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1. Introduction

The Cramér-Rao bound (CRB) is one of the most well-known
lower bounds on the mean square error (MSE) of parametric
estimators and has countless applications in statistics and related
areas. It comes in two varieties, namely, the classic CRB [1,2],
which provides a lower bound on the variance of an unbiased
estimator, and the Bayesian CRB [3] (also known as the posterior
CRB or van Trees inequality), which provides a lower bound on
the expected MSE of an arbitrary estimator under a given prior.

Proofs for either variety of the CRB can be found in standard
textbooks. Most of these proofs are based on the Cauchy-Schwarz
inequality (CSI), the covariance inequality, or the Hammersley—
Chapman-Robbins bound (HCRB). In contrast, the proof presented
here is based on a variational approach and does not make use of
other inequalities or bounds. But why is this alternative proof of
interest, in particular, in a signal processing context?

First, we would like to emphasize that the aim of this paper
is not to re-derive all known properties of the CRB and the es-
timators that attain it. Also, we do not want to claim that the
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presented proof is particularly elegant or in any way “superior” to
the standard proofs given in textbooks. On the contrary, for many
purposes, a proof via the CSI is more concise and transparent.

What we do want to show with this paper is the following:
First, both the classic and the Bayesian CRB can be interpreted as
solutions of an optimization problem, where the MSE is minimized
with respect to both an estimator and a distribution, and the latter
is subject to a constraint on its Fisher information. Based on this
result, the second goal is to highlight that by varying the objective
function (MSE) and/or the penalty term (Fisher information) a
new family of bounds of the Cramér-Rao type can be obtained. In
other words, the variational proof makes it possible to identify a
family of bounds that otherwise cannot easily be identified as a
generalization of the CRB.

Let us elaborate some more on the latter aspect. Existing
generalizations of the CRB are typically obtained by using gen-
eralized versions of the CSI, such as Hoélder’s inequality, or by
choosing different functions to which these inequalities are ap-
plied. Prominent examples of this type of bounds are the Bayesian
Bhattacharyya bound, and the Bobrovsky-Zakai bound [4]. The
generalization suggested by the variational proof, namely to re-
place the MSE or the Fisher information with other functions, is
conceptually very different, and provides a new perspective on
Bayesian and non-Bayesian bounds. Two novel bounds based on
this perspective have already been studied in [5] and [6], and have
been shown to be tighter than the CRB in some scenarios. This
improvement is achieved by replacing the Fisher information with
the Kullback-Leibler divergence (relative entropy), which is less
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sensitive to strong fluctuations in the density function. A more for-
mal discussion of the proposed generalization is given in Section 4.

Note that establishing bounds on the accuracy of estimators
by solving (constrained) optimization problems is not a novel
approach in itself. For example, minimizing the MSE under un-
biasedness constraints on the estimator leads to the well-known
Barankin bound. Different approximations of the latter give rise to,
among others, the Bhattacharyya bound, the HCRB, the McAulay-
Seidman bound, and the classic CRB; see [7] and the references
therein for more details. For the Bayesian case, a similar opti-
mization problem is studied [8], where instead of the bias, the
squared estimation error is subject to a constraint. In [9] and [10],
a unifying framework for both Bayesian and non-Bayesian bounds
is proposed, in which many existing results can be obtained by
studying different integral transformations of functions of the
likelihood-ratio type.

The most fundamental difference between this paper and the
ones cited above is that in the problem studied here the minimum
is taken jointly over the estimator and the distribution, with a con-
straint on the latter. By contrast, in the vast majority of works, the
distribution is fixed, while the minimization is performed over the
estimator or over a free function that is introduced in order to in-
crease the degrees of freedom. Including the distribution in the
free variables makes it possible to construct bounds that are tai-
lored for certain properties of these distributions, such as having
a bounded Fisher information or a bounded relative entropy with
respect to some reference distribution. Of course, this approach is
not the only way of incorporating prior knowledge of distributional
properties into a bound. However, as mentioned before, it provides
a systematic template and an intuitive interpretation that we con-
jecture to be conducive to future works on lower bounds in signal
processing and other areas.

