discriminator network tries to maximize Lg;s.(F).
Training converges at the optimal value L* = argmingmaxp L(G, F).
We train both networks on an image-pair. The Generator network
is trained to construct the gold-standard segmentation mask (x)
from the input document (z). The Discriminator network, on the
other hand, is trained to validate the segmentation mask (y in
Eq. 9) constructed by the Generator network against the gold-
standard segmentation mask (x). Ly;s.(F) (Eq. 9) and the first
term of Lgen (G) (Eq. 10) represent a cross-entropy based loss func-
tion [23]. The second term of Lge, (G), on the other hand, minimizes
the L1 distance (Eq. 11) between the segmentation mask constructed
by the Generator network and its corresponding gold-standard an-
notation. We set the value of « in Eq. 10 to 0.7 for all experiments.

4.3.4 Inference.

Once training converges, we feed a squared, rendered image of a
test document (D) to the Generator network. It constructs a seg-
mentation mask (vp) and propagates it to the Discriminator net-
work. If vp is deemed valid, we can now proceed to determine
the local context boundary of a visual span (v) in the document.
Let, {L1, Ly..., Lp} denote the partitions found in the segmentation
mask vp. To identify the local context boundary of a visual span o,
we look up the document layout-tree to find partitions L; € up that
contain at least one atomic element in v. If v spans across multiple
partitions, we define its local context boundary as a set of all visual
partitions in vp that contains an atomic element in v. By developing
a convolutional network that adaptively learns to identify the visual
cues that act as a concept boundary in a visually rich document
by taking domain-specific knowledge into account, we obviate
the necessity of extensive feature engineering in our workflow.
Learning the visual delimiters directly from the rendered image
without relying on format-specific operators (e.g., structural tags
in HTML documents) makes this process robust towards diverse
document types. We compare our deep-learning-based approach
to identify local context boundaries against several baseline meth-
ods, including a state-of-the-art neural network in Section 5. We
obtained the best end-to-end performance in most cases using our
adversarial network-pair. To identify the smallest visual span that
contains a named entity, we encode its contextual information into
a fixed-length vector. We describe this in the following section.

4.4 Filtering and Named Entity Recognition

For each named entity n; € N, we transcribe a candidate visual
span v, convert the text to lowercase, normalize it, remove stop-
words and chunk it into coherent text-segments using a publicly
available natural language processing tool [34]. We formulate the
task of identifying a mention of the named entity n; within a can-
didate visual span v as a binary classification task. Let, ¢;; denotes
the j# chunk obtained from the candidate visual span v for named
entity n;. We deem c;; as an entity mention of n; if it is assigned
a ‘True’ label and return the smallest visual span enclosing c;;.
Otherwise, it is discarded. Let, L = {L1, L2...Lp} denotes the local
context boundary of the chunk c;;, where Ly, Vt € [1, p] represents
a distinct partition in the learned segmentation mask of the input
document containing at least one word in ¢; ;. We compute the prob-
ability of ¢;; being inferred as a true entity mention of n; as follows.

;; =3PP(be =1|br, = 1)(P(be =1|bp = 1) (12)

In Eq. 12, the random variables b, by,, and bp represent the
indicator variables denoting whether a true mention of the named
entity n; appears in the visual span containing c;;, partition L; € L,
and the document D respectively. To compute the first probability
term in Eq. 12, we represent c;; as a feature vector f3, referred to
as the local context vector. It encodes visual and textual semantics
of c;j from the visual span represented by L; in the input document.
The second probability term incorporates document-level context.
It accounts for the fact that certain named entities are more likely
to appear in one document type than another and encodes this
information in a feature vector S, referred to as the global context
vector. We discuss how both context vectors are computed below.

828

Pointers For Parents [|

(a) Input document

(b) Learned segmentation mask

Figure 6: (b) shows the segmentation masks constructed by
the Generator network (vp) for the document shown in (a)

4.4.1 Encoding the local context vector.

We extend a bidirectional LSTM network — the de-facto deep-
learning standard [33] for natural language processing tasks with
a set of dynamically generated visual features to model the local
context information of ¢;;. An overview of our network is shown
in Fig. 7. In Section 5, we perform an exhaustive ablation study
to evaluate the contribution of each modality on our end-to-end
performance. We describe how the feature vectors are computed
for each modality next.

Textual features: We compute textual features (h; ;) of a word
wijk in the chunk c;j, Vj using a forward (represented by super-
script f) and backward (represented by superscript b) LSTM net-
work, summarizing the information about the whole chunk with
a focus on the word w; ji.. It takes the following structure.

hlp = LSTM(RL (eiji) (13)
hY. = LSTM(RY, ., €ijk) (14)
hijie = [y B) (1)

In Eq. 13 and Eq. 14, ¢; ;. represents the word-embedding [57]
of w;j, encoding its semantics into a fixed-length vector. We ob-
tain the word-embedding w; jx of each word using BERT-base [8],
a state-of-the-art language model pretrained on English Wikipedia
text. The contextualized feature representation of c;;, denoted by
tjj is computed by following the attention mechanism to model
the importance of different words that appear in c;; and aggregate
their feature representations as follows.

Uijk = tanh(Wthijk +by) (16)
exp(ngut)
g = ——IE (17)
Zmexp(Uijmut)
tij = Xm%ijmUijm (18)

Here, W;, u;, and b; are all learnable parameter matrices. U; ik
denotes a hidden representation of h; j, and @; j. denotes the impor-
tance of the word w; j, Vk. The final contextualized representation
of ¢;j is obtained by computing a weighted sum of Uj i, Vk.

