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The Vector Poisson Channel: On the Linearity of the
Conditional Mean Estimator

Alex Dytso , Member, IEEE, Michael Fauß , Member, IEEE, and H. Vincent Poor , Life Fellow, IEEE

Abstract—This work studies properties of the conditional mean
estimator in vector Poisson noise. The main emphasis is to study
conditions on prior distributions that induce linearity of the condi-
tional mean estimator. The paper consists of two main results. The
first result shows that the only distribution that induces the linearity
of the conditional mean estimator is a product gamma distribution.
Moreover, it is shown that the conditional mean estimator cannot
be linear when the dark current parameter of the Poisson noise is
non-zero. The second result produces a quantitative refinement of
the first result. Specifically, it is shown that if the conditional mean
estimator is close to linear in a mean squared error sense, then the
prior distribution must be close to a product gamma distribution in
terms of their Laplace transforms. Finally, the results are compared
to their Gaussian counterparts.

Index Terms—Conditional mean estimator, conjugate priors,
estimation theory, gamma distribution, gaussian noise, vector
poisson noise.

I. INTRODUCTION

THIS work considers a problem of estimating a random vec-
tor X from a noisy observation Y where Y given X = x

(denoted by Y|X = x) follows a vector Poisson distribution.
The objective is to characterize conditions under which the
conditional mean estimator (i.e., E[X|Y]) is a linear estimator.
Conditional mean estimators are an important class of estimators
that are optimal under a large family loss functions, namely
Bregman divergences [1]. For example, we are interested in
characterizing the set of prior distributions on X that induce
linearity of E[X|Y]. Also, we are interested in which linear
estimators are realizable from E[X|Y]. That is, given that
E[X|Y] = HY + c, what values of a matrix H and vector c
are permitted? Finally, we are interested in the question of
the stability of linear estimators. In other words, suppose that
E[X|Y] is ‘close’ to a linear function, can we make statements
about the distribution of X?
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Our interest in these questions stems from the wide applica-
bility of the Poisson noise model. Indeed, the literature on the
Poisson distribution is considerable, and the interested reader is
referred to [2], [3] and [4] for applications of the Poisson model
in compressed sensing; [5] and [6] for a summary of communi-
cation theoretic applications; [7], [8] and [9] for applications in
information theory; and [10], [11] and [12] for applications of
the Poisson distributions in signal processing and other fields.

Despite the wide use of the Poisson noise model in statistical
science, the aforementioned questions have not been fully ad-
dressed in the vector Poisson case. The aim of this work is to fill
this gap. It is interesting to note that such questions have been
answered for the Gaussian noise model and are part of standard
tools of statistical signal processing.

The linearity of the conditional expectation is intimately
connected with the notation of conjugate priors, which is an
important element of Bayesian statistics. In its original definition
in [13, Ch. 3], the family of prior distributions is said to be
conjugate if it is closed under sampling – the prior is said to be
closed under sampling when both prior and posterior belong to
the same family of distributions. In other words, the distribution
of X and the distribution of X|Y = y are in the same family.

The structure of the conjugate prior is highly dependent on
the nature of the distribution of Y|X = x (often termed like-
lihood distribution or noise distribution). For example, in [14],
the authors have made considerable progress in characterizing
conjugate priors for the case when the likelihood distribution
belongs to the exponential family. In particular, in [14], it has
been shown that a subset of the exponential family, characterized
by certain regularity conditions, has a corresponding set of con-
jugate priors. Moreover, this set of conjugate priors is completely
characterized by the linearity of the posterior expectation:

E[X|Y] = HY + b, (1)

whereH = aI for some constant a andb is some constant vector.
We note that the case when H is a general matrix was not

considered in [14]. Moreover, even the case when Y|X = x
follows a Poisson distribution is not covered by the regularity
conditions found in [14]. However, it was shown earlier in [15]
that the conjugate prior for the scalar Poisson distribution is a
gamma distribution, and that the linearity of the posterior expec-
tation holds and is a characterizing property. The proof in [15]
was generalized in [16] to include several families of discrete
distributions not covered by the regularity conditions of [14].
This work considers an arbitrary matrix H and characterizes
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the sufficient and necessary conditions for the existence of the
conjugate prior.

The paper is organized as follows. Section II presents the
Poisson noise model. Section III presents and discusses our main
results, which are described in Theorem 1 and Theorem 2. Sec-
tion IV and Section V are dedicated to the proofs of Theorem 1
and Theorem 2, respectively. Finally, Section VI concludes the
paper and discusses implications of our results by reflecting on
the following: a practically relevant parametrization of a Poisson
noise model, which, for example, explicitly incorporates the
dark current parameter; and Gaussian noise counterparts of our
results.

