DreamStore: A Data Platform for Enabling Shared Augmented Reality

Meraj Khan*

Arnab Nandit

The Ohio State University

ABSTRACT

Unlike traditional object stores, Augmented Reality (AR) query
workloads possess several unique characteristics, such as spatial and
visual information. Such workloads are often keyed on a variety
of attributes simultaneously, such as device orientation and posi-
tion, the scene in view, and spatial anchors. The natural mode of
user-interaction in these devices triggers queries implicitly based on
the field in the user’s view at any instant, generating data queries
in excess of the device frame rate. Ensuring a smooth user expe-
rience in such a scenario requires a systemic solution exploiting
the unique characteristics of the AR workloads. For exploration in
such contexts, we are presented with a view-maintenance or cache-
prefetching problem; how do we download the smallest subset from
the server to the mixed reality device such that latency and device
space constraints are met?

We present a novel data platform — DreamStore, that considers
AR queries as first-class queries, and view-maintenance and large-
scale analytics infrastructure around this design choice. Through
performance experiments on large-scale and query-intensive AR
workloads on DreamStore, we show the advantages and the capabili-
ties of our proposed platform.

1 INTRODUCTION

Over the past few years, the field of Augmented Reality has tran-
sitioned from a science-fiction concept to a consumer-grade tech-
nology used by millions [1,2]. AR has found a variety of specific
use cases including gaming [3], architecture [35], education [36],
medicine [8], and emergency services [11,34], each enabling an
entirely new way of digital interaction using camera-based devices.
This progress is driven by the advancement in sensing, comput-
ing, and communications technology. Despite these developments,
the reach and the state of AR applications today are not up to its
potential [26]. There are only a few platforms [19,22] with tools
for building shared reality experiences where multiple users with
different devices can share the same augmented experience.

The significant obstacles hindering a wide-scale adoption of AR
are its unique user-interaction characteristics, data management
needs [29], and platform fragmentation [18]. Augmented Reality
exacerbates some of the challenges posed by traditional user inter-
faces [29]. For example, AR applications can generate queries at a
rate much higher than traditional user interfaces, often higher than
the frame rate of the device camera, and the workload is bursty.
Users interact with the scene-in-view through the means of implicit
and explicit gestures (Section 4). In AR scenarios, the image capture
is constantly changing (limited by device frame-rate and capture-
rate): each image reflects the set of “queries” posed by the user. Each
image in the field of view of the user can potentially contain several
points of interest for which AR overlay information is available in
the datastore.

*e-mail: khan.485@osu.edu
fe-mail:arnab@cse.osu.edu

In a shared reality setting, the workload generated at such a high
rate by multiple clients can overwhelm the backend, and result in
dropped queries and lags on the user interface. Figure 4 shows the
query rate every 100 ms while using our prototype room scanning
app. There is considerable variability in the query rate throughout
the session, going from O queries in some intervals to up-to 13, which
corresponds to a query rate of 130/s — more than twice the frame-
rate for most devices. Another major concern is overwhelming the
user with too much information, which is more aggravating on AR
interfaces [29]. At any instant, a large number of objects in the field
of view can be potentially augmented, which could lead to visual
clutter [25]. Visual clutter on AR interfaces does not just degrade the
user experience but is capable of causing physical harm and material
damage to the users and their surroundings.

Contributions: We propose DreamStore — an AR application data
platform for addressing these issues. DreamStore provides a data-
management API for application developers to model AR application
workflows facilitating porting of core functionalities between differ-
ent client platforms. We provide effective workload reduction and
prefetching strategies for AR applications that facilitate interactive
latency and do not overwhelm the UI with insignificant details. We
provide two query-intensive workloads that emulate real-world AR
application usage and present their performance evaluation on the
DreamStore platform.

The platform incorporates optimizations for AR workload char-
acteristics at various layers of the data stack. The query workload
generated by the user interface is reduced by inferring query pri-
orities from user gestures and dropping low priority queries. This
makes sure that the users’ field-of-view is not cluttered as the system
ignores low-interest objects, and does not waste resources fetching
and rendering unimportant object details. The clients maintain a
local cache with information about AR objects in their vicinity to
reduce network roundtrips. This cache is maintained without explicit
intervention from the developer through a pub-sub mechanism for
syncing updates on object information across clients and prefetching
information about objects likely to be queried in the near-future
based on the device’s position, orientation, and trajectory. While
there are existing works that support data infrastructure for games
and virtual reality [12,23, 33], the inclusion of rapidly changing
query likelihoods derived from computer vision and the query ses-
sion, alongside a multi-user setting, confounds the infrastructure
problem. There is a need for a scalable infrastructure solution to
provide a shared experience where users with different AR devices
can interact and manipulate AR objects in a localized environment.

Motivation: DreamStore can power shared AR experiences in a
variety of settings with multiple users accessing and interacting
with the same AR objects through their personal AR client devices.
It can enhance the functionality and capabilities of the emerging
use-cases in shop floors [9], warehouses, and Computer Supported
Collaborative Work (CSCW) systems with AR interfaces [28]. For
example, dedicated tablets fixed around entrances to conference
rooms, classrooms, etc for displaying the schedule have become
common in workspaces and schools. These devices support different
level of interactivity ranging from allowing users to just see the
current schedule to letting them update it. Although convenient,
this solution requires significant investment in terms of dedicated

hardware and installation effort. A potential solution to this could
be enabling users to access this information on their personal de-
vices through an augmented reality application. Although this seems
like a trivial scenario, the data management problem intensifies in
presence of a large number of users simultaneously accessing infor-
mation on common rooms. A significant delay in the propagation
of information update by a user to the other users simultaneously
accessing it, and lag in information retrieval by an overwhelmed sys-
tem can degrade the user experience. A similar use-case imagined in
a different setting such as a mall during special events can enable the
stores to convey geo-tagged promotions, advertisements, updates,
etc. in realtime to the shoppers. It can also enable building collabo-
rative/competitive multiplayer AR games [4,13] in a shared physical
setting by providing an efficient data storage and synchronization
framework for player-AR object interactions.

