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Abstract

Disentangled generative models map a latent code
vector to a target space, while enforcing that a sub-
set of the learned latent codes are interpretable
and associated with distinct properties of the tar-
get distribution. Recent advances have been dom-
inated by Variational AutoEncoder (VAE)-based
methods, while training disentangled generative
adversarial networks (GANs) remains challeng-
ing. In this work, we show that the dominant
challenges facing disentangled GANs can be mit-
igated through the use of self-supervision. We
make two main contributions: first, we design a
novel approach for training disentangled GANs
with self-supervision. We propose contrastive
regularizer, which is inspired by a natural no-
tion of disentanglement: latent traversal. This
achieves higher disentanglement scores than state-
of-the-art VAE- and GAN-based approaches. Sec-
ond, we propose an unsupervised model selection
scheme called ModelCentrality, which uses gen-
erated synthetic samples to compute the medoid
(multi-dimensional generalization of median) of
a collection of models. The current common
practice of hyper-parameter tuning requires using
ground-truths samples, each labelled with known
perfect disentangled latent codes. As real datasets
are not equipped with such labels, we propose an
unsupervised model selection scheme and show
that it finds a model close to the best one, for both
VAEs and GANs. Combining contrastive regular-
ization with ModelCentrality, we improve upon
the state-of-the-art disentanglement scores signifi-
cantly, without accessing the supervised data.
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1. Introduction

The ability to learn low-dimensional, informative data rep-
resentations can greatly enhance the utility of data. The
notion of disentangled representations in particular was
theoretically proposed in (Bengio et al., 2013; Ridgeway,
2016; Higgins et al., 2016) for diverse applications includ-
ing supervised and reinforcement learning. A disentangled
generative model takes a number of latent factors as inputs,
with each factor controlling an interpretable aspect of the
generated data. For example, in facial images, disentangled
latent factors might control variations in eyes, noses, and
hair.
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Figure 1: Each row shows how the image changes when
traversing a single latent code under the proposed InfoGAN-
CR architecture (dSprites dataset, § 3.2). Latent codes cap-
ture desired properties: {shape, rotation, scale, x-pos, y-
pos}, of the image.

Most approaches for disentangling latent factors (or codes)
are based on the following natural intuition. We say a gen-
erative model has a better disentanglement if changing one
latent code (while fixing other latent codes) makes a notice-
able and distinct change in the generated sample (referred to
as “informativeness” and “disentanglement” in (Eastwood
& Williams, 2018)). Noticeable changes are desired as we
want the latent codes to capture important characteristics
of the image. Distinct changes are desired as we want each
latent code to represent an aspect of the samples different
from other latent codes. (Eastwood & Williams, 2018) also
values “completeness”, which refers to how much of the dis-
entangling latent factors are covered by the learned model.
As such, disentanglement can be evaluated by traversing the
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latent space as in Figure 1: by fixing all latent codes except
one, varying that code, and visualizing the resulting changes.
Figure 1 illustrates how the latent codes {c1,...,c5} of a
successfully-trained generator capture noticeable and dis-
tinct properties of the images.

Two main obstacles arise in the design of disentangled gener-
ative models: (1) designing architectures that achieve good
disentanglement and good sample quality, and (2) hyperpa-
rameter tuning and model selection given a fixed learning
architecture.

For the first problem, recent approaches to disentanglement
have focused on adding carefully chosen regularizers to
promote disentanglement, building upon the two popular
deep generative models: Variational AutoEncoders (VAE)
(Kingma & Welling, 2013) and Generative Adversarial Net-
works (GAN) (Goodfellow et al., 2014). Fundamental differ-
ences in these two architectures led to the design of different
regularizers. To achieve disentanglement in VAESs, a popular
approach is to promote “uncorrelatedness” by regularizing
with total correlation, as in 3-VAE and FactorVAE (Higgins
et al., 2016; Kim & Mnih, 2018). This approach has led
to successful disentanglement scores, albeit at the cost of
sample quality. Disentangled GANs, on the other hand, add
a secondary input of latent codes, which are meant to con-
trol the underlying factors. The loss function then adds an
extra regularizer to promote “informativeness”, as proposed
in InfoGAN (Chen et al., 2016). Despite improving sample
quality, InfoGAN has lower disentanglement scores than
its VAE-based counterparts, which led to slow progress on
GAN-based disentangled representation learning.

The second problem, model selection, has received rela-
tively less attention. Most prior work on disentanglement
conducts hyperparameter tuning by cross-validating on a
holdout dataset labelled with ground truth latent codes. This
significantly limits the validity of those training methods on
real datasets with unknown labels. However, recent work
has acknowledged the need for unsupervised model selec-
tion techniques and proposed an unsupervised approach
(Duan et al., 2019a). This approach was evaluated only on
VAEs, and as we will show, it has poor performance on
GAN-based models.