Notation: Throughout the paper we adopt the following no-
tation. Rn denotes the space of all n-dimensional vectors, Rn

+

the space of all n-dimensional vectors with non-negative com-
ponents, and Zn

+ the n-dimension non-negative integer lattice.
Vectors are denoted by bold lowercase letters, random vectors
by bold uppercase letters, and matrices by bold uppercase sans
serif letters (e.g.,x,X,X). All vectors are assumed to be column
vectors. For x ∈ Rn, diag(x) ∈ Rn×n denotes the diagonal
matrix with the main diagonal given by x. The vector with one
at position i and zero otherwise is denote by 1i. In this paper,
the gamma distribution has a probability density function (pdf)
given by

f(x) =
αθ

Γ(θ)
xθ−1e−αx, x ≥ 0, (2)

where θ > 0 is the shape parameter and α > 0 is the rate
parameter. We denote the distribution with the pdf in (2) by
Gam(α, θ). Finally, the Laplace transform of the distribution of
a random vector U ∈ Rn is denoted by

LU(t) = E

[
e−tTU

]
, t ∈ Rn

+. (3)

For ease of exposition, we will also refer toLU(t) as the Laplace
transform of U.

II. POISSON NOISE MODEL

Let Y ∈ Zk
+ and X ∈ Rn. We say that Y is an output of

a system with Poisson noise, if Y|X = x follows a Poisson
distribution, that is,

PY|X(y|x) =
k∏

i=1

PYi|X(yi|x) (4)

where

PYi|X(yi|x) = 1

yi!
([Ax]i + λi)

yie−([Ax]i+λi), (5)

A ∈ Rk×n and λ = [λ1, . . . , λk]
T ∈ Rk

+. In (5) we use the con-
vention that 00 = 1.

Using the terminology of laser communications, we refer toA
as the intensity matrix and λ as the dark current vector. More-
over, we assume that the matrix A must satisfy the following
non-negativity preserving constraint:

Ax ∈ Rk
+, ∀x ∈ Rn

+. (6)

Fig. 1. The vector Poisson noise channel with the inputX, the intensity matrix
A and the dark current parameter λ.

The random transformation of the input random variable X
to an output random variable Y by the channel in (4) is denoted
by

Y = P(AX+ λ). (7)

The transformation in (7) is depicted in Fig. 1.

III. MAIN RESULTS

This section presents our main result pertaining to the lin-
earity properties of the conditional expectation E[X|Y = y].
Specifically, our interest lies in answering various questions of
optimality of linear estimators such as:

1) Under what prior distribution on X are linear estimators
optimal for squared error loss and Bregman divergence1

loss? Since the conditional expectation is an optimal
estimator for the aforementioned loss functions, this is
equivalent to asking when the conditional expectation is a
linear function of y.

2) Which linear estimators are realizable fromE[X|Y]? That
is, given that E[X|Y] = HY + c, what values of the
matrix H and vector c are permitted?

3) If the linear estimators are approximately optimal, can we
say something about the prior distribution of X? In other
words, we are looking for a quantitative refinement of 1).

Questions 1) and 2) are answered in Theorem 1 and Corol-
lary 1, and question 3) is addressed in Theorem 2.

A. Necessary and Sufficient Conditions for Linearity

Our first result is the following theorem, the proof of which
can be found in Section IV.

Theorem 1: Suppose that Y = P(U) where U is a non-
degenerate2 random vector. Then,

E[U|Y = y] = Hy + c, ∀y ∈ Zn
+ (8)

if and only if

PU =

n∏
i=1

Gam (θi, αi) . (9)

In this case

1Let φ : Ω → R be a continuously-differentiable and a strictly convex func-
tion defined on a closed convex setΩ ⊆ Rn. The Bregman divergence betweenu
and v, associated with the function φ, is defined as �φ(u, v) = φ(u)− φ(v)−
〈u− v,∇φ(v)〉.

2A random vector is said to be degenerate if its covariance of matrix is not
full rank.
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� H is diagonal with entries hii =
1

1 + θi
� ci = αihii =

αi

1 + θi
Note that 0 < hii < 1 and ci > 0 for all i ∈ [1 : n].

B. Quantitative Refinement of Theorem 1

In this section, a quantitative refinement of Theorem 1 is
shown. Namely, it is shown that if the conditional mean estimator
is close to a linear function in a mean squared error sense, then the
prior distribution must be close to a product gamma distribution
in terms of their Laplace transforms.

Theorem 2: LetH and c be as in Theorem 1 and letLG denote
the Laplace transform of the product gamma distribution in (9).
Assume that Y = P(U) for some U ∈ Rn

+ and that

E

[
‖E[U|Y]− (HY + c)‖2

]
≤ ε (10)

for some ε ≥ 0. Then,

sup
t∈Rn

+

|LU(t)− LG(t)|
‖t‖ ≤

√
ε

1−maxk hkk
, (11)

where LU(t) is the Laplace transform of U.
The proof of Theorem 2 is presented in Section V.

IV. PROOF OF THEOREM 1

We first establish conditions on c and H under which the
equality is possible.

A. Conditions on c

To establish such conditions we need the following represen-
tation of the conditional expectation.

Lemma 1: LetPY denote the probability mass function ofY.
Then, for y ∈ Zn

+

E[U|Y = y] = (diag(y) + I)
ΔPY(y)

PY(y)
, (12)

where

[ΔPY(y)]i = PY(y + 1i), i ∈ [1 : n]. (13)

The scalar version of Lemma 1 has been shown in [17] and
in [18] and the vector version has been shown in [19, Lemma 3]
and [9, Lemma 3].