There have been several impressive improvements in computer
vision (CV) research [31] recently, to the point where reasonably
advanced techniques are now available as reliable building blocks
for other research. Furthermore, augmented reality (AR) wearable
devices such as Google Glass and Microsoft HoloLens, have become
available, which continually capture and process image and video
data and provide pertinent feedback (i.e., the augmentation) through
an overlay display. These devices have inspired and unlocked a
variety of “camera-first” interaction modalities, where the camera
is often the primary mode of capture and input. This paradigm is
transferring over to smartphones and tablets as well. AR applications
such as Snapchat, Google Lens, and Amazon Shopping are bringing
a completely new and natural mode of interaction to consumer-grade
smartphones and tablets [15].

Smartphones and tablet devices have become extremely afford-
able at the mass-consumer scale and capable of either on-device or
on-cloud image processing. When backed with large data stores, they
can serve as the ideal edge device, for uses as broad as education,
workforce training, healthcare, enterprise, and manufacturing. Thus,
there will be a critical need for data infrastructure support to meet
this trend to serve the workloads generated by these devices. The
number of end-user activities that are backed by large amounts of
data is rapidly increasing. For example, a simple restaurant look-up
on Google Search and Google Maps is augmented with wait times,
popular hours, and visit duration, aggregated from population-scale
user location history logs [6]. The data-rich paradigm — consider-
ing a user’s AR view as a queried view on a large data warehouse
brings about a unique opportunity to build compelling experiences
for end-users.

Given the computational capabilities of the end-device and the
network limitations, a critical consideration for AR applications is
roundtrip latency. Since our AR device is a commodity phone or
tablet, we expect the system to acquire the camera feed, preprocess
it, extract structured information, query it against a database over the
network, and return it as an image overlay — all in real-time. Clearly,
given standard frame rates, a smooth end-user experience will neces-
sitate algorithmic contributions that minimize network roundtrips
and take advantage of unique properties of the AR workloads.

With the advent of Augmented Reality technology on common
mobile devices, we have a wide variety of AR-capable devices
running on different platforms, each supporting a different set of
functionalities. Although we have development environments like
Unity and libraries like Vuforia, ARToolkit which support develop-
ment for all popular platforms — Android, iOS, UWP (including
Hololens), these applications are not easy to port from one platform
to the other. Moreover, there is no infrastructure solution to pro-
vide a shared experience where users with different AR devices can
interact and manipulate AR objects in a localized environment.

2 RELATED WORK

Data Platforms for Augmented Reality workloads: Schmaleteig
et al. [27] present a 3-tier data model for handling AR workloads.
This work demonstrates the usage of context-sensitive scene graph
data to construct views for AR apps from large databases of GIS
XML data. The database layer is linked to the application layer by a
data transformation layer, which maps raw data from the database
to specific object types. Similar to DreamStore, it decouples the
presentation layer from the data layer. The middle-tier is similar to
the client-specific ARView management library in our system.

Nicklas and Mitschang [21] propose a 3-layer model, including
the client device layer, federation layer, and server layer. The server
layer stores resources for the entire system, including geographi-
cal data, users’ locations, and virtual objects. The federation layer,
similar to the system developed by Schmalteig et al., provides trans-
parent data access to the upper layer using a register mechanism by
decomposing the queries from the client layer and then dispatches
them to registers for information access.

LightDB [14] is a multidimensional array database for virtual
reality applications utilizing orientation prediction to reduce data
transfer by degrading out-of-view portions of the video. In contrast,
the DreamStore system is built for AR applications exposing only
the AR object information as opposed to storing and processing an
entire scene.

Microsoft’s cloud service — Azure Spatial Anchors [19], provides
a shared persistent database for mixed reality objects that can be
accessed by multiple client platforms. The service stores the AR
objects created by users keyed on their sparse spatial scans, unlike
DreamStore, and relies on the cloud infrastructure to service all
READ and WRITE requests without a managed local cache, similar to
the baseline setup in our evaluation. Since the only possible way of
querying on the Spatial Anchors platform is through spatial scans, a
direct comparison with DreamStore is not possible as our querying
API is based on pre-recognized objects. Moreover, without the pub-
sub paradigm, the clients do not actively listen for updates on the
objects they are currently accessing.

Shared AR and Interactivity Singh et al. [29] present a study of
Augmented Reality systems in which they describe a generic archi-
tecture for an AR application. This architecture does not consider
the problem of synchronization in a multi-client environment. Slay
et al. [30] describe querying for virtual objects in an AR applica-
tion using fiducial markers and other user interactions. They do
not address the scaling problem in a rich localized-environment.
Recent works in collaborative AR [28] and shared AR world game
design [4] are focused on placement and tracking of AR objects
in the shared world and interaction and experience design around,
which are orthogonal to our work.

Location-based Prefetching for Mobile Applications: Geiger et
al. [10] introduced ideas for developing a generic location-based
mobile augmented reality. Their focus is on adding AR objects
and tracking them through a user session based on camera-feed and
device position employing smart prefetching algorithms based on
motion profiles. This work is more in line with the now freely avail-
able AR toolkits that we use in DreamStore. This is in contrast to
our effort of scaling and enabling data synchronization in a shared
augmented reality setting. IMP [16] aims to shift the prefetching
burden from applications to mobile-systems in order to optimize
for energy and cellular data usage. DreamStore is designed around
managing data needs for AR applications powered by application-
specific databases, properties of which the mobile systems cannot
exploit. However, an IMP like system could potentially enhance the
performance of DreamStore applications by introducing an addi-
tional prefetching layer if it can speculate the applications’ needs.

(]
it App
/ \<———> User Interface <= Recognl.tlon | Server
/Tracking
ARView
Data
Interaction Store
Mapper
AR CLIENT BACKEND

Figure 1: DreamStore modules at the Augmented Reality client
devices and the backend. The figure shows the interactions between
different modules.

3 SYSTEM OVERVIEW

DreamStore is a data platform for AR applications. Figure 1 depicts
the modules of the system and the interaction between them.

The backend data store consists of a key-value store that houses
the information on the AR objects keyed on their identifier. The
recognition/tracking module identifies points of overlay in the scene
for AR objects. The application developers can choose from the
various toolkits available in the market, e.g., ARToolkit, ARCore,
and Vuforia, for this purpose.

