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A major challenge to Darwinian evolution
is to explain 'rudimentary' organs. This
dilemma is especially relevant to birds:
rudimentary wings occur in fossils, as
well as in developing, molting, and
flight-impaired birds.

Many studies show that immature birds
flap their small, incipient wings to im-
prove locomotion as they acquire flight
capacity. Although similarly small wings
occur in secondarily or temporarily
Amajor challenge to Darwinian evolution is explaining 'rudimentary' organs. This
is particularly relevant to birds: rudimentary wings occur in fossils, as well as in
developing, molting, and flight-impaired birds. Evidence shows that young
birds flap small wings to improve locomotion and transition to flight. Although
small wings also occur in adults, their potential role in locomotion is rarely con-
sidered. Here we describe the prevalence of rudimentary wings in extant birds,
and howwings wax andwane onmany timescales. This waxing and waning is in-
tegral to the avian clade and offers a rich arena for exploring links between form,
function, performance, behavior, ecology, and evolution. Although our under-
standing is nascent, birds clearly show that rudimentary structures can enhance
performance and survival.
flight-impaired birds, their role in locomo-
tion has not been well studied.

Integrating studies on these different
groups of birds demonstrates that rudi-
mentary wings are ubiquitous across
the avian clade, and that wings wax
and wane on multiple timescales. Rudi-
mentary wings improve locomotion and
enhance survival during this process.

Although our understanding is still in its
infancy, rudimentary structures may
play important roles in many animal
groups, both extant and long extinct.
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Rudimentary Beginnings of Complex Organs
A major challenge to Darwinian evolution is explaining the 'rudimentary beginnings' [1] of 'organs
of extreme perfection and complication' [2]. Although natural selection describes how small
phenotypic differences might confer greater fitness and be favored, it did not satisfy many who
questioned how small changes could result in large-scale ecological shifts. If morphology evolves
slowly, through incremental adaptive stages, how do organisms acquire new and complex
structures that seem to be useful only when fully assembled?

One of Darwin’s critics was George JacksonMivart, who asked: 'What use would half a wing offer
any reptilian ancestor on its way to becoming a bird?' [1]. If wings evolved ‘for’ flight, a small wing
would not be adaptive because it would not allow its owner to fly. Darwin attempted to address
this dilemma in later editions of his book. Following his work and the discovery of the reptile-like
early bird Archaeopteryx (see Glossary), discussions explored how progressively larger wings
might have increased running speed or jump height (cursorial, AKA: ground-up, theories), or
prolonged gliding (arboreal, AKA: trees-down, theories) [3]. These and other hypothetical scenar-
ios dominated origin-of-flight debates throughout the 20th century. It was not until the relatively re-
cent discoveries of dinosaurs with feathers and ‘protowings’ [4,5] that half-wings became a reality
and theory could be compared with the fossil record.