We proceed to show that every element of c must be strictly
positive. Choosing y = 0 and combining (8) with (12) implies
that

c =
ΔPY(0)

PY(0)
, (14)

or equivalently for all i

ci =
PY(0+ 1i)

PY(0)
=

E
[
Uie

−∑n
i=1 Ui

]
E
[
e−

∑n
i=1 Ui

] . (15)

The above is zero if and only ifUi = 0 and is positive otherwise.

B. Conditions on H

We now proceed to study properties ofH. First, by combining
(8) with (12), we have

ΔPY(y)

PY(y)
= (diag(y) + I)−1 (Hy + c) (16)

= (diag(y) + I)−1 Hy + (diag(y) + I)−1 c, (17)

which equivalently can be written as

PY(y + 1i)

PY(y)
=

1

yi + 1

∑
j=1

hijyj +
ci

yi + 1
, ∀i ∈ [1 : n].

(18)

Observe that every entry of ΔPY(y)
PY(y) is non-negative. Therefore,

for every i we have the following inequality:

0 ≤ 1

yi + 1

∑
j=1

hijyj +
ci

yi + 1
, ∀y ∈ Zn

+, (19)

where hij is the (i, j) element of H. Since y can be chosen
arbitrary in (19), taking limits along all possible paths as yi’s go
to infinity we arrive at

0 ≤ hii +
∑
j∈S

hij , ∀i and ∀S ⊂ [1 : n] \ i. (20)

In particular, by selecting S to be an empty set we arrive at the
conclusion that 0 ≤ hii, ∀i. To see that hii �= 0, consider

E[Ui|Y = 0+ yi1i] = hiiyi + ci, ∀y ∈ Z+. (21)

Therefore, hii can only be zero if Ui is a constant.
Next, using (18) and summing over yi we have that

k∑
yi=0

(yi + 1)PY(y + 1i) =

k∑
yi=0

⎛⎝∑
j=1

hijyj + ci

⎞⎠PY(y),

(22)

or, equivalently, by doing a change of variable on the left side
of (22),

E[Yi1{Yi≤k+1}|Y−i = y−i]

= E

⎡⎣⎛⎝∑
j=1

hijYj + ci

⎞⎠ 1{Yi≤k}|Y−i = y−i

⎤⎦ , (23)

whereY−i isYwith the i-th element removed. Now by choosing
y−i = 0 and re-arranging the terms we have that

hii =
E[Yi1{Yi≤k+1}|Y−i = 0]− ciE

[
1{Yi≤k}|Y−i = 0

]
E[Yi1{Yi≤k}|Y−i = 0]

,

(24)

for all k. Now taking k to infinity and using the fact that ci > 0,
it immediately follows that hii < 1.

The above discussion shows that 0 < hii < 1, ∀i. We now
proceed to show that H is invertible. To that end, we need the
following lemma shown in Appendix A.
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Lemma 2: For y ∈ Zn
+

[Var(U|Y = y)]ij

= E[Ui|Y = y] (E[Uj |Y = y + 1i]− E[Uj |Y = y]) . (25)

Now by using Lemma 2 and taking E[U|Y = y] = Hy + c
we have that

Var(U|Y = 0) = c1T �HT (26)

where�denotes the element-wise product (i.e., Hadamard prod-
uct). Now using an elementary rank bound for the element-wise
product, and the fact that for non-degenerate random vectors
Var(U|Y = 0) is a positive definite matrix, we have that

n = Rank (Var(U|Y = 0)) (27)

= Rank
(
c1T �HT

)
(28)

≤ Rank
(
c1T)Rank

(
HT
)

(29)

= Rank
(
HT
)

(30)

≤ n. (31)

Therefore, H has full rank and is invertible.
We now proceed to show that H must be a diagonal matrix.

The following lemma will be extensively used in this proof and
the proof of Theorem 2.

Lemma 3: Let Y = P(U) and suppose that (8) holds. Then,

E

[
(U− (HY + c)) e−tTY

]
= 0 (32)

for all t ∈ Rn
+. Moreover, for all t ∈ Rn

+

E

[
(U− (HY + c)) e−tTY

]
= −(H(diag(s)− I) + I)∇sLU(s)− cLU(s), (33)

where sm = 1− e−tm ,m = 1, . . . , n.
Proof: The proof of (32) follows from the orthogonality

principle. To show (33) we need to compute the following terms:

E

[
Ue−tTY

]
,E
[
e−tTY

]
and E

[
Ye−tTY

]
. (34)

Also, recall that the Laplace transform of a distribution of a
scalar Poisson random variable W with the parameter λ is given
by

LW (t) = eλv(t), (35)

where v(t) = (e−t − 1).
Now, first,

E

[
Uet

TY
]
= E

[
UE

[
et

TY | U
]]

(36)

= E

[
U

n∏
m=1

E
[
etmYm | Um

]]
(37)

= E

[
U

n∏
m=1

ev(tm)Um

]
(38)

= E

[
Ue−sTU

]
(39)

= ∇sLU(s), (40)

where (38) follows by using the Laplace transform of a scalar
Poisson distribution. Second, using similar steps, we have

E

[
e−tTY

]
= E

[
E

[
e−tTY | U

]]
(41)