Users can interact with the AR system through either implicit
gestures such as inadvertently pointing their AR device in a cer-
tain direction at a certain location without prior knowledge of the
available AR objects, or they can employ explicit gestures such as
tap-and-interact or a voice command to interact with a known AR
object. The user interactions through implicit and explicit gestures
trigger object detection and tracking module, which identifies spots
in the view for which there is information available in the local or re-
mote database. The tracking module further maintains the positions
for the different overlays and tracks them throughout the session for
correct placement of the retrieved data. Libraries like ARToolkit
and Vuforia make use of a unique set of marks or images called
fiducial markers to identify and track these points in the physical
space. The image/feature database for these markers can be stored
locally or in an online database. For the sake of simplicity, we depict
the recognition/tracking module housed entirely on the client-side in
Figure 1. Note that this feature/image database for fiducial markers
is different from the backend datastore, which maintains only the
AR information to be overlaid.

The user gestures combined with the object identification infor-
mation generated by the recognition/tracking module are processed
by the Interaction Mapper which maps a seemingly large number of
queries to a well-defined reduced set of API calls (Section 4.1) to
the client-side cache- ARView. Additionally, the interaction mapper
module uses the client device’s current position, orientation, and
direction of motion to generate the set of object identifiers that are
likely to be queried next and fetches them from the server to be
stored in the ARView.

ARView is maintained using a proximity-based cache replace-
ment policy. When the cache is at capacity, the objects farthest
from the most recently queried object are replaced first. These API
calls may trigger data fetches or updates from/to the backend server.
The communication between the client-side cache — ARView and
the backend store is managed by the view-management modules at
the client-end and the server-end without any intervention from the
application developer. The ARView is maintained asynchronously
with updates from the backend server in real-time.

4 QUERYING IN AR

DreamStore handles virtual object querying in an AR environment
through the means of implicit and explicit user gestures, or device
position and orientation. All queries are mapped to DreamStore
API (Section 4.1) calls, which do not distinguish between the query
modality and only specify the level of details requested for any
specific object.

We elucidate the API call mapping and queried object prioritiza-
tion through two basic gestures commonly covered by most visual
AR interfaces — gaze and tap. The implicit gaze gesture triggers
a read on the set of AR objects in the field of view. Additionally,
it generates the client device’s current position in physical space,
orientation, and direction of motion. A detailed discussion of indoor
localization techniques for generating the device position is beyond
the scope of this work.

AR applications can potentially generate data queries at a rate
higher than the device frame-rate (one query per AR object in the
field of view). This can overwhelm the network and the backend
data warehouse. We use ideas from existing work on interactive
querying [7] to reduce the query workload. The user’s query intent
is mapped to object priorities. The UI generates a ‘READ’ request for
every object in the field of view. The interaction mapper periodically
aggregates these requests and assigns them priorities according to
the inferred user interest. High-interest objects generate more READ
calls every period. The system drops the requests on objects with
READ below a certain developer-defined threshold on the priority.

4.1 DreamStore Data Interface

The AR applications running on the DreamStore platform interact
with the local client-side cache ARView through data management
API calls. These API calls can trigger communication with the
backend data stores. The application developer is oblivious to this
communication, and it is managed by the view-management mod-
ules on the client and the backend. The API supports read-write
operations on the AR object properties. The cache is kept updated
by subscribing for updates on every object queried by the client
maintained in its ARView.

* READ ({object_ids})- This augments the queried objects with the
information from the ARView, and generates subscription requests
for updates on these objects.

* WRITE (object_id : object_value)— The editable fields (infor-
mation from the primary key-value store) in the AR object -
object_id are updated with the value object_value. The ARView
stores a ‘dirty’ bit for each object and sets it when the COMMIT
function is called on an object.

e COMMIT()- All the ARView objects with a set dirty bit are pushed
to the backend key-value store.

4.2 Query Priority Mapping

We build upon the prior work on interactive querying [7] and propose
an AR-specific query-reduction technique: it models the user’s query
intent as an expectation over the field of likely queries. The user
interface generates a READ query for each of the identified objects
in the frame and passes it onto the Interaction Mapper module. The
interaction mapper periodically aggregates all these READ requests
and calculates the density or the count for each object query. The
application developer has the option of configuring either density or
count as the metric of object importance.

A user is likely to focus on an object of greater interest for more
time than the other objects, consequently generating more READ
requests on it. The mapper calculates the density for each object O;
from the set of objects — {0}, 0y, ..., 0, } queried as p; =):,Loli‘a_.

The number of queries on an object O; in a batch is g'iven by
|O;|. Explicit query on a specific object O; by the user, potentially
triggered by object selection using a tap gesture or other means
depending on the interface, sets the query density for that object as
pi = 1 and abandons queries on the other objects. This is because an
explicit selection of an object by the user implies the user’s primary
interest in the object.

Using object density as the metric of object importance has the
potential of overwhelming the system in some cases. If a user scans
through the space around them in a manner such that at any time,
there are only a few AR objects in the view and the objects in the

field of view change at a rate near to that of the interaction mapper’s
aggregation rate, all the objects will get a high density score which
would translate to high importance. Also, if the physical space has
a lot of AR Objects, and the user continues expressing interest in
them by keeping them in view, the system would still assign lower
importance to the objects because of their uniformly lower densities
despite being queried frequently. We provide count as another
metric of object-importance which can handle such situations. The
interaction mapper interprets the query-intent as a discrete numeric
function, where each point corresponds to the number of times the
recognition module issues a READ call on an object. The argument
for higher counts corresponding to greater user interest is the same
that we made for density. The user intent function — I is mapped to
either the density function p or the absolute object counts c.

The interaction mapper first performs thresholding on the in-
tent function generated by user interaction I. All objects with an
intent value lower than a developer configured threshold — Iy;n
are discarded. The mapper then translates the set of intent val-
ues I to a set of READ ARView API calls. The mapper translates
the intent function into up to three sets of READ calls with high,
medium, and low priorities. The mechanism used for this mapping
is developer-configurable, and the developer can choose from either
value thresholding or proportion thresholding.