Diverse protowings are now documented by fossils [5]. How do we infer the function(s) of such
structures and test hypothetical scenarios? Reconstructing the evolutionary beginnings of
complex organs requires exploring how similar features function in extant organisms. This is
the only way to establish biomechanical principles that underlie form–function relationships
and extrapolate to fossils. However, few studies have empirically evaluated the utility of
rudimentary structures among living organisms (but see [6–8]). Although rudimentary
wings are common among extant birds – both in developing juveniles and in adults with re-
duced wings [9–11] – they are typically not examined from a locomotor perspective. When
they are, findings may be dismissed under the premise that the birds studied are too derived
to provide insight into extinct dinosaurs [12,13]. Nevertheless, evidence increasingly shows
that, without incorporating rudimentary wings, our understanding of bird locomotion is incom-
plete and potentially misleading.
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Glossary
Archaeopteryx: a genus of feathered
theropod from the late Jurassic
(~150 million years ago) Solnhofen
Limestone of Germany. It was originally
found as a single feather but is now
known from 12 specimens; one of the
earliest theropods with bird-like wings.
Avian: the term is used here informally
to refer to extant or recently extinct birds
(Neornithes: Neognathae +
Palaeognathae).
Molt: seasonal feather loss and
renewal. In sequential molt, flight
feathers are shed and regrown one at a
time, or a few at a time. In simultaneous
(also known as synchronous) molt, all, or
nearly all, flight feathers are shed
simultaneously.
Ontogeny: the growth and
development of an organism.
Paedomorphosis: retention of juvenile
characteristics into adulthood
(decreased growth and development
compared with the ancestral condition),
as a result of delayed onset
(postdisplacement), slower rates
(neoteny), or a reduced ontogenetic
period (progenesis).
Peramorphosis: increased growth
and development compared with the
ancestral condition as a result of earlier
onset (predisplacement), faster rates
(acceleration), or an extended
ontogenetic period (hypermorphosis).
Power-to-mass ratio: the capacity to
developmechanical work per second (or
any unit of time) relative to body mass; a
high power-to-mass ratio equates to
swift and maneuverable locomotion.
Protowing: an incipient forelimb
apparatus with a wing-like architecture.
Rudimentary structures: structures
that are small or simple compared with
the maximal size or complexity observed
among adults or relatives. These include
(i) incipient, developing structures in
juveniles (e.g., growing wings);
(ii) incipient, evolving structures in extinct
animals (e.g., protowings of fossils); and
(iii) secondarily or temporarily reduced
structures in adults (e.g., vestigial wings,
molting wings) (after Mivart 1871 [1]).
Secondarily flightless: birds that have
lost the ability to fly over evolutionary
time (their ancestors once possessed
flight capacity).
Semi-flightless: birds that have a
reduced ability to fly compared with the
ancestral condition.
Theropod-avian lineage: a group that
includes extant birds and the lineage of
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Perspectives on rudimentary wing function have traditionally focused on evolutionary origins and
the transition from no-wings to protowings to flight-capable wings [see [3,14,15] citations for evo-
lutionary origins (>90 studies) and next section for development (~20 studies)]. Although undeni-
ably important, this transition is only one of many that are intrinsic to birds. In reality, wings are
constantly morphing, waxing and waning on ontogenetic, seasonal, and evolutionary time-
scales, across the avian clade [16] (Figure 1). This acquisition and loss of wings is a fundamental
component of bird diversity and offers a powerful but underappreciated system for exploring re-
lationships between form, function, performance, behavior, ecology, and evolutionary history.
Most importantly, evidence suggests that transitional, rudimentary wings enhance survival during
the waxing or waning process. Here we describe the widespread occurrence of rudimentary
wings among extant birds, synthesize evidence on rudimentary wing use, and discuss how this in-
formation may enhance our understanding of birds on multiple timescales.

Waxing and Waning of Wings: Ontogenetic Timescales
What advantage is half a wing? Although originally viewed in an evolutionary context, Darwin’s
'dilemma of incipient stages' [17] is equally relevant to developing organisms. Juveniles of
many species rely on rudimentary structures that lack the specializations of adults and often re-
semble features of extinct relatives [3]. These juveniles thus reveal how transitional, incipient
structures can function in ecological settings.

For example, most newly hatched birds are dependent on their legs, or on their parents [9], and
often have rudimentary flight apparatuses even after leaving the nest (Figure 1A). It is often as-
sumed that similarly rudimentary features precluded avian ancestors from powered flight and
bird-like wingstrokes [14,18–20]. However, extant developing birds clearly show that incipient
wings can have important locomotor functions. Evidence gathered over the past 20 years reveals
several key insights into rudimentary wings:

• Cooperative Use of Wings and Legs Bridges Flightless to Flight-Capable Transitions
Traditionally, wings and legs have been viewed independently: wings during aerial locomo-
tion, legs during terrestrial [21]. However, wings and legs are often engaged cooperatively,
especially in birds with proportionally small wings. Studies show that developing birds flap
their incipient wings to (i) increase foot traction and ascend steep inclines [wing-assisted in-
cline running (WAIR)], then control their aerial descent back down [e.g., ground birds
(Galliformes), owls (Strigiformes), and raptors (Falconiformes)]; (ii) 'steam' across water,
using their wings as oars and their legs as paddles [e.g., ducklings (Anseriformes)]; and/or
(iii) increase jump height (e.g., ground birds) [22–25] (Figure 2, https://www.youtube.com/
watch?v=3USAC-Ky25s). This wing–leg cooperation acts as a developmental bridge be-
tween leg- and wing-based locomotion, allowing juveniles to seamlessly transition from ter-
restrial to aerial environments in incremental functional stages [26,27]. For example,
increases in wing size and performance allow developing birds to flap-run up increasingly
steep obstacles, or jump higher, descend back down, and eventually fly [25,28,29]. Juvenile
birds thereby demonstrate that developing wings are immediately functional because they
assist the hind limbs and thus improve whole-body performance.