= E

[
n∏

i=m

ev(tm)Ui

]
(42)

= E

[
e−sTU

]
(43)

= LU(s). (44)

Third,

E

[
Ye−tTY

]
= −∇tE

[
e−tTY

]
(45)

= −∇tE

[
n∏

m=1

ev(tm)Um

]
(46)

= −∇tE

[
e−sTU

]
(47)

= E

[
∇ts

TUe−sTU
]

(48)

= E

[
(I − diag(s))Ue−sTU

]
(49)

= (diag(s)− I)∇sLU(s), (50)

where we have used that

d

dtm
smUm =

d

dtm
(1− e−tm)Um (51)

= e−tmUm (52)

= (1− s)Um. (53)

Combining (40), (44) and (50) we arrive at

E

[
(U− (HY + c)) e−tTY

]
(54)

= ∇sLU(s)−H(diag(s)− I)∇sLU(s)− cLU(s) (55)

= −(Hdiag(s) + (I −H))∇sLU(s)− cLU(s). (56)

This concludes the proof. �
To present the solution to the differential equation in (33) we

need the following lemma.
First, by using that H is invertible it follows that

∇sLU(s)

LU(s)
= − (H−1(I −H) + diag(s)

)−1
H−1c, (57)

which can further be simplified to

∇g(s) =
(
H−1(I −H) + diag(s)

)−1
H−1c, (58)

where g(s) = log(LU(s)).
Next it is shown that (58) has a solution only ifH is a diagonal

matrix and the solution is characterized.
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Lemma 4: For 0 ≺ A ∈ Rn×n and b ∈ Rn where b is as-
sumed to have all positive entries. The system

∇g(s) = −(A+ diag(s))−1b, g(0) = 0, (59)

has a solution only ifA is a diagonal matrix with a solution given
by

g(s) =
n∑

i=1

bi log

(
1 +

si
Aii

)
. (60)

Proof: We first find the Hessian matrix of f(s) = ∇g(s). Let

C = A+ diag(s), (61)

S = diag(s), (62)

Sf = diag(f)s. (63)

Then, the differential is given by

∂f = ∂C−1b (64)

= −C−1(∂C)C−1b (65)

= −C−1(∂C)f (66)

= −C−1(∂S)f (67)

= −C−1diag(f)∂s. (68)

Hence,

∂f

∂s
= −C−1diag(f) = −C−1diag((A+ diag(s))−1b).

(69)

Therefore, the Hessian matrix of g is given by

∇2 g(s) = −(A+ diag(s))−1diag
(
(A+ diag(s))−1b

)
.

(70)

Note that the Hessian matrix must be symmetric. Next, it is
shown that in order for the Hessian to be symmetric A must be
a diagonal matrix.

Let Ã = (A+ diag(s))−1 and choose s such that

b̃ = Ãb = (A+ diag(s))−1b (71)

has distinct elements all of which are non-zero. Note that this is
possible in view of the assumption that b has non-zero entries.

Next, observe that if Ãdiag(b̃) is symmetric, then Ã must
be symmetric. This follows by letting C̃ = Ãdiag(b̃) and ob-
serving that Ã = C̃diag(b̃)−1 is symmetric. The symmetry of
Ã implies that

Ãdiag(b̃) = diag(b̃)Ã
T
= diag(b̃)Ã. (72)

In other words, Ã and diag(b̃) commute. However, if all ele-
ments of a diagonal matrix are distinct, then it commutes only
with a diagonal matrix. Therefore, Ã is a diagonal matrix. This
implies that for the Hessian to be symmetricAmust be a diagonal
matrix.

Since A is diagonal, the solution is obtained by an application
of the fundamental theorem of calculus for line integrals: for a
function f and a smooth curve r(t) we have∫ b

a

∇f(r(t)) · ṙ(t)dt = f(r(b))− f(r(a)). (73)

Applying (73) to (59) with a choice ofr(t) = (1− t)0+ ts, t ∈
(0, 1), we have that

g(s) = −
∫ 1

0

(A+ diag(s)t)−1 b · sdt (74)

= −sT
∫ 1

0

(A+ diag(s)t)−1 dtb (75)

= −sTdiag

([
log(1 + sk

Akk
)

sk

]
k

)
b (76)

= −
n∑

k=1

bk log

(
1 +

sk
Akk

)
. (77)

�
Setting A = H−1(I −H) and b = H−1c in Lemma 4 and

using that g(s) = log(LU(s)) we arrive at the following form
for the Laplace transform of the distribution of U:

LU(s) =
n∏

k=1

1(
1 + hkksk

1−hkk

)hkk
ck

, (78)

which is the Laplace transform of a product of Gamma distribu-
tions. This concludes the proof.

V. PROOF THEOREM 2

Let the characteristic function of the product gamma distri-
bution be denoted by

LG(t) =

n∏
k=1

(
1 +

tk
αk

)−θk

. (79)

The following result, which is a generalization of the scalar result
in [12], will be useful.