In summary, the two principal challenges associated with
the design of disentangled generative models are particularly
pronounced for disentangled GANSs. This has contributed
to a perception in the community that GANs are less well-
suited to learning disentangled representations.

Main contributions. In this paper, we show that self-
supervision can mitigate both of these challenges for disen-
tangled GANS, allowing their performance to far supersede
state-of-the-art VAE-based methods. We make two primary
contributions:

First, we design a novel architecture for training disentan-
gled GANs, which we call InfoGAN-CR. InfoGAN-CR
adds a contrastive regularizer (CR) that combines self-
supervision with the most natural measure of disentangle-
ment: latent traversal. We create a self-supervised learning
task of multi-way hypothesis tests over the latent codes
and encouraging the generator to succeed at those tasks.
We provide experimental results showing that it achieves
state-of-the-art disentanglement scores on benchmark tasks.

Second, we introduce a novel model selection scheme based
on self-supervision, which we call ModelCentrality. This
builds upon a premise that well-disentangled models are
close together, with the closeness measured by a popular
disentanglement metric from (Kim & Mnih, 2018). We
verify this premise numerically and define ModelCentral-
ity as the medoid (multi-dimensional generalization of the
median) of a set of models, computed under this disentan-
glement metric. ModelCentrality assigns centrality scores
to each trained model based on the self-supervised labels de-
fined by the closeness to other models . We demonstrate on
benchmark datasets that ModelCentrality can be used for se-
lecting both disentanlged GANs and VAEs. Models trained
with InfoGAN-CR and selected with ModelCentrality sig-
nificantly outperform state-of-the-art baseline approaches,
even those that use supervised hyper-parameter tuning.

Related work. Learning a disentangled representation was
first demonstrated in the semisupervised setting, where addi-
tional annotated data is available. This consists of examples
from desired isolated latent factor traversals (Karaletsos
et al., 2015; Kulkarni et al., 2015; Narayanaswamy et al.,
2017; Lopez et al., 2018; Watters et al., 2019; Locatello
et al., 2019b; Chen & Batmanghelich, 2019). However,
as manual data annotation is costly, unsupervised methods
for disentangling are desired. Early approaches to unsu-
pervised disentangling imposed uncorrelatedness by mak-
ing it difficult to predict one representational unit from the
rest (Schmidhuber, 1992), disentangling higher order mo-
ments (Desjardins et al., 2012), using factor analysis (Tang
et al., 2013), and applying group representations (Cohen
& Welling, 2014). Breakthroughs in making these ideas
scalable were achieved by 3-VAE (Higgins et al., 2016) for
VAE-based methods, and InfoGAN (Chen et al., 2016) for
GAN-based ones. Rapid progress in improving disentan-
glement was driven mainly by VAE-based methods, in a
series of papers (Kim & Mnih, 2018; Locatello et al., 2018;
Chen et al., 2018; Lopez et al., 2018; Ansari & Soh, 2018;
Esmaeili et al., 2018; Gao et al., 2018; Pineau & Lelarge,
2018; Dupont, 2018; Ainsworth et al., 2018b;a; Szabé et al.,
2017; Burgess et al., 2018; Jeong & Song, 2019; Li et al.,
2019; Caselles-Dupré et al., 2019; Tschannen et al., 2018).
Quantitative comparisons in these papers suggest that In-
foGAN learns poorly-disentangled representations. This
has led to a misconception that GAN-based methods are
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inherently bad at learning disentangled representations.

Concurrent and subsequent to our work, several other GAN-
based disentangling frameworks have been proposed (Jeon
et al., 2018; Liu et al., 2019; Lee et al., 2020) and these
work corroborate our finding that VAE-based approaches
are not superior in disentangling. Additionaly, various do-
main specific models have also been proposed for structured
data such as sequences (Hsu et al., 2017), images (Awiszus
et al., 2019; Lee et al., 2018), video (Xing et al., 2018;
Denton et al., 2017; Hsieh et al., 2018), shapes (Aumentado-
Armstrong et al., 2019; Lorenz et al., 2019), and state
space (Miladinovi€ et al., 2019). Several works have stud-
ied the use of disentangled representations in diverse topics
such as transfer learning (Higgins et al., 2017), hierarchi-
cal visual concepts learning (Higgins et al., 2018b), visual
reasoning (van Steenkiste et al., 2019), fairness of learn-
ing (Locatello et al., 2019a; Marx et al., 2019; Creager et al.,
2019), computer vision (Lee et al., 2018; Hsieh et al., 2018;
Singh et al., 2019), speech processing (Hsu et al., 2017),
robust learning (Duan et al., 2019b).

2. Background

In this section, we give a brief overview of GANs and Info-
GAN, introduced in (Chen et al., 2016).