The paper is organized as follows: Some preliminary results
that are used in the proofs are introduced in Section 2. In
Section 3, a special case of the CRB is proven, namely, the case
where a real scalar parameter is estimated from a real scalar obser-
vation. This case is the simplest and most instructive, in the sense
that a variational proof of the corresponding CRB can be given in a
perspicuous manner, without obscuring the main ideas by techni-
cal details. The result is then briefly discussed in Section 4, where
also the outline of a variational proof of the CRB for vector param-
eters is given, and a possible generalization to obtain families of
CRB-like bounds is proposed.

A note on notation: Random variables are denoted by upper
case letters X and their realizations by the corresponding lower
case letters x. Analogously, probability distributions are denoted by
upper case letters P and their densities by the corresponding lower
case letters p. The normal distribution with mean p and variance
02 is denoted by A (1, 52). The expected value of a random vari-
able X under distribution P is written as Ep[X]. The first and second
(partial) derivatives of a function f with respect to the argument
x are written as dxf(x) and 02f(x), respectively. The difference
of two functions f(x) and g(x) is written as f(x) — g(x) = A 4(x).
Vectors and matrices are indicated by boldface font. For matrices X
and Y the notation X <Y is used to indicate that Y — X is positive
semidefinite. As is customary, the real line is denoted by R and the
corresponding Borel o -algebra by B. All integrals in the paper are
taken over either R or R x R, and the domains of integration are
omitted in the notation when they are clear from the context.

2. Preliminaries

Let X be a random variable with values in (R, B). For the clas-
sic CRB, X is assumed to be distributed according to a distribu-
tion Py where 6 € R is a deterministic but unknown parameter.
The family of distributions {P,},.r is denoted by P. Moreover, it
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is assumed that all Py € P are supported on R, that is, py(x) > 0
for all xR, and that dypy(x) is well-defined and finite for all
X € R; compare (5.12) in [11]. For the Bayesian Cramér-Rao bound,
(X, ®) is assumed to be a pair of random variables with values in
(R, B) x (R, B) and joint distribution P. The marginal and condi-
tional distributions are denoted by Pg, Px, Py, and Pgx. Note that
in the Bayesian scenario Py denotes the distribution of ®, whereas
in the non-Bayesian scenario P, denotes a particular distribution
from the family 7. Finally, it is assumed that differentiation and
integration can be interchanged, that is,

% [ pocodx= [9,pyGodx=0 (1)
and
89/p(x,0)dx:/ng(xﬁ)dx:o 2)

for all 6 € R. See, for example, [12, Theorem 23] for conditions un-
der which (1) and (2) hold.
The classic Fisher information is defined as

Z(B,) = Ep,[ (3 108 ps ()’ (3)
2 2
T %peCO\T [ (Bepe )
= E"H[( Ps (%) ) =[S @
The Bayesian Fisher information is analogously defined as
Z(P) = Ep| (9 log px. ©))’ (5)
o [(pX ©)Y’
- E”[( p(X. ©) ) ] (©)
Cr (%epx0))
_/ gy dxdd. (7)
Note that Z(P) can equivalently be written as
Z(P) = Ep [Z(Pop) ] (8)
or
Z(P) = Ep, [Z(Pxj0) ] + Z(Po). (9)

Using the arguments in [13], it can be shown that both the classic
and Bayesian Fisher information are convex functions of P, and P,
respectively.

Any measurable function f from R to R defines an estimator for
6 by letting 0= f(x). The MSE of this estimator under the distri-
bution P is denoted by

mse(f, P) = Ep[ (f(X) — ©)?]. (10)
Analogously, under Py, the MSE is defined as

mse(f. By) = Ep, [ (fX) - 6)2] (1)
If f is unbiased, that is, if it holds that

B [f00] =6 (12)

for all 8 € R, the MSE of an estimator coincides with its variance.
The set of pairs (f, P) for which f is unbiased is denoted by

u={(f.P):Ep[fX)] =6 VP eP}. (13)

A well-known property of unbiased estimators is that, under the
assumption that (1) holds,

/(f(x) —0) dppp () dx = 1, (14)
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which can be shown by taking the derivative with respect to 6 of
Ep [f(X) - 0] and interchanging differentiation and integration.