Lemma 5: Let LU(t) be the Laplace transform of a non-
negative random vector U and let

A = diag−1
(
[α1, . . . , αn]

T) , (80)

c̃ =

[
θ1
α1

, . . . ,
θk
αk

]T

. (81)

Then, for every t ∈ Rn
+

|LU(t)− LG(t)|
≤ ‖t‖ sup

t∈Rn
+

‖(I + Adiag(t))∇φU(t) + c̃φU(t)‖ . (82)

Proof: First, note that

∂

∂tk

1

LG(t)
=

θk
αk

1(
1 + tk

αk

)
LG(t)

, (83)

and hence

∂

∂tk
LU(t)

1

LG(t)

=
∂

∂tk
LU(t)

1

LG(t)
+ LU(t)

∂

∂tk

1

LG(t)
(84)
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=
1(

1 + tk
αk

)
LG(t)

((
1 +

tk
αk

)
∂

∂tk
LU(t) +

θk
αk

LU(t)

)
.

(85)

Therefore, the gradient can be upper bounded as∥∥∥∥∇(LU(t)
1

LG(t)

)∥∥∥∥
=

∥∥∥(I + Adiag(t))−1 ((I + Adiag(t))∇LU(t) + c̃LU(t))
∥∥∥

LG(t)
(86)

≤

∥∥∥(I + Adiag(t))−1
∥∥∥
∗
‖(I + Adiag(t))∇LU(t)+ c̃LU(t)‖

LG(t)
(87)

where ‖ · ‖� denotes the operator norm.
Next, recall that the operator norm of a diagonal matrix is

given by the maximal element and∥∥∥(I + Adiag(t))−1
∥∥∥
∗
= max

k∈[1:n]

∣∣∣∣1 + tk
αk

∣∣∣∣−1

=

(
1 + min

k∈[1:n]
tk
αk

)−1

. (88)

Now let r(τ) = τt and observe the following sequence of
steps:

|LU(t)− LG(t)|

= LG(t)

∣∣∣∣LU(t)

LG(t)
− 1

∣∣∣∣ (89)

= LG(t)

∣∣∣∣∫ 1

0

∇LU(r(τ))

LG(r(τ))
· ṙ(τ)dτ

∣∣∣∣ (90)

≤ LG(t)

∫ 1

0

∥∥∥∥∇LU(r(τ))

LG(r(τ))

∥∥∥∥ ‖ṙ(τ)‖ dτ (91)

≤ ‖t‖ sup
t∈Rn

+

‖(I + Adiag(t))∇LU(t) + c̃LU(t)‖ , (92)

where (90) follows from the fundamental theorem of calculus
for line integrals; (91) follows by using the Cauchy-Schwarz
inequality; and (92) follows by using the bound in (87), the fact
that LG(τt) is a decreasing function of τ , and∫ 1

0

‖(I + Adiag(τt))∇LU(τt) + c̃LU(τt)‖
LG(τt)

(
1 + mink∈[1:n] τtk

αk

) dτ

≤ 1

LG(t)

∫ 1

0

‖(I + Adiag(τt))∇LU(τt) + c̃LU(τt)‖(
1 + mink∈[1:n] τtk

αk

) dτ

≤
supt∈Rn

+
‖(I + Adiag(t))∇LU(t) + c̃LU(t)‖

LG(t)
. (93)

This concludes the proof. �

With Lemma 5 at our disposal we are now ready to proof the
main result. First, note that by Lemma 3 we have that

‖((I −H) +Hdiag(s))∇sLU(s) + cLU(s)‖

=
∥∥∥E [(U− (HY + c)) e−tTY

]∥∥∥ (94)

=
∥∥∥E [(E[U|Y]− (HY + c)) et

TY
]

+E

[
(U− (E[U|Y]) e−tTY

]∥∥∥ (95)

=
∥∥∥E [(E[U|Y]− (HY + c)) e−tTY

]∥∥∥ (96)

≤ E [‖E[U|Y]− (HY + c)‖] (97)

≤
√

E

[
‖E[U|Y]− (HY + c)‖2

]
, (98)

where (95) follows by the orthogonality principle; (97) follows
by using the modulus inequality and bound e−tTY ≤ 1, t ∈ Rn

+;
and (98) follows by using Jensen’s inequality.

Now by setting c̃ = (I −H)−1c and A = (I −H)−1H in
Lemma 5 we have that

|LU(t)− LG(t)|
≤ ‖t‖ sup

t∈Rn
+

‖(I + Adiag(t))∇LU(t) + c̃LU(t)‖ (99)

≤ ‖t‖‖(I −H)−1‖�
· sup
t∈Rn

+

‖((I −H) +Hdiag(t))∇LU(t) + cLU(t)‖ (100)

≤ ‖t‖‖(I −H)−1‖�
√

E

[
‖E[U|Y]− (HY + c)‖2

]
(101)

= ‖t‖
√
ε

1−maxk hkk
, (102)

where (101) follows by using the bound in (98); and (102) using
the fact that the operator norm of a diagonal matrix is given by
the maximal element.

This concludes the proof.

VI. CONCLUSION

This section discusses implications of our results for the
practically relevant model Y = P(AX+ λ), which explicitly
takes into account the intensity matrix A and the dark current
parameter λ. In addition, we also compare the Poisson results
obtained in this work to their Gaussian counterparts.