Background on GAN. Generative Adversarial Networks
(GANYs) are a breakthrough method for training generative
models (Goodfellow et al., 2014). A deep neural network
generative model maps a latent code z € R? to a desired
distribution of the samples = = G(z). z is typically drawn
from a Gaussian distribution with identity covariance or
a uniform distribution. No likelihood is available for ML
training of the neural network G. GANSs instead update
weights of a generator G and discriminator D using alterna-
tive gradient updates on the following adversarial loss:

min max Laav(D,G) . €))

The discriminator provides an approximate measure of how
different the current generator distribution is from the distri-
bution of the real data. For example, a common choice
i Laay(D,G) = Eavp,,log(D(x))] + Ep,[log(l -
D(x))], which provides an approximation of the Jensen-
Shannon divergence between the real data distribution Py,
and the current generator distribution Pg.

Background on InfoGAN. In order to achieve disentan-
glement, InfoGAN proposes a regularizer based on mutual
information. As the goal is not to disentangle all latent
codes, but rather to disentangle a subset, InfoGAN (Chen
et al., 2016) proposed to first split the latent codes into two
parts: the disentangled code vector ¢ € R¥ and the remain-
ing code vector z € R that provides additional randomness.
InfoGAN then uses the GAN loss with regularization to en-

courage informative latent codes c:

win mgx Laa(6,D) - M(EGE9) . @)

where I(c; G(c, z)) denotes the mutual information between
the latent code ¢ and the sample G(c, z) generated from that
latent code, and A is a positive scalar coefficient. Notice
that encouraging informativeness alone does not necessarily
imply good disentanglement; a fully entangled representa-
tion can achieve infinite mutual information I(c; G(c, 2)).
Despite this, InfoGAN achieves reasonable performance in
practice. Its decent empirical performance follows from
implementation choices that promote stability and alter the
InfoGAN objective, which we discuss in Appendix A.

3. Self-supervision with Contrastive
Regularizer

Our proposed regularizer is inspired by the idea that disen-
tanglement should be measured via changes in the images
when traversing the latent space. This is a popular interpreta-
tion of disentanglement, as evidenced by the widely-adopted
visual evaluations (e.g. Figure 1). This suggests a natural
disentanglement approach: run latent traversal experiments
and encourage models that make distinct changes.

We design a regularizer, which we call a Contrastive Reg-
ularizer (CR), based on this insight. That is, we generate
two (or more) images from the generator, while fixing one
of the latent codes c; to be the same for both images. We
draw the rest of the latent codes uniformly at random, and
let (z,2") ~ Q) denote the resulting distribution of paired
samples when factor ¢; is fixed. We propose measuring
the distinctness of this latent traversal with Jensen-Shannon
divergence among Qs defined as

dys(QW,...,QW) 2 % Z dkr, (Q(i) 1Q), (3)

1€[k]

where Q = (L/k)>em QU). This measures how differ-
ent each latent code traversal is. If we maximize this as
a regularizer to the generator training, in the subsequent
generator update, the Qs will be forced to be as different
as possible. This, in turn, forces the changes in the latent
codes to make changes in the images that are noticeable and
easy to distinguish from (the changes of) other latent codes.

In general different ways of coupling the latent space of
the paired images can be used, and we leave it as a design
choice. For example, one could fix the rest of the codes
to be the same and randomly sample c¢;. This fits a more
traditional definition of latent traversal. We provide practical
guidelines in §3.2.

Before explaining how to implement our contrastive reg-
ularizer in §3.1, we show in Figure 2 how it enhances
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Figure 2: After 288,000 iterations, we continue training
InfoGAN with(out) the proposed contrastive regularizer.
The jump illustrates gains due to CR regularization. Curves
are averaged over 10 trials on the same data.

disentanglement beyond vanilla InfoGAN. The blue curve
shows the performance when we train a vanilla InfoGAN
on the dSprites dataset (Matthey et al., 2017) for 28 epochs
(322,560 iterations) total. To show the effect of the pro-
posed CR regularizer, we take the model we just trained
with InfoGAN at 25 epochs (288,000 iterations), and keep
training with an added CR-regularizer (red curve), precisely
defined in Eq. (5). All other hyperparameters are identical.
We measure disentanglement using the popular metric of
(Kim & Mnih, 2018) and defined in §3.2. The jump at epoch
28 suggests that contrastive regularization significantly en-
hances disentanglement, on top of what was achieved by
InfoGAN regularizer alone.

