PacketScope: Monitoring the Packet Lifecycle Inside a Switch

Ross Teixeira
Princeton University
rapt@cs.princeton.edu

Arpit Gupta
UC Santa Barbara
arpitgupta@cs.ucsb.edu

ABSTRACT

As modern switches become increasingly more powerful, flexible,
and programmable, network operators have an ever greater need to
monitor their behavior. Many existing systems provide the ability
to observe and analyze traffic that arrives at switches, but do not
provide visibility into the experience of packets within the switch.
To fill this gap, we present PacketScope, a network telemetry sys-
tem that lets us peek inside network switches to ask a suite of useful
queries about how switches modify, drop, delay, and forward pack-
ets. PacketScope gives network operators an intuitive and powerful
Spark-like dataflow language to express these queries. To minimize
the overhead of PacketScope on switch metadata, our compiler
uses a “tag little, compute early” strategy that tags packets with
metadata as they move through the switch pipeline, and computes
query results as early as possible to free up pipeline resources for
later processing. PacketScope also combines information from the
ingress and egress pipelines to answer aggregate queries about
packets dropped due to a full queue.

CCS CONCEPTS

+ Networks — In-network processing;

1 INTRODUCTION

Network monitoring is crucial to ensuring high availability and
performance in modern networks. At the core of these networks
lies a set of switches, which are responsible for delivering data
packets and enforcing network policies such as load balancing, ac-
cess control, and attack detection. Switches themselves are complex
devices consisting of multiple pipelines for processing packets, di-
verse memory for storing different kinds of state, multiple queues
for buffering and forwarding packets, and complex logic for im-
plementing network policies. However, today’s network operators
have limited visibility into the data planes of these switches.
When application performance issues arise, the network and,
more specifically, the switches are often to blame [7, 8]. For example,
a switch might have incorrect forwarding rules that cause packets
to never reach their intended destination. If a switch’s buffers be-
come congested, flows will start to experience latency, which can

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

SOSR °20, March 03, 2020, San Jose, CA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7101-8/20/03...$15.00
https://doi.org/10.1145/3373360.3380838

Rob Harrison
United States Military Academy
rob.harrison@westpoint.edu

Jennifer Rexford
Princeton University
jrex@cs.princeton.edu

severely impact latency-sensitive applications such as video stream-
ing or gaming. Finally, attacks on network devices can get past
switches that are not filtering packets properly; network attacks
like a DDoS can completely fill switch buffers and significantly
disrupt the network.

A new generation of switches [5] with a protocol independent
switch architecture (PISA) allow network operators to write cus-
tom packet-processing code in languages like P4 [4]. These pro-
grammable switches give network operators much greater flexibil-
ity over packet processing, which can lead to more efficient network
design and greater insight into network performance. However,
this advancement in switch design comes with the risk of introduc-
ing bugs in a switch’s processing, either due to programmer error
or compilers that contain bugs. As the adoption of programmable
switches rises, it becomes increasingly important to monitor the
processing that occurs within the switches to ensure that they are
free from incorrect programs, compiler bugs, and hardware errors.

In addition to these new error conditions unique to programmable
switches, network operators must still monitor their networks for
traditional network events such as congestion, failure, or cyberat-
tack. For all of these events, examining how the switch internally
processes individual packets significantly aids in their detection.
For example, to detect incorrect forwarding behavior such as a black
hole, one could query for the counts of packets being forwarded out
each output port to observe whether any ports are not sending out
any packets. To determine when a switch is experiencing conges-
tion, a network operator could ask about the size of the queue when
a packet enters or leaves the queue. To detect attacks that target
an end host’s software, such as an SSH exploit, network operators
can ask whether packets which should have been dropped by an
access control list (ACL) rule (such as inbound SSH connections)
were instead forwarded out.

Recent telemetry systems for programmable switches support
queries written in a dataflow programming model [6], a powerful
and familiar language for expressing computation on a stream of
incoming packets [9, 15]. However, these systems only operate
on the packets as they enter the switch, and they ignore packet
processing done by the switch itself. They are useful for detecting
network-level attacks, but their limited expressiveness does not
allow operators to analyze a switch’s internal processing.