For the proofs presented in the next sections, the Gateaux
derivatives [14] of the Fisher information and the MSE are required.
For the classic Fisher information, the Gateaux derivative in the di-
rection of a distribution Qy can be shown to be

(- )R +£Qy) ~I(R)

%) = tlﬁﬁo P (15)
— lim I(Py +eAq,p,) —Z(Pp) n
£-0 <
= 2/ 8;5280 09 Ag,p, (x) dx )
2
_/ (8;5?953()) Ag,p, (x) dx. as)

Analogously, for the Bayesian Fisher information the Gateaux
derivative in the direction of a joint distribution Q can be shown
to be

Z(P+ SAQ[J) —-Z(P)

0oZ(P) = lim - (19)
o [ %p(x,0)
- 2f SR 0 gp(x. ) dxdf (20)
dpp(x,0) 2
0 )
_/(M> Agp(x. 0) dxdo. 1)
As shown in [15], integration by parts and the fact that
d9po (%) o 0gp(x,0) _
A Tppy er =M Tigy A0 =0 (22)

for all 6 € R whenever 9,Z(P) and g, Z(Fy) are finite can be used
to “shift” the derivatives of Ag,p, and Agp from the first terms of
(18) and (21) to the second terms so that

82
aQOI(PG) = *2/ %ﬁ;{) Aqua (x)dx (23)
8900 \”
+ f ( e ) Agypy (%) dX. (24)
and
2
9 I(P) = _2/ % Agp(x,0)dxdo (25)
3pp(x.0) "
+/ (M) Agp(x. 0) dxd6. (26)

Both versions of the Gateaux derivative of the Fisher information
are used in what follows.

The Gateaux derivative of the MSE in the direction Qg or Q is
given by
mse(f, Py +&Aq,p,) —mse(f, Py)

o, mse(f,Pp) = lim . (27)
- / (FX) = 0)2 Ag,p, (%) dx. (28)

and
dg msed(, ) = lim MoEU-PE E0ar) Z el ) (29)
- [(f(x) —0)2Agp(x, 0) dxde, (30)

respectively.
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3. Main results

In this section, a special case of the classic and the Bayesian
CRB is proven using variational arguments. The proofs are inten-
tionally stated in close analogy to each other in order to high-
light that both versions of the CRB follow from the same optimiza-
tion problem with different definitions of Fisher information. The
Bayesian CRB is presented first since its proof is conceptually sim-
pler.

3.1. Proof of the Bayesian Cramér-Rao Bound
Consider the following optimization problem:
ifnPf mse(f,P) st. Z(P)<y. (31)

In words, determine the minimal MSE of any estimator for ® un-
der the constraint that the Bayesian Fisher information of the joint
distribution of X and ® is bounded by y.

Now, consider the auxiliary problem

inf L P 2
inf 5 (f.P), (32)
where A is a positive scalar and

L, (f, P) := mse(f, P) + A2Z(P). (33)
The minimization in (32) can equivalently be written as

inf {ngf L,(f,P) } (34)

By (26) and (30), the Gateaux derivative of L, in the direction Q is
given by

9oLy (f, P) = g mse(f, P) + A20oZ(P) (35)
- / 1y (x.0) Agp(x, 6) 6 dx. (36)
where
_ 2 205p(x.60) ., (pp(x.6) 2
X 0) = (f(0-0) 22 = ESs e 2 SRS ) (67)

Since the MSE is linear in P and the Fisher information is convex in
P, L, is also convex in P. Hence, a necessary and sufficient condi-
tion for a distribution P* to solve the inner minimization in (34) is
that

AL, (f,P*) =0 VQ. (38)

Since Q can be chosen arbitrarily, the condition in (38) can only
be satisfied if r; is constant over R x R. This yields a functional
characterization of P*.

Proposition 1. A necessary and sufficient condition for P* to solve
the inner minimization in (34) is that

Rpx.0)  (dpx0)\ [(fx)—0)
2w 0) ‘( P 0. 0) ) ‘(A) = 39

for some measurable function f and some c € R.