3.1. Contrastive Regularizer Architecture

To approximate the Contrastive Regularizer in (3), we intro-
duce an additional discriminator H : R™ x R™ — R that
performs multi-way hypothesis testing. We then justify its
use via an equivalence in an ideal scenario in Theorem 1.
Building upon InfoGAN’s architecture (see §2 for details),
we add contrastive regularization and refer to the resulting
architecture as InfoGAN-CR, illustrated in Figure 3. For
non-negative scalars A\ and «, this architecture is trained as

G,H

The pair of coupled images x and z’ are generated according
to a choice of a coupling that defines how to traverse the la-
tent space. The discriminator H tries to identify which code
1 was shared between the paired images. Both the genera-
tor and the discriminator try to make the k-way hypothesis
testing successful. We use the standard cross entropy loss:

L(G H) =B u(h),(z,en~qn (T, log H(z, ")), (5)

where Q) denotes the joint distribution of the paired im-
ages, I denotes the one-hot encoding of the random index,

GAN Discriminator
x €R" R

Input Noise |
pz e R4 InfoGAN Encoder
. — xX'eR" ¢ERF
Latent Factors
c€R — S
x' eR" CR Discriminator

Rk

Figure 3: Like InfoGAN, InfoGAN-CR includes a GAN
discriminator D and an encoder (), which share all convolu-
tional layers and have separate fully-connected final layers.
In addition, the CR discriminator H takes as input a pair
of images x and z’ that are generated by sharing one fixed
latent factor ¢; = ¢} for a randomly chosen ¢ € [k], and
randomly drawing the rest. The discriminator is trained to
correctly identify ¢, the index of the fixed factor.

and H is a k-dimensional vector-valued neural network nor-
malized to be (1, H(z,z')) = 1 for all x and z’. This
naturally encourages each latent code to make distinct and
noticeable changes, hence promoting disentanglement. Fur-
ther, the following theorem justifies the use of this architec-
ture and loss. We provide a proof in Appendix C.

Theorem 1. When maximized over the class of all func-
tions, the maximum of Eq. (5) is achieved by H(x,x') =
(1/Zs0) [QW (2, 2") -+, QW (z,2")] with a nor-
malizing constant Zy zr = 3, c (1] QY (x,2") and the max-
imum value is the generalized Jensen-Shannon divergence,

max LG, H) = dJS(Q(l), ceey Q(k)) —logk .

Progressive training. There are many ways to couple the
latent variables. We prescribe progressively changing the
hypotheses (or how we couple the images) during the course
of the training, from easy to hard. The hypotheses class we
propose is as follows. First we draw a random index [
over k indices, and sample the chosen latent code c; € R.
Two images are generated with the same value of cy; the

minQ max Lpav(G, D) — AMlinto (G, Q) — aL (G, H) (4) remaining factors are chosen independently at random. Let-

ting ¢ denote the jth latent code for image m € {1,2},
the contrastive gap is defined as min g\ (13 [¢j — ¢3]. In
Appendix D, we discuss in more detail how we sample
the latent codes for a given choice of a contrastive gap.
The larger the contrastive gap, the more distinct the pair
of samples. We gradually reduce the contrastive gap for
progressive training (§3.2.1). Figure 4 illustrates the power
of progressive training on dSprites dataset. For the ‘pro-
gressive training’ curve, we use a contrastive gap of 1.9 for
120,000 batches, and then introduce a (more aggressive) gap
of 0. For the ‘no progressive training’ curves, we use gap
size of 0 or 1.9 for all 230,400 batches.
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Figure 4: Reducing the contrastive gap from 1.9 to 0 during
training significantly improves FactorVAE scores.

3.2. Empirical Evaluation of Contrastive Regularizer
with Supervised Hyper-parameter Tuning

For quantitative evaluation, we run experiments on syn-
thetic datasets with pre-defined latent factors, including
dSprites (Matthey et al., 2017) and 3DTeapots (Eastwood
& Williams, 2018).! We evaluate disentanglement using
the popular metrics from (Kim & Mnih, 2018; Eastwood
& Williams, 2018; Kumar et al., 2017; Ridgeway & Mozer,
2018; Chen et al., 2018; Higgins et al., 2016). For qualita-
tive evaluation, we use our synthetic datasets as well as the
CelebA dataset (Liu et al., 2015). More details on datasets
and metrics can be found in Appendix E.

It is typical in disentanglement literature to select hyperpa-
rameters in a supervised manner in synthetic datasets where
ground truth disentanglement is known. We do the same in
this section and choose hyperparameters of all the models
we train (FactorVAE, InfoGAN modified, and InfoGAN-
CR). These are fair comparisons as all reported scores in
this section are results of such hyperparameter tuning (some
by us and some by the experimenters). However, this prac-
tice of supervised hyperparameter tuning is problematic; we
resolve this issue in §4. Perhaps surprisingly, we show that
our unsupervised model selection finds a better model than
that found via supervised hyperparameter tuning.

3.2.1. DSPRITES DATASET

We compute and/or reproduce disentanglement metrics for
a number of protocols in Table 1. We provide details of the
experiments in Appendix F, and focus on the interpretation
of the results in this section. An example of latent traversal
of the output of InfoGAN-CR is shown in Figure 1.