For value thresholding, the user defines a minimum intent thresh-
old for high-priority assignment — Iy;Gy and a minimum intent
threshold for medium priority assignment — Iysepryar- The objects
with intent values higher than Iy;Gy are mapped to a READ call with
HIGH priority. Of the objects with no assigned priority, the ones with
intent values higher than Iy pjyy are mapped to a READ call with
MEDIUM priority. The remaining objects are mapped to LOW priority
READ calls. In this method, the developer defines the proportions
of the thresholded set to be mapped into HIGH, MEDIUM, and LOW
priority READ calls.

The thresholding techniques presented here are not optimized
for a large list of objects. Standard fop-k techniques for optimizing
look-up time can be used for environments that are immensely rich
in augmentation. Similarly, other modalities of querying, such as
voice can be mapped to DreamStore API calls by applying modality-
specific mapping and reduction logic.

5 PREFETCHING FOR INTERACTIVITY

A B

CNT

@]
O
m

ToHmMmh oo

PRUS

Njojlun|~h|W|IN|F

Figure 2: Directional Prefetching Strategy based on the four princi-
pal directions of movement. The green regions indicate the regions
to be prefetched based on the current and the previous location.

The interaction mapper predicts the set of AR objects to be
prefetched from the backend data store to keep the DreamStore

client interactive, by ensuring objects that are likely to be queried in
the near-future are available in the client-side cache.

We describe the prefetching mechanism for a generic Indoor
Positioning System (IPS) solution. This abstract mechanism can
be customized for different localization techniques depending on
their capabilities. All AR objects are assigned to a unique bounded
physical space identified by a region_id in the AR setting. For
example, each cubicle in a large office, each room ,or each floor in a
building can have a unique region_id. This is a design choice and
would depend on application requirements such as the density of
AR objects in the environment, and typical movement pattern and
coverage of users.

At the end of every thresholding period, the interaction mapper
performs a PREFETCH operation. The prefetching logic generates a
set of object_ids, and all these objects are queried at a low priority.
The specifics of the PREFETCH operation would depend on the IPS
capabilities.

Function prefetch(position_context, motion_context):
prefetch_region «—
generate(position_context,motion_context)
prefetch_set «— region_map.get(key =
prefetch_region)
return prefetch_set

Algorithm 1: Generic prefetching logic to identify the AR ob-
jects to be prefetched based on the position and the movement
of the client device

Algorithm 1 describes a generic prefetching logic utilizing the
client device’s position_context and motion_context. The generate
logic is entirely dependent on the deployed IPS solution. For exam-
ple, a low-effort solution can map AR objects to specific region_ids,
and for each PREFETCH operation, it can return the list of objects
which are present in the same region. In this case, the generate
logic does not utilize the motion_context as it is not available. This
solution would work well when the users are confined to the same re-
gion for the most part. However, use-cases with movement-patterns
spanning multiple regions or frequent switching between regions
would generate a large number of PREFETCH requests, which are
barely used and hamper the system performance.

The prefetching mechanism can be improved by movement pre-
diction. A working movement prediction logic can be easily imple-
mented by banking on spatial locality in the access pattern of AR
applications. A directional prefetching logic can generate region
identifiers closest to the current physical_context of the device in the
direction of its current motion. The direction of motion can be iden-
tified by various techniques such as extrapolating trajectory from
recently logged location data, using on-device motion sensors, or
a fusion of these and other techniques. The PREFETCH operation is
performed after the regular read batch is generated by the interaction
mapper. This ensures that the prefetching requests are queued after
the read requests for objects that have been explicitly queried.

Some IPS solutions can effectively map large physical spaces
onto a grid with distinct regions or cells. DreamStore uses one such
localization dataset to emulate an AR workload. A simple direc-
tional prefetching strategy in such a scenario can be implemented
by tracking just the device’s current location (cell in the grid) and
the last recorded location, using them to determine the principal
direction of motion (up, down, left, or right). The current cell pro-
vides the position_context, and the last recorded cell, along with the
current cell, provides the motion_context. We track the change in
the cell position to predict the next likely regions the device will
move to. Figure 2 shows this prefetching strategy in action. The
device currently in cell B-2 was located previously in A-/, and hence
the principal direction of motion is determined to be right, and the

generate (Algorithm 1) logic would return the regions adjacent to
the current location towards the right — C-1, C-2, and C-3.

IPS technologies regularly use crowdsourcing for improving in-
door positioning accuracy and mapping sensor profiles to physical
spaces. These profiles can be used to train predictors for determining
the next spatial region the user might move to, given the movement
trajectory until that point.

6 AR-VIEW MAINTENANCE

(SET:fic:v}}

PUBIdv

"

Websocket Clienfs.

{id: u}

a0

AR Clients Dreamstore Web Server

Figure 3: Communication between the ARView management library
and the backend infrastructure. The WebSocket clients and the redis
subscription clients are color-paired with their AR client applications
and AR objects respectively

AR clients in the same shared physical space are required to
acknowledge changes by each other while at the same time, ensur-
ing that they can function without explicitly tracking every other
client in the system. Decoupling the clients enforces scalability
at the abstraction level by allowing them to operate independently
of each other. Hence we model the multi-client augmented reality
environment as a loosely-coupled system. Publish/subscribe is a
widely used interaction paradigm in such environments designed for
scalability and real-time data synchronization across components.
We use a pub-sub broker on top of the primary key-value store for
data synchronization across different AR clients connecting to the
DreamStore platform through web socket connections. Although
our prototype for the experiment in this paper uses Redis for both
the key-value store and the pub-sub broker, the system design is not
restricted to it and can use any of the other key-value stores and
pub-sub brokers.

The WebSocket server creates a redis channel for each object that
is queried by the AR clients. It has a dedicated redis subscription
client for each AR client connecting to it, which subscribes to up-
dates on every AR object it queries. These updates are published to
the AR client through the established WebSocket connection. Fig-
ure 3 shows the data synchronization across AR clients in action.
A READ request on an object not maintained in ARView generates
a READ request for the backend store. The application server main-
tains a pool of redis clients to issue SET, GET, and PUBLISH requests
to the redis store. Algorithm 2 details the processing of a request
generated by the view-management module on the client-side by the
application server.