From Proposition 1 an expression for the minimum in (32) in
terms of P* and the free parameter ¢ can be obtained.

Proposition 2. For any A > 0 it holds that
inf L, (/,P) :k2<2/8§p*(x, @)dxde—c), (40)

where P* satisfies the condition in (39) and f needs to be chosen such
that P* exists, but is otherwise arbitrary.
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Proof. Taking the expected value with respect to P* on the left-
and right-hand side of (39) immediately yields the statement in
Proposition 2. Note that existence of P* means that the estimator
f is chosen such that there exists a density pj that solves (39). O

In order to eliminate the dependence on P* and c, it suffices to
find a distribution that satisfies the condition in (39). In the next
proposition it is shown that any distribution with a Gaussian pos-
terior does the trick.

Proposition 3. For any A > 0 and any distribution P* such that

Po =N (f*(X). 1), (41)
where
F1(X) = Ep, [O], (42)

ex

is optimal in the sense of (39).

Proof. For P* as in Proposition 3, the density p* is of the form
1 (FFx)-0)
*X,0) = ——e" =
P V21 A
where, the right hand side is a valid density by definition of f*(X)
in (42). Consequently, it holds that

dpp*(x.0)  fr(x)—0

px(x), (43)

p*(x,@) - A (44)
and

Rorxo) 1 (f0-0)
p*(x,e):ﬁ(x)' (43)
Therefore,

R0 [(dp .0\ [(F-0\ 2
20 ‘( Px.0) ) ‘< x > A

which is the optimality condition in (39) with ¢ = % O

With Proposition 3 at hand, the result in Proposition 2 can be
made explicit.

Corollary 1. For any A > 0 it holds that

Proof. For P* as in Proposition 3, it holds that

32" (X, ©) dxdo = 1 F®=0\J oy d
/gp(, ) dx :XJFf/T Pox(0)do | px (x)dx

(48)

1 1 2
:X+/XPX(X)CIXZX' (49)

With ¢ = % (compare the proof of Proposition 3), it follows from

Proposition 2 that
4 2

which is the statement in the corollary. O

Having solved the unconstrained problem (32), the solution of
the constrained problem (31) falls into place.

Corollary 2 (Bayesian Cramér-Rao Bound). For any y > 0 it holds
that

1
inf mse(f,P) = —. 51
{f.P:I(P)<y} (f ) Y ( )
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Proof. For P* and f* as in Proposition 3 it holds that

mse(f,P*) = A (52)
and
I(P) = E [Z(Poy)] = 5. (53)

Hence, the MSE is minimized by choosing A to be the smallest fea-
sible value, which is A = 1/y. This completes the proof. O

3.2. Proof of the classic Cramér-Rao bound

Consider the following optimization problem:

inf mse(f,B) st Z(P) <yp. (54)
(f.P)eu

This problem formulation has to be read in the sense that the MSE
and the Fisher information are both evaluated at a particular pa-
rameter value 6, whereas the constraint that f(X) is unbiased ap-
plies to the whole family of distributions P. In words, determine
the minimal MSE of an unbiased estimator for & under the con-
straint that the Fisher information of the distribution P, is bounded
by vs.
Now, consider the auxiliary problem

inf L P
(f}?l;l)el/{ )\g(fv 9)7 (55)

where Ay is a positive scalar and

Ly, (f.Py) :== mse(f.Py) + A3Z(Py). (56)
Here, A is allowed to depend on 6 since both the MSE and the
Fisher information in (56) depend on 6. That is, the weighting of
both terms is allowed to vary depending on the parameter value
at which they are evaluated. The minimization in (55) can equiva-
lently be written as

f P:(fP)eU

inf {{ inf L, f, Pg)}, (57)

where the inner minimization is performed over all distributions
Py under which f(X) is an unbiased estimator for 6. By (18) and
(28), the Gateaux derivative of L, 0 in the direction Qg is given by

BQBL,\(f,PQ):BQH mse(f,P9)+A23%I(P9) (58)

