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. Introduction 

The Cramér–Rao bound (CRB) is one of the most well-known 

ower bounds on the mean square error (MSE) of parametric 

stimators and has countless applications in statistics and related 

reas. It comes in two varieties, namely, the classic CRB [1,2] , 

hich provides a lower bound on the variance of an unbiased 

stimator, and the Bayesian CRB [3] (also known as the posterior 

RB or van Trees inequality), which provides a lower bound on 

he expected MSE of an arbitrary estimator under a given prior. 

Proofs for either variety of the CRB can be found in standard 

extbooks. Most of these proofs are based on the Cauchy–Schwarz 

nequality (CSI), the covariance inequality, or the Hammersley–

hapman–Robbins bound (HCRB). In contrast, the proof presented 

ere is based on a variational approach and does not make use of 

ther inequalities or bounds. But why is this alternative proof of 

nterest, in particular, in a signal processing context? 

First, we would like to emphasize that the aim of this paper 

s not to re-derive all known properties of the CRB and the es- 

imators that attain it. Also, we do not want to claim that the 
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resented proof is particularly elegant or in any way “superior” to 

he standard proofs given in textbooks. On the contrary, for many 

urposes, a proof via the CSI is more concise and transparent. 

What we do want to show with this paper is the following: 

irst, both the classic and the Bayesian CRB can be interpreted as 

olutions of an optimization problem, where the MSE is minimized 

ith respect to both an estimator and a distribution, and the latter 

s subject to a constraint on its Fisher information. Based on this 

esult, the second goal is to highlight that by varying the objective 

unction (MSE) and/or the penalty term (Fisher information) a 

ew family of bounds of the Cramér–Rao type can be obtained. In 

ther words, the variational proof makes it possible to identify a 

amily of bounds that otherwise cannot easily be identified as a 

eneralization of the CRB. 

Let us elaborate some more on the latter aspect. Existing 

eneralizations of the CRB are typically obtained by using gen- 

ralized versions of the CSI, such as Hölder’s inequality, or by 

hoosing different functions to which these inequalities are ap- 

lied. Prominent examples of this type of bounds are the Bayesian 

hattacharyya bound, and the Bobrovsky-Zakai bound [4] . The 

eneralization suggested by the variational proof, namely to re- 

lace the MSE or the Fisher information with other functions, is 

onceptually very different, and provides a new perspective on 

ayesian and non-Bayesian bounds. Two novel bounds based on 

his perspective have already been studied in [5] and [6] , and have 

een shown to be tighter than the CRB in some scenarios. This 

mprovement is achieved by replacing the Fisher information with 

he Kullback–Leibler divergence (relative entropy), which is less 
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ensitive to strong fluctuations in the density function. A more for- 

al discussion of the proposed generalization is given in Section 4 . 

Note that establishing bounds on the accuracy of estimators 

y solving (constrained) optimization problems is not a novel 

pproach in itself. For example, minimizing the MSE under un- 

iasedness constraints on the estimator leads to the well-known 

arankin bound. Different approximations of the latter give rise to, 

mong others, the Bhattacharyya bound, the HCRB, the McAulay–

eidman bound, and the classic CRB; see [7] and the references 

herein for more details. For the Bayesian case, a similar opti- 

ization problem is studied [8] , where instead of the bias, the 

quared estimation error is subject to a constraint. In [9] and [10] , 

 unifying framework for both Bayesian and non-Bayesian bounds 

s proposed, in which many existing results can be obtained by 

tudying different integral transformations of functions of the 

ikelihood-ratio type. 

The most fundamental difference between this paper and the 

nes cited above is that in the problem studied here the minimum 

s taken jointly over the estimator and the distribution, with a con- 

traint on the latter. By contrast, in the vast majority of works, the 

istribution is fixed, while the minimization is performed over the 

stimator or over a free function that is introduced in order to in- 

rease the degrees of freedom. Including the distribution in the 

ree variables makes it possible to construct bounds that are tai- 

ored for certain properties of these distributions, such as having 

 bounded Fisher information or a bounded relative entropy with 

espect to some reference distribution. Of course, this approach is 

ot the only way of incorporating prior knowledge of distributional 

roperties into a bound. However, as mentioned before, it provides 

 systematic template and an intuitive interpretation that we con- 

ecture to be conducive to future works on lower bounds in signal 

rocessing and other areas. 

