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Abstract— In many pilot research and development (R&D)
microgrid projects, engine-based generators are employed in
their power systems, either generating electrical energy or being
mixed with the heat and power technology. One of the critical
tasks of such engine-based generation units is the frequency
regulation in the islanded mode of modernized microgrid (MMG)
operation; MMGs are microgrids equipped with advanced con-
trols to address more emerging scenarios in smart grids. For hav-
ing a stable and reliable MMG, we need to synthesize an optimal,
robust, primary frequency controller for the islanded mode of
MMG of the future. This task is challenging because of unknown
mechanical parameters, occurrence of uncertain disturbances,
uncertainty of loads, operating point variations, and the appear-
ance of engine delays, and hence nonminimum phase dynamics.
This article presents an innovative primary frequency control for
the engine generators regulating the frequency of an islanded
MMG in the context of smart grids. The proposed approach is
based on an adaptive optimal output-feedback control algorithm
using adaptive dynamic programming (ADP). The convergence
of algorithms, along with the stability analysis of the closed-loop
system, is also shown in this article. Finally, as experimental
validation, hardware-in-the-loop (HIL) test results are provided
in order to examine the effectiveness of the proposed methodology
practically.

Note to Practitioners—This article was motivated by the
problem of primary frequency controls in modernized micro-
grids (MMGs) using engine generators, which are still one of
the prime sources of regulating frequency in pilot research and
development (R&D) microgrid projects. Although MMGs will
be integral parts of the smart grid of the future, their primary
controls in the islanded mode are not advanced enough and not

Manuscript received December 5, 2019; revised March 4, 2020; accepted
April 21, 2020. Date of publication June 3, 2020; date of current version
July 2, 2021. This article was recommended for publication by Associate Edi-
tor S. Dadras and Editor Q. Zhao upon evaluation of the reviewers’ comments.
This work was supported by the U.S.National Science Foundation (NSF)
awards through the Core Program of Energy, Power, Control, and Networks
in the Division of Electrical, Communications and Cyber Systems (ECCS)
under Grant #1808279, Grant #1902787, and Grant #1903781.(Corresponding
author: Weinan Gao.)
Masoud  Davari  and  Weinan  Gao  are  with the  Department  of
Electrical and Computer Engineering, Allen E. Paulson College of Engineer-
ing and Computing, Georgia SouthernUniversity (Statesboro Campus),
Statesboro,  GA  30460  USA  (e-mail:  mdavari@georgiasouthern.edu;
wgao@georgiasouthern.edu).
Zhong-Ping Jiang is with the Department of Electrical and Computer
Engineering, Tandon School of Engineering, New York University, Brooklyn,
NY 11201 USA (e-mail: zjiang@nyu.edu).
Frank L. Lewis is with the UTA Research Institute, The University of Texas
at Arlington, Fort Worth, TX 76118 USA (e-mail: lewis@uta.edu).
Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASE.2020.2996160

considering existing theoretical challenges scientifically. Existing
approaches to regulate frequency using industrially accepted
methods are highly model-based and not optimal. Besides, they
are not considering the nonminimum phase dynamics. These
dynamics are mainly associated with the engine delays—an
inherent issue of mechanical parts—for islanded microgrids. This
article suggests a new adaptive optimal output-feedback control
approach based on the adaptive dynamic programming (ADP)
to the abovementioned problem under consideration. By using
the proposed methodology, MMGs can deal with the issues
mentioned earlier, which are challenging. The proposed approach
is optimally rejecting uncertain disturbances (considering the
load uncertainty and operating point variations) and reducing the
impacts of nonminimum phase dynamics caused by the engine
delay. Based on our currently available hardware-in-the-loop
(HIL) device’s capability of modeling power systems’ components
in real time, our HIL-based experiments demonstrate that this
approach is feasible.

Index  Terms— Adaptive  dynamic  programming  (ADP),
coupled dynamics, engine delay, hardware-in-the-loop (HIL)
islanded mode of modernized microgrids (MMGs), nonmini-
mum phase zero dynamics, output-feedback control, primary
frequency control, smart modernized grids, uncertain.