— 22 / 59.0.(0) 85 Agy p, (1) dx

+ / Tg.5. (%) Agyp, (%) dx, (59)
where
g Dy (X)
S92 (X) = 1o () (60)
and
9Py %)\’
oy = (f(x)—6) - (A e ) : (61)

Since the MSE is linear in Py and the Fisher information is convex
in Py, L, is also convex in Py. Hence, a necessary and sufficient
condition for a distribution P} to solve the inner minimization in
(57) is that

0o, L (f.Py) =0 VQye{Py: (f.P) cU}. (62)

In the Bayesian case discussed before, this condition implied that
the integrands need to be constant. Here, however, it follows from
(1), (14) and the assumption that f(X) is unbiased that functions
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of the form ay (f(x) - 9) + by, where ay, by € R are scalars that are
allowed to depend on 6, are “quasi-constant” in the sense that

[ an(r ) =) + ba] s ) dx = by (63)
and
[ Laa(r ) = 6) + b 8000 () dx = a (64)

for all Qg such that (f, Q) eu, where Q = {Qy}gcp. This yields a
functional characterization of the distributions that solve the inner
problem in (57).

Proposition 4. A necessary and sufficient condition for P; to solve
the inner minimization in (57) is that

B0 _ 00 -0
e ~ a T (©3)

for some by € R.

Proof. For the optimality condition in (62) to be satisfied, the
function sy, and ry, both need to be “quasi-constant” in the
above sense, that is, it needs to hold that

dppy(x)

pZ(X) —ae(f(X)—9)+b9 (66)
W0\ (f)—0)

( p; %) ) _<)»0> =C9(f(x)—0)+d9 (67)

for some constants ag,by,cy,dy € R. Substituting (66) into
(67) and comparing coefficients yields that

aphg =1, dg = b2, cy = 2ayby, (68)
so that (66) and (67) become
dpy(x)  f(x)—0
= b 69
P Ay TP (69)
%P0 \* _ (£ -0 +b 2 (70)
P (%) Ao °)

where the first condition clearly implies the second. Hence, Pj in
Proposition 4 satisfies the optimality condition in (62) with equal-
ity, meaning that it is a stationary point of L,. From the convexity
of L, it immediately follows that P is a global minimum, which
concludes the proof. O

From the functional characterization of P;, one can obtain a so-
lution of (55) in terms of Ay and the free parameter by.

Proposition 5. For any Ay > 0 it holds that

inf L, (f.Py) = L (f. Fy) = X9 (2 — by). (71)
(fP)eu

where P* satisfies the condition in (65) and f needs to be chosen such
that F; exists and f(X) is unbiased, but is otherwise arbitrary.

Proof. For P as in (65) it holds that

mse(f. P) = / (F(x) - 0)2p; (x) dx (72)
O pj; (%) .
. /(f(x) - 9)( o " be) pydx  (73)

= 3o [ (£ =) dopy (00dx— o [ by pj ) dx (74)

=Xg(1—by) (75)
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and
2
J2T(P) = / (x 8;’)5?3“) P (x) dx (76)
=20 [ ((£60 =)+ 2abo) 94 () (77)
= hg. (78)

The statement in Proposition 5 follows. O

In order to eliminate the dependence on the free parameter by,
it suffices to find any distribution that satisfies the condition in
Proposition 4. Again, a Gaussian distribution is a natural candidate.

Proposition 6. For any A > 0, the distribution

5 =N(0, As), (79)
in combination with the estimator
[ ) =x, (80)

is optimal in the sense of (65).

Proof. Clearly, f*(X) is an unbiased estimator under P} so that
(f*, P*) e U. A straightforward calculation yields

3P (%) 1 wor\ 1
=Xy 0 e 81
) 9( 7l )p;;(X) (81)
x—0 1 _wn? ]
= e M — (82)
)\0 A/ 27‘[)\9 pg (X)
_frx-0
- 55— (83)

which is the optimality condition in (65) for by =0. O

With Proposition 6 at hand, the result in Proposition 5 can be
made explicit.