Contrastive regularization provides a clear gain in disentan-
glement, bringing InfoGAN-CR’s FactorVAE score up to
0.90, higher than any baseline from the VAE or GAN litera-
ture. A similar trend holds for most of the metrics. We were

"The code for all experiments is available at https://
github.com/fjxmlzn/InfoGAN-CR

made aware of independent work that proposes a special
case of Contrastive Regularization in (Li et al., 2018); con-
cretely, (Li et al., 2018) fixes A = 0 in our loss (4), and also
uses a special coupling that matches all but one latent code
in ¢ for the matched pairs. This empirically achieves a lower
FactorVAE scores (0.39 + 0.02 standard error over 10 runs)
than even vanilla InfoGAN. Note that this difference is not
a matter of parameter tuning, but of the loss function and
training mechanism; indeed, in our own preliminary trials,
we found that training a CR-regularizer without the Info-
GAN loss, as in (Li et al., 2018), achieved similarly poor
performance. The choice of coupling in our contrastive
regularizer, the progressive training we propose, and the
InfoGAN loss are all critical in achieving the improved the
performance, as described in Appendix F.5. Hence, we do
not consider it as a baseline moving forward.

3.2.2. 3DTEAPOTS DATASET

We ran InfoGAN-CR on the 3DTeapots dataset from (East-
wood & Williams, 2018), with images of teapots in var-
ious orientations and colors generated by the renderer in
(Moreno et al., 2016). Details on this point, our implemen-
tation, and additional plots appear in Appendix G. Table 2
shows the disentanglement scores of FactorVAE and Info-
GAN compared to InfoGAN-CR. While the results with this
supervised hyperparameter tuning are mixed (none of the
methods dominate), we show in §4, Table 4 that, perhaps
surprisingly, our proposed unsupervised model selection
finds a model that dominates all baseline algorithms.

3.2.3. CELEBA DATASET

We train InfoGAN-CR on the CelebA dataset of 202,599
celebrity facial images. Since these images do not have
known continuous latent factors, we cannot compute the
disentanglement metric. We therefore evaluate this dataset
qualitatively by producing latent traversals, as seen in Figure
5. Details of this experiment are included in Appendix I.

4. ModelCentrality: Self-supervised Model
Selection

The achievable scores in Table 1 are a consequence of su-
pervised hyper-parameter tuning, for both our models and
all baseline models. As shown in Figure 6, the designer runs
experiments with multiple hyper-parameters—whose per-
formance could vary significantly—and chooses one hyper-
parameter that gives the best average performance. This
approach is supervised, as performance evaluation requires
access to a synthetic data generator with access to the ground
truth disentangled codes.

Supervised hyper-parameter tuning is problematic, as (¢) in
important real-world applications we do not have ground
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Model FactorVAE | DCI SAP Explicitness | Modularity | MIG BetaVAE
VAE 0.63 + .06 0.30 £ .10 0.10
B-TCVAE 0.62 + .07 0.29+ .10 0.45
HFVAE 0.63 £ .08 0.39 £.16
B-VAE 0.63 + .10 0.41+.11 | 0.55 0.21
CHyVAE 0.77
VAE DIP-VAE 0.53
FactorVAE 0.82 0.15
FactorVAE (1.0) 0.79 £ .01 0.67+.03 | 0.47 £ .03 0.78 £.01 0.79 £.01 0.27£.03 | 0.79+£.02
FactorVAE (10.0) 0.83 £.01 0.70£.02 | 0.57+£.00 0.79 £.00 0.79 £.00 0.40 £.01 0.83 £.01
FactorVAE (20.0) 0.83 £.01 0.72+.02 | 0.57£.00 0.79 + .00 0.79 £ .01 0.40£.01 | 0.85£.00
FactorVAE (40.0) 0.82 £ .01 0.74 £ .01 | 0.56 £ .00 0.79 + .00 0.77 £ .01 0.43+.01 | 0.84+.01
InfoGAN 0.59 + .70 0.41+ .05 0.05
GAN IB-GAN 0.80 £ .07 0.67 £ .07
InfoGAN (modified) | 0.82+0.01 | 0.60+0.02 | 0.41£0.02 | 0.82+£0.00 | 0.94£0.01 | 0.22£0.01 | 0.87 +£0.01
InfoGAN-CR 0.88+0.01 | 0.71+0.01 | 0.58+0.01 | 0.85+0.00 | 0.96 +0.00 | 0.37+0.01 | 0.95+0.01

Table 1: Comparisons of the popular disentanglement metrics on the dSprites dataset. A perfect disentanglement corresponds
to 1.0 scores. The proposed InfoGAN-CR achieves the highest score on most cases, compared to the best reported result for
each baseline. See Appendix A for InfoGAN (modified). The InfoGAN (modified) and InfoGAN-CR rows are averaged
over 50 runs. Appendix F.2 gives more details on the reproducibility of the results. We show in Table 3 that with our
proposed model selection scheme, we improve the performance even further.