NOMENCLATURE

K∗ Optimal state-feedback control gain.
Kj Output-feedback control gain learned at

iterationj.
ν Stopping criterion of Algorithms 1 and 2.
ωe Electrical frequency forelectrical variables.
ωr Mechanical frequency (or equivalently rotor

speed).
ωs System base frequency for electrical variables.

d/q d/q-axis of the flux linkage matrix of the
machine.

ψd/q Per-unitized value of d/q.
Ac State matrix of continuous-time system (3).
Ad State matrix of discrete-time system (4).
Bc Input matrix of continuous-time system (3).
Bd Input matrix of discrete-time system (4).
C Output matrix of continuous-time system (3).
D Friction coefficient.
Ec Disturbance input matrix of continuous-time

system (3).
Ed Disturbance  input  matrix  of  discrete-time

system (4).
Id/q d/q-axis of the current matrix of the machine.
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If Field current in the rotor winding.
Ikd Current in the rotor windingkd(“kd” refers to

the quantities related to thekdamper windings
of thed-axis.

Imq Current in the rotor windingmq (“mq” refers to
the quantities related to them damper windings
of theq-axis.

J Combined moment of inertia of machine and
turbine.

j Learning iteration.
K∗ Optimal output-feedback control gain.
Kj State-feedback control gain learned at iterationj.
Ld Leakage inductance ofd-winding.
Lq Leakage inductance ofq-winding.
Ld/q d/q-axis of the inductance matrix of the machine.
Lld Ld−Ld.
Llq Lq−Lq.
rs Bothd-andq-axis of the resistance matrix of the

machine.
Te Electrical torque developed by the machine.
Tm Mechanical torque applied to the machine axis.
Vd/q d/q-axis of the voltage matrix of the machine.

I. INTRODUCTION

THE energy sector has been significantly progressing
and moving toward simultaneously integrating more dis-

tributed energy resources (DERs), in the shape of either
engine-based generations or renewables, power networks, and
energy storage systems (e.g., battery systems) under the
umbrella of smart grids [1]–[3]. In the smart grid paradigm,
the modernized microgrid (MMG) concept brings many ben-
efits to the control, operation, and demand supply within the
electric power industry. MMGs are microgrids equipped with
advanced controls to address more emerging scenarios in smart
grids. One of the essential elements in smart, modernized
grids is having more advanced, sophisticated, modern controls,
along with communications, as per the Energy Independence
and Security Act of 2007 (EISA-2007), which was approved
by the U.S. Congress in January 2007 and signed into law in
December 2007 [4]. Microgrid hierarchical controls have var-
ious time intervals and horizons—ranging from milliseconds
(i.e., inner control loop and theprimary controls), milliseconds
to seconds (i.e., secondary controls), and seconds to minutes
(i.e., tertiary controls). They are detailed as follows. Inner
control loops, as well as the primary controls, are regulating
the voltage and frequency to their reference values. The
secondary control is adjusting the deviations in both voltage
and frequency. The tertiary control manages the power flow
by regulating amplitude voltage and frequency when the
MMG is connected to the grid.
One of the vital MMGs’ operation modes is the islanded
mode [5], which requires MMG to control the frequency of
the grid under its territory. In this regard, various frequency
control methods of different hierarchical levels (i.e., primary,
secondary, or tertiary level of frequency controls) are being
involved in and playing an integral role in the expansion,
implementation, and modernization of currently operating

microgrids and power systems. As a result, we need to make
the primary frequency control of MMGs more reliable and
robust. This initiative impacts the whole dynamic system
as it is the most inner loop from the perspective of the
entire closed-loop dynamic system and, hence, the overall
stability. Among different DERs having the responsibility
of primary frequency control, engine-based DERs are still
being used in many pilot microgrid projects and research and
development (R&D) of the energy industry. For example, they
have been part of BC Hydro Boston Bar island, Senneterre
substation, The Consortium forElectric Reliability Technology
Solutions (CERTS) microgrid, and the Illinois Institute of
Technology (IIT) microgrid (see [3] and references therein).
As detailed in [3], engine generators are still being utilized