In this paper, we present PacketScope, a network telemetry sys-
tem capable of answering queries about internal switch processing
using recent advances in programmable switches. PacketScope pro-
vides dataflow constructs that allow network operators to reason
about how a switch modifies, drops, and delays. In particular, we:

https://doi.org/10.1145/3373360.3380838

SOSR ’20, March 03, 2020, San Jose, CA

A Ingress , Queues

Figure 1: PacketScope’s PISA pipeline model and locations
where the values of query fields become known.

o Enable monitoring of packets at both the ingress and egress
pipelines, and for collecting aggregate statistics about pack-
ets lost due to queue occupancy;

e Compile queries to PISA switches by tagging each packet
with relevant metadata about its journey through the switch
and computing statistics as early in packet processing as
possible to minimize overhead;

e Overcome limitations in switch programmability to moni-
tor queuing loss by introducing a hybrid switch-controller
solution that joins and synchronizes traffic counts from the
ingress and egress pipelines; and

e Develop an initial prototype as an extension to the Sonata
codebase [1] and evaluate an independent loss query imple-
mentation.

In Section 2, we describe the specific language extensions that en-
able monitoring queries over both the ingress and egress pipelines
of a switch. In Section 3, we describe how we compile those exten-
sions to PISA hardware and in Section 4, we evaluate our initial
prototype. Finally, we discuss future and related work in Section 5
and Section 6, respectively, and conclude in Section 7.

2 QUERYING THE FULL PACKET LIFE CYCLE

In this section, we first explain the declarative, dataflow program-
ming model for network telemetry queries. We then describe the
extensions to the packet tuple abstraction that PacketScope intro-
duces to represent the packet’s experience within the switch. We
demonstrate example queries for monitoring modifications, ACL
drops, and queuing loss. Finally, we introduce a loss operator for
reasoning about queuing loss.

2.1 Telemetry as Dataflow Queries

Several PISA-based telemetry systems let network operators express
declarative queries that treat each packet as a tuple. Two such
systems, Sonata [9] and Marple [15], provide an abstraction similar
to the dataflow programming paradigm used by Apache Spark [20].
These languages operate on streams of incoming tuple data, where
each tuple represents a packet header vector. Queries can then

Teixeira, et al.

apply map, filter, groupby, and reduce operations to evaluate
expressions, filter, and aggregate data, respectively, on the set of
incoming tuples.

While dataflow programming is a generally expressive model
for common network telemetry queries, existing solutions have
limitations that prevent them from analyzing a packet’s experience
within the switch. Sonata’s tuples represent packets as they ap-
pear on arrival at the switch, and thus queries cannot reason about
header modifications, queuing delay, or packet loss. Marple tuples
include information about queuing, but cannot track modifications
or dropped/lost packets without monitoring at multiple switches
or sending copies of all packets to a central controller. With Pack-
etScope, we can avoid this network overhead by extending Sonata’s
tuple abstraction to account for the packet’s entire journey through
the switch, not just the ingress portion.

2.2 Extending the Tuple Abstraction

To support queries about the packet life cycle, we expand the tuple
abstraction to include fields that capture the packet’s experience at
various stages of processing. Figure 1 shows the full set of fields and
their locations. When the packet first enters the switch and is parsed,
the switch gets information about headers_in (the packet’s initial
header fields), port_in (the port the packet arrived at), and time_in
(the timestamp when the packet arrived). The packet then moves
through ingress processing, where its headers may be modified,
and it will either have its intended forwarding behavior set, or
be marked for drop because it matched an ACL rule. After ingress
processing finishes, headers_mid defines the packet’s headers after
any ingress modifications, while port_intent refers to the packet’s
intended forwarding behavior, which will either be (i) its output
port, (ii) a special value for behavior like mirroring or multicasting,
or (iii) a -1 value that indicates the packet is intended to be dropped.

Note, we define that a packet has “finished” processing in a
pipeline when (i) there is no more processing to do, or (ii) the
packet is marked for drop. Thus, for dropped packets, headers_mid
represents the packet’s headers at the time it was marked for drop.