• A Whole-Body Perspective Is Necessary for Understanding Wing and Leg Performance
Wings and legs appear to be influenced by tradeoffs. Across species, birds with higher wing
investment (musculoskeletal mass) tend to have lower leg investment, and this affects wing
versus leg performance and behavior [25]. Similarly, during ontogeny, juveniles with higher
wing investment and performance have lower leg investment and performance, compared
with either adults or other juveniles. Thus, tradeoffs likely influence both ontogenetic and
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extinct theropoddinosaurs that gave rise
to them.
Tradeoff: a compromise between
structures, conditions, or strategies in
which one state increases at the
expense of another.
Wane (waning): to decrease in relative
size and/or complexity; in this case, a
decrease in relative wing investment
during development, molt, or evolution.
Wax (waxing): to increase in relative
size and/or complexity; in this case, an
increase in relative wing investment
during development, molt recovery, or
evolution.
Wing-assisted incline running
(WAIR): a locomotor behavior in which
wings are flapped to increase foot
traction while ascending steep inclines;
WAIR is particularly important for birds
with developing or proportionally small
wings (high wing loadings).
Wing–leg cooperation: locomotor
behaviors involving the coactivation of
hind limbs and winged forelimbs
(rudimentary or fully formed wings);
these include wing-assisted incline
running (WAIR) or walking (a slower
version ofWAIR), wing-assisted jumping –
launching from a terrestrial or arboreal
substrate with assistance from flapping
wings, and steaming – using the feet as
paddles and the wings as oars to swim;
steaming is commonplace in aquatic
birds.
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evolutionary trajectories in locomotion. However, tradeoffs are offset at the whole-body level
when wings and legs are recruited cooperatively. For example, wing and leg performance
show opposite developmental trajectories in Mallards (Anas platyrhynchos) and Indian Pea-
fowl (Pavo cristatus), with legs developing at the expense of wings or vice versa (Figure 3A).
However, whole-body performance is continuously enhanced during steaming [24] or
wing-assisted jumping [25] (Figure 3B). These findings reiterate the importance of a whole-
body perspective.

• Rudimentary Wings Are Utilized during Transitional Behaviors in Particular Habitats
The cooperative recruitment of wings and legs is a transitional behavior that is intermediate
between leg-based locomotion (e.g., running) and wing-based locomotion (flight). Different
transitional behaviors are used in different habitats. For example, ducklings bridge leg- and
wing-based locomotion via aquatic behaviors such as steaming, where wings and legs are re-
cruited simultaneously to increase swimming speed and avoid predators until flight is acquired
[24]. Even nonaquatic juveniles such as Hoatzin (Opisthocomus hoazin) [30], songbirds (K.P.D.
unpublished data; Passeriformes), and owls and raptors [juvenile (https://www.youtube.com/
watch?v=d2c-PHB18fU) adult (https://www.youtube.com/watch?v=UMft3Ny7hFk)] may em-
ploy their wings to swim. Similarly, immature owls and ground birds can use inclined or
branching substrates to flap-run, flap-walk, or flap-jump to elevated refuges
[25,26,31,32]. Although quantitative studies are limited, observation suggests that devel-
oping birds with transitional anatomical features routinely use these transitional behaviors
(steaming, WAIR, wing-assisted jumps) to negotiate habitats (e.g., aquatic, inclined, or
branched substrates) that serve as stepping stones between leg- and wing-based locomo-
tion and provide intermediate phenotypes with selective advantages.

• Predators Play a Key Role in Wing and Leg Development
Immature birds are highly vulnerable to predation [9,33–36], and predation risk likely plays a
crucial role in ontogeny. For example, developing birds appear to prioritize structures that
enhance predator escape. Ducklings initially avoid predators by running or swimming and
emphasize the hind limbs early in development [24], whereas peachicks are dependent on
arboreal refuges and allocate more resources to their wings [25]. In both cases, however,
incipient wings are used to enhance locomotion, by increasing swim speed or foot traction
(during WAIR) and jump height. Predation risk also influences fledging time and develop-
mental rate [37–39]. Across passerines, higher levels of nest predation are associated
with earlier fledging. In species where young leave the nest earlier, wing development is pri-
oritized over that of other structures, providing some aerodynamic capacity at, or soon
after, fledging. Although these fledglings have less developed wings and poorer flight com-
pared with species that fledge later, the risk of losing an entire brood to a nest predator ap-
pears to outweigh the risk of losing an individual fledgling to a ground predator [38]. In
short, predation is an integral moderator of locomotor trajectories.

• Body Size Plays a Key Role in Wing Performance
Body size has long been known to influence locomotion [40–42]. Power-to-mass ratio,
or the rate of work standardized by body size, essentially measures the relative strength

and quickness of the locomotor apparatus and is a key indicator of wing performance.