Model FactorVAE | DCI SAP Explicitness | Modularity | MIG BetaVAE
FactorVAE 0.79+ .03 | 0.55+.04 | 049+.05 | 0.84£.01 | 0.72£.02 0.24+ .03 | 0.94+.02
InfoGAN (modified) | 0.76 .06 | 0.624+.06 | 0.57 +.06 | 0.82 4+ .04 0.98+.01 | 0.34£.04 | 0.90+.07
InfoGAN-CR 0.82+.02 | 0.66+.01 | 0.53+.02 | 0.81+.01 0.97 £+ .00 0.38+.02 | 0.89 +.02

Table 2: Comparisons of the popular disentanglement metrics on the 3DTeapots. We show in Table 4 that with our proposed
model selection scheme, we achieve the best performance on all metrics.

truth data, and (7¢) a more complex model with a larger
space to tune could get better scores by an extensive search.
To this end, we propose a novel unsupervised model selec-
tion scheme called ModelCentrality that bypasses both of
these concerns.

4.1. ModelCentrality

Suppose there is a notion of an optimal disentanglement that
we want to discover from the data. We start from a premise
that well-disentangled models should be close to that opti-
mal model, and hence also close to each other. To measure
similarity between models, we borrow insights from a long
line of research in measuring disentanglement. In particular,
prior work suggests that models with good disentanglement
metrics (e.g. those in Table 1) tend to exhibit qualitatively
good disentanglement properties, e.g., via latent traversals.
This suggests that disentanglement scores can be used to
measure how close the disentangled latent codes of one
model are to the latent codes of another.

Consider a trained model G : R¥ — R”™ (here we only
consider the model as mapping a disentangled latent code
¢ € R* to the image € R” and treat the z € R? as an
inherent randomness in the generative model). Existing met-

rics also require the corresponding encoder @ : R® — R¥
that maps samples to estimated disentangled latent factors.
For example, the popular FactorVAE metric of (Kim &
Mnih, 2018) of a trained generative model GG; measures
how well its encoder (); can estimate, from real samples,
the true latents of real samples (for example the ground
truths dSprites dataset with also the true disentangled latent
factors).

Instead of the original FactorVAE score, which requires
supervision from the training data with ground truths latent
codes, we use other trained models as a surrogate for the
ground truths. ModelCentrality treats the distribution of
another model G; as the ground truth. Given two trained
models: G; and G, we can measure how well the encoder
Q; can estimate, from the generated samples of model G,
the learned latents of the generated samples of model G.
Hence, we can compute the similarity from G; to G; by (1)
generating samples using the target model G; (2) passing
those samples through the encoder @); of model G; to esti-
mate its latents, (3) using these estimated latents to evaluate
the FactorVAE metric by using the latents generated by tar-
get model G as ground truths. This similarity metric is an
instance of self-supervision, as we treat one model as the
target label and no ground-truth labels are needed.
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Figure 6: Inception score and FactorVAE score achieved
by various hyper-parameters in (4). The size of each point
denotes « € {0,1,2,4,8}, in the order of increasing size.
We explicitly label this for A = 0.05 (blue triangles).

Given a pool of N trained generative models, we com-
pute A;; as the disentanglement score achieved by model
G; treating model G as the target model with the way
mentioned above. Then we define a symmetric similar-
ity matrix B € RV*N where the similarity between a
model ¢ and model j is denoted by B;;, and is computed as
B;; = (1/2)(A;; + Aj;). In our experiments, we choose
FactorVAE score as the disentanglement metric, because
it is popular and robust, but we will show that Factor VAE-
based ModelCentrality predicts all other scores accurately
in Figure 8.

We experimentally confirm our premise that good models
are close to each other in Figure 7, which illustrates the
similarity matrix B. The rows/columns of this matrix are
sorted by FactorVAE score, computed on the ground truth
disentanglement factors. As expected, models that are better
disentangled (as measured by FactorVAE score) are closer
to each other (top-left), and the models that are not disen-
tangled are far from other models (bottom-right).

This observation naturally suggests using some notion of
a central model in our pool as the best model. We pro-
pose a measure of ModelCentrality based on the medoid of

Figure 7: Heat map of the matrix B used to compute
ModelCentrality for each InfoGAN-CR model trained with
dSprites dataset. Each row/column corresponds to one
trained model, which are sorted according to FactorVAE
score on the ground truth factors (computed with the super-
vised ground truths dSprites dataset). Top-left is the highest
FactorVAE scoring model.

models with respect to the similarity matrix B. We define
the ModelCentrality of a model i as s; = —5 3 i Bij-
We then select the model with the largest ModelCentral-
ity, which coincides with the medoid in the pool of models.
The pseudocode for computing ModelCentrality is given in
Algorithm 1.

Besides model selection, ModelCentrality can be used for
other tasks, as s; provides a quantitative evaluation of the
i-th model. For example, ModelCentrality can rank the mod-
els according to s;. It can also be used for hyper-parameter
selection by averaging the s;’s of the models trained with
the same hyper-parameter, and selecting the best hyper-
parameter.