If the packet is not marked for drop, it then attempts to enter the
queue. For now we assume the queue has space, so the packet enters
the queue, and eventually the packet is dequeued and enters egress
processing. At this point, the switch knows the packet’s experience
in the queue: queuing.time_in/out and queuing.len_in/out,
the times the packet entered and exited the queue and the size of
the queue at those times. The packet then enters egress processing,
where it may undergo more modifications or be marked for drop.
After the egress pipeline finishes processing, the header_out values
are known as well as port_out, the port the packet is sent out.
Similar to ingress processing, if the packet is marked for drop during
egress processing, port_out = -1 and headers_out represents
the packet’s headers at the time it was marked.

2.3 Querying Both Ingress and Egress Tuples

Each query in PacketScope must begin by defining a stream of
tuples for that query to operate on. To motivate the choice of tuple
streams provided by PacketScope, we first consider two alternative
approaches. We could provide a single tuple that contains all fields,
similar to prior work, but a single tuple does not allow queries

PacketScope: Monitoring the Packet Lifecycle Inside a Switch

Type Query

.egress()

.filter(ipv4.srcIP_in != ipv4.srcIP_out)
.map((ipv4.srcIP_in) => 1)
.reduce(keys=(ipv4.srcIP_in), func=sum)
.ingress()

ACL | .filter(port_intent == -1)

drop | .map((ipv4.srcIP_in) => 1)
.reduce(keys=(ipv4.srcIP_in), func=sum)
.egress()

.filter(queue.len_out > Th)
.map((ipv4.srcIP_in) => 1)
.reduce(keys=(ipv4.srcIP_in), func=sum)
.ingress()

Loss | .filter(tcp.dstPort_in == 80)
.lost([ipv4.srcIP_in], 20ms)

Table 1: Example PacketScope queries.

Mods

Delay

to specify whether they observe packets at the ingress or egress
pipeline, which is important when dealing with queuing loss. We
could provide four tuple types: start/end of ingress and start/end of
egress, but the start and end of each pipeline are redundant because
packets that start a pipeline always reach the end of that pipeline.

Thus, PacketScope provides two tuple streams that queries can
operate on: ingress() and egress(). Queries on the ingress()
stream operate on all packets that are seen by the switch, and their
tuples contain:

(headers_in, headers_mid,
port_in, port_intent,

time_in)

Queries on the egress() stream operate on all packets that reach
egress processing, and their tuples contain:

(headers_in, headers_mid, headers_out,
port_in, port_intent, port_out,
time_in, queuing.time_[in/out],

queuing.len_[in/out])

Note that while each tuple type defines a single pipeline, the
queries might be compiled to either the start or end of that pipeline,
depending on the fields used in each query and the resource con-
straints of the switch, as discussed in §4.1. With these streams of
tuples, PacketScope’s language enables four types of queries about
the life of packets in the switch: (i) packet modifications, (ii) access
control list drops, (iii) queuing delay, and (iv) queuing loss. Table 1
showcases example queries targeting each.

2.4 Aggregate Queries over Queuing Loss

We now handle the special case of queuing loss. Consider the straw-
man approach of introducing a third tuple type for “lost” packets,
that produces a tuple for each packet lost due to a full queue. Unlike
ACL drops, the switch does not provide a programmable hook for
analyzing a packet when it attempts to enter a full queue, as this
occurs outside the programmable pipelines. This means that to
detect queuing loss, we must somehow observe each packet that

SOSR ’20, March 03, 2020, San Jose, CA

appears at ingress processing, but never reaches egress processing
even after accounting for possible queuing delay.

An expensive option would be to forward each packet at ingress
and egress to a central controller for analysis. Alternatively, the
switch could keep state about each packet seen at ingress and at
egress, and later a central controller could compare the per-packet
state. It would be too expensive to store state for every packet the
switch sees, but it is possible to keep aggregate counts—for example,
packet counts grouped by IP prefixes—in both pipelines.