Flight becomes more challenging in larger animals due to scaling constraints that cause rel-

ative force and/or power to decline with increasing body size [43–49]. Consequently, extant

volant birds are relatively small (<15 kg; median = 38 g) compared with terrestrial verte-

brates [50]. Similarly, developing birds acquire flight when they are small and wing loading

(mass per unit wing area) is low [51]; flight performance then typically improves with in-

creases in wing and muscle size (Figure 2A). However, some species outgrow their
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(A) Incipient wings

(B) Secondarily

(D) Protowings in the fossil record

(C) Seasonally
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Figure 1. Rudimentary Wings. Rudimentary wings are widespread across the theropod-avian lineage, and are found (A) in all developing birds, (B) in secondarily
flightless or semi-flightless birds, (C) in birds that molt their flight feathers simultaneously, and (D) among extinct theropods with ‘protowings’. Although such structures
are rarely examined empirically, studies clearly demonstrate that rudimentary wings can improve locomotor performance and enhance survival. From left to right: (A)
Mallard duckling (Anas platyrhynchos), Chukar Partridge (Alectoris chukar), owlet Strigiformes); (B) Flightless Cormorant (Phalacrocorax harrisi), steamer-duck
(Tachyeres sp.); (C) swan (Cygnus sp.); (D) Caudipteryx, Anchiornis, Eosinopteryx. Illustrations by Robert Petty.
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wings as adults because increases in body mass outpace increases in wing area

(Figure 2B). For example, in Indian Peafowl and Australian Brush-turkeys (Alectura lathami),

wing performance of juveniles is greater than that of adults [25,52]. Similarly, Giant Coots
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Figure 2. Incipient Wings. This and all subsequent pyramids illustrate major parameters associated with the waxing and waning of wings: anatomy (more forelimb-
dominated towards the top, more hindlimb-dominated towards the bottom), performance (power-to-mass ratio of wings, increasing towards the top), and habitat or
substrate (brown indicates more terrestrial or aquatic, with leg-based locomotion; blue indicates more aerial, with wing-based locomotion). (A) Juvenile birds with small,
incipient wings negotiate steep inclines or aquatic substrates by supplementing leg-based locomotion with their developing forelimbs. For example, immature Chukar
Partridges (left side of pyramid) flap their wings to generate small aerodynamic forces that allow them to flap-run up steep obstacles by increasing foot traction.
Improvements in aerodynamic performance allow chukars to flap-run up steeper inclines and eventually fly. Similarly, ducklings (below the pyramid) initially use their feet
as paddles and their rudimentary, developing wings as oars to 'steam' across water, and later to fly. Whether terrestrial or aquatic, developing birds employ their wings
to avoid predation, initially relying on transitional behaviors such as wing-assisted incline running (WAIR) or steaming, and later relying on powered flight – once the
forelimbs mature enough to provide sufficient power for the body size of the animal. (B) Some species 'outgrow' their wings during ontogeny and exhibit reduced flight
ability as adults due to increased wing loading and a reduced power-to-mass ratio. Giant Coots (Fulica gigantea; bottom), steamer-ducks (middle bottom), Indian
Peafowl (Pavo cristatus; middle top), and Australian Brush-turkeys (Alectura lathami; top) all experience greater wing performance as juveniles than as adults – Giant
Coots and some steamer-ducks can fly as juveniles but become flightless as adults, whereas peafowl and brush-turkey adults can still fly but are more leg-dependent
than their immature counterparts. Illustrations by Robert Petty.
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(Fulica gigantea) and some steamer-ducks (Tachyeres sp.) can fly as juveniles but must en-

gage their wings and legs cooperatively as adults, by steaming [53,54]. Even large, flight-

capable birds recruit their hindlimbs to take off (https://www.youtube.com/watch?v=

vAuPH69ohZo). Body size is thus a key determinant of locomotion, and birds with propor-

tionally small wings often rely heavily on wing–leg cooperation.

In summary, the rudimentary anatomical features observed in developing birds serve several
important functions. Developing birds bridge flightless to flight-capable transitions, offset
tradeoffs, compensate for low power, and often elude predators by recruiting their wings
and legs cooperatively during transitional behaviors in habitats that act as stepping stones
between leg- and wing-based locomotion. Collectively, these findings provide valuable insights
into avian biology.