The paper is organized as follows: Some preliminary results 

hat are used in the proofs are introduced in Section 2 . In 

ection 3 , a special case of the CRB is proven, namely, the case 

here a real scalar parameter is estimated from a real scalar obser- 

ation. This case is the simplest and most instructive, in the sense 

hat a variational proof of the corresponding CRB can be given in a 

erspicuous manner, without obscuring the main ideas by techni- 

al details. The result is then briefly discussed in Section 4 , where 

lso the outline of a variational proof of the CRB for vector param- 

ters is given, and a possible generalization to obtain families of 

RB-like bounds is proposed. 

A note on notation: Random variables are denoted by upper 

ase letters X and their realizations by the corresponding lower 

ase letters x . Analogously, probability distributions are denoted by 

pper case letters P and their densities by the corresponding lower 

ase letters p. The normal distribution with mean μ and variance 
2 is denoted by N (μ, σ 2 ) . The expected value of a random vari-

ble X under distribution P is written as E P [ X] . The first and second

partial) derivatives of a function f with respect to the argument 

 are written as ∂ x f (x ) and ∂ 2 x f (x ) , respectively. The difference

f two functions f (x ) and g(x ) is written as f (x ) − g(x ) = � f g (x ) .

ectors and matrices are indicated by boldface font. For matrices X 

nd Y the notation X � Y is used to indicate that Y − X is positive 

emidefinite. As is customary, the real line is denoted by R and the 

orresponding Borel σ -algebra by B. All integrals in the paper are 

aken over either R or R × R , and the domains of integration are

mitted in the notation when they are clear from the context. 

. Preliminaries 

Let X be a random variable with values in (R , B) . For the clas-

ic CRB, X is assumed to be distributed according to a distribu- 

ion P θ where θ ∈ R is a deterministic but unknown parameter. 

he family of distributions { P θ } θ∈ R is denoted by P . Moreover, it 
2 
s assumed that all P θ ∈ P are supported on R , that is, p θ (x ) > 0

or all x ∈ R , and that ∂ θ p θ (x ) is well-defined and finite for all

 ∈ R ; compare (5.12) in [11] . For the Bayesian Cramér–Rao bound, 

X, �) is assumed to be a pair of random variables with values in 

R , B) × (R , B) and joint distribution P . The marginal and condi-

ional distributions are denoted by P �, P X , P X| �, and P �| X . Note that

n the Bayesian scenario P � denotes the distribution of �, whereas 

n the non-Bayesian scenario P θ denotes a particular distribution 

rom the family P . Finally, it is assumed that differentiation and 

ntegration can be interchanged, that is, 

 θ

∫ 
p θ (x ) d x = 

∫ 
∂ θ p θ (x ) d x = 0 (1)

nd 

 θ

∫ 
p(x, θ ) d x = 

∫ 
∂ θ p(x, θ ) d x = 0 (2)

or all θ ∈ R . See, for example, [12, Theorem 23] for conditions un- 

er which (1) and (2) hold. 

The classic Fisher information is defined as 

(P θ ) = E P θ

[ (
∂ θ log p θ (X ) 

)2 
] 

(3) 

= E P θ

[ (
∂ θ p θ (X ) 

p θ (X ) 

)2 ] 
= 

∫ 
R 

(
∂ θ p θ (x ) 

)2 

p θ (x ) 
d x. (4) 

he Bayesian Fisher information is analogously defined as 

(P ) = E P 

[ (
∂ θ log p(X, �) 

)2 
] 

(5) 

= E P 

[ (
∂ θ p(X, �) 

p(X, �) 

)2 ] 
(6) 

= 

∫ 
R ×R 

(
∂ θ p(x, θ ) 

)2 

p(x, θ ) 
d x d θ . (7) 

ote that I(P ) can equivalently be written as 

(P ) = E P X 

[
I(P �| X ) 

]
(8) 

r 

(P ) = E P �

[
I(P X| �) 

]
+ I(P �) . (9) 

sing the arguments in [13] , it can be shown that both the classic 

nd Bayesian Fisher information are convex functions of P θ and P, 

espectively. 

Any measurable function f from R to R defines an estimator for 

by letting ˆ θ = f (x ) . The MSE of this estimator under the distri- 

ution P is denoted by 

se ( f, P ) = E P 
[
( f (X ) − �) 2 

]
. (10) 

nalogously, under P θ , the MSE is defined as 

se ( f, P θ ) = E P θ
[
( f (X ) − θ ) 2 

]
. (11) 

f f is unbiased, that is, if it holds that 

 P θ

[
f (X ) 

]
= θ (12) 

or all θ ∈ R , the MSE of an estimator coincides with its variance. 

he set of pairs ( f, P) for which f is unbiased is denoted by 

 = 

{
( f, P) : E P θ

[
f (X ) 

]
= θ ∀ P θ ∈ P 

}
. (13) 

 well-known property of unbiased estimators is that, under the 

ssumption that (1) holds, 
 

( f (x ) − θ ) ∂ θ p θ (x ) d x = 1 , (14) 
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hich can be shown by taking the derivative with respect to θ of 

 P θ
[ f (X ) − θ ] and interchanging differentiation and integration. 