PacketScope provides a special operator for tracking packets lost
to the queue:

.lost(groupby_fields, epoch_ms)

which computes counts of lost packets grouped by the specified
fields. We place two restrictions on using .lost() in a query:
e Queries with lost() can only operate on ingress tuples,
as by definition, lost packets never enter egress processing.
e The aggregate operator . reduce is not allowed before . lost (),
but simple operators (.map, . filter) are allowed.
Next, we define the time windows that .lost() counts are aggre-
gated over. A simple strawman would be to read the counts at
ingress and egress in absolute time increments, but due to queuing
delay, the counts at ingress and egress at any instant would differ
by the number of packets currently in the queue. Instead, we use
the arrival time of packets as the epoch boundary. For example,

.lost([ipv4.srcIP_in], 20ms)

would report how many packets experience queuing loss that arrive
in 20ms windows. Tuples returned by .lost() contain (epoch#,
count, groupby_fields). Figure 2 shows an example of epoch
timings. Note this means that the switch needs to store counts for
the previous and next epoch at any time, as discussed later in §3.3.

3 COMPILING PACKET LIFE CYCLE QUERIES

In this section, we describe the PacketScope compiler, and how we
overcome two challenges of compiling packet life cycle queries to
a switch: (i) where to place state and computation and (ii) how to
handle queuing loss.

3.1 The PacketScope Compiler

The PacketScope compiler takes as input (i) a set of queries that the
network operator writes and (ii) P4 code for the switch forwarding
logic. The compiler distributes the query operators to be executed
at different locations in the pipeline, depending on (i) the tuple type
used, (ii) the order of operators, and (iii) available switch resources.
For example, a . filter(port_in == 2) operator could be applied
at the start of ingress processing, even if applied to egress tuples.
The compiler then integrates the portion of the queries that can
be executed at the switch with the forwarding logic to produce a
single P4 program, which is loaded onto the switch.

3.2 Tag Little, Compute Early

The first challenge in compiling PacketScope queries is deciding
where to place the query logic in the pipeline. For example, take
the “Modification” query in Table 1, which operates on a stream
of egress() tuples and filters for packets whose source IP was
modified during switch processing. The query must be processed

SOSR ’20, March 03, 2020, San Jose, CA

Teixeira, et al.

H B B BE I\I H —>

19.2ms 17.1ms 16ms 7ms

Figure 2: Packets assigned to epochs based on arrival time where epoch_ms ==

5.2ms 2ms

To Ingress

5ms, where the vertical lines represent epoch

boundaries. A red ’X’ denotes a dropped packet.

at the egress pipeline by definition, but it also needs access to the
packet’s ipv4.srcIP_in when the packet arrived at the switch,
before any modifications. To solve this, we tag the packet with
metadata that includes its initial source IP when it arrives at the
switch. When the packet reaches the end of egress processing, the
switch compares its current source IP to the tagged metadata to
complete the filter operation.

However, excessive packet tagging uses up valuable state in the
Packet Header Vector (PHV), where headers and other metadata are
stored, that could be used by other queries or other switch function-
ality. Thus, we want to minimize the additional state added to the
PHYV, and “free” that state when it is no longer needed. Since PHV
state is pre-allocated by the P4 compiler, for our purposes, “freeing”
state in the PHV means allowing future operators or switch pro-
cessing to reuse the space allocated to prior operators/processing
when that state is no longer needed.

To demonstrate our “tag little, compute early” strategy, consider
the following two queries. The first query counts the number of
packets whose destination IPs are modified during ingress process-
ing, by their destination IP at the start of ingress processing:

.ingress()

.filter(ipv4.dstIP_in != ipv4.dstIP_mid)
.reduce(keys=(ipv4.dstIP_in), func=sum)
.filter(count > T)

The second query counts packets on which the switch sets an
Early Congestion Notification (ECN) bit during egress processing,
by their destination IP at the start of egress processing:

.egress()

.filter(ipv4.ecn_mid != 2 && ipv4.ecn_out == 2)

.reduce(keys=(ipv4.dstIP_mid), func=sum)
.filter(count > T)

The first query must store each packet’s initial destination IP in
the PHYV, using 32 bits. The second query must store the packet’s
destination IP at the start of egress processing, as it must wait
until the end of egress processing to know whether the ECN bit is
eventually set. Naively, storing ipv4.dstIP_mid would use another
32 bits; however, because the first query’s initial IP is no longer
needed, the second query can reuse that space in the PHV.

In this case, the fields are the same size, but the strategy also
works when the PHV space being reused is larger than the fields
that demand it. For example, PHV space used for an IP address can
be reused by multiple other fields, such as a TTL value and a source
port. In this case, the compiler must keep track of the bit indices
within the original PHV space used by each new field.