Corollary 3. For any A > 0 it holds that

inf L L Py) =2Ag. 84
it L, (f. By) 0 (84)
Proof. For Pj as in Proposition 6 it holds that by =0 (compare
the proof of Proposition 6). The corollary then follows immediately
from Proposition 5. O

Having solved the unconstrained problem (55), the solution of
the constrained problem (54) falls into place.

Corollary 4 (Classic Cramér-Rao Bound). For any yy > 0 it holds
that

1
inf mse(f,P) = —. 85
o, (f.Rp) v (85)
1(Ry)<ve

Proof. For f* and P; as in Proposition 6 it holds that (compare the
proof of Proposition 5)

mse(f*, P}) = Ag (86)
and
I(P) = ;7 (87)

Hence, the MSE is minimized by choosing Ay to be the smallest
feasible value, which is Ay = 1/yy. This completes the proof. O
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4. Discussion

In this section, some noteworthy aspects of the presented
proofs are discussed and a brief outline is given of how they can be
generalized to recover the vector versions of the CRB. The section
concludes with an outlook on how the variational proof could pro-
vide a template for the derivation of novel bounds on the accuracy
of estimators.

4.1. Remarks on the variational proofs

In light of the variational proof, the classic CRB is obtained as
follows: Given the Fisher information of the true channel Z(Fp),
one searches for the most favorable channel within a Fisher ball
of radius Z(Py). The variance of the best unbiased estimator when
X is generated by transmitting 6 over this optimal channel then
provides a lower bound on the variance of any unbiased estimator
and any channel within the Fisher information ball. The set of opti-
mal channels is characterized by the differential Eq. (65). Since the
additive Gaussian noise (AGN) channel is optimal in this sense, an
intuitive interpretation of the classic CRB is as follows: If all that
is known about an estimation problem is the Fisher information of
the channel P, and that an unbiased estimator is used, then the
best scenario one can hope for is that X is generated from 6 by
adding Gaussian noise with variance 1/Z(Fy).

It is well-known that the AGN channel is not the only channel
that attains the CRB. A well-known necessary and sufficient condi-
tion for P, to attain the CRB is that the score function is affine in
the estimation error, that is,

g Po (X)
This condition is usually obtained by identifying the cases in which
the CSI holds with equality. It is also implied by the variational
proof: First, (65) establishes that the score function is an affine
function of the estimation error with offset by. However, from the
results in Proposition 5 and Corollary 1, it follows that for by > 0,
the variance of f(X) would be below the CRB, and for by < 0 it
would exceed the CRB, while simultaneous satisfying a sufficient
condition for it to hold with equality. Consequently, it needs to
hold that by = 0, which recovers (88).

The Bayesian CRB can be interpreted in close analogy to the
classic CRB. It corresponds to the MSE of the best estimator when
X and ©® are generated by an optimal joint distribution P*, where
the set of optimal distributions is characterized by the differential
Eq. (39). Since any distribution with a Gaussian posterior is opti-
mal in this sense, an intuitive interpretation of the Bayesian CRB is
as follows: If all that is known about a Bayesian estimation prob-
lem is the Fisher information of the joint distribution P, than the
best scenario one can hope for is that ®|X follows a Gaussian dis-
tribution. In this sense, the Bayesian CRB can be seen as a reversed
version of the classic CRB. While the latter bounds the variance of
an estimator by assuming the channel, Pxjg_g, to be of a specific
type, the former bounds the MSE of an estimator by assuming the
posterior, Pg|x_y. to be of a specific type.

4.2. Extension to vector parameters

The vector case is deliberately excluded in Section 3 since it
makes the proofs considerably more technical, running the risk of
obscuring the underlying basic idea. However, in order to empha-
size some aspects of the discussion in the previous subsection, it
is useful to sketch a brief outline of how the proof extends to the
vector case.