We begin by adopting Theorem 1 to the parametrization
Y = P(AX+ λ). This is done by setting U = AX+ λ in
Theorem 1.

Corollary 1: Suppose that Y = P(AX+ λ). Then,

E[X|Y = y] = Cy + b, ∀y ∈ Zn
+ (103)

if and only if all of the following conditions hold:
� λ = 0;
� AC is a diagonal matrix with 0 < [AC]ii < 1, ∀i ∈ [1 : n];
� Ab is a vector of positive elements; and
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� PAX =
∏n

i=1 Gam( 1−[AC]ii
[AC]ii

, [Ab]i
[AC]ii

)

Proof: Let U = AX+ λ. By multiplying (103) by A and
adding λ we have that

E[U|Y = y] = AE[X|Y = y] + λ = ACy + Ab+ λ.
(104)

Next, note that the linearity of the conditional expectation im-
plies that U = AX+ λ is according with a product gamma
distribution which has non-negative support. However, if λ has
positive components, this would imply that AX = U− λ has
negative components, which is not allowed under the Poisson
model. Therefore, λ must be zero.

The rest of the argument follows from Theorem 1 by mapping
AC to H and Ab to c. �

A few comments are now in order.

A. The Case of a Non-Zero Dark Current

Somewhat regrettably Corollary 1 shows that the conditional
expectation can only be linear if the dark current parameter is
zero. To demonstrate the effect of the dark current we investigate
a scalar case with an exponential distribution as a prior (i.e., a
gamma distribution with θ = 1).

Lemma 6: Let Y = P(aX + λ) and take X to be an expo-
nential random variable of rate α. Then, for every a > 0 and
λ ≥ 0

E[X|Y = k] =
1

a

(k + 1)PY (k + 1)

PY (k)
− λ

a
, (105)

where

PY (0) =
αe−λ

α+ a
, (106)

PY (k) =
Γ(k + 1, λ)

Γ(k + 1)
− Γ(k, λ)

Γ(k)

+
e

α
a λ(

1 + α
a

)k
(
Γ
(
k, λ
(
α
a + 1

))
Γ(k)

− Γ
(
k + 1, λ

(
α
a + 1

))
Γ (k + 1)

(
1 + α

a

) ) ,

(107)

where Γ(·, ·) is the upper incomplete gamma function.
Proof: (105) is a scalar version of Lemma 1. The proof

of (106) and (107) follows by invoking standard integration
techniques for exponential functions. �

The effect of the dark current parameter on the conditional
expectation in the scalar case for an exponential random variable
is shown in Fig. 2. Observe that the larger the dark current, the
smaller the conditional expectation is. The interpretation here is
that large values of dark current inflate the observed count at Y ,
and the estimator compensates by producing smaller estimates
of X .

It is also interesting to compare the optimal linear estimator
under the squared error loss to the conditional expectation. The
former is given by

X̂(y) = cy + b, (108)

c =
aV (X)

a2V (X) + aE[X] + λ
, (109)

Fig. 2. Examples of conditional expectations for X distributed according to
an exponential distribution with rate parameter α = 3 and a = 1.

Fig. 3. Examples of conditional expectations and linear estimators for X
distributed according to an exponential distribution with rate parameter α = 3
and a = 1.

b = E[X]− c(aE[X] + λ). (110)

Fig. 3 compares the conditional expectation to the optimal lin-
ear estimator for an exponential random variable and shows that
the conditional expectation can be approximated by a piece-wise
linear function. More specifically, Fig. 3 shows that the optimal
linear estimator is a good approximation of the conditional
expectation for small values of count, and the optimal zero dark
current linear estimator shifted by the value of the dark current
is a good approximation for large values of count.

B. On the Size of A

Observe that according to Corollary 1 AX must have a
product gamma distribution. The following scenarios can be
encountered:
� A is full rank. In this case, the pdf of X is given by

fX(x) = |det(A)|fU(Ax) (111)

where fU(·) is the pdf of the product gamma distribution
in Corollary 1.
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� A is a ‘fat’ matrix (i.e., k < n). In this case, there are
several distributions on X that result in a product gamma
distribution; and

� A is a ‘thin’ matrix (i.e., k > n). In this case, in general, it
is not possible to generate a product distribution.

C. Comparison to the Gaussian Noise Case

It is of some value to compare the result in the Poisson case
to the Gaussian noise case. The objective is not to say which
model is more useful, which clearly depends on the application,
but rather to emphasize the difference in the behavior of the two
models.

The Gaussian counterpart of Theorem 1, which is a well-
known result (see for example [20, Lemma 5]), is given next.

Theorem 3: Suppose that A ∈ Rk×n. Let Y = AX+ Z
where X ∈ Rn and Z ∼ N (0, I) are independent. Then,

E[X|Y = y] = Hy + c, ∀y ∈ Rn (112)

if and only if X ∼ N (μ,K) such that

H = KAT
(
AKAT + I

)−1

, (113)

c = μ−HAμ. (114)

In particular, AX ∼ N (Aμ,Σ) where Σ = (I − AH)−1AH.
In Theorem 3, while the distribution on AX is unique, the

distribution on X may not be unique and depends on the dimen-
sionality of A.