Together, our “tag little” and “compute early” strategies reduce
the PHV overhead imposed by queries. The PacketScope compiler
tags packets with relevant query fields in their PHV when they
become available, and executes operators as early as possible so
their PHV space can be reused.

3.3 Monitoring Queuing Loss in Epochs

Our second major challenge is monitoring queuing loss. As dis-
cussed in §2.4, the switch may not provide a programmable hook
into packets that are dropped due to a full queue. This makes it dif-
ficult for PacketScope to track individual packets which experience
queuing loss. Fortunately, it is feasible to track aggregate counts
of packets lost due to queuing. Our solution stores these counts
in registers on both the ingress and egress pipelines for a central
controller to retrieve and compare later.

To compile .lost queries, we take inspiration from Sonata’s
ability to join the results of two queries together. The query on
queuing loss in Table 1 can be expressed as shown below:

ingress()
.map((ipv4.srcIP_in) => count=1)
.reduce(sum)
.join((egress()
.map((ipv4.srcIP_in) => count=1)
.reduce(sum)),
func="diff’,

window="arrival’, epoch_ms=5ms)

The queries track packet counts per source IP at the ingress and
egress pipelines, respectively, and . join computes their difference.
In order to handle epochs, PacketScope tags each packet with
an epoch number when it arrives at the switch, computed by
|_ time_in
epoch_ms
pute in the data plane using a bitshift. At each pipeline, the switch
then stores (epoch#, groupby_fields) -> (epoch#, count)
in a d-stage hash table for each IP it observes, and updates the
count if it has already been initialized. Our model assumes FIFO
processing with no reordering in the queuing phase (e.g., due to
priority queuing), so that when the first packet from epoch x is
dequeued, no other packets from epoch x — 1 will be seen by egress
processing. Thus, when the egress pipeline first observes a packet
from a new epoch, it can alert the central controller to pull results
from the switch. In case no packets arrive during an epoch, the cen-
tral controller can pull results from the switch after no additional
packets from the previous could be waiting in the queue: the start
time of the current epoch + the max ingress processing + queuing

]. For certain epochs (powers of 2), this is easy to com-

PacketScope: Monitoring the Packet Lifecycle Inside a Switch

SOSR ’20, March 03, 2020, San Jose, CA

T v v v W

Precision

T T 1'0 T T
700 H-@— sent i
—@- lost
600 |- i 0.8}
Burst ends
500 | 1 B
i) ° g 0.6
© 400} | {1 @
s %04
© | i 4tk
o 300 Burst starts E
200 B
0.2}
100 | L E
2 | L
0 b 1l 00 i |2 | \4 I
0 5 10 15 20 25 30 35 2 2¢ 2
Epoch

(a) Loss counts reported from a bursty flow.

é(&

Hash Table Entries Per Stage

(b) Precision with epoch length fixed at 1 second.

28 I 2‘1() I 2‘12 ‘ 2‘14 216

Epoch Length (sec)

(c) Precision of epoch lengths with different # of
hash table entries per stage.

Figure 3: PacketScope prototype evaluation.

delay. With our FIFO assumption and knowledge of the target ar-
chitecture’s clock speed and queue capacity, we can compute the
max ingress processing + queuing delay in advance.

To expire old data, we use the fact that we store the epoch number
of each register entry in addition to its contents. If the insertion for
a new packet collides with an entry that has an epoch number less
than the previous epoch, we assume that the central controller had
sufficient time to query the switch for those counts and the data
can be overwritten.

Finally, we handle the case of collisions in the d-stage hash
table by adding an additional stage to both the ingress and egress
pipelines. If a packet encounters a collision in all d stages of the
hash table, it adds a count in the d+1 stage to a register according
to its epoch in each pipeline. Instead of hashing into the register
according to the groupby_fields specified by the query, counts in
the d+1 stage are indexed by the packet’s epoch number. This allows
PacketScope to count the total packet losses on the switch even
when the switch’s available memory is insufficient to store all of the
counters without collision when indexed by the groupby_fields.