These insights can also be extrapolated to fossils via modeling techniques in which data from
extant animals is used to explore function while accounting for anatomical differences between
extant and extinct species ([55] for citations). Like developing birds, extinct theropods might
have improved locomotor performance by engaging their legs and protowings cooperatively. Dif-
ferent scenarios (WAIR, wing-assisted running or leaping, four-winged gliding, etc.) can be tested
by constructing models of fossils and determining whether the locomotor apparatus was consis-
tent with the inferred behavior ([3,14,15] for citations of origin-of-flight scenarios). In short,
Trends in Ecology & Evolution, Month 2021, Vol. xx, No. xx 5
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Figure 3. Tradeoffs between Wings and Legs. (A) Developing birds show different trajectories of wing versus leg growth and performance: in Chukar Partridges,
wings and legs develop in tandem with moderate levels of performance, whereas in Mallards, wing performance increases at the expense of legs, and in Indian
Peafowl the opposite occurs. (B) Despite such tradeoffs, whole-body performance improves when wings and legs are engaged cooperatively during behaviors such as
vertical takeoff (chukars, peafowl) or steaming (ducks). Figure modified, with permission, from [25].
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locomotor ontogeny has offered rich insight into form–function relationships and, in conjunction
with work on other birds (see later), has the potential to greatly improve our understanding of
the theropod-avian lineage.

Waxing and Waning of Wings: Seasonal Timescales
Rudimentary wings also occur in adult birds that are temporarily flightless due to molting. For
example, many birds molt feathers sequentially (~one at a time), but some birds molt flight
feathers simultaneously and become flightless for days [e.g., American Dippers (Cinclus
mexicanus) [56]] to months [Eared Grebes (Podiceps nigricollis) [57]] (see Text S1 in the
supplemental information online). These dramatic seasonal reductions in wing size and flight
capacity occur across many taxa (Figure 4 and see Table S1 in the supplemental information
online), and have been well studied in terms of body composition and resource allocation
[58–60], activity budgets [61–64], habitat preferences [65–68], migratory patterns [57], and
predation [67]. By contrast, how feather molt and recovery influence flight performance and be-
havior is largely unknown.
6 Trends in Ecology & Evolution, Month 2021, Vol. xx, No. xx
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Figure 4. Seasonally Reduced Wings. All birds undergo annual or seasonal molts. Waxing and waning of wings thus
occurs in ecological as well as evolutionary time. In species that molt all their flight feathers simultaneously, these changes
are extreme but survivable because foraging and predator escape do not require aerial flight. Simultaneous molt and
seasonal flightlessness is common and occurs across the avian clade – waterfowl (Anseriformes), cranes (Gruidae), rails
(Rallidae), flamingos (Phoenicopteridae), grebes (Podicipedidae), wading birds (Scolopacidae), jacanas (Jacanidae), alcids
(Alcidae), sunbirds (Heliornithidae), loons (Gaviidae), petrels and shearwaters (Procellariiformes), darters (Anhingidae),
hornbills (Bucerotidae), and songbirds (Passeriformes) [56,68,78,79,82,90,127–147]. From bottom up: aquatic species
such as alcids [puffin (Fratercula sp.)] become aerially flightless during simultaneous molt but are still capable of foraging
underwater (aquatic flying) for prey. Swans are rendered flightless during wing molt but can reach submerged aquatic
vegetation with their long necks and escape threat by using their hindlimbs to dive. Many waterfowl and shorebirds
(e.g., Bristle-thighed Curlews, Numenius tahitiensis) fly to remote, predator-free locations to molt in safety. Although these
represent extreme examples, even species that molt their flight feathers sequentially (i.e., they only lose a few feathers at a
time), such as raptors (Falconiformes) and hummingbirds (Trochilidae), exhibit compromised flight ability during molt. Thus,
wings wax and wane on seasonal timescales in all birds. Illustrations by Robert Petty.
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Laboratory work suggests that molting wings are less effective but still functional because wing
reductions can be at least partially compensated for, depending on the degree of feather loss
[69–77]. In hawks (Falconiformes), passerines, and hummingbirds (Trochilidae) with
sequential molts, feather loss has been associated with reductions in lift-to-drag ratio, flight
speed, takeoff angle, maneuverability, and/or energetic efficiency. These effects are mitigated
by weight loss, increases in flight muscle mass, changes in wing posture, and/or slow feather
molting, to the extent that naturally molting birds may reduce activity and become more
secretive but show very little reduction in flight performance. Birds that molt their flight feathers
simultaneously clearly differ because flight capacity is severely impaired (lost) for a period of
time. However, work with various water birds, hornbills (Bucerotidae), and passerines indicates
that simultaneously molting birds similarly adopt strategies that compensate for feather loss
and, in at least some cases, use their rudimentary wings for locomotion. These birds:

• Molt in a Safe Location where Aerial Flight Is Not Required
Many birds migrate to secluded areas to shed their feathers, including wetlands and lakes,
coastal waters, or remote islands [57,59,61,63,68,78–80]. Thesemolting sites are often char-
acterized by low predator abundance and offer alternative means of escape. For example,
molting aquatic birds may run to water, swim into vegetation or deeper water, or dive to
Trends in Ecology & Evolution, Month 2021, Vol. xx, No. xx 7
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avoid predation [59,63,65–68], and it is likely that rudimentary wings assist in these escapes
by increasing swim speed (via steaming) or propelling divers [80].