Visual features: We compute a set of dynamic features (V; k)
to encode the local visual context of each word in ¢;;. A detailed

Local Context
Vector

{-:I:.:l:l—> o | o
Classlfler ‘True’ Iabel
Textual Features .:.:I—>w<—|:-:- } Visual Features

Weighted Average

/ e
% Ionland |

Simple Average

/T\

Figure 7: An overview of the Multimodal LSTM network

description of these visual features is presented in Appendix A. The
key enabler behind these features is the learned segmentation mask
returned by our adversarial neural network and the layout-tree
of the input document. We identify the local context boundary of
a word w;ji in ¢;j by traversing the layout-tree to find the par-
tition in the segmentation mask that contains that word. These
visual features encode many highly predictive semantic informa-
tion implicitly, which we will show (in Section 5) compliments
the supervisory signals gathered from the textual modality. We
compute the final representation (s;) of c;j by averaging the visual
features obtained from each word in ¢;; i.e., s;j = I%ZkVijk. The
local context vector (fi1) is therefore obtained by concatenating
the textual feature vector t;; and the visual feature vector s;j, i.e.
Pr = [tij, sij]. The final layer of our network is a fully-connected
layer that takes the feature vector fr as input and outputs the
probability of ¢;; being a true mention of the named entity n;.

Training: All network parameters are learned following a joint
training paradigm. This includes the parameter matrices in the
bidirectional LSTM network as well as the weights of the last soft-
max layer. For each named entity n; € N, we train the network on
contextualized vectors computed from the entity mentions of n;
in our training corpus. Given the position of an entity mention
in a training document, we identify its local context boundary by
leveraging the segmentation mask returned by our pretrained ad-
versarial neural network. We use a cross-entropy based learning
objective [23] for training.

Inference: Once training converges, we feed each chunk c;;
obtained from a candidate visual span v for named entity n; in the
test document. The softmax layer outputs the probability of c;;
being a true mention of the named entity n;. This represents the
first probability term i.e., P(be = 1| by, = 1) in Eq. 12.

4.4.2 Encoding the global context vector:

The global context vector g of a visual span is a fixed-length, dis-
criminative feature-vector representing the input document D in
which it appears. It accounts for the fact that mentions of certain
named entity types are more likely to appear in certain document
types than others. For instance, a mention of the named entity
“Side effects” is more likely to appear in a news article on tobacco
addiction than a real-estate flyer. We incorporate this intuition us-
ing corpus-level statistics to infer the probability of a visual span

829

containing a true mention of the named entity n; € N in D. We com-
pute the global context vector g using a state-of-art, deep convo-
lutional network [50] pretrained on a large-scale publicly available
dataset [15]. Once training converges, we feed a rendered image of
our input document to this network and obtain the 512-dimensional
vector from the final fully-connected layer of this network.

Inference: Following this process for all documents in the train-
ing corpus, we group the training documents into a number of
non-overlapping clusters using the DBSCAN algorithm [53]. For
each cluster, we compute the fraction of documents that contain a
mention of the named entity n; € N. Let, p; denote the fraction of
documents in the j* h luster that contain a mention of n;, and c;
denotes the feature representation of the j* h cluster-center (average
of the context vectors in each cluster). Let, d; denotes the Euclidean
distance between c; and the global context vector representation of
the test document. We compute the probability of a true mention
of the named entity n; appearing in the test document as follows.

P(be =11bp =1) = $p=ps+ (19)
_ exp(dy)
¢t* - Ztexp(dt) (20)

t* = argmin; (dy) (21)

Eq. 19 represents the second probability term of Eq. 12. Com-
bining it with the softmax probability obtained from our LSTM
network helps compute the probability term IT;; - the probability
of a chunk c;; being a true mention of the named entity n; € N.
We repeat this process for every chunk c;; from all candidate visual
spans. If the IT;; > 0.5, we return the smallest visual span contain-
ing c;j. We evaluate our end-to-end performance on a suite of IE
tasks from heterogeneous, visually rich documents in Section 5.

5 EXPERIMENTS

We evaluate Artemis on four cross-domain datasets in our exper-
iments, the NIST Tax dataset (D1), the MARG dataset (D2), the
Tobacco Litigation dataset (D3), and the Brains dataset (D4). Doc-
uments in each of these datasets are heterogeneous in nature, i.e.,
they either originate from different sources or have different lay-
outs or formats. We seek to answer three key questions in our
experiments: (a) how did we perform on each dataset? (b) how did
it compare against text-based methods? and (c) what were the indi-
vidual contributions of various components in our workflow? We
answer the first two questions in Sections 5.3.1. To answer the last
question, we perform an ablative analysis in Sections 5.3.2 and 5.3.3.
We used Keras [19] to implement our neural networks. All exper-
iments were performed with 1TB RAM and a 12GB Titan-XP GPU.