4 EVALUATION

We present an initial prototype for PacketScope by extending the
Sonata streaming network telemetry system [1], including the query
language, compiler, and emitter[9]. So far, we have modified or
added approximately 820 lines to the 16,000 lines in the Sonata
codebase. This addition extends Sonata to support both ingress()
and egress() tuple streams and our “tag little, compute early” strat-
egy of compiling query functionality into a P4 packet processing
pipeline. We also include in our prototype a manually compiled
loss query for evaluation.

4.1 Packet Loss Query

We implement the packet loss query in Table 1, which counts lost
HTTP packets by source IP. It follows the Sonata model, and is
written in 950 lines of P4 code and 240 lines of Python for the
emitter. We used a four-stage hash table implementation with a
fifth stage for resolving collisions per epoch on ingress and egress.
For our first experiment, we have 27 rows per stage and an epoch
size of 1 second. We ran this query on the BMv2 software switch

configured with a queue length of 100 packets and a dequeuing rate
of 100 packets/sec. The switch then processed a synthetic packet
trace designed to fill the queue, without drops, for a 30-second
period. We then injected an additional 500 packet/sec burst for a 6-
second period. Figure 3a shows that our query effectively detected
the lost packets that resulted from an overwhelmed queue.

4.2 Query Precision

We then evaluate the precision of our loss query. The precision of
a loss query is defined as %, the fraction of unique
groupby keys (in this case, source IPs) seen by the switch whose
loss counts are maintained and reported at the end of each epoch,
compared to the total number of lost packets in that epoch. Precision
decreases when the hash tables fill, causing packets that experience
hash collisions to only be counted in the total number of lost packets
stored in the d+1 stage for that epoch. We then configured the
BMv2 switch with a 40 packet buffer and dequeuing rate of 1000
packets/sec, and replayed a CAIDA trace [2] through the switch
for 60 seconds at ~1700 packets/sec. Figures 3b and 3c show the
precision of our query as we vary (i) the number of rows in each
stage of the hash table and (ii) the duration of an epoch, respectively.
As expected, our precision increases as the number of rows in each
stage of the hash table increases (fewer collisions) and decreases as
the epoch duration increases (more collisions).

Because we are evaluating PacketScope on the slower BMv2
software switch, we focus on a smaller packet rate (thus, a small
number of flows) and larger epoch lengths. When compiling to a
hardware switch, this reverses: a much faster switch can support
much shorter epochs, and this would help achieve similar precision
with a much larger number of flows. In addition, loss queries that
group traffic by coarser keys (e.g., IP prefix, rather than IP address)
would reduce the memory requirements for maintaining state.

5 DISCUSSION AND FUTURE WORK

Integration of queries with user P4 program: PacketScope mon-
itors a switch’s packet processing, so naturally it must integrate its
own queries with the user’s existing P4 code. There are three key
ways in which this occurs. First, the execution flow of a P4 program
is defined in a control code block, and PacketScope must augment

SOSR ’20, March 03, 2020, San Jose, CA

this block to insert its query processing before/after existing pro-
cessing. Second, the existing P4 code contains a custom parser that
defines the packet’s headers; by extracting this parser, PacketScope
can allow queries to use any custom headers defined by the user.
Finally, we have described the switch as “marking” a packet for
drop, but in reality, when a packet matches an ACL rule, a drop()
action is called that may immediately terminate processing and
drop the packet. To account for such targets, PacketScope modifies
the user program to override the drop() action to set a “mark” bit
in the PHV, which is then read implicitly when a query checks if
port_intent/out == -1.

Query compilation with switch resource constraints: PISA
switches are limited in the number of stages per pipeline, the
number of instructions that can be executed per stage, the size
of the PHV, and the amount of register memory available in each
stage [5, 9]. Each of these constraints reduces the number of query
operators that can be executed on the switch, and fitting these
constraints becomes increasingly difficult when running multiple
queries simultaneously while integrating with existing switch pro-
cessing. Sonata uses these constraints as input to an integer linear
program (ILP) [9], and solves it to find an optimal partitioning of
queries into the data plane of the switch that minimizes commu-
nication with the central controller. PacketScope can also use this
ILP formulation, except the ILP must now include constraints on
the ingress and egress pipelines separately, and we would solve
for the optimal partitioning of queries based on their respective
pipelines, metadata requirements, and the division of the existing
switch processing among the ingress and egress pipelines.