in university campuses and hospitals for controlling the fre-
quency of their islanded grid territories. Consequently, to this
end, MMGs of the future will employ engine generators in
their power systems as well. The engine-based generators are
also applied in naval power systems as the primary source
of generation [6]. Their dynamics need special consideration
from the standpoint of both adaptive and optimal controls
because of the following points.
1) The transient frequency response of the islanded power
system needs to be optimized from the perspective of
performance while considering the energy of the error—
will see the cost function in (11).

2) The parameters of their dynamic systems are uncertain
from the fact that many mechanical parameters are not
precisely measurable, so they are within a predefined
range.

3) Some uncertain disturbances are coming from the fast
dynamics of electrical variables, such as voltage control
loops, and hence field control loops.

4) The load works as a direct uncertain disturbance impact-
ing the output performance abruptly.

5) The resultant dynamics are uncertain since they have
been linearized around an operating point.

6) Due to load variations, the frequency of an MMG will
fluctuate in a wide range because of the limited values
of rotational inertia of the prime movers and generators.

7) There is a delay associated with the engine response in
the open-loop dynamics, so it resulted in nonminimum
phase zeros reducing and impacting phase margin of the
closed-loop dynamics dramatically.

Therefore, the issues stated earlier can dramatically impact
on the frequency regulation of MMGs, especially during
the islanded mode, and hence the protections and other
control functionalities accordingly. In order to tackle these
issues—considering practical aspects of both power and con-
trol disciplines—this article addresses an adaptive optimal
frequency control design for an engine-based generator with
assured disturbance rejection and tracking ability. The method
proposed in this article can be generalized to other technolo-
gies for regulating frequency, although they are not the main
scope of this article. In case new technologies are employed,
e.g., renewables and batteries, they are indeed required to
have reasonable inertia, which is “virtually” implemented
in their controls. This topic is a separate field of study,
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Fig. 1.  Islanded MMG energized by two paralleled engine generators.

which needs to be studied in comprehensive research. For
example, the researchers in [7] and [8] have detailed the
implementation of the virtual inertia in power-electronic-based
systems without any mechanical inertia. Last but not least,
from the standpoint of frequency dynamics, there will be
a dynamic mode similar to what has been derived in this
article.
In control engineering, the asymptotic tracking with dis-

turbance rejection problem, named output regulation prob-
lem, has been studied since the 1970s [9]. Nonetheless,
a common feature of these publications is that they have
not addressed optimal solutions. The model-based linear
optimal output regulation problem has been studied for the
sake of enhancing the transient response of dynamical sys-
tems (see [10] and references therein). However, the optimal
control policies proposed in these articles usually assume
the precise knowledge of the control system in question.
Approximate/adaptive dynamic programming (ADP) is a prac-
tically sound, data-driven approach that provides a way to
solve the adaptive and optimalcontrol problem in a succes-
sive iterative fashion. Essentially, it is an adaptive optimal
control method that can approximate the optimal controller
via online/real-time data [11]–[19]. Recently, ADP and the
internal model principle have combined to study the leader-
to-formation stability of uncertain multiagent systems [20].
This article, for the first time, proposes a measurement-

feedback adaptive optimal control design approach for the
output regulation problem of uncertain linear systems via
internal model principle. Then, we apply the proposed control
approach [via hardware-in-the-loop (HIL)-based testing] to
the frequency regulation of MMGs. The contributions of this
article are listed as follows. First, the frequency regulation
problem in the applications mentioned earlier is formulated
in state-space representation applicable to the ADP design
problem while considering all influential dynamics and dis-
turbance. Second, this article solves the control problem with
completely unknown plant and exosystem dynamics, which
is well matched with the existing problems under study
for MMGs.