For the proofs presented in the next sections, the Gâteaux 

erivatives [14] of the Fisher information and the MSE are required. 

or the classic Fisher information, the Gâteaux derivative in the di- 

ection of a distribution Q θ can be shown to be 

 Q θ I(P θ ) = lim 

ε→ 0 

I((1 − ε) P θ + εQ θ ) − I(P θ ) 

ε 
(15) 

= lim 

ε→ 0 

I(P θ + ε�Q θ P θ ) − I(P θ ) 

ε 
(16) 

= 2 

∫ 
∂ θ p θ (x ) 

p θ (x ) 
∂ θ�q θ p θ (x ) d x (17) 

−
∫ (

∂ θ p θ (x ) 

p θ (x ) 

)2 

�q θ p θ (x ) d x. (18) 

nalogously, for the Bayesian Fisher information the Gâteaux 

erivative in the direction of a joint distribution Q can be shown 

o be 

 Q I(P ) = lim 

ε→ 0 

I(P + ε�QP ) − I(P ) 

ε 
(19) 

= 2 

∫ 
∂ θ p(x, θ ) 

p(x, θ ) 
∂ θ�qp (x, θ ) d x d θ (20) 

−
∫ (

∂ θ p(x, θ ) 

p(x, θ ) 

)2 

�qp (x, θ ) d x d θ . (21) 

s shown in [15] , integration by parts and the fact that 

lim 

 x |→∞ 

∂ θ p θ (x ) 

p θ (x ) 
�q θ p θ (x ) = lim 

| x |→∞ 

∂ θ p(x, θ ) 

p(x, θ ) 
�qp (x ) = 0 . (22) 

or all θ ∈ R whenever ∂ Q I(P ) and ∂ Q θ I(P θ ) are finite can be used

o “shift” the derivatives of �q θ p θ
and �qp from the first terms of 

18) and (21) to the second terms so that 

 Q θ I(P θ ) = −2 

∫ 
∂ 2 
θ

p θ (x ) 

p θ (x ) 
�q θ p θ (x ) d x (23) 

+ 

∫ (
∂ θ p θ (x ) 

p θ (x ) 

)2 

�q θ p θ (x ) d x. (24) 

nd 

 Q I(P ) = −2 

∫ 
∂ 2 
θ

p(x, θ ) 

p(x, θ ) 
�qp (x, θ ) d x d θ (25) 

+ 

∫ (
∂ θ p(x, θ ) 

p(x, θ ) 

)2 

�qp (x, θ ) d x d θ . (26) 

oth versions of the Gâteaux derivative of the Fisher information 

re used in what follows. 

The Gâteaux derivative of the MSE in the direction Q θ or Q is 

iven by 

 Q θ mse ( f, P θ ) = lim 

ε→ 0 

mse ( f, P θ + ε�Q θ P θ ) − mse ( f, P θ ) 

ε 
(27) 

= 

∫ 
( f (x ) − θ ) 2 �q θ p θ (x ) d x, (28) 

nd 

 Q mse ( f, P ) = lim 

ε→ 0 

mse ( f, P + ε�QP ) − mse ( f, P ) 

ε 
(29) 

= 

∫ 
( f (x ) − θ ) 2 �qp (x, θ ) d x d θ, (30) 

espectively. 
3 
. Main results 

In this section, a special case of the classic and the Bayesian 

RB is proven using variational arguments. The proofs are inten- 

ionally stated in close analogy to each other in order to high- 

ight that both versions of the CRB follow from the same optimiza- 

ion problem with different definitions of Fisher information. The 

ayesian CRB is presented first since its proof is conceptually sim- 

ler. 

.1. Proof of the Bayesian Cramér–Rao Bound 

Consider the following optimization problem: 

nf 
f,P 

mse ( f, P ) s.t. I(P ) ≤ γ . (31) 

n words, determine the minimal MSE of any estimator for � un- 

er the constraint that the Bayesian Fisher information of the joint 

istribution of X and � is bounded by γ . 