There are several high-level differences between Theorem 1
and Theorem 3. The restrictions on H in the Gaussian noise case
are less severe than those in the Poisson noise case. First,H in the
Gaussian noise case does not have to be a diagonal matrix while
in Poisson noise case H has to be a diagonal matrix. Second,
in the Poisson noise case the prior distribution has to be of a
product form, but in the Gaussian noise case the prior can have
arbitrary covariance matrix K and does not have to be a product
distribution.

We now compare Theorem 2 to its Gaussian counterpart.
Unlike in the Poisson noise case, where the prior distributions
are supported on Rn

+, in the Gaussian noise case the prior distri-
bution are supported on Rn. Therefore, it is more appropriated
to provide a quantitative refinement in terms of the characteristic
functions instead of the Laplace transforms.

However, to the best of our knowledge, for the Gaussian
noise case there exists only a scalar counterpart of Theorem 2,
which was shown in [21, Lemma 4]. In order to make a proper
comparison, the following result provides a vector Gaussian
generalization.

Theorem 4: Let H and c be as in Theorem 3. Denote by
φAX(t), φZ(t) and φY(t) the characteristic functions of AX,Z
and Y, respectively. Assume that

E

[
‖E[X|Y]− (HY + c)‖2

]
≤ ε, (115)

for some ε ≥ 0. Then, for all t ∈ Rk∣∣∣φAX(t)− e−
tTΣt

2

∣∣∣
‖t‖ ≤

√
ε‖A‖�

σmin (I − AH)φZ (t)
(116)

where Σ = (I − AH)−1AH, ‖A‖� is the operator norm of A,
and σmin(I − AH) is the smallest singular value of I − AH.
Consequently,

sup
t∈Rk

∣∣∣∣φY(t)− e−
tT(Σ+I)t

2

∣∣∣∣
‖t‖ ≤

√
ε‖A‖�

σmin (I − AH)
. (117)

Proof: See Appendix B. �
It is interesting to compare the Poisson result in (11) to the

Gaussian results in (116) and (117). First, note that in the Poisson
noise case in (11), the control over the Laplace transform of
the prior distributions is uniform over all t. However, in the
Gaussian noise case in (116), such a bound is not uniform over
all t. Therefore, the control over the proximity of the priors in
terms of the proximity of estimators is stronger in Poisson noise.
Finally, in the Gaussian noise case, we do get a uniform bound,
but only a bound for the characteristic functions of the output Y
as shown in (117).

D. Possible Applications

We briefly mention a few possible applications of our results:
� (Linear Minimum Mean Squared Error): Consider the min-

imum mean squared error (MMSE):

mmse(X|Y) = E[‖X− E[X|Y]‖2]. (118)

In general, computation of the MMSE can be a difficult
task. Therefore, in order to provide performance guar-
antees, the MMSE is often upper bounded by the linear
MMSE (i.e., the best error achievable with a linear estima-
tor), that is,

mmse(X|Y) ≤ min
H,c

E[‖X− (HY + c)‖2]. (119)

Note that the linear MMSE has a closed-form expression
and is relatively easy to evaluate. The result in Theorem 1
provides conditions on the triplet (X,H, c) such that the
bound in (119) is tight, and thus provides justification for
such an analysis.

� (Least Favorable Distributions): Recall that the least favor-
able prior distribution (LFPD) is defined as

PX ∈ arg max
PX∈P

mmse(X|Y), (120)

whereP is some set of distributions. The setP is defined by
the practical constrains of the problem. For example, P =
{PX : ‖X‖ ≤ r} where r > 0 is known as the restricted
parameter estimation setting. LFPDs are important because
E[X|Y] evaluated with an LFPD results in a min-max
estimator (i.e., an estimator that is best in the worst case).
The case when conjugate priors are also LFPDs is viewed
as desirable since it implies that the min-max estimators are
also linear. Therefore, the characterization of the conjugate
prior in Theorem 1 is an important step in this line of
research. In this work, we do not seek to characterize the
conditions under which the product gamma distribution
is an LFPD. However, in [22] it has been demonstrated
for the scalar Poisson case that the gamma distribution
is an LPDF under variance and mean constraints (i.e.,
P = {PX : V (X) ≤ P,E[X] ≤ μ}.
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APPENDIX A
PROOF OF LEMMA 2

First, compute the cross-correlation term

E[UiUj |Y = y] =
E[UiUjPY|U(y|U)]

PY(y)
(121)

=
(yi + 1)(yj + 1)PY(y + 1i + 1j)

PY(y)
.

(122)

Therefore, by using Lemma 1

[Var(U|Y = y)]ij

=
(yi + 1)(yj + 1)PY(y + 1i + 1j)

PY(y)

− (yi + 1)(yj + 1)PY(y + 1i)PY(y + 1j)

PY(y)PY(y)
(123)

=E[Ui|Y = y]

(
(yj + 1)PY(y + 1i + 1j)

PY(y + 1i)
− E[Uj |Y = y]

)
(124)

= E[Ui|Y = y] (E[Uj |Y = y + 1i]− E[Uj |Y = y]) .
(125)

This concludes the proof.

APPENDIX B
PROOF OF THEOREM 4

The proof for the Gaussian case is very similar to the Poisson
case. We start with the following lemma.