• Adopt Secretive Behaviors that likely Reduce Predation Risk while Simultaneously Lowering
Energy Expenditure
These behaviors occur concomitantly with a reduction in [57,67,68,81,82]. Molting individuals
typically become warier and may spend more time roosting, congregate in large flocks, shift to
nocturnal foraging, or even delay post-molt migration to fly under the cover of longer nights.

• Reallocate Resources and Recruit the Hind Limbs.
Just as shorebirds increase the size of digestive organs to refuel along migration routes
(e.g., [83]), waterfowl adjust the size of their digestive organs throughout molt [57,84–86]
(see Text S2 in the supplemental information online). In addition, wing molting is typically ac-
companied by atrophy of flight muscles, and this may reducemetabolic costs and provide pro-
tein for feather synthesis [57–60,87]. Many species partially compensate for this reduction
through increases in leg muscle and use [57,58,60,84,86,88–91]. Nevertheless, rudimentary
wings can play an important role in locomotion. For example, aquatic species such as alcids
become aerially flightless during molt but still use their wings to forage underwater [80]. Simi-
larly, many species begin to fly when their wings are still small, with as little as 62% feather
regrowth [91–93]. Hind limb input is probably particularly important in these cases, for swim-
ming to foraging sites or for initiating takeoff [94–97]. This reiterates the importance of wing–
leg cooperation.

• Reacquire Flight through Temporary Mass Loss and/or Differential Organ Reabsorption
Migratory birds are well known for reducing nonessential organs and reallocating mass to the
heart and flight muscles (e.g., [83]). Molting birds often adopt a similar strategy, but to an extent
that total bodymass declines. Mass loss duringmolt may be a consequence of reduced forag-
ing but may also shorten the flightless period: by reducing body mass and wing loading,
power-to-mass ratios are improved and flight can be regained before feathers are fully regrown
[64,91–93,98–100]. In species with long flightless periods (e.g., Eared Grebes), mass loss oc-
curs long after feathers have regrown, but similarly reduces wing loading for migration [57].
Thus, small wings are used for locomotion in many recovering birds, and body size is a key
moderator.

Many of these findings are consistent with strategies used by developing birds. For example, both
developing and temporarily flight-impaired birds tend to be secretive and benefit from the safety
provided by nests and parents or by remote molting locations. Like immature birds, molting birds
are also highly leg-dependent and utilize unique modes of locomotion in carefully selected habitats.
Developing birds rely on substrates that allow them to use their wings and legs cooperatively,
whereas simultaneously molting birds elude predators by hiding, running, swimming, or diving,
with varying contributions from the wings. Proportionally large legs and/or leg-based behaviors
compensate for rudimentary wings, whereas increases in flight muscle are associated with de-
creases in leg muscle, and vice versa (tradeoffs). Total body mass also plays a key role in acquiring
flight – mass loss allows many molting birds to fly when their wings are still small, just as
developing birds become flight-capable when wing loading is low [51]. Collectively, these patterns
suggest that simultaneously molting birds display many juvenile characteristics and behaviors.

Ultimately, temporary flightlessness is common and widespread, and molting birds bear many
similarities to developing birds. Nevertheless, very few empirical data are available on wing func-
tion and locomotor performance as birds lose and regain their feathers. We know that the strat-
egies deployed are sufficient becausemolting birds are able to compensate for wing loss with leg-
dominated behaviors in selected habitats [68]. But how does locomotor performance and
8 Trends in Ecology & Evolution, Month 2021, Vol. xx, No. xx
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behavior vary with feather and muscle regrowth? Do molting birds adopt flapping behaviors sim-
ilar to those observed among developing birds? Locomotion and survivorship are inextricably
coupled [38], but these types of questions have not been explored.