Now, consider the auxiliary problem 

nf 
f,P 

L λ( f, P ) , (32) 

here λ is a positive scalar and 

 λ( f, P ) : = mse ( f, P ) + λ2 I(P ) . (33) 

he minimization in (32) can equivalently be written as 

nf 
f 

{ 

inf 
P 

L λ( f, P ) 
} 

. (34) 

y (26) and (30) , the Gâteaux derivative of L λ in the direction Q is 

iven by 

 Q L λ( f, P ) = ∂ Q mse ( f, P ) + λ2 ∂ Q I(P ) (35) 

= 

∫ 
r λ(x, θ ) �qp (x, θ ) d θ d x, (36) 

here 

 λ(x, θ ) = ( f (x ) − θ ) 2 − 2 λ2 
∂ 2 
θ

p(x, θ ) 

p(x, θ ) 
+ λ2 

(
∂ θ p(x, θ ) 

p(x, θ ) 

)2 

. (37) 

ince the MSE is linear in P and the Fisher information is convex in 

, L λ is also convex in P . Hence, a necessary and sufficient condi- 

ion for a distribution P ∗ to solve the inner minimization in (34) is 

hat 

 Q L λ( f, P ∗) ≥ 0 ∀ Q . (38) 

ince Q can be chosen arbitrarily, the condition in (38) can only 

e satisfied if r λ is constant over R × R . This yields a functional

haracterization of P ∗. 

roposition 1. A necessary and sufficient condition for P ∗ to solve 

he inner minimization in (34) is that 

 

∂ 2 
θ

p ∗(x, θ ) 

p ∗(x, θ ) 
−

(
∂ θ p ∗(x, θ ) 

p ∗(x, θ ) 

)2 

−
(

f (x ) − θ

λ

)2 

= c (39) 

or some measurable function f and some c ∈ R . 

From Proposition 1 an expression for the minimum in (32) in 

erms of P ∗ and the free parameter c can be obtained. 

roposition 2. For any λ > 0 it holds that 

nf 
f,P 

L λ( f, P ) = λ2 
(

2 

∫ 
∂ 2 θ p ∗(X, �) d x d θ − c 

)
, (40) 

here P ∗ satisfies the condition in (39) and f needs to be chosen such 

hat P ∗ exists, but is otherwise arbitrary. 
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roof. Taking the expected value with respect to P ∗ on the left- 

nd right-hand side of (39) immediately yields the statement in 

roposition 2 . Note that existence of P ∗ means that the estimator 

f is chosen such that there exists a density p ∗
θ

that solves (39) . �

In order to eliminate the dependence on P ∗ and c, it suffices to 

nd a distribution that satisfies the condition in (39) . In the next 

roposition it is shown that any distribution with a Gaussian pos- 

erior does the trick. 

roposition 3. For any λ > 0 and any distribution P ∗ such that 

 

∗
�| X = N ( f ∗(X ) , λ) , (41) 

here 

f ∗(X ) = E P ∗
�| X [�] , (42) 

s optimal in the sense of (39) . 

roof. For P ∗ as in Proposition 3 , the density p ∗ is of the form 

p ∗(x, θ ) = 

1 √ 

2 πλ
e −

( f ∗ (x ) −θ ) 2 

2 λ p X (x ) , (43) 

here, the right hand side is a valid density by definition of f ∗(X )

n (42) . Consequently, it holds that 

∂ θ p ∗(x, θ ) 

p ∗(x, θ ) 
= 

f ∗(x ) − θ

λ
(44) 

nd 

∂ 2 
θ

p ∗(x, θ ) 

p ∗(x, θ ) 
= 

1 

λ
+ 

(
f ∗(x ) − θ

λ

)2 

. (45) 

herefore, 

 

∂ 2 
θ

p ∗(x, θ ) 

p ∗(x, θ ) 
−

(
∂ θ p ∗(x, θ ) 

p ∗(x, θ ) 

)2 

−
(

f ∗(x ) − θ

λ

)2 

= 

2 

λ
, (46) 

hich is the optimality condition in (39) with c = 

2 
λ

. �

With Proposition 3 at hand, the result in Proposition 2 can be 

ade explicit. 

orollary 1. For any λ > 0 it holds that 

nf 
f,P 

L λ( f, P ) = 2 λ. (47) 

roof. For P ∗ as in Proposition 3 , it holds that 

 

∂ 2 θ p ∗(X, �) d x d θ = 

1 

λ
+ 

∫ [ ∫ (
f ∗(x ) − θ

λ

)2 

p ∗�| X (θ )d θ

] 

p X (x )d x 

(48) 