5.1 Datasets

To evaluate the generalizability of our method, we measure its per-
formance on four datasets for separate IE tasks. Each task required
identifying the smallest visual spans containing true mentions of
a list of named entities in a single-page document. A detailed list
of these named entities and a short description of what they rep-
resent are available at: https://github.com/sarkhelritesh/ewr. The
datasets D1, D2, and D3 are publicly available and have been used
by previous works [51]; we prepared dataset D4 for this study. In

Table 1: Average top-1 accuracy and F1-score obtained by all competing methods on our experimental datasets

Index Dataset Text-only (A1) ReportMiner (A2) Graph-based (A3) Weak Supervision (A4) Artemis
Accuracy (%) F1(%) Accuracy (%) F1(%) Accuracy (%) F1(%) Accuracy (%) F1(%) Accuracy (%) F1(%)
D1 NIST Dataset 89.75 86.33 97.50 93.25 95.50 91.86 95.50 92.0 95.55 92.60
D2 MARG Dataset 69.45 67.50 67.70 62.25 72.0 70.95 71.25 69.07 74.33 72.50
D3 Tobacco Litigation Dataset 51.20 49.65 59.70 55.25 65.25 62.90 63.50 61.35 68.50 67.25
D4 Brains Dataset 68.50 64.33 62.07 56.50 74.25 70.96 74.50 69.42 78.40 74.35

the following sections, we describe some of the key characteristics
and the IE tasks defined on each dataset.

A. NIST Dataset (D1): The NIST special dataset-6 [38] is a pub-
licly available dataset containing 5595 scanned documents repre-
senting 20 different forms from the IRS-1040 package. We defined
an IE task with 1369 unique named entities (NE) on this dataset.
Examples include form-fields such as “Taxpayer’s name’, ‘Address’,
‘Name of the dependents’, and ‘Gross income’.

B. MARG Dataset (D2): The Medical Article Record Groundtruth
(MARG) dataset [56] is a publicly available collection of biomedical
journals from the National Library of Medicine. It contains 1553
articles with nine different templates. Documents in this dataset
exhibit high variance in intra-class layout similarity. We defined
an IE task on this dataset with four unique named entities, ‘Article
title’, ‘Contribution’, ‘Authors’, and ‘Affiliation’.

C. Tobacco Litigation Dataset (D3): The Tobacco Litigation
dataset [24] is a benchmark dataset containing 3482 documents
from publicly available litigation records against US tobacco com-
panies in 1998. It contains ten commonly used document types,
including email and newspaper article. Documents in this dataset
are noisy (e.g., low contrast, broken characters, salt-and-pepper
noise), and exhibit high intra-class and low inter-class variance in
layout similarity, making it one of the most challenging datasets
in our experimental setup. We defined an IE task with 34 unique
named entities on this dataset. For example, the named entities de-
fined for an email document included ‘Sender’s name’, ‘Receivers’
name’, and ‘ Receivers’ affiliations’. A complete list of named entities
defined for this task can be found in the supplementary document.

D. Brains Dataset (D4): In the context of emergency care [36],
a ‘Brain’ document refers to a physical or digital document used
by registered nurses as a record-keeping tool to maintain vital in-
formation of a patient under care. Information from this document
is manually added to a centralized database periodically to update
it. A ‘Brain’ document typically utilizes a number of visual cues
to identify vital information quickly [52]. We prepared a synthetic
dataset from 36 publicly available ‘Brain’ templates [16] used by
registered nurses in the United States. We populate each document
with artificial entries mimicking real-world data [36]. The dataset
contains approximately 1M documents. We defined an IE task on
this dataset with 12 distinct named entities, typically used as patient
identifiers [52], such as ‘Name’, ‘Age’, ‘Medical history’. Sample
documents from each of our four datasets are shown in Fig. 1.

5.2 Experiment Design

We closely follow the evaluation scheme proposed in [51]. A visual
span v; inferred as a mention of the named entity n; by our IE
workflow is deemed to be accurate if: (a) it is accurately localized,

830

i.e. its position aligns with gold-standard coordinates, and (b) it is
accurately classified, i.e. n; is the gold-standard label assigned to v;.

5.2.1 Groundtruth construction:

Following the guidelines proposed by Clavelli et al. [5], we con-
struct multi-level groundtruth representation for each document.
We annotate each document at both word-level and local context
boundary-level using a publicly available annotation tool. Three
graduate students, each familiar with at least one of the datasets,
were invited to help construct the groundtruth data. The list of
named entities N for each IE task was decided by consensus. For
each dataset, guidelines to identify visual delimiters that act as con-
cept boundaries in the document were proposed by an expert famil-
iar with the dataset first and then finalized after reaching cohort con-
sensus. Once the guidelines were fixed, each annotator was asked to
provide the following information for each document: (a) word-level
bounding-boxes of the smallest visual span of an entity mention,
(b) the named entity type associated with that mention, and (c)
bounding-boxes of the smallest, visually isolated, coherent area in
the document that contains that mention. Each document was anno-
tated by at least two annotators. We obtained the gold-standard po-
sitional groundtruth by averaging the coordinates provided by each
annotator, and the gold-standard entity-type by majority voting.

5.2.2 Evaluation protocol:

Suppose the visual span v; is inferred as a mention of the named en-
tity n;. (i, y;) denote the x,y coordinates of the left-top-most point
of the smallest bounding box enclosing v;, and h;, w; represent the
height and width of this bounding-box. We evaluate the validity of
this prediction by first checking if v; is accurately localized. Follow-
ing Everingham et al. [10], we consider v; to be accurately localized
if its intersection-over-union against the gold-standard annotation
is greater than 0.65. If v; is deemed to be accurately localized, we
check if the groundtruth named entity type assigned to v; is n;. If
it is, we consider it a true mention of the named entity n;.