Waxing and Waning of Wings: Evolutionary Timescales
We instinctively associate birds with flight, but not all birds fly well and some species have
completely lost aerial flight [e.g., penguins (Sphenisciformes) and ostriches (Struthioniformes)].
Secondary flightlessness has evolved in many groups of birds, both extant (>15 families; see
Table S2 in the supplementary information online) and long extinct (e.g., Patagopteryx,
Hesperornis) [101,102]. In fact, only 2000 years ago there were many flightless species [11] that
are now extinct as a result of hunting, habitat degradation, and/or introduced predators (see
Text S3 in the supplementary information online for conservation implications). Our present-day
paucity of flightless birds is not normal for the avian clade.
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- Reduction in wing size, due to shortening and loss of feathers, particularly distally, resulting in a rounder wing; increase in 
wing loading and low power-to-mass ratio.
- Less asymmetrical and emarginated primary feathers with more flexible rachises; loose, juvenile-like plumage with fewer 
hooklets to ‘zip’ feathers together. 
- Reduction and/or paedomorphosis of skeletal elements in the pectoral girdle and wing: sternum smaller and keel reduced or 
lost, furcula reduced and unfused, processes for muscle attachment reduced, distal wing bones reduced and more juvenile in
proportion, angle between coracoid and scapula enlarged.
- Reduction in flight muscle mass, particularly in calorically expensive power-producing muscles (pectoralis, supracoracoideus) 
and muscles used mainly for flight (e.g., muscles that tense the patagia; muscles associated with aerial maneuverability, such 
as flexors and extensors of the manus). 
- Compensatory increase in leg robustness or size, via peramorphosis.
- Shifts in body mass, commonly to larger size.
- Increase in anatomical variation and asymmetry in forelimbs.
- Increase in sexual dimorphism.

                           Characteristics of Birds with Secondarily Reduced Wings
Studies have documented a suite of morphological features that commonly accompany the 
                 loss of flight in rails and other birds, to varying degrees [11,148–162]:
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Figure 5. Secondarily ReducedWings. Studies have documented a suite of morphological features that commonly accompany the loss of flight in rails and other birds,
to varying degrees [11,148–162]. Some flightless birds possess most of these features, whereas others exhibit a mosaic of traits depending on their ecological
requirements. For example, ostriches and rheas (Struthioniformes) retain long wing feathers for courtship display but have lost flight-muscle mass [10]. Penguins
(Sphenisciformes) have done the reverse, losing the long flight feathers their ancestors must have possessed but augmenting the pectoral muscles that power
underwater 'flight' [163,164]. Many living and recently extinct birds have extremely reduced wings compared with relatives that retain superior flight capacity. These
secondarily flightless or semi-flightless birds occur in areas with reduced predation, year-round food supply, and moderate climate. For example, rails (Rallidae),
cormorants (Phalacrocoracidae), pigeons (Columbidae), owls, and even passerines (Passeriformes) have become flightless or semi-flightless on remote, historically
predator-free islands. Similarly, in the safety of their enclosures, several domesticated birds such as turkeys - have been bred for fast growth and large size, and, in the
process, have outgrown their wings and lost flight. From bottom to top, left side then right: Wild Turkey (Meleagris gallopavo); King Rail (Rallus elegans); cormorant;
Rock Pigeon (Columba livia); American Goldfinch (Spinus tristis); Great Horned Owl (Bubo virginianus); hummingbird; Dodo (Raphus cucullatus; extinct) of Mauritius;
Giant Owl (Ornimegalonyx sp.; extinct) of Cuba; domesticated turkey; Flightless Cormorant - of the Galapagos Islands; Weka (Gallirallus australis), Kōkako (Callaeas
sp.), and Rifleman (Acanthisitta chloris) of New Zealand; Victoria Crowned Pigeon (Goura victoria) of New Guinea. Illustrations by Robert Petty. See [11,148–162].
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Despite such losses (or perhaps because of them), secondarily flightless birds have beenwell stud-
ied (see Text S4 in the supplementary information online). As previous authors have pointed out,
these birds share many anatomical similarities with developing birds and extinct theropods
(Figures 1A and 5) and, like immature and simultaneously molting birds, require safe habitats and
food that can be acquired without flight. Thus, flightless birds are often leggy compared with
their volant relatives. Leg-dominated, flightless birds have historically been successful – in some
cases becoming apex predators [103–105] – and they are not the only birds with permanently re-
duced wings. Although we have traditionally categorized birds as flying or flightless, this binary ter-
minology actually masks tremendous natural variation in anatomy and flight capacity. In many
habitats, birds have reduced flight capacity compared with their relatives and are best character-
ized as semi-flightless.

Semi-flightless birds are rarely discussed and poorly studied, but are very common and wide-
spread (Figure 5). For example, in North America, roadrunners (Geococcyx sp.; Cuculiformes)
and Burrowing Owls (Athene cunicularia) have reduced wings and are more terrestrial than
their relatives [106,107]. In the tropics, many birds are highly sedentary and forage mainly on
foot through dense vegetation, flying only for short distances (<100 m) [108,109]. Similarly, the
Rifleman (Acanthisitta chloris; Passeriformes) of New Zealand flutters briefly between trees to for-
age. In South America, the Giant Coot outgrows its wings during ontogeny and likely becomes
flightless as an adult, instead using its wings to steam across water [53]. In short, there are
many examples of birds with small wings and reduced flight. Although most have only been doc-
umented anecdotally (see Table S3 in the supplementary information online), two well-studied
groups reveal several similarities with developing and simultaneously molting birds, and reiterate
the utility of rudimentary structures:
• Steamer-ducks