The WebSocket server manages the communication between Re-
dis and the websocket clients. It maintains a unique redis subscrip-
tion client for each AR client connecting to it. The subscription
client subscribes to updates on every object in the data-store that
is accessed by the corresponding AR client, and forwards these up-
dates as soon as they are available to the WebSocket server, which
publishes it to the corresponding AR client’s WebSocket channel.
We do not differentiate between the different priorities of READ
calls in this section for the ease of explanation. We explain how
these priorities affect this communication in section 4.2. Each client

Function handle_message(client, message, registry):
operation <— message.key
if operation is READ then
object_id «+— message.value
publish fetch_from_store(ob ject_id) on client
if object_id not in registry[client] then
add object_id to registry[client]
while true do
update <— update on channel ob ject_id
if update is not None then
| publish update on client
end
end
end
end
else if operation is WRITE then
object_id «+— message.value.key
object_value <— message.value.value
publish_to_store(ob ject_id,object_value)

end

Function publish_to_store(object_id, object_value):

connection <— connection_pool.get()

connection.execute(“SET object_id object_value")

connection.execute(“PUBLISH object_id {object_id:
object_value}")

Function fetch_from_store(object_id, object_value):

connection <— connection_pool.get()

value «— connection.execute(“GET object_id") return
value

Algorithm 2: Request handling by the WebSocket server for the
server requests generated by the view-management library on
the client side.

maintains a subset of the objects from the store that it is currently
operating on in a client-side cache ARView. This view is maintained
asynchronously by our client-side library. When a READ call is is-
sued on an object which is not present in the local-cache, the library
sends a {“READ” : object_id} to the server. The WebSocket server
maintains a pool of redis-client connections for issuing SET, GET,
and PUBLISH commands to Redis. On receiving a GET message
from a client, the server uses a connection from the pool to fetch the
queried object and sends it to the requesting client. When a client
issues a GET on an object, the corresponding redis subscription client
creates a subscription on a channel name corresponding to its object
id. The WebSocket connections continuously listen for updates on
the redis subscription clients corresponding to them, every new mes-
sage on this connection is immediately sent back to the client-device
where the view-management library asynchronously updates the
local copy of the corresponding object. When the COMMIT method
is invoked, the view-management library sends a {“WRITE” : {“ob-
ject_id” : object_value}} for each object with a set dirty bit. The
server issues a SET and a PUBLISH command to redis on a connec-
tion from its pool of redis clients. The PUBLISH command is issued
on the channel named — object id with the message {“object_id” :
object value}. Thus the synchronization between multiple clients is
managed without any effort from the application developer.

7 EVALUATION

Existing AR research is lacking in performance evaluation of large-
scale shared reality experience deployments [32]. User evalua-
tions focused on human perception and cognition in AR, user-
performance, and user-interaction is important for evaluating AR
applications. However, a user-study of this nature is impractical

for studying system performance with hundreds of users accessing
the same shared AR space. DreamStore evaluation utilizes query-
intensive workloads emulated from realistic AR application profiles.

7.1 Workload Generation

Because of a lack of open location-tagged AR workloads, we used an
indoor localization dataset (referred to as /PS in the text) published
by Mohammadi et al. [20] to simulate AR application sessions. This
dataset is generated from a grid of iBeacons deployed in a campus
library (200 ft x 180 ft). We utilize the data used for localization
training that maps a time-stamped measurement of multiple beacon
reading to a grid in the physical space. These grids are analogous
to the regions in DreamStore (Section 5). In order to emulate multi-
ple client workloads, we segmented the 1420 point dataset into 14
distinct user sessions separated by physical space and a significant
time difference between the start of the sessions. This provides us a
realistic time-stamped human-movement path data. In order to emu-
late an AR scenario, we designated ten unique AR objects to each
grid and added a READ request at each data point for 1 to 5 objects at
random. Each point in the segmented user-session is annotated with
the timestamp it was generated at, the unique region it is located in,
and an assigned set of AR object identifiers. The typical time gap
between consecutive measurements between two consecutive points
in each user session is between 2-4 seconds, making these sessions
representative of the reduced query-workload one would expect after
applying query-thresholding (Section 4.2). We simulated 1000 user
sessions by picking a random segmented user-session for each user,
introducing a random start delay, and assigning randomly generated
READ requests picking from the objects assigned to the grid the point
belongs to. Each simulated user either uses the same succession of
points as in the segmented user-sessions obtained from the training
dataset or inverts it to emulate a new path resulting in a total of 28
distinct paths.

In order to emulate a generic AR application, we created an An-
droid application powered by DreamStore that scans the space for
identifiable markers for which it has associated object information in
the database. We placed twelve unique fiducial markers at different
locations in an office cubicle, each identifying an object in the physi-
cal space, e.g., computer screen, bulletin board, appliances, etc. The
data stores were populated with synthetic information associated
with these objects and tagged with geographical coordinates. A read
workload was created by scanning the space for about four minutes,
querying information on one or more objects at a time, while record-
ing all the API calls. The sequence of READ calls in the recorded
workload was permuted to create 1000 different client sessions (re-
ferred to as Generic workload in the text). Unlike the /PS workload,
this usage scenario investigates a small physical space, where the
user would be free to scan objects in any order without any physical
displacement. Hence permuting the READ calls in any order still
maintains the realism of the workload. To test the performance of
the system under updates, we generated a Generic-MIXED workload
by introducing about 5% (of the total READs in the workload) random
updates in the workload on one of the objects from the current read
set at the timestamp right before the introduced update call. The
think-time for each update varies from fifteen to forty seconds. We
simulated these 100 clients simultaneously for both the read and the
mixed workloads on different test setups. All READs are set to HIGH
priority, i.e., they always render the queried objects in full detail.
For the updates, we treat all WRITEs as COMMITs, causing the clients
to trigger a SET call to the backend on each update.

7.2 Test Setup

The data platform (Redis) and the WebSocket server were set up on
an nl-highmem-4 Google Cloud instance (4 vCPUs, 26GB RAM).
The client workloads were divided evenly over two different nl-
standard-4 Google cloud instances (4 vCPUs, 15GB RAM) for each

test scenario.

We evaluated the following test configurations for the three work-
loads — IPS, Generic, and Generic-MIXED.

¢ Naive — In this setup, each DreamStore API call translates to
a server call, triggering a backend request for each implicit or
explicit data interaction on the UL

* Reduced — In this setup, we utilize the query thresholding de-
scribed in Section 4.2 to reduce the generated READ calls to the
backend.