5.2.3 Training and test corpus construction:

We randomly sampled 60% of each document type to construct the
training corpus for a dataset. The rest of the documents were par-
titioned in a 50:50 ratio to construct the test and validation set.
The adversarial neural network was pretrained on the RVL-CDIP
dataset [15] first and then fine-tuned [40] on a corpus consisting
n = 15 documents randomly sampled from each document type
from our experimental dataset. We trained our LSTM network on
multimodal features extracted from each document in the training
corpus. The segmentation mask used to identify the local context
boundary of a document was constructed by an adversarial neural
network fine-tuned on that dataset.

Table 2: Average top-1 accuracy and F1-score obtained by all baseline methods on our experimental datasets

Index Dataset Convolution (B1) Fixed-Area (B2) Unsupervised (B3) Sentence-based (B4) Artemis
Accuracy (%) F1(%) Accuracy (%) F1(%) Accuracy (%) F1(%) Accuracy (%) FI1(%) Accuracy(%) FI1(%)
D1 NIST Dataset 95.05 92.28 94.70 92.33 95.0 92.27 95.50 92.55 95.55 92.60
D2 MARG Dataset 72.65 68.25 73.50 74.85 73.42 69.50 68.70 65.25 74.33 72.50
D3 Tobacco Litigation Dataset 65.80 62.75 61.50 55.12 64.33 63.20 57.70 54.20 68.50 67.25
D4 Brains Dataset 75.42 72.25 72.15 70.0 73.25 71.82 69.50 66.55 78.40 74.35

5.3 Results and Discussion

We report the average top-1 accuracy and macro-F1 score for each
dataset in Table 1. In general, we observed a positive correlation
between our end-to-end performance and the discriminative prop-
erties [50] of a dataset. We performed better on datasets that are
more visually discriminative.

5.3.1 End-to-end comparison against contemporary methods:

We compare our end-to-end extraction performance against sev-
eral contemporary IE methods. The average top-1 accuracy and
F1-score obtained for each dataset are shown in Table 1. The best
performance obtained for a dataset is boldfaced.

Our first baseline (A1) method takes a text-only approach for in-
formation extraction. It takes the rendered image of a document as
input and transcribes it. For fair comparison, we used Tesseract, the
same transcription engine [54] used in our extraction workflow. Af-
ter cleaning the document (following the same preprocessing steps),
the text is chunked [34] and each chunk is fed to BERT-base [8], a
state-of-the-art neural model pretrained on Wikipedia corpus. It
generates a fixed-length vector representation of that chunk. No
explicit context information from the document is incorporated at
any stage of this baseline. This vector is then fed to a bidirectional
LSTM network with attention [30] to infer whether that chunk
contains a true mention of a named entity defined for that dataset.
We outperform this baseline on all datasets.

Our second baseline method (A2) is ReportMiner [27], a com-
mercially available, human-in-the-loop, IE tool. It allows the users
to define custom masks for every named entity to be extracted. We
defined rules for every document type in our training corpus using
this tool. Information extraction was performed by selecting the
most appropriate rule and applying it on a test document based
on layout similarity. This baseline method performed better on the
fixed-format NIST dataset; however, performance degraded as the
variability in document layouts increased. We were able to outper-
form this method on most datasets with significantly lesser human
effort in our end-to-end workflow.

Our third baseline method (A3) follows a graph-based approach
to model the relationship between different visual spans in the doc-
ument. After decomposing the document using a domain-agnostic
segmentation algorithm, it represents each text-element using a con-
catenation of feature vectors obtained from a graph-convolution net-
work [26] and a pretrained language model. This concatenated vec-
tor is then fed to a bidirectional LSTM network, followed by a con-
ditional random field (CRF) to identify the entity mentions. We out-
performed this baseline on two of the most challenging datasets in
our setup, D3, and D4. Performance was comparable on dataset D1.

Our final baseline (A4) method follows a data-programming par-
adigm similar to Fonduer [59]. It employs the weakly supervised

831

functions introduced in Section 4.2 to identify candidate visual
spans in a training document. These weakly supervised functions
along with the noisy candidate spans are then passed to Snorkel [44],
a data-programming engine [46]. It converts the noisy candidate
spans to denoised labeled visual spans. Each visual span is then en-
coded into a fixed-length vector using the same multimodal feature
library in [59] and fed to a bidirectional LSTM network. It is worth
noting here that the HTML-specific features used in [59] could
only be extracted from datasets D2 and D4 in our experimental
settings as they contain PDF documents that could be converted
to HTML format using an opensource tool* during preprocessing.
Once trained, the LSTM network is then used to infer the named
entities appearing within a candidate visual span in the test corpus.
Although it requires less human-labeled data in its end-to-end work-
flow, we were able to outperform this weakly supervised baseline on
three of our datasets. Performance was comparable on dataset D1.