4.2. Comparison with State-of-the-art Model Selection

We compare our model selection approach with state-of-the-
art schemes from (Duan et al., 2019a). The first scheme,
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Algorithm 1 ModelCentrality
Input: N pairs of generative models and latent code en-
coder: (G1,Q@1),...,(GN,QnN),
supervised disentanglement metric f : encoder x
model — R
Output: the estimated best model G*
Initialize a zero matrix: A € RV*N
fori,j=1— Ndo
a 2 S
end
B+ (A+ AT))/2
fori =1— N do
| s (35 Biy) /(N = 1)
end
k < argmax; s;

G*<—Gk

UDR Lasso, defines a distance A;; from one model i to
another model j as follows. Consider the encoder of model
i that maps an image to a latent code: ¢ = Q;(z) € RF. A
linear regressor is trained with Lasso to predict Q;(x) from
Q;(z) using samples {z(¥) € R"},cs,.... from the training
dataset. If two models are identical, then the resulting (ma-
trix valued) Lasso regressor will be a permutation matrix.
Otherwise, a formula is applied to give a score (Duan et al.,
2019a). The second approach, UDR Spearman, uses similar
approach, except instead of training a Lasso regressor, the
Spearman correlation coefficient is computed.

Spearman rank correlation o
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Figure 8: The rank correlation of the metrics on dSprites
dataset. The first row/column is our ModelCentrality, which
is highly correlated with all other disentanglement scores
(row/column 4-10). Competing schemes of UDR Lasso and
UDR Spearman are nearly uncorrelated.

In our experiments, we compare ModelCentrality to UDR
Lasso and UDR Spearman on InfoGAN-CR and FactorVAE
models trained on dSprites and 3DTeapots datasets. On the
dSprites dataset, we first generated N = 76 InfoGAN-CR

models from a grid of hyper-parameters. Figure 8 shows
the Spearman rank correlations between models selected
different metrics (including two UDR approaches and Mod-
elCentrality). To produce this figure, we start with trained
models my,...,m7g, and a list of disentanglement met-
rics f1, ..., fi0, including ModelCentrality, UDR (Spear-
man and Lasso), and an assortment of other disentangle-
ment metrics. Then for the ith metric f;, we compute
v; = [film1),..., fi(mze)] € R7®. Note that all the met-
rics, except ModelCentrality and UDR, require the access
to ground truths latent factors (and hence are supervised).
Finally, the (¢, 7)th entry of Figure 8 is the Spearman rank
correlation coefficient between vectors v; and v;.

Figure 8 illustrates two points. First, ModelCentrality is not
closely correlated with UDR Spearman or UDR Lasso, since
the 2nd and 3rd rows/columns have low correlation coeffi-
cients. Second, ModelCentrality is closely correlated with
the remaining disentanglement metrics. In Appendix K, we
show a more detailed statistics of the scores, and show that
a similar results hold when selecting Factor VAE models and
also under 3DTeapots dataset. This suggests that choosing
a model with maximum ModelCentrality tends to maxi-
mize existing disentanglement metrics, without requiring
access to ground truth labels—an intuition that we confirm
in Tables 3 and 4. Perhaps surprisingly, not only does Mod-
elCentrality outperform UDR schemes, but it also selects
models that outperform (a set of) models trained with a su-
pervised hyper-parameter tuning from literature and from
our experiments in §3.2. Notice the subtle difference in
ModelCentrality producing a single model versus super-
vised hyper-parameter tuning producing a hyper-parameter
for training a set of models. In fact, as shown in Table 3
and Table 4, the model selected with ModelCentrality has
very close performance to the model with the best ground
truth FactorVAE score. Under some metrics other than Fac-
torVAE score, the model selected with ModelCentrality is
even better.