Lemma 7: Let Σ be some covariance matrix and φX(t) be
the characteristic function of a random vector X ∈ Rn. Then,
for every t ∈ Rn∣∣∣φX (t)− e−

tTΣt
2

∣∣∣ ≤ ‖t‖ max
τ∈[0,1]

‖∇φX (τt) +ΣτtφX (τt) ‖.
(126)

Proof: Let r(τ) = τt∣∣∣φX (t) e
tTΣt

2 − 1
∣∣∣ (127)

=

∣∣∣∣∫ 1

0

∇φX (r(τ)) e
r(τ)TΣr(τ)

2 · ṙ(τ)dτ
∣∣∣∣ (128)

≤
∫ 1

0

∣∣∣∣∇φX (r(τ)) e
r(τ)TΣr(τ)

2 · ṙ(τ)
∣∣∣∣ dτ (129)

≤ ‖t‖
∫ 1

0

eτ
2 tTΣt

2 ‖∇φX (τt) +ΣτtφX (τt) ‖dτ (130)

≤ ‖t‖ max
τ∈[0,1]

‖∇φX (τt) + τΣtφX (τt) ‖
∫ 1

0

eτ
2 tTΣt

2 dτ

(131)

≤ ‖t‖ max
τ∈[0,1]

‖∇φX (τt) + τΣtφX (τt) ‖ e tTΣt
2 , (132)

where (128) follows from the fundamental theorem of calculus
for line integrals; (129) follows from modulus inequality; and

(130) is a consequence of using ṙ(τ) = t, ∇e
tTΣt

2 = Σte
tTΣt

2

and the Cauchy–Schwarz inequality to produce the following
sequence of bounds:∣∣∣∣∇φX (r(τ)) e

r(τ)TΣr(τ)
2 · ṙ(τ)

∣∣∣∣
= e

τ2tTΣt
2 |(∇φX (τt) + τΣtφX (τt)) · t| (133)

≤ e
τ2tTΣt

2 ‖∇φX (τt) + τΣtφX (τt)‖ ‖t‖. (134)

This concludes the proof. �
Now, using the orthogonality principle, observe that

0 = E

[
(AX− E[AX|Y])eit

TY
]

(135)

= E

[
(AX− AHY + AHY − E[AX|Y])eit

TY
]

(136)

= E

[
(AX− AHY)eit

TY
]

+ E

[
(AHY − E[AX|Y])eit

TY
]
. (137)

Moreover, the first term in (137) can be computed in terms of
characteristic functions as follows:

E

[
(AX− AHY)eit

TY
]

= E

[
(AX− AHAX− AHZ)eit

TY
]

(138)

= E

[
(I − AH)AXeit

TY − AHZeit
TY
]

(139)

= E

[
(I − AH)AXeit

TAX
]
E

[
eit

TZ
]

(140)

− E

[
AHZeit

TZ
]
E

[
eit

TAX
]

(141)

= (I − AH)E
[
AXeit

TAX
]
φZ(t)

− AHE

[
Zeit

TZ
]
φAX (t) (142)

= (I − AH)
1

i
∇φAX(t)φZ(t)− AH

1

i
∇φZ(t)φAX (t)

(143)

= (I − AH)(−i)∇φAX(t)φZ(t) + AHt(−i)φZ(t)φAX (t)
(144)

= (−i) ((I − AH)∇φAX(t) + AHtφAX (t))φZ(t), (145)

where (141) follows from the independence of X and Z;
(143) follows by observing that ∇φAX(t) = E[iAXeit

TAX]

and ∇φZ(t) = E[iZeit
TZ]; and (144) follows by using that

∇φZ(t) = −tφZ(t).
Next, by using (137) and (145), and applying the norm on

both sides we get that∥∥∥E [A(HY − E[X|Y])Teit
TY
]∥∥∥

= ‖φZ(t) ((I − AH)∇φAX(t) + AHtφAX (t))‖ (146)

= φZ(t) ‖(I − AH)∇φAX(t) + AHtφAX (t)‖ . (147)
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Furthermore, by using the Cauchy–Schwarz inequality in (147)√
E

[
‖A(HY − E[X|Y])‖2

]
≥ φZ(t) ‖(I − AH)∇φAX(t) + AHtφAX (t)‖ , (148)

≥ φZ(t)σmin(I − AH)

· ∥∥∇φAX(t) + (I − AH)−1AHtφAX (t)
∥∥ , (149)

where (149) follows by using the fact that (I − AH) is invertible
and the inequality ‖Ax‖ ≥ σmin(A)‖x‖, ∀x where σmin(A) is
the small singular value of A.

Combining bounds in (126) and (149) and using the bound
‖Ax‖ ≤ ‖A‖�‖x‖, ∀x we have that∣∣∣φAX (t)− e−

tTΣt
2

∣∣∣
‖t‖ ≤

√
E

[
‖A(HY − E[X|Y])‖2

]
σmin (I − AH)φZ (t)

(150)

≤
‖A‖�

√
E

[
‖HY − E[X|Y]‖2

]
σmin (I − AH)φZ (t)

,

(151)

where Σ = (I − AH)−1AH. This concludes the proof.
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