Table 3: Improvement in F1-score over ablative baselines

Index Type AF1(%)
D1 D2 D3 D4
S1 Textual features only 0.80 250 3.88 2.15
S2 Visual features only 545 2540 4522 37.50
S3 Local context only ~ 1.06 0.0 250 195

5.3.2 Comparing various ways to identify local context boundary:

In this section, we take a more in-depth look at various ways to
identify the local context boundary of a visual span and report their
end-to-end performance on our experimental datasets in Table 2.
In the first baseline method (B1), we employ a state-of-the-art, fully
convolutional network [47] trained similarly to our adversarial neu-
ral network to identify the local context boundary of a visual span.
The rest of the workflow is kept similar to ours. In our second base-
line method (B2), we identify an area of fixed dimensions around a
visual span as its local context boundary. The rest of the workflow
stays the same as ours. Our third baseline method (B3) utilizes an
unsupervised, domain-agnostic visual segmentation algorithm [51]
to identify the local context boundary of a visual span v. Once
context boundary is determined, it follows the same extraction
workflow. Our final baseline method (B4) identifies the local con-
text boundary of a visual span as the sentence that contains it. Due
to the heterogeneous nature of documents in our experimental
datasets, we define the sentence containing a visual span as the
non-empty set of text-lines that contain at least one atomic element
appearing within the visual span. We perform comparably or bet-
ter than all baseline methods. In general, extraction performance

“https://poppler.freedesktop.org

was good if context boundaries were determined adaptively, taking
local, domain-specific knowledge into account. Improvement in
performance over B4 reveals that capturing semantic information
beyond sentence-level boundaries is important for extraction per-
formance. The baseline B2 performed comparably on all datasets.
However, we note that identifying the optimal size of the context
window affects end-to-end extraction performance and may need
to be carefully selected based on the visual span and the dataset.

5.3.3 Ablation study:

We investigate the individual contributions of textual and visual
features used to encode the local context vector in our extraction
workflow in scenarios S1 and S2 of Table 3. For both rows, the final
column quantifies the contribution of a modality by measuring the
improvement in F1-score obtained over the ablative baseline by our
method. In S1, we only consider the textual features computed by
the bidirectional LSTM network to encode the local context vector
of a visual span. We observed the highest improvement in per-
formance against this ablative baseline for dataset D3, which was
closely followed by datasets D2 and D4. This establishes the critical
role played by visual features in representing context information
of a visual span. Considering only the visual features to encode the
local context vector (S2), on the other hand, incurs a noticeable de-
crease in extraction performance on all datasets. Finally, in scenario
S3 of Table 3, we disregard the contribution of the global context vec-
tor to infer whether a visual span contains a true entity mention. We
observed the highest decrease in F1-score on dataset D3 using this
ablative baseline. No effect in performance was observed for dataset
D2 as all of the named entities defined for this dataset appeared
in every document. Including corpus-level statistics, therefore, did
not have any effect on our end-to-end extraction performance.

6 RELATED WORK

Layout driven methods: One of the earliest approaches for infor-
mation extraction from web documents is wrapper induction [21,
32, 35]. In this approach, prior knowledge about the layout of a
document is taken into account to define custom masks for local-
izing and extracting named entities. These methods, however, do
not scale well for documents with diverse layouts. Although not
for named entity recognition, some recent works [37, 50] have pro-
posed methods for template-free parsing of visually rich documents.
For example, Cai et al. [3] proposed VIPS, an unsupervised method
to produce a segmentation mask of a webpage. Their method was
recently outperformed by Sarkhel et al. [51]. They proposed a gen-
eralized segmentation algorithm that not only takes the visual
features of a document into account but also the semantic similar-
ity of neighboring visual spans. Davis et al. [7] proposed a fully
convolutional network to pair handwritten entries with preprinted
text-fields in form documents. A fully convolutional network was
also utilized by Yang et al. [61] to infer the semantic structure of a
document. We compared our end-to-end performance against a fully
convolutional baseline. We outperformed it on multiple datasets.

Format driven methods: A significant amount of existing works
on document information extraction leverage format-operators and
structural tags supported by rich document markup languages.
Researchers like Manabe et al. [32] and Sun et al. [55] utilized
HTML-specific operators to propose heuristics-based IE methods

832

from HTML documents. Gallo et al. utilized PDF-specific format-
operators for information extraction from digital flyers in [11]. A
distance supervision approach was proposed by Lockard et al. [28]
for relation extraction from semi-structured web documents. XML
and HTML-specific feature descriptors were also leveraged by Deep-
dive [39] to extract relational tuples from visually rich documents.
Contrary to such works, we utilize format-agnostic features in our
workflow, making it robust towards diverse document types.

Supervision sources: Existing literature on document infor-
mation extraction is heavily biased towards using textual features
as the only supervision source. Some recent works [18, 59] have
proposed multimodal approaches for information extraction. In
addition to semantic features, Wu et al. [59] also considered struc-
tural and tabular modalities to perform information extraction from
richly formatted documents. Only supervision in their workflow
was provided in the form of heuristics-based labeling functions. Fol-
lowing Fonduer’s official source-code, we implemented a baseline
that follows a similar weakly supervised approach in Section 5.3. We
outperformed this baseline on three of our experimental datasets.
Recently, Katti et al. [18] have proposed a supervised approach
by taking positional information of individual characters in the
document using a fully convolutional network. Although reason-
able for sparse documents, it is hard to scale their approach for
heterogeneous documents, especially documents that are textually
dense. Human-in-the-loop workflows [27], crowd-sourcing [4], and
domain expertise [59] have also been proven to be effective sources
of weak supervision. These methods are, however, expensive to
maintain and hard to scale. In Section 5.3, we compared our end-to-
end performance against a commercially available, human-in-loop
document IE tool [27]. We performed better than this baseline on
most datasets with lesser human effort in our end-to-end workflow.