= 

1 

λ
+ 

∫ 
1 

λ
p X (x ) d x = 

2 

λ
. (49) 

ith c = 

2 
λ

(compare the proof of Proposition 3 ), it follows from 

roposition 2 that 

nf 
f,P 

L λ( f, P ) = λ2 
(

4 

λ
− 2 

λ

)
= 2 λ, (50) 

hich is the statement in the corollary. �

Having solved the unconstrained problem (32) , the solution of 

he constrained problem (31) falls into place. 

orollary 2 (Bayesian Cramér–Rao Bound) . For any γ > 0 it holds 

hat 

inf 
 f,P : I(P) ≤γ } 

mse ( f, P ) = 

1 

γ
. (51) 
(

4 
roof. For P ∗ and f ∗ as in Proposition 3 it holds that 

se ( f, P ∗) = λ (52) 

nd 

(P ) = E P X 
[
I(P �| X ) 

]
= 

1 

λ
. (53) 

ence, the MSE is minimized by choosing λ to be the smallest fea- 

ible value, which is λ = 1 /γ . This completes the proof. �

.2. Proof of the classic Cramér–Rao bound 

Consider the following optimization problem: 

inf 
f, P) ∈U 

mse ( f, P θ ) s.t. I(P θ ) ≤ γθ . (54) 

his problem formulation has to be read in the sense that the MSE 

nd the Fisher information are both evaluated at a particular pa- 

ameter value θ, whereas the constraint that f (X ) is unbiased ap- 

lies to the whole family of distributions P . In words, determine 

he minimal MSE of an unbiased estimator for θ under the con- 

traint that the Fisher information of the distribution P θ is bounded 

y γθ . 

Now, consider the auxiliary problem 

inf 
f, P) ∈U 

L λθ
( f, P θ ) , (55) 

here λθ is a positive scalar and 

 λθ
( f, P θ ) : = mse ( f, P θ ) + λ2 

θI(P θ ) . (56) 

ere, λ is allowed to depend on θ since both the MSE and the 

isher information in (56) depend on θ . That is, the weighting of 

oth terms is allowed to vary depending on the parameter value 

t which they are evaluated. The minimization in (55) can equiva- 

ently be written as 

nf 
f 

{
inf 

{P : ( f, P) ∈U} 
L λθ

( f, P θ ) 

}
, (57) 

here the inner minimization is performed over all distributions 

 θ under which f (X ) is an unbiased estimator for θ . By (18) and 

28) , the Gâteaux derivative of L λθ
in the direction Q θ is given by 

 Q θ L λ( f, P θ ) = ∂ Q θ mse ( f, P θ ) + λ2 ∂ Q θ I(P θ ) (58) 

= 2 λ2 

∫ 
s θ,λ(x ) ∂ θ�q θ p θ (x ) d x 

+ 

∫ 
r θ,λ(x ) �q θ p θ (x ) d x, (59) 

here 

 θ,λ(x ) = 

∂ θ p θ (x ) 

p θ (x ) 
(60) 

nd 

 θ,λ = ( f (x ) − θ ) 2 −
(

λ
∂ θ p θ (x ) 

p θ (x ) 

)2 

. (61) 

ince the MSE is linear in P θ and the Fisher information is convex 

n P θ , L λ is also convex in P θ . Hence, a necessary and sufficient

ondition for a distribution P ∗
θ

to solve the inner minimization in 

57) is that 

 Q θ L λ( f, P ∗θ ) ≥ 0 ∀ Q θ ∈ { P θ : ( f, P θ ) ∈ U} . (62)

n the Bayesian case discussed before, this condition implied that 

he integrands need to be constant. Here, however, it follows from 

1), (14) and the assumption that f (X ) is unbiased that functions 
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f the form a θ
(

f (x ) − θ
)

+ b θ , where a θ , b θ ∈ R are scalars that are

llowed to depend on θ, are “quasi-constant” in the sense that 
 [

a θ
(

f (x ) − θ
)

+ b θ
]

q θ (x ) d x = b θ (63) 

nd 

 [
a θ

(
f (x ) − θ

)
+ b θ

]
∂ θ q θ (x ) d x = a θ (64) 

or all Q θ such that ( f, Q ) ∈ U , where Q = { Q θ } θ∈ R . This yields a

unctional characterization of the distributions that solve the inner 

roblem in (57) . 

roposition 4. A necessary and sufficient condition for P ∗
θ

to solve 

he inner minimization in (57) is that 

∂ θ p ∗
θ
(x ) 

p ∗
θ
(x ) 

= 

f (x ) − θ

λθ
+ b θ (65) 

or some b θ ∈ R . 