Queries with multiple pipelines: Our current switch model
assumes FIFO processing with a single ingress and egress pipeline
shared among all ports. However, switches often contain multiple
distinct pipelines that each process packets for a subset of the
ports on the switch. For example, consider a query fragment that
generates a traffic matrix of in-out port pairs:

.egress()

.map((port_in, port_out) => 1)

.reduce(keys=(port_in, port_out), func=sum)

.filter(count > T)
In a single-pipeline switch, each in-out port pair has a single count
at the egress pipeline, and it is easy to detect when this count ex-
ceeds a threshold. But with multiple pipelines, detecting when the
count exceeds the threshold becomes a distributed heavy-hitter
problem, in which multiple counts may individually fall below the
threshold, but whose sum exceeds it. This problem has attracted
research in a network-wide setting [11], and applying these tech-
niques within a switch is an interesting future direction.

Network-wide queries: Much of PacketScope’s query language
can be extended to support network-wide queries that abstract the
network as “one big switch” In this abstraction, the in-out ports of
the abstract switch are the edge switches of the network, and the
big-switch’s processing accounts for all of the switches within the
network. “Tagging” a packet means adding headers to the packet
as it traverses the network, rather than stripping the tags before
the packet leaves the switch. This design could be combined with
other network telemetry systems like Path Queries [16] to reason
about the paths packets take through the network.

Teixeira, et al.

6 RELATED WORK

Dataflow for Telemetry Queries: Several recent systems express
network telemetry queries in a dataflow language. Both Sonata [9]
and Marple [15] partition queries between a switch data plane and
a central processor, but they only observe packets when they arrive
at the switch. PacketScope enables queries about processing that
occurs within the switch by exposing both ingress and egress packet
streams, which were not available in either of the prior solutions.

While we have contributed a portion of PacketScope as an ex-
tension to the Sonata codebase, the techniques we propose that
enable queries about processing within the switch are novel and
not limited to implementation in Sonata. Since the prototype is de-
signed as an extension of the Sonata codebase, PacketScope shares
all of the features and limitations of Sonata, including the need to
recompile whenever the set of input queries changes. In addition,
PacketScope extends Sonata’s query language to enable queries
about the egress packet stream and packet loss.

Active measurement: Some tools use active probing to monitor
and detect issues in the network [8, 18]. However, active measure-
ment systems only track synthetic probes, whereas we want to
monitor the modifications and drop/loss behavior that real network
traffic experiences within the switches themselves.

Passive measurement: Some passive systems work by forward-
ing copies of all packets to a central server (or set of servers) [10, 13],
which introduces too muh overhead. Everflow [21] and dShark [19]
require operators to filter a limited set of IPs to monitor, whereas
PacketScope can support all traffic at line rate. Other systems re-
quire control of end hosts [3, 12, 17], while PacketScope does not.

Handling loss: Some systems deal specifically with detecting
lost packets, but they rely on coordination between multiple net-
work members. LossRadar [14] requires monitoring at multiple
switches in order to detect lost packets, and does not distinguish
between link failures and queuing losses, while we focus on de-
tecting queuing losses. 007 [3] also does not make this distinction,
and, in addition, it assumes that the operator has control of the end
hosts in the network (such as a datacenter) and requires end hosts
to participate in order to track losses, while PacketScope can track
losses at a switch independent of the surrounding network.

7 CONCLUSION

PacketScope fills an essential gap in network telemetry systems by
peeking inside modern programmable switches. It offers rich insight
into the life cycle of packets inside a switch, where they could
experience packet modifications, ACL drops, and queuing delay
and loss. PacketScope compiles and integrates dataflow telemetry
queries with existing switch processing and employs a “tag little,
compute early" compilation strategy to minimize query overhead.
We also allow a switch to track the properties of packets lost to full
queues by monitoring at both the ingress and egress pipelines.

8 ACKNOWLEDGMENTS

We greatly appreciate our shepherd, Noa Zilberman, for her valuable
counsel and feedback throughout the revision process, as well as
our anonymous reviewers for their insightful comments. We also
thank David Walker for his suggestions on the query language
design. This work is supported by NSF Award CNS-1704077.