Consider the classic CRB, where # € RX, K > 1, is a determinis-
tic but unknown parameter, X is a random variable with distribu-
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tion P, and f(X) is constrained to be unbiased. First, the function
Lke in (56) needs to be redefined as

Ly, (f. Pp) = W' (MSE(f. Py) + ApZ(P)Ag)W. (89)

where MSE and Z denote the MSE (covariance) matrix and the
Fisher information matrix, respectively, and f is a vector-valued
measurable function. The matrix Ag € RK*K is positive definite and
the vector w e RX is arbitrary. It can be shown that L, , s convex
in Py and that its optimality condition is of the form (65), where
the derivative with respect to  is replaced by the gradient, and
the devision by A, is replaced by a matrix multiplication with A;l.
Moreover, this optimality condition is independent of w and satis-
fied by a Gaussian distribution with mean vector # and covariance
matrix Agy. In analogy to Proposition 5, this leads to

}rll)fLAo(f,P,,) =LA6(f*,P(;‘) =2wTAw >0 (90)
0

and

MSE(f*.P;) = A =Z(P;)~". (91)
From (90) and (91), it can easily be shown that

MSE(f.Py) < Z(Py)~". (92)

for all (f, Py) € U, which is the classic vector CRB.

The vector version of the Bayesian CRB can be derived along
the same lines. The alternative form of the Gateaux derivative of
the Fisher information in (26), which is required for the proof, can
be obtained by means of the divergence theorem [16].

An interesting aspect of the CRB can be highlighted at this
point. From a variational point of view, the classic CRB is obtained
by minimizing over all feasible conditional distributions (chan-
nels) Py, i.e., over all feasible ways of observing 6. Analogously, the
Bayesian CRB is obtained by minimizing over all feasible ways of
generating and observing 6. In both cases it is not necessary to as-
sume that x and 0 are defined on the same space. That is, the
CRB also holds for channels that map 6 to much higher- or lower-
dimensional spaces. For example, consider the case where a scalar
parameter 6 is observed via N parallel channels with scalar out-
puts, that is, 8 is estimated from the vector (Xi,..., Xy). The clas-
sic CRB states that, irrespective of how many and what kind of
channels are used, the resulting estimator cannot be better than
one that is based on a single scalar AGN channel. The reason for
this is that the Fisher information constraint that needs to holds
for the single AGN channel also applies to the combined Fisher
information of the N channels in this example. In other words,
the increase in Fisher information when using multiple channels
is guaranteed to be at least large enough to nullify the reduction
in MSE.

The same arguments apply to the case when multiple inde-
pendent and identically distributed (IID) observations are observed
via the same channel, which is statistically equivalent to the case
where N observations are taken via N identical parallel channels.
For this case, as discussed above, the CRB can again be obtained by
constraining the joint distribution of (Xi, ..., Xy), which reduces to
a product distribution under the IID assumption.

While these properties of the CRB are well-known and do by
no means require the variational apparatus used in the previous
section, following the variational path arguably forces one to think
about interpretations and implications of the CRB in a more ex-
plicit manner.

4.3. Extension to a general class of bounds

A natural generalization of the optimization problems in
(54) and (31) is to consider problems of the form

ifg{)pr[j(f(X),®)] st. Ep[F{pX.0)}] <. (93)
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or
1fnpf Ep,[Jo(FCX))] st Ep[F{pe(O)}] < vo. (94)

where ] is suitable convex cost function and F is a convex operator
acting on the density py or p. As demonstrated in the previous
section, the two variants of the CRB are obtained from this general
setting by choosing

Jo(s) =J(s.0) = (s —0)? (95)
and
Flo} = (9 log(s))”. (96)

Clearly, different choices for J and F lead to different bounds. In
[5,6], for example, MSE bounds are derived under the assump-
tion that the input distribution or the joint input-output distribu-
tion are close to a Gaussian reference distribution in terms of the
Kullback-Leibler divergence (relative entropy). This corresponds to
choosing J as in (95) and

Flo} = log%, (97)

with pg denoting the density of the reference distributions. In fact,
the work presented in this paper was partly motivated by the ob-
servation that the bound in [5], although derived from what ap-
pears to be a different starting point, is reminiscent of the CRB
in many aspects. First results towards Cramér-Rao type bounds on
Bregman risks based on Eqn 93 will be presented in a forthcoming
publication [17].

With this paper, we hope to spark a more in-depth investi-
gation of problems of the form (94) and (93), which we believe
are likely to provide novel bounds on estimation risks and to con-
tribute to a more unified treatment of existing results.
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