roof. For the optimality condition in (62) to be satisfied, the 

unction s θ,λ and r θ,λ both need to be “quasi-constant” in the 

bove sense, that is, it needs to hold that 

∂ θ p ∗
θ
(x ) 

p ∗
θ
(x ) 

= a θ
(

f (x ) − θ
)

+ b θ (66) 

∂ θ p ∗
θ
(x ) 

p ∗
θ
(x ) 

)2 

−
(

f (x ) − θ

λθ

)2 

= c θ
(

f (x ) − θ
)

+ d θ (67) 

or some constants a θ , b θ , c θ , d θ ∈ R . Substituting (66) into

67) and comparing coefficients yields that 

 θλθ = 1 , d θ = b 2 θ , c θ = 2 a θ b θ , (68) 

o that (66) and (67) become 

∂ θ p ∗
θ
(x ) 

p ∗
θ
(x ) 

= 

f (x ) − θ

λθ
+ b θ (69) 

∂ θ p ∗
θ
(x ) 

p ∗
θ
(x ) 

)2 

= 

(
f (x ) − θ

λθ
+ b θ

)2 

, (70) 

here the first condition clearly implies the second. Hence, P ∗
θ

in 

roposition 4 satisfies the optimality condition in (62) with equal- 

ty, meaning that it is a stationary point of L λ. From the convexity 

f L λ it immediately follows that P ∗
θ

is a global minimum, which 

oncludes the proof. �

From the functional characterization of P ∗
θ
, one can obtain a so- 

ution of (55) in terms of λθ and the free parameter b θ . 

roposition 5. For any λθ > 0 it holds that 

inf 
f, P) ∈U 

L λ( f, P θ ) = L λ( f, P ∗θ ) = λθ (2 − b θ ) , (71)

here P ∗ satisfies the condition in (65) and f needs to be chosen such 

hat P ∗
θ

exists and f (X ) is unbiased, but is otherwise arbitrary. 

roof. For P ∗
θ

as in (65) it holds that 

se ( f, P ∗θ ) = 

∫ 
( f (x ) − θ ) 2 p ∗θ (x ) d x (72) 

= λθ

∫ (
f (x ) − θ

)(∂ θ p ∗
θ
(x ) 

p ∗
θ
(x ) 

− b θ

)
p ∗θ (x )d x (73) 

= λθ

∫ (
f (x ) − θ

)
∂ θ p ∗θ (x )d x − λθ

∫ 
b θ p ∗θ (x ) d x (74) 

= λθ (1 − b θ ) (75) 
f

5 
nd 

2 I(P ∗θ ) = 

∫ (
λ
∂ θ p θ (x ) 

p θ (x ) 

)2 

p θ (x ) d x (76) 

= λθ

∫ ((
f (x ) − θ

)
+ λθ b θ

)
∂ θ p ∗θ (x ) d x (77) 

= λθ . (78) 

he statement in Proposition 5 follows. �

In order to eliminate the dependence on the free parameter b θ , 

t suffices to find any distribution that satisfies the condition in 

roposition 4 . Again, a Gaussian distribution is a natural candidate. 

roposition 6. For any λ > 0 , the distribution 

 

∗
θ = N (θ, λθ ) , (79) 

n combination with the estimator 

f ∗(x ) = x, (80) 

s optimal in the sense of (65) . 

roof. Clearly, f ∗(X ) is an unbiased estimator under P ∗
θ

so that 

f ∗, P 

∗) ∈ U . A straightforward calculation yields 

∂ θ p ∗
θ
(x ) 

p ∗
θ
(x ) 

= λθ ∂ θ

(
1 √ 

2 πλ
e 

− (x −θ ) 2 

2 λθ

)
1 

p ∗
θ
(x ) 

(81) 

= 

x − θ

λθ

1 √ 

2 πλθ

e 
− (x −θ ) 2 

2 λθ
1 

p ∗
θ
(x ) 

(82) 

= 

f ∗(x ) − θ

λθ
, (83) 

hich is the optimality condition in (65) for b θ = 0 . �

With Proposition 6 at hand, the result in Proposition 5 can be 

ade explicit. 

orollary 3. For any λ > 0 it holds that 

inf 
f,P θ ) ∈U 

L λθ
( f, P θ ) = 2 λθ . (84) 

roof. For P ∗
θ

as in Proposition 6 it holds that b θ = 0 (compare

he proof of Proposition 6 ). The corollary then follows immediately 

rom Proposition 5 . �

Having solved the unconstrained problem (55) , the solution of 

he constrained problem (54) falls into place. 