PacketScope: Monitoring the Packet Lifecycle Inside a Switch

REFERENCES

(1]
(2]

[3

=

[4

=

(1]

2018. Sonata Repository. https://github.com/Sonata-Princeton. (2018).

2019. The CAIDA UCSD Anonymized Internet Traces 2019 Dataset. http://www.
caida.org/data/passive/passive_dataset.xml. (2019).

Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Honggiang Liu, Jitu Padhye,
Boon Thau Loo, and Geoff Outhred. 2018. 007: Democratically Finding the
Cause of Packet Drops. In USENIX Conference on Networked Systems Design and
Implementation. 419-435.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
ACM SIGCOMM Computer Communication Review 44, 3 (July 2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN. In ACM
SIGCOMM. 99-110.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107-113.

Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.
Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why Does the Cloud Stop
Computing?: Lessons from Hundreds of Service Outages. In ACM Symposium on
Cloud Computing. 1-16.

Chuanxiong Guo, Hua Chen, Zhi-Wei Lin, Varugis Kurien, Lihua Yuan, Dong
Xiang, Yingnong Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, and Bin
Pang. 2015. Pingmesh: A Large-Scale System for Data Center Network Latency
Measurement and Analysis. In ACM SIGCOMM, Vol. 45. ACM, 139-152.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-driven Streaming Network Telemetry. In
ACM SIGCOMM. 357-371.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown. 2014. Net-
Sight: I Know What Your Packet Did Last Hop: Using Packet Histories to Trou-
bleshoot Networks. In USENIX Conference on Networked Systems Design and
Implementation. 71-85.

Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018. Network-
Wide Heavy Hitter Detection with Commodity Switches. In Symposium on SDN

=
)

(13

[14

jpory
&

[16

[17

(18]

(19]

[20

[21

SOSR ’20, March 03, 2020, San Jose, CA

Research. ACM, 8:1-8:7.

Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2019. Confluo: Distributed
Monitoring and Diagnosis Stack for High-speed Networks. In USENIX Networked
Systems Design and Implementation.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better
NetFlow for Data Centers. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). Santa Clara, CA, 311-324.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. LossRadar: Fast
Detection of Lost Packets in Data Center Networks. In International on Conference
on Emerging Networking EXperiments and Technologies. 481-495.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-directed hardware design for network performance monitoring. In
ACM SIGCOMM. ACM, 85-98.

Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David Walker. 2016.
Compiling Path Queries. In USENIX Symposium on Networked Systems Design
and Implementation. USENIX Association, 207-222.

Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2018. Distributed Net-
work Monitoring and Debugging with SwitchPointer. In USENIX Symposium on
Networked Systems Design and Implementation. Renton, WA, 453-456.

Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,
Dongming Bi, and Dong Xiang. 2019. NetBouncer: Active Device and Link Failure
Localization in Data Center Networks. In USENIX Networked Systems Design and
Implementation. Boston, MA, 599-614.

Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng,
and Lihua Yuan. 2019. dShark: A General, Easy to Program and Scalable Frame-
work for Analyzing In-network Packet Traces. In USENIX NSDIL

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In USENIX Networked Systems Design and Implementation.

Yibo Zhu, Ben Y. Zhao, Haitao Zheng, Nanxi Kang, Jiaxin Cao, Albert Green-
berg, Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, and Ming Zhang.
2015. Packet-Level Telemetry in Large Datacenter Networks (Everflow). In ACM
SIGCOMM, Vol. 45. 479-491.

https://github.com/Sonata-Princeton
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml

	Abstract
	1 Introduction
	2 Querying the Full Packet Life Cycle
	2.1 Telemetry as Dataflow Queries
	2.2 Extending the Tuple Abstraction
	2.3 Querying Both Ingress and Egress Tuples
	2.4 Aggregate Queries over Queuing Loss

	3 Compiling Packet Life Cycle Queries
	3.1 The PacketScope Compiler
	3.2 Tag Little, Compute Early
	3.3 Monitoring Queuing Loss in Epochs

	4 Evaluation
	4.1 Packet Loss Query
	4.2 Query Precision

	5 Discussion and Future Work
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