Generalized IE methods: Liu et al. [26] proposed a graph-
based approach to encode multimodal context of visual spans for
IE tasks. We outperformed this baseline on most tasks (see Table 1).
In [51], Sarkhel et al. proposed a segmentation-based IE approach.
After segmenting a document into a number of homogeneous visual
areas, they employed a distance supervision approach to search for
named entities within each visual area by scoring each candidate
textual span in a multimodal encoding space. We have discussed the
limitations of the domain-agnostic segmentation algorithm used
in [51] in Section 4.2, and showed improvements over it in Table 2.
In their recent work, Majumdar et al. [31] followed a similar ap-
proach. To identify a named entity in a business-invoice, they scored
each text-element based on its similarity with the text-elements
appearing within a fixed-sized window centered around it using a
self-attentive neural network. Due to the homogeneous nature of
their task, they were able to incorporate a number of task-specific
features into their workflow. In Artemis, we develop a more robust
framework and establish our efficacy on four separate IE tasks.

7 CONCLUSION

We have proposed an automated method for information extraction
from heterogeneous visually rich documents in this paper. To iden-
tify the smallest visual span containing a named entity, we represent
each visual span using two fixed-length vectors. We develop a bidi-
rectional LSTM network to encode the local multimodal context of

a visual span. To incorporate domain-specific knowledge for identi-
fying the local context boundaries, we develop an adversarial neu-
ral network based machine-learning model, trained with minimal
human-labeled data. It determines the local context boundary of a
visual span by taking local layout-specific cues into account. The fea-
ture vectors used in our end-to-end workflow are agnostic towards
document layouts and formats which makes our method robust to-
wards diverse document types. Experiments on four cross-domain
datasets suggest that our method is generalizable and can outper-
form text-based IE methods on all datasets. In future, we would like
to extend this work to nested documents and interactive workflows.
The latter can potentially be achieved by constructing a representa-
tive summary of the document at controllable lengths [49]. We also
plan to explore the dependency between different named entity
types to derive a richer context model. Augmenting each extraction
task with a human-interpretable explanation i.e., why a visual span
is categorized as a certain named entity type is another exciting
direction for domains such as healthcare informatics and insurance.

8 APPENDIX A

Table 4: Visual features extracted from a visual span. The
second column denotes whether a feature is computed from
the local context boundary of a word, or the visual span con-
taining the word itself

Index Visual span Feature description

fi Local context boundary Ranked order in a list of all partitions in the
segmentation mask sorted based on aver-
age bounding-box height of text-elements
appearing in it

£ Local context boundary ~ Number of text-lines

fz Local context boundary ~ Number of words

fa Local context boundary = Ranked order in a list of all partitions in the
segmentation mask sorted based on surface
area

f5 Local context boundary = Ranked order in a list of all partitions in the
segmentation mask topologically sorted on
centroid-coordinates

fs Local context boundary — Height of the largest bounding-box enclosing
a text-element in the visual span

fr Local context boundary Euclidean distance from the nearest partition
in the segmentation mask

s Word Height of the smallest bounding-box enclos-
ing the visual span

fo Word Relative coordinates of the centroid

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] T.Breuel. 2007. The hOCR Microformat for OCR Workflow and Results. In Ninth

International Conference on Document Analysis and Recognition (ICDAR 2007),

Vol. 2. 1063-1067. https://doi.org/10.1109/ICDAR.2007.4377078

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003. Vips: a vision-based

page segmentation algorithm. (2003).

Kuang Chen, Akshay Kannan, Yoriyasu Yano, Joseph M Hellerstein, and Tapan S

Parikh. 2012. Shreddr: pipelined paper digitization for low-resource organizations.

In Proceedings of the 2nd ACM Symposium on Computing for Development. 3.

Antonio Clavelli, Dimosthenis Karatzas, and Josep Llados. 2010. A framework

for the assessment of text extraction algorithms on complex colour images. In

833

Table 5: An overview of the Generator network architec-
ture. ‘K’ denotes the dimension of each convolutional filter,
and ‘S’ denotes the stride-length. The architecture of an en-
coder (EN) and a decoder (DEC) block is shown in Table 7

Operation Type Symbol Input Operator K S
EN1 5122 X3 encoder-block 3 2

EN2 256> x 2 encoder-block 3 2

EN3 1282 x4 encoder-block 3 2

EN4 64> x8 encoder-block 3 2

Encoder EN5 322 x16 encoder-block 3 2
EN6 162 X 16 encoder-block 3 2

EN7 82x 16 encoder-block 3 2

EN8 42 %16 encoder-block 3 2

EN9 22 %16 encoder-block 2 1

DEC1 12x16 decoder-block 2 1

DEC2 22 %32 decoder-block 2 2

DEC3 4% %32 decoder-block 2 2

DEC4 82x32 decoder-block 2 2

Decoder DEC5 16 X 32 decoder-block 2 2
DEC6 322 x32 decoder-block 2 2

DEC7 642 x 16 decoder-block 2 2

DEC8 1282 x 8 decoder-block 2 2

DECY9 256° x4 decoder-block 2 2

Table 6: An overview of the Discriminator network architec-
ture. ‘K’ denotes the dimension of each filter, and ‘S’ denotes
the stride-length of in each encoder and decoder blocks. The
architecture of each discriminator-block (DISC) is shown in
Table 7

Block Type Input Operator K S
Input 5122 X 3+512% x 4 concatenation - -
DISC1 5122 x 7 discriminator-block 2 2
DISC2 256% X 2 discriminator-block 2 2
DISC3 128% x 4 discriminator-block 2 2
DISC4 64% x 8 discriminator-block 2 2
DISC5 322 x 16 discriminator-block 2 2