orollary 4 (Classic Cramér–Rao Bound) . For any γθ > 0 it holds 

hat 

inf 
( f, P) ∈U 
(P θ ) ≤γθ

mse ( f, P θ ) = 

1 

γθ
. (85) 

roof. For f ∗ and P ∗
θ

as in Proposition 6 it holds that (compare the 

roof of Proposition 5 ) 

se ( f ∗, P ∗θ ) = λθ (86) 

nd 

(P ∗θ ) = 

1 

λθ
. (87) 

ence, the MSE is minimized by choosing λθ to be the smallest 
easible value, which is λθ = 1 /γθ . This completes the proof. �
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. Discussion 

In this section, some noteworthy aspects of the presented 

roofs are discussed and a brief outline is given of how they can be

eneralized to recover the vector versions of the CRB. The section 

oncludes with an outlook on how the variational proof could pro- 

ide a template for the derivation of novel bounds on the accuracy 

f estimators. 

.1. Remarks on the variational proofs 

In light of the variational proof, the classic CRB is obtained as 

ollows: Given the Fisher information of the true channel I(P θ ) , 

ne searches for the most favorable channel within a Fisher ball 

f radius I(P θ ) . The variance of the best unbiased estimator when 

is generated by transmitting θ over this optimal channel then 

rovides a lower bound on the variance of any unbiased estimator 

nd any channel within the Fisher information ball. The set of opti- 

al channels is characterized by the differential Eq. (65) . Since the 

dditive Gaussian noise (AGN) channel is optimal in this sense, an 

ntuitive interpretation of the classic CRB is as follows: If all that 

s known about an estimation problem is the Fisher information of 

he channel P θ and that an unbiased estimator is used, then the 

est scenario one can hope for is that X is generated from θ by 

dding Gaussian noise with variance 1 / I(P θ ) . 

It is well-known that the AGN channel is not the only channel 

hat attains the CRB. A well-known necessary and sufficient condi- 

ion for P θ to attain the CRB is that the score function is affine in

he estimation error, that is, 

∂ θ p θ (x ) 

p θ (x ) 
= αθ

(
f (x ) − θ

)
. (88) 

his condition is usually obtained by identifying the cases in which 

he CSI holds with equality. It is also implied by the variational 

roof: First, (65) establishes that the score function is an affine 

unction of the estimation error with offset b θ . Howe ver, from the 

esults in Proposition 5 and Corollary 1 , it follows that for b θ > 0 ,

he variance of f (X ) would be below the CRB, and for b θ < 0 it

ould exceed the CRB, while simultaneous satisfying a sufficient 

ondition for it to hold with equality. Consequently, it needs to 

old that b θ = 0 , which recovers (88) . 

The Bayesian CRB can be interpreted in close analogy to the 

lassic CRB. It corresponds to the MSE of the best estimator when 

and � are generated by an optimal joint distribution P ∗, where 

he set of optimal distributions is characterized by the differential 

q. (39) . Since any distribution with a Gaussian posterior is opti- 

al in this sense, an intuitive interpretation of the Bayesian CRB is 

s follows: If all that is known about a Bayesian estimation prob- 

em is the Fisher information of the joint distribution P, than the 

est scenario one can hope for is that �| X follows a Gaussian dis- 

ribution. In this sense, the Bayesian CRB can be seen as a reversed 

ersion of the classic CRB. While the latter bounds the variance of 

n estimator by assuming the channel , P X| �= θ , to be of a specific

ype, the former bounds the MSE of an estimator by assuming the 

osterior , P �| X= x , to be of a specific type. 

.2. Extension to vector parameters 

The vector case is deliberately excluded in Section 3 since it 

akes the proofs considerably more technical, running the risk of 

bscuring the underlying basic idea. However, in order to empha- 

ize some aspects of the discussion in the previous subsection, it 

s useful to sketch a brief outline of how the proof extends to the 

ector case. 

Consider the classic CRB, where θ ∈ R 

K , K > 1 , is a determinis-

ic but unknown parameter, X is a random variable with distribu- 
6 
ion P θ, and f ( X ) is constrained to be unbiased. First, the function 

 λθ
in (56) needs to be redefined as 

 �θ
( f , P θ ) = w 

T 
(
MSE ( f , P θ ) + �T 

θI (P θ ) �θ

)
w , (89)

here MSE and I denote the MSE (covariance) matrix and the 

isher information matrix, respectively, and f is a vector-valued 

easurable function. The matrix �θ ∈ R 

K×K is positive definite and 

he vector w ∈ R 

K is arbitrary. It can be shown that L �θ
is convex 

n P θ and that its optimality condition is of the form (65) , where

he derivative with respect to θ is replaced by the gradient, and 

he devision by λθ is replaced by a matrix multiplication with �−1 
θ . 