A natural question is why ModelCentrality outperforms
UDR. Several aspects of UDR Lasso contribute to its un-
reliability. () Lasso involves a hyper-parameter, which
can significantly change the resulting score. (i¢) Lasso is
restricted to linear relations, whereas two perfectly disentan-
gled models can have highly non-linear relations. (ii¢) In
addition, UDR Lasso does not generalize to discrete latent
codes. UDR Spearman uses the Spearman’s rank corre-
lation in place of Lasso, and is reported to be inferior to
UDR Lasso (Duan et al., 2019a). Notice that UDR schemes
inherit the issues present in the disentanglement scores of
DCI (Eastwood & Williams, 2018), from which the UDR
schemes are derived. The proposed ModelCentrality is de-
rived from FactorVAE scores (Kim & Mnih, 2018), which is
popular, principled, and demonstrated to be a stable measure
of disentanglement.
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Model FactorVAE | DCI SAP Explicitness | Modularity | MIG BetaVAE
FactorVAE with
UDR Lasso 0.81+.00 | 0.70+.01 | 0.56+.00 | 0.79+.00 0.78 + .00 0.40 £+ .00 | 0.84 £ .00
UDR Spearman 0.79+£.00 | 0.73+£.00 | 0.53+£.01 | 0.79+£.00 0.77 £.00 0.40 £+ .01 | 0.79 £+ .00
ModelCentrality 0.84+.00 | 0.73£.01 | 0.58 £.00 | 0.80 £ .00 0.82+.00 | 0.37£.00 | 0.86£.00
Best model in the pool | 0.88 nan 0.58 0.79 0.79 0.39 0.83
InfoGAN-CR with
UDR Lasso 0.86+.01 | 0.68+.01 | 0.49+.01 | 0.84+£.00 0.96 .00 0.30+.01 | 0.92£.01
UDR Spearman 0.844+.01 | 0.67+.01 | 0.53+.01 | 0.84+.00 0.96 &+ .00 0.31+.01 | 0.90 £ .01
ModelCentrality 092+ .00 | 0.77+.00 | 0.65+.00 | 0.87+.00 | 0.99+.00 | 0.45+.00 | 0.99 + .00
Best model in the pool | 0.95 0.77 0.65 0.88 0.99 0.46 0.99

Table 3: On the dSprites dataset, models selected with ModelCentrality outperform those selected with UDR Lasso and
UDR Spearman, for both FactorVAE and InfoGAN-CR respectively. Further, this outperforms the hyper-parameter tuned
models supervised by the groundtruths disentangled codes reported in Table 1. Results of the model with the best FactorVAE
score computed by ground truth disentangled code are also included for reference (row “best model in the pool”).

Model FactorVAE | DCI | SAP | Explicitness | Modularity | MIG | BetaVAE
ModelCentrality 1.00 0.75 | 0.77 | 0.92 1.00 0.53 | 1.00
Best model in the pool | 1.00 0.85 | 0.89 | 0.92 1.00 0.47 | 1.00

Table 4: On the 3DTeapots dataset, InfoGAN-CR models selected with ModelCentrality has close performance to the model
with the best groundtruth FactorVAE score and DCI score. The standard errors of ModelCentrality are less than 0.01 and we

omit them in this table.

5. Conclusion

This work makes two contributions. First, we introduce
InfoGAN-CR, a new architecture for training disentangled
GANSs. Next, we introduce ModelCentrality, a new frame-
work for selecting disentangled models. Numerical results
in Tables 1, 2, 3, and 4 confirm that InfoGAN-CR together
with ModelCentrality achieves the best disentanglement
across all metrics in the literature. This is surprising be-
cause hyper-parameter tuning in the literature is typically
supervised: oracle access to the ground truth disentangled
latent codes is needed. Instead, our proposed ModelCen-
trality is unsupervised, yet reliably selects a superior model.
While ModelCentrality can be used to select both GAN and
VAE based models, ModelCentrality with InfoGAN-CR
improves upon ModelCentrality with other state-of-the-art
methods, including VAE-based ones. Unlike other VAE-
based methods, our approach seamlessly generalizes to
semi-supervised settings. If we have paired examples where
one latent code has been changed, e.g., a person with and
without glasses, this can be readily incorporated in our ar-
chitecture. Hence, one way to interpret our approach is as a
self-supervised training from unsupervised data.

In addition, we experimentally find that CR substantially
increases the disentanglement capabilities of InfoGAN, but
does not appear to affect the state-of-the-art VAEs (Ap-
pendix F.4). Similarly, we experimentally show that the
total correlation regularization, a popular technique for dis-

entangling VAESs, do not improve disentanglement in GAN
training. This suggests that disentangling VAEs and GANs
require fundamentally different techniques. The proposed
CR regularization could be used in any application of dis-
entangled GANS, e.g., hierarchical image representation or
reinforcement learning. Understanding this phenomenon
analytically is an interesting direction for future work, and
may give rise to a more general understanding of how to
design regularizers for GANs as opposed to VAEs.

Another key question is to understand disentanglement in
challenging datasets, compared to those studied in the liter-
ature as a benchmark. We study two such datasets. The first
one studies three dimensional rotations on the 3DTeapots
dataset in Appendix G.1. Existing training datasets includes
only a subset of the full rotations, making disentanglement
substantially easy. When training data is drawn from com-
plete set of rotations in 3-D space, several challenges arise.
The usual rotations along the three standard basis vectors
do not commute, hence do not disentangle. We can find
a commutative coordinate system, but it is not uniquely
defined. Our preliminary experiments suggest that current
state-of-the-art methods fail to learn a disentangled repre-
sentation. The second one studies two dimensional polar
coordinate system using a novel dataset (Circular dSprites)
in Appendix H. State-of-the-art methods fail to learn the
disentangled representation of the polar coordinates.
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