The steamer-ducks of South America have reduced but functional wings. This group shows
high variation in flight capacity, across species, populations, sexes, and even within individ-
uals – some birds may become flightless after molting or large meals, and many are likely
flight-capable as juveniles but flightless as adults [54,110–112]. This mixed-flight capacity
has also been reported in a rail (Rallidae) [113] and among seasonally flightless or migratory
birds. Regardless of flight capacity, all steamer-ducks maintain robust pectoral muscles
and recruit their wings and legs cooperatively to steam across water [54,114,115], similarly
to juvenile ducks or alcids that use their molting wings to swim underwater.

• Island Birds
Flightlessness is highly associated with islands, and recent evidence reveals that even island
birds that are still capable of flight have evolved smaller flight muscles and longer legs than
their continental relatives [97]. Such changes are more pronounced on islands with fewer
predators, and seem to reflect a shift in investment from wings to legs. This 'avian island
rule' applies to hundreds of species, including wing-dominated birds, suggesting that longer
legs help to compensate for smaller wings during power-demanding behaviors such as take-
off, while reducing the energy requirements associated with maintaining large flight muscles
[97]. In several respects semi-flightless island birds are thus similar to juvenile and perhaps si-
multaneously molting birds: they have proportionally smaller wings and larger legs, and rely
on wing–leg cooperation.

In short, there are examples of birds with reduced wings all over the world and across the avian
clade. These birds demonstrate that flight capacity is more of a gradation (flightless <–> semi-
flightless <–> strong flight) than a dichotomous characteristic (flightless versus flight).
Nevertheless, with few exceptions, wing contributions to locomotion in flightless or semi-
10 Trends in Ecology & Evolution, Month 2021, Vol. xx, No. xx
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flightless birds have not been explored (see Text S5 in the supplementary information online for a
potential starting point). In the species that have been studied, reduced wings enhance locomo-
tion. Collectively, developing, molting, and secondarily flight-impaired birds thus reveal that rudi-
mentary structures can play important roles in locomotor behavior and performance.

Concluding Remarks
Developing birds with incipient wings and adult birds with temporarily or secondarily reduced
wings collectively reveal that rudimentary wings are ubiquitous across the avian clade. Birds
have often been categorized as flight-capable or flightless, but this binary terminology masks
tremendous natural variation. In reality, flight capacity is a continuum (flightless <–> semi-
flightless <–> strong flight), and rudimentary wings are more of a rule than an exception.
This continuum offers a powerful but underappreciated system for exploring relationships
between form, function, performance, behavior, ecology, and evolution, on multiple
timescales.

In extant birds, rudimentary wings improve locomotor performance and enhance survival. Birds
that have small wings with low power-to-mass ratios bridge flightless to flight-capable transi-
tions, compensate for tradeoffs between wings and legs, and often elude predators by recruiting
their wings and legs cooperatively during transitional behaviors in carefully selected habitats. Al-
though sparsely studied and sometimes considered 'useless', rudimentary wings are often cru-
cial for survival and can have selective value without flight capability.

Rudimentary, waxing or waning wings have probably been prevalent among birds since their be-
ginning ~150 million years ago. Early winged fossils show substantial variation in wing and leg
proportions, and secondary wing reductions are known for several groups [116–120]. This diver-
sity is not present in all flying animals. Bats (Chiroptera), for example, show far less variation in
limb proportions and behavior (there are no flightless bats), presumably because their legs are in-
corporated into their flight apparatus rather than functioning as a separate locomotor module
[121]. Modularity thus facilitates the waxing and waning of wings among birds and likely contrib-
utes to diversity on short and long timescales.

Collectively, this evidence indicates that rudimentary structures can be functional, and are perhaps
an intrinsic component of many clades (e.g., birds, fish, insects, amphibians, marsupials
[122–126]). Among birds, we predict that small wings and reduced flight are much more common
than has been appreciated, particularly among groups that have well-developed legs or live in hab-
itats where sustained flight may not be necessary for escape or foraging (e.g., near water, in dense
vegetation, or in remote locations). We also predict that birds with reduced wings not only have
juvenile morphologies, but also display juvenile or basal behaviors involving the cooperative use
of all four limbs. Although our understanding is still in its infancy (see Outstanding Questions), ru-
dimentary structures likely enhance survival on multiple timescales in birds and many other animals
– both extant and long extinct.
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