Validity Matrix 162 x 1 1% 1 convolution +

sigmoid activation - -

Table 7: Architecture of an encoder, decoder, and discrimi-
nator block. ‘h’ and ‘W’ denote dimensions of the input to
each layer. ‘C’ denotes the number of input channels and
¢ denotes the output channel size. For each encoder and
discriminator-block c¢* = ¢, for each decoder-block ¢* = 2¢

Block Input Operator Output

hxwXc conv2d hxwxXc

encoder-block hXxwXc Batch Normalization hXwXc
hXxwxXc ReLU hxwxc*

hxwXc conv2d-transpose hxwxec

hXxwXc Batch Normalization hXxwXc

decoder-block hxwxc Dropout + Skip concat. h X w X 2¢c
hXxwX2c ReLU hxwxc*

hxwXc conv2d hxwxXc

discriminator-block h X wXc¢ ReLU hxwxc*

Proceedings of the 9th IAPR International Workshop on Document Analysis Systems.
19-26.

Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. 2018. Adversarial network
embedding. In Thirty-second AAAI conference on artificial intelligence.

Brian Davis, Bryan Morse, Scott Cohen, Brian Price, and Chris Tensmeyer. 2019.
Deep visual template-free form parsing. In 2019 International Conference on
Document Analysis and Recognition (ICDAR). IEEE, 134-141.

https://doi.org/10.1109/ICDAR.2007.4377078

(8]

[9

[10]

[11]

[23]

oo
2}

[26]

[27
[28

[29

[30]

(31

[32

[33]

[34

[35]

[36]

[37

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

AnHai Doan, Jeffrey F Naughton, Raghu Ramakrishnan, Akanksha Baid, Xiaoy-
ong Chai, Fei Chen, Ting Chen, Eric Chu, Pedro DeRose, Byron Gao, et al. 2009.
Information extraction challenges in managing unstructured data. ACM SIGMOD
Record 37, 4 (2009), 14-20.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (VOC) challenge.
International journal of computer vision 88, 2 (2010), 303-338.

Ignazio Gallo, Alessandro Zamberletti, and Lucia Noce. 2015. Content extraction
from marketing flyers. In International Conference on Computer Analysis of Images
and Patterns. Springer, 325-336.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672-2680.

The Stanford NLP Group. 2020. Stanford Part-Of-Speech Tagger. Accessed:
2020-01-31.

The Stanford NLP Group. 2020. Stanford Word Tokenizer. Accessed: 2020-01-31.
Adam W Harley, Alex Ufkes, and Konstantinos G Derpanis. [n.d.]. Evaluation of
Deep Convolutional Nets for Document Image Classification and Retrieval. In
International Conference on Document Analysis and Recognition (ICDAR).

Nurse Tech Inc. 2018. NurseBrains. Accessed: 2019-01-25.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
image translation with conditional adversarial networks. arXiv preprint (2017).
Anoop Raveendra Katti, Christian Reisswig, Cordula Guder, Sebastian Brarda,
Steffen Bickel, Johannes Hohne, and Jean Baptiste Faddoul. 2018. Chargrid:
Towards understanding 2d documents. arXiv preprint arXiv:1809.08799 (2018).
Keras. 2018. Keras: Deep Learning for Humans. Accessed: 2018-09-30.

D Kinga and] Ba Adam. 2015. A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), Vol. 5.

Nicholas Kushmerick. 2000. Wrapper induction: Efficiency and expressiveness.
Artificial Intelligence 118, 1-2 (2000), 15-68.

Matthew Lamm. 2020. Natural Language Processing with Deep Learning. Accessed:
2020-01-31.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436-444.

David Lewis, Gady Agam, Shlomo Argamon, Ophir Frieder, D Grossman, and Jef-
ferson Heard. 2006. Building a test collection for complex document information
processing. In Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 665-666.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015. A hierarchical neural
autoencoder for paragraphs and documents. arXiv preprint arXiv:1506.01057
(2015).

Xiaojing Liu, Feiyu Gao, Qiong Zhang, and Huasha Zhao. 2019. Graph convolution
for multimodal information extraction from visually rich documents. arXiv
preprint arXiv:1903.11279 (2019).

Astera LLC. 2018. ReportMiner: A Data Extraction Solution. Accessed: 2018-09-30.
Colin Lockard, Xin Luna Dong, Arash Einolghozati, and Prashant Shiralkar. 2018.
Ceres: Distantly supervised relation extraction from the semi-structured web.
arXiv preprint arXiv:1804.04635 (2018).

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari Ostendorf, and Hannaneh
Hajishirzi. 2019. A general framework for information extraction using dynamic
span graphs. arXiv preprint arXiv:1904.03296 (2019).

Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-
directional Istm-cnns-crf. arXiv preprint arXiv:1603.01354 (2016).

Bodhisattwa Prasad Majumder, Navneet Potti, Sandeep Tata, James Bradley
Wendt, Qi Zhao, and Marc Najork. 2020. Representation learning for information
extraction from form-like documents. In proceedings of the 58th annual meeting
of the Association for Computational Linguistics. 6495-6504.

Tomohiro Manabe and Keishi Tajima. 2015. Extracting logical hierarchical struc-
ture of HTML documents based on headings. Proceedings of the VLDB Endowment
8,12 (2015), 1606-1617.

Christopher Manning. 2017. Representations for language: From word embeddings
to sentence meanings. Accessed: 2020-01-31.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. 2014. The Stanford CoreNLP natural language processing
toolkit. In Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations. 55-60.