* DreamStore — The clients cache objects on top of the query
reduction in the previous setup. For the Generic and Generic-
MIXED workloads, the clients cache an object the first time it is
accessed and maintain it in the cache throughout the rest of the
session. For the /PS workload, the objects are prefetched into the
cache according to a directional prefetching strategy, evicting the
least recently cached objects when the cache is full.

7.3 Performance Metrics

We use metrics that are useful for evaluating interactive data ex-
ploration systems [24], in addition to metrics that are performance
indicators for specific DreamStore features.

* Query Issue Rate: The number of queries issued to either the lo-
cal cache or the backend, indicating the efficacy of the interaction
mapper in reducing the query workload through thresholding and
prioritization.

* Latency/Response Time: The response time on the client for
each READ and WRITE request.

* Update Propagation Time: The time for the object value update
from COMMIT by a client to propagate to other clients maintaining
the object in their local cache.

« Cache Hit Ratio: The proportion of READ requests serviced by

the local client cache, indicating the effectiveness of the prefetch-

ing policy.

Interactive Constraint Violation: The proportion of requests for

which the response time exceeds 100ms. Requests exceeding this

threshold would potentially hamper the user experience.

7.4 Results

Due to the time granularity (at least 2 seconds) of recording in the
dataset that /PS workload emulates, it resembles the reduced work-
load that would be generated by the DreamStore query reduction
methods. Hence, we do not present the workload reduction evalua-
tion metric (query issue rate) for it. Additionally, since it is a READ-
only workload, update propagation time is not an applicable metric
for its evaluation.

7.4.1 Generic Workload

We use value thresholding (Section 4.2) to reduce the query workload
generated by the DreamStore clients, issuing READ calls only for
objects which are queried at least twice in the READ-aggregation
period — 100 ms.

Query Issue Rate: Figure 4 and Table 1 show the reduction in
query-rate for a client session from about 5 every 100ms to close to
1 in the Generic workload after thresholding.

Average Latency: The reduction in query-rate dramatically reduces
the workload on the server, improving the average response time per
query by about 4 times, as can be seen in the difference between the
Naive and the Reduced setup in Table 1.

Interactive Constraint Violation: Table 2 shows the proportion of
requests that cross the interactive latency threshold of 100ms. Value
thresholding brings down the violation rate from 0.8 to 0.07, which
is reduced to almost 0 by enabling local cache in the DreamStore
setup. Figure 5a and Figure 5b show the response time per query for
one of the client sessions in the Generic workload.

W Naive

W DreamStore

Number of Queries

Figure 4: Query Issue Rate — Number of READ queries issued per
100 ms during a client session of Generic workload under the Naive
and DreamStore setups

Table 1: Aggregate READ performance measures and generated query
issue rate for the Naive, Reduced (RED), and DreamStore (DS)
setups. — Generic workload

MeaSinetup NAIVE | RED | DS
AVG | 300.2 72.54 | 8.7
MED | 242 69 9

Response Time (ms) | MIN 53 46 3

MAX | 1290 239 124
SD 189.5 20.82 | 5.2

AVG | 4.24 i3 3
Query Rate/client MED | > ! !
(queries/100 ms) | MIN | 0 Y U
qu MAX | 13 5 5
SD 3.0 17 | 1.17

Table 2: Latency Constraint Violation (LCV) — The ratio of requests
exceeding the 100 ms latency mark for the different test setups under
Generic workload

Setup Requests/Client LCV
Naive 9239 0.8
Reduced 2849 0.073
DreamStore 2849 8.54x107°

7.4.2 Generic-MIXED Workload

The Generic-MIXED workload shows performance characteristics
similar to that of the Generic workload.
Average Latency: Table 3 shows the response time statistics for the
different test setups. The READ response times are not affected by
the occasional updates in the workload.

Table 3: Aggregate READ performance measures for the Naive, Re-
duced, and DreamStore setups. — Generic-MIXED workload

Setup AVG MED | MIN | MAX | SD
Naive 303.56 | 166 51 1323 235.17
Reduced 82.9 75 52 251 28.12
DreamStore | 8.97 9 4 183 6.52

Update Propagation Time: The DreamStore setup measures up-
date propagation time by including the update time in the object
value when a client issues a COMMIT call on it. Table 4 shows the

Response Time per READ for a client- Naive Setup

1400

1200

000

Response Time (ms)

Query Number in the order of issue

(a) Response time per query for Naive test setup — Generic
workload

Response Time per READ

250

——Reduced ~——DreamStore

8

Response Time (ms)

50

(b) Response time per query for Reduced and DreamStore test setups —
Generic workload

Figure 5: Response time per query (plotted in the issue-order) for
one of the simulated clients in the Generic workload.

updates are propagated to all the clients in a reasonable time, well
within the interactive latency constraint. Moreover, the propagation
times are consistent across the workload with little variation.

Table 4: Update Propagation Time for Generic-MIXED workload

AVG | MED | MIN | MAX | SD
789 | 85 69 91 4.25

7.4.3 IPS Workload

The IPS workload has a wide variation in the client-session running
times ranging from 18 seconds to 2972 seconds or about 50 minutes.
We report the latency statistics and the cache hit rate over the entire
workload.
Cache Hit Rate: Each data point in a client-session has a physical
zone assigned to it, identified by a letter and a number combination,
positioning it in a unique cell in the grid. We implement a directional
prefetching strategy as described in Section 5, and achieve a cache
hit rate of 0.91 over the entire workload.
Average Latency: Table 5 shows the aggregate query response time
statistics for the /PS workload. As explained earlier, the /PS work-
load does not present any avenue for query reduction because of
the way it is designed. The performance improvement seen in the
DreamStore setup over the Naive setup comes from the directional
prefetching, which ensure over 90% requests are serviced by the
local cache for each client.