Furthermore, the  closed-loop systems  with  optimal
control strategies obtained by minimizing the quadratic
performance index generally have satisfactory transient
performance. Third, different from ADP  methods with
full-state accessibility [17], [21], the proposed approach
utilizes only measurement feedback and considers the input
time delay. This methodology is well designed to be applicable
to control a large number of practical systems arising from
power systems for which the state is not measurable. Fourth,
the proposed ADP approach is based on a value iteration (VI).
Different from the policy iteration approach, the proposed
learning strategy does not rely on the knowledge of the initial
possible control policy.
The remainder of this article is organized as follows. We for-

mulate the dynamic model of the frequency control loop of
an engine generator in an islanded mode of MMG’s operation
in Section II. Then, we propose an adaptive optimal control
approach via output feedback and internal model in Section III.
As an experimental validation process, we practically examine
the proposed method on an example of an islanded MMG
using a real-time simulation platform as an HIL testing
in Section IV. Finally, Section V contains the conclusions and
future research work.
Notations: Throughout this article, |·|represents the

Euclidean norm for vectors and the induced norm for matrices.
⊗ indicates the Kronecker product operator. vec(A) =
[aT1,a

T
2,...,a

T
m]
T, whereai ∈ R

n are columns of A ∈
Rn×m. For a symmetric  matrix P ∈ Rm×m and a
column vectorv ∈ Rn, operators vecs and vecv denote
vecs(P) = [p11,2p12,...,2p1m,p22,2p23,...,2pm−1,m,
pmm]

T ∈ R(1/2)m(m+1), and vecv(v) = [v21,v1v2,...,v1
vn,v

2
2,v2v3,..., vn−1vn,v

2
n]
T∈R(1/2)n(n+1).

II. MODELING THEDETAILEDFREQUENCY
DYNAMICS OF ANISLANDEDMMG

In this section, we model an islanded power system in
the context of MMG benefiting from two paralleled engine
generators, as shown in Fig. 1, without loss of generality of
this problem. In Fig. 1, an islanded MMG feeding electric
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Fig. 2.  Detailed dynamics of the primaryfrequency control of an engine-generatorwithin an islanded MMG paradigm in the d/q-frame—the proposed
frequexcy regulator has been detailed in Fig. 3(b).

load has been demonstrated. It is noteworthy that in order to
extract the model of the frequency dynamics and formulate
the problem, the authors have benefited from previous works
in this field (see [22]–[24] and references therein). Based
on them, as shown in Fig. 2, (1) describes the details of
the dynamic model used in the primary frequency controls.
Also, it should be stated that if other new technologies
(e.g., renewables and batteries) are used, based on the require-
ment of implementing virtual inertia (see [7], [8]), a dynamic
model similar to (1) will be derived for the frequency dynamics
in islanded MMGs

ω̇r=
1

J
(Tm−Te−Dωr)

Te=
3

2

ωr

ωs
(dId− qIq). (1)

Fig. 2 briefly shows the dynamics of different related
variables of (1) in thed/q-frame. Different parameters of the
engine generator dynamics shown in Fig. 2 have been detailed
in the Nomenclature.
For making Fig. 2 concise, we did not include all quantities

associated with thekdamper windings of thed-axis and
related to them damper windings of theq-axis, such as their
associated flux linkages and the voltages, i.e., kd, mq,Vkd,
andVmq. However, they have been considered (see [22]–[24],
and references therein).
In this article, the time delay is approximated by a

nonminimum phase system whose transfer function H(s)
is

H(s)=
1−0.5TDs

1+0.5TDs
. (2)

From (1)and Fig. 2, one can formulate the frequency
control problem in a state-space representation as follows (see
the Appendix for detail):

ẋ(t)= Acx(t)+Bcu(t)+EcTe(t)

e(t)= Cx(t)+wr-ref−droop (3)

where the statex∈R5, the inputuis shown in Fig. 2, the out-
puty(t)=Cx(t):= −wr(t), and the disturbance inputTeis
a piecewise constant function—which means that it remains
constant over the sampling period. It is noteworthy that it
considers all intermittent renewables as their rate of change
is much slower than our sampling interval. Consequently, this
presumption is reasonable for the scope of our modeling. This
assumption does not change the generality of the proposed
method. It is checkable that the pair (Ac,Bc)is controllable
and(C,Ac)is observable.