Marcin Michat Mironczuk. 2018. The BigGrams: the semi-supervised informa-
tion extraction system from HTML: an improvement in the wrapper induction.
Knowledge and Information Systems 54, 3 (2018), 711-776.

Austin F Mount-Campbell, Kevin D Evans, David D Woods, Esther M Chipps,
Susan D Moffatt-Bruce, and Emily S Patterson. 2019. Value and usage of a
workaround artifact: A cognitive work analysis of “brains” use by hospital nurses.
Journal of Cognitive Engineering and Decision Making 13, 2 (2019), 67-80.
Bastien Moysset, Christopher Kermorvant, Christian Wolf, and Jérome Louradour.
2015. Paragraph text segmentation into lines with recurrent neural networks. In

834

~
fla’

=
L)

'S
&

[45

[46

N
=

(48

[49

[50

[51

o
A

[53

[54

o
S

[56]

[57]

[58

[59

[60

N
et

[62

2015 13th International Conference on Document Analysis and Recognition (ICDAR).
IEEE, 456-460.

NIST. 2018. NIST Special Database 6. Accessed: 2018-09-30.

Feng Niu, Ce Zhang, Christopher Ré, and Jude W Shavlik. 2012. DeepDive: Web-
scale Knowledge-base Construction using Statistical Learning and Inference.
VLDS 12 (2012), 25-28.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345-1359.
Santiago Pascual, Antonio Bonafonte, and Joan Serra. 2017. SEGAN: Speech
enhancement generative adversarial network. arXiv preprint arXiv:1703.09452
(2017).

Frédéric Patin. 2003. An introduction to digital image processing. online]:
http://www. programmersheaven. com/articles/patin/ImageProc. pdf (2003).

P David Pearson, Michael L Kamil, Peter B Mosenthal, Rebecca Barr, et al. 2016.
Handbook of reading research. Routledge.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017. Snorkel: Rapid training data creation with weak supervision.
In Proceedings of the VLDB Endowment. International Conference on Very Large
Data Bases, Vol. 11. NIH Public Access, 269.

Alexander] Ratner, Stephen H Bach, Henry R Ehrenberg, and Chris Ré. 2017.
Snorkel: Fast training set generation for information extraction. In Proceedings of
the 2017 ACM international conference on management of data. 1683-1686.
Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher
Ré. 2016. Data programming: Creating large training sets, quickly. In Advances
in neural information processing systems. 3567-3575.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91-99.

Sunita Sarawagi et al. 2008. Information extraction. Foundations and Trends® in
Databases 1, 3 (2008), 261-377.

Ritesh Sarkhel, Moniba Keymanesh, Arnab Nandi, and Srinivasan Parthasarathy.
2020. Interpretable Multi-headed Attention for Abstractive Summarization at
Controllable Lengths. In Proceedings of the 28th International Conference on Com-
putational Linguistics. 6871-6882.

Ritesh Sarkhel and Arnab Nandi. 2019. Deterministic routing between layout ab-
stractions for multi-scale classification of visually rich documents. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence. AAAI Press,
3360-3366.

Ritesh Sarkhel and Arnab Nandi. 2019. Visual segmentation for information
extraction from heterogeneous visually rich documents. In Proceedings of the
2019 International Conference on Management of Data. ACM, 247-262.

Ritesh Sarkhel, Jacob J Socha, Austin Mount-Campbell, Susan Moffatt-Bruce,
Simon Fernandez, Kashvi Patel, Arnab Nandi, and Emily S Patterson. 2018. How
Nurses Identify Hospitalized Patients on Their Personal Notes: Findings From
Analyzing ‘Brains’ Headers with Multiple Raters. In Proceedings of the Interna-
tional Symposium on Human Factors and Ergonomics in Health Care, Vol. 7. SAGE
Publications Sage India: New Delhi, India, 205-209.

Erich Schubert, Jérg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu.
2017. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN.
ACM Transactions on Database Systems (TODS) 42, 3 (2017), 1-21.

Ray Smith. 2007. An overview of the Tesseract OCR engine. In Document Analysis
and Recognition, 2007. ICDAR 2007. Ninth International Conference on, Vol. 2. IEEE,
629-633.

Fei Sun, Dandan Song, and Lejian Liao. 2011. Dom based content extraction via
text density. In Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval. ACM, 245-254.

GFG Thoma. 2003. Ground truth data for document image analysis. In Symposium
on document image understanding and technology (SDIUT). 199-205.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a
simple and general method for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for computational linguistics. 384-394.
David Wadden, Ulme Wennberg, Yi Luan, and Hannaneh Hajishirzi. 2019. Entity,
relation, and event extraction with contextualized span representations. arXiv
preprint arXiv:1909.03546 (2019).

Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas, Philip
Levis, and Christopher Ré. 2018. Fonduer: Knowledge base construction from
richly formatted data. In Proceedings of the 2018 International Conference on
Management of Data. ACM, 1301-1316.

Bishan Yang and Tom Mitchell. 2016. Joint extraction of events and entities
within a document context. arXiv preprint arXiv:1609.03632 (2016).

Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, and C Lee Giles.
2017. Learning to extract semantic structure from documents using multimodal
fully convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 5315-5324.

Xin Yi, Ekta Walia, and Paul Babyn. 2019. Generative adversarial network in
medical imaging: A review. Medical image analysis 58 (2019), 101552.