The Naive setup for the /PS workloads corresponds to the Re-
duced setup for the Generic workload in terms of the order of query

Table 5: Aggregate READ performance measures for the Naive and
DreamStore setups. — IPS workload

Setup AVG | MED | MIN | MAX | SD
Naive 89.1 71 49 235
DreamStore | 11.25 | 12 5 176 3.52

issue rate, and both show similar performance. The latency con-
straint violation rate is about 0.11 for the Naive setup, showing more
than 10% of the queries exceeding the interactive latency threshold.
The IPS workload achieves a latency constraint violation rate of
about 0.01 with the DreamStore setup from the performance gains
due to prefetching and caching.

8 DiscussION

In contrast to the specialized data platforms for AR discussed in
section 2, DreamStore strips down the amount of information it
needs at the backend by having a dedicated store for virtual object
properties and relying on a different visual recognition database
for marking the placement of these objects in space. The database
is not required to store spatial information for entire spaces such
as the large scene graph in the system by Schmalteig et al [27],
making the search and storage more efficient. DreamStore can be
implemented along with platforms like Spatial Anchors — utilizing
its persistent object tracking and storage, and implementing the local
cache management techniques on top of it.

Existing works on AR architecture and shared AR do not focus on
the problem of data synchronization in a multi-client environment,
and are geared towards placing and tracking AR objects in the shared
world view between different clients. DreamStore can enhance these
applications with the proposed workload reduction techniques and
prefetching and caching strategies.

Query Workload Reduction: Reducing the query workload gen-
erated by the clients through query prioritization and threshold-
ing (Section 4.2) improves the average latency by about 4 times
in the Generic (Table 1) and Generic-Mixed (Table 3) workloads.
Some of the reduction in the READ requests in the Generic-MIXED
workload can be attributed to the WRITE requests generated by the
clients as the READs are suppressed for the think-time duration of
an active WRITE request. The latency per query with the reduced
setup does not show as wide a spread in the naive setup ensuring
a more consistent system response throughout the session. The
response time gradually keeps increasing for the naive setup with
sharp changes, possibly indicating connection pool recycling or
WebSocket connection backlog issues because of increasing system
load (Figure 5). The Reduced setup shows a gradual increase in the
response time across the session with few occasional spikes that are
not as deviant from the latency distribution across the session as
seen in the Naive setup.

On account of how the IPS workload is designed (course gran-
ularity of location logging), the query distribution resembles the
workload obtained after reduction, and hence the performance im-
provement seen in the DreamStore setup for /PS can be attributed
completely to the prefetching and caching strategies.

Prefetching and Caching: The Generic and Generic-MIXED work-
loads access a small number of objects over the entire session that
can all be cached on each client. Hence, the cache hit rate is not a
relevant metric for the two workloads, as they would only have a
cache miss for an object the first time it is accessed in the session.
The DreamStore setup shows a consistent response time across the
session 5, with the spikes in the query latency indicating the first
time a new object is accessed, and the READ call is serviced from
the backend data store.

A high cache hit rate (0.91) with the /PS workload shows the
effectiveness of even a relatively simple prefetching strategy. The
cache misses can be attributed to the obvious misses at the start of

each client session, and a few points in some of the client sessions
where the object access pattern is not in line with the directional
prefetching strategy. Some of these measurements skip cells in the
grid along with an unusual jump in time, indicating possible missing
measurements in the base dataset. The deployed IPS system and the
ease of predictability of user movement pattern would impact the
effectiveness of the emloyed prefetching strategy.

8.1 Limitations

Although DreamStore focuses on reducing visual clutter along with
providing consistent and interactivity latency, there are multiple
design considerations from the perspective of human cognition and
perception for AR visualization that were not considered. An impor-
tant issue that arises from this work would be visualizing updates
on objects. To a user interacting and manipulating an AR object,
any explicit updates issued by them are something that they would
expect a feedback for. However, system-initiated updates (updates in
the underlying data due to source update or an action from another
user) can potentially distract users.

Intuitively, certain objects and tasks should prefer the DreamStore
style of pushing every object update to the interface. For other
objects and tasks, it could be useful to suppress the updates if the
user’s attention is required elsewhere and the task is unaffected by the
update in consideration, or emphasize the update by calling out users
attention if that is more helpful to the user task and performance.
Another potential problem with the frequency of visualized updates
in DreamStore could be the system ignoring objects because of their
low visual query frequency, even though the user might be interested
in them.

9 CONCLUSION AND FUTURE WORK

Through performance evaluation of query-intensive workloads that
emulate multiple AR clients in a shared physical space, we showed
that DreamStore can reduce effective query-rate through workload-
reduction by about 5 times, and along with client-side caching, can
bring down the average response time by an order of magnitude
compared to the baseline setup. DreamStore can effectively ensure
interactive latency, with an interactive constraint violation rate of
almost zero compared to 80% in the baseline setup, and provide near-
real-time update propagation across clients well within the 100 ms
interactive latency threshold. We show the effectiveness of an appro-
priate prefetching strategy, achieving a cache hit ratio of 0.91 with a
directional prefetching strategy for an indoor movement workload,
improving the average query latency by an order of magnitude.

DreamStore can enchance shared AR experiences in a variety of
settings such as shared AR gaming experiences and collaborative
work environments [4,28], by effectively mapping user interactions
in AR to a reduced set of data queries along with priority such that
they do not overload the data platform, and enabling easy and rapid
development of applications with interactive latency under updates
for a smooth AR experiences with numerous clients. It can power
AR data analytics use-cases [5, 17] by facilitating real-word data
querying in AR by providing a backend datastore and a framework
for work-sharing and data synchronization between multiple clients.

In the future, we intend to release client-environment specific
view-management libraries for popular AR platforms. We are also
working on further refining the interaction module and defining the
interaction mapper for a broader set of user actions for different
interaction modalities.

10 ACKNOWLEDGEMENT

We acknowledge the support of the U.S. National Science Founda-
tion under the awards IIS-1910356 and CAREER IIS-1453582.

REFERENCES

[1]

[2]
[3]

[4]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIn-
tyre. Recent advances in Augmented Reality. I[EEE computer graphics
and applications, 21(6):34—47, 2001.

R. T. Azuma. A survey of Augmented Reality. Presence: Teleoperators
and virtual environments, 6(4):355-385, 1997.

J. Bernardes, R. Tori, R. Nakamura, D. Calife, and A. Tomoyose.
Augmented Reality games. Extending Experiences: Structure, analysis
and design of computer game player experience, 1:228-246, 2008.