oreover, this optimality condition is independent of w and satis- 

ed by a Gaussian distribution with mean vector θ and covariance 

atrix �θ . In analogy to Proposition 5 , this leads to 

inf 
f ,P θ

L �θ
( f , P θ ) = L �θ

( f ∗, P ∗θ ) = 2 w 

T �w > 0 (90)

nd 

SE ( f ∗, P ∗θ ) = � = I (P ∗θ ) −1 . (91) 

rom (90) and (91) , it can easily be shown that 

SE ( f , P θ ) � I (P θ ) 
−1 , (92) 

or all ( f , P θ ) ∈ U , which is the classic vector CRB. 

The vector version of the Bayesian CRB can be derived along 

he same lines. The alternative form of the Gâteaux derivative of 

he Fisher information in (26) , which is required for the proof, can 

e obtained by means of the divergence theorem [16] . 

An interesting aspect of the CRB can be highlighted at this 

oint. From a variational point of view, the classic CRB is obtained 

y minimizing over all feasible conditional distributions (chan- 

els) P θ , i.e., over all feasible ways of observing θ . Analogously, the 

ayesian CRB is obtained by minimizing over all feasible ways of 

enerating and observing θ . In both cases it is not necessary to as- 

ume that x and θ are defined on the same space. That is, the 

RB also holds for channels that map θ to much higher- or lower- 

imensional spaces. For example, consider the case where a scalar 

arameter θ is observed via N parallel channels with scalar out- 

uts, that is, θ is estimated from the vector (X 1 , . . . , X N ) . The clas-

ic CRB states that, irrespective of how many and what kind of 

hannels are used, the resulting estimator cannot be better than 

ne that is based on a single scalar AGN channel. The reason for 

his is that the Fisher information constraint that needs to holds 

or the single AGN channel also applies to the combined Fisher 

nformation of the N channels in this example. In other words, 

he increase in Fisher information when using multiple channels 

s guaranteed to be at least large enough to nullify the reduction 

n MSE. 

The same arguments apply to the case when multiple inde- 

endent and identically distributed (IID) observations are observed 

ia the same channel, which is statistically equivalent to the case 

here N observations are taken via N identical parallel channels. 

or this case, as discussed above, the CRB can again be obtained by 

onstraining the joint distribution of (X 1 , . . . , X N ) , which reduces to 

 product distribution under the IID assumption. 

While these properties of the CRB are well-known and do by 

o means require the variational apparatus used in the previous 

ection, following the variational path arguably forces one to think 

bout interpretations and implications of the CRB in a more ex- 

licit manner. 

.3. Extension to a general class of bounds 

A natural generalization of the optimization problems in 

54) and (31) is to consider problems of the form 

nf 
f,P 

E P 

[
J( f (X ) , �) 

]
s.t. E P 

[
F{ p(X, �) } ] ≤ γ , (93) 
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[

[

[

[

[

[

r 

nf 
f, P 

E P θ

[
J θ ( f (X )) 

]
s.t. E P θ

[
F{ p θ (X ) } ] ≤ γθ , (94) 

here J is suitable convex cost function and F is a convex operator 

cting on the density p θ or p. As demonstrated in the previous 

ection, the two variants of the CRB are obtained from this general 

etting by choosing 

 θ (s ) = J(s, θ ) = (s − θ ) 2 (95) 

nd 

{•} = 

(
∂ θ log (•) 

)2 
. (96) 

learly, different choices for J and F lead to different bounds. In 

5,6] , for example, MSE bounds are derived under the assump- 

ion that the input distribution or the joint input-output distribu- 

ion are close to a Gaussian reference distribution in terms of the 

ullback–Leibler divergence (relative entropy). This corresponds to 

hoosing J as in (95) and 

{•} = log 
•
p 0 

, (97) 

ith p 0 denoting the density of the reference distributions. In fact, 

he work presented in this paper was partly motivated by the ob- 

ervation that the bound in [5] , although derived from what ap- 

ears to be a different starting point, is reminiscent of the CRB 

n many aspects. First results towards Cramér-Rao type bounds on 

regman risks based on Eqn 93 will be presented in a forthcoming 

ublication [ 17 ]. 

With this paper, we hope to spark a more in-depth investi- 

ation of problems of the form (94) and (93) , which we believe 

re likely to provide novel bounds on estimation risks and to con- 

ribute to a more unified treatment of existing results. 
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