P. Bhattacharyya, Y. Jo, K. Jadhav, R. Nath, and J. Hammer. Brick: A
Synchronous Multiplayer Augmented Reality Game for Mobile Phones.
CHI EA ’19, page 1-4, New York, NY, USA, 2019. Association for
Computing Machinery.

C. Burley and A. Nandi. ARQuery: Hallucinating Analytics over
Real-World data using Augmented Reality. CIDR, 2019.

Q. Dong. Skip the line: Restaurant wait times on Search and Maps.
Google Blog, 2017.

R. Ebenstein, N. Kamat, and A. Nandi. FluxQuery: An Execution
Framework for Highly Interactive Query Workloads. In Proceedings
of the 2016 ACM SIGMOD International Conference on Management
of Data. ACM, 2016.

H. Fuchs, M. A. Livingston, R. Raskar, K. Keller, J. R. Crawford,
P. Rademacher, S. H. Drake, A. A. Meyer, et al. Augmented Reality
visualization for laparoscopic surgery. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages
934-943. Springer, 1998.

A. Gallala, B. Hichri, and P. Plapper. Survey: The Evolution of the
Usage of Augmented Reality in Industry 4.0. IOP Conference Series:
Materials Science and Engineering, 521:012017, may 2019.

P. Geiger, M. Schickler, R. Pryss, J. Schobel, and M. Reichert. Location-
based mobile Augmented Reality applications: Challenges, examples,
lessons learned. 2014.

E. Gelenbe and F.-J. Wu. Future research on cyber-physical emergency
management systems. Future Internet, 5(3):336-354, 2013.

D. Grosu, A. T. Chronopoulos, and M.-Y. Leung. Load balancing in
distributed systems: An approach using cooperative games. In Parallel
and Distributed Processing Symposium., Proceedings International,
IPDPS 2002, Abstracts and CD-ROM, pages 10—-pp. IEEE, 2001.

A. Guo, I. Canberk, H. Murphy, A. Monroy-Herndndez, and R. Vaish.
Blocks: Collaborative and Persistent Augmented Reality Experiences.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 3(3), Sept.
2019.

B. Haynes, A. Mazumdar, A. Alaghi, M. Balazinska, L. Ceze, and
A. Cheung. LightDB: a DBMS for virtual reality video. Proceedings
of the VLDB Endowment, 11(10):1192-1205, 2018.

A. Henrysson and M. Ollila. UMAR: Ubiquitous mobile augmented
reality. In Proceedings of the 3rd international conference on Mobile
and ubiquitous multimedia, pages 41-45. ACM, 2004.

B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson.
Informed mobile prefetching. In Proceedings of the 10th international
conference on Mobile systems, applications, and services, pages 155—
168, 2012.

(171
[18]

[19]

[20]

[21]

(22]
(23]
[24]
[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

M. Khan. AR Heatmap. https://go.osu.edu/heatmap.

C. D. Kounavis, A. E. Kasimati, and E. D. Zamani. Enhancing the
tourism experience through mobile augmented reality: Challenges and
prospects. International Journal of Engineering Business Management,
4:10, 2012.

Microsoft. Spatial Anchors. https://azure.microsoft.com/
en-us/services/spatial-anchors/.

M. Mohammadi, A. Al-Fugaha, M. Guizani, and J. S. Oh. Semi-
supervised Deep Reinforcement Learning in Support of IoT and Smart
City Services. IEEE Internet of Things Journal, pages 1-12, 2017.

D. Nieklas and B. Mitschang. A model-based, open architecture for
mobile, spatially aware applications. In QOIS 2001, pages 392-401.
Springer, 2001.

Pantomime. Pantomime creatures. http://pantomimecorp.com/
pantomime-creatures/.

E. Rahm and P. A. Bernstein. A survey of approaches to automatic

schema matching. the VLDB Journal, 10(4):334-350, 2001.
P. Rahman, L. Jiang, and A. Nandi. Evaluating interactive data systems.

The VLDB Journal, 29(1):119-146, 2020.

R. Rosenholtz, Y. Li, and L. Nakano. Measuring visual clutter. Journal
of vision, 7(2):17-17, 2007.

C. Sandor, M. Fuchs, A. Cassinelli, H. Li, R. Newcombe, G. Yamamoto,
and S. Feiner. Breaking the barriers to true augmented reality. arXiv
preprint arXiv:1512.05471, 2015.

D. Schmalstieg, G. Schall, D. Wagner, 1. Barakonyi, G. Reitmayr,
J. Newman, and F. Ledermann. Managing complex augmented reality
models. IEEE Computer Graphics and Applications, 27(4), 2007.

M. Sereno, X. Wang, L. Besancon, M. J. Mcguffin, and T. Isenberg.
Collaborative Work in Augmented Reality: A Survey. IEEE Transac-
tions on Visualization and Computer Graphics, 2020.

M. Singh and M. P. Singh. Augmented reality interfaces. IEEE Internet
Computing, 17(6):66-70, 2013.

H. Slay, B. Thomas, and R. Vernik. Tangible User Interaction Using
Augmented Reality. Aust. Comput. Sci. Commun., 24(4):13-20, Jan.
2002.

R. Szeliski. Computer Vision: Algorithms and Applications. Springer
Science & Business Media, 2010.

A. Tang, C. Owen, F. Biocca, and W. Mou. Performance Evaluation of
Augmented Reality for Directed Assembly, pages 311-331. Springer
London, London, 2004.

H. Tramberend. Avocado: A distributed virtual reality framework. In
Virtual Reality, 1999. Proceedings., IEEE, pages 14-21. IEEE, 1999.
G. R. Vesto. Augmented reality enhanced triage systems and meth-
ods for emergency medical services, Aug. 5 2011. US Patent App.
13/204,524.

A. Webster, S. Feiner, B. MacIntyre, W. Massie, and T. Krueger. Aug-
mented reality in architectural construction, inspection and renovation.
In Proc. ASCE Third Congress on Computing in Civil Engineering,
pages 913-919, 1996.

E. Zhu, A. Hadadgar, I. Masiello, and N. Zary. Augmented reality in
healthcare education: an integrative review. PeerJ, 2:¢469, 2014.