III. CONTROLLERDESIGN

In this section, we develop an adaptive optimal control
approach for the power system via output feedback. First,
a state reconstruction method is presented in terms of sampled
input and output. Then, a data-driven adaptive optimal control
strategy is proposed in terms of ADP and VI.

A. System Discretization

Choosing a nonpathological sampling period Ts [25],
the continuous-time system (3) can be discretized as follows:

xk+1= Axk+Buk+Evk

zk+1= zk+ek

ek= Cxk+Fvk (4)

wherevk=[(Te)k,(wr−ref−droop)k]
T, and system matrices are

A= eAcTs,B = (
Ts
0 e

Acτdτ)Bc,E = (
Ts
0 e

Acτdτ)Ec10,
andF = 01. Thestatezk stands for the summation
of the error. Noticing that the sampling frequency is much
higher than the rate of the load variation (or equivalently
disturbanceTe), it is reasonable to treatvas a constant during
each sampling interval. In this way, (4) satisfies internal model
principle [9]. The following mild assumption is made for
developing the controller.
Assumption 1: The transmission zeros condition holds, that
is

rank
A−I B
C 0

=n+1. (5)
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The output regulation problem finds a controller such that
the closed-loop system is asymptotically stable with the track-
ing error lim

k→∞
ek= 0. The following lemma shows that the

control problem can be solved by developing a state-feedback
controller.
Lemma 1:Under Assumption 1, choose the control gains

KxandKzsuch that
A−BKx−BKz
C 1

is a Schur matrix.

Then, the system (4) withuk=−Kxxk−Kzzkis exponentially
stable with lim

k→∞
ek=0.

Proof: Based on Assumption 1, there always exist a
unique vectorX ∈ Rnand a constantU ∈ R solving the
following matrix equations:

X= AX+BU+E (6)

0= CX+F. (7)

Moreover, from [26, Lemma 1.38], there always exist a
unique solution(̂X,Z)solving (7) and

X
Z
=
A−BKx −BKz
C 1

X
Z
+
E
0
. (8)

Therefore, we haveX=X̂andU =−KxX−KzZ. Letting
x̄k=xk−Xvk,̄zk=zk−Zvk,and

ūk=uk−Uvk:= −Kx̄xk−Kz̄zk (9)

then the system (4) can be transformed by

x̄k+1
z̄k+1

=
A 0
C 1

x̄k
z̄k
+
B
0
ūk

:=Āwk+B̄̄uk

ek= Cx̄k. (10)

It is checkable that the system (10) with (9) is exponen-
tially stable at the origin, which indicates that lim

k→∞
x̄k= 0

and lim
k→∞
ūk = 0, and lim

k→∞
ek = 0. The proof is thus

completed.

B. Model-Based State-Feedback Optimal Controller Design

In this article, we expect the designed controller cannot
only reject the disturbance but also improve the transient
performance through minimizing the following cost function:

min
ūk

∞

k=0

Q1e
2
k+Q2̄z

2
k+R̄u

2
k

s.t.(10) (11)

where Q1,Q2,andRare positive constants.
By a linear optimal control theory, the optimal controller

that minimizes (11) is

ūk=−K
∗
xx̄k−K̄

∗
z̄zk=−K

∗wk (12)

which is equivalent touk=−K
∗xTk zk

T
.

LettingQ̄ =
CTQ1C 0
0 Q2

, then the optimal feedback

control gain is

K∗=(R+B̄TP∗B̄)−1B̄TP∗Ā

where the constant matrix P∗= (P∗)T> 0 uniquely solves
the following discrete-time algebraic Riccati equation (ARE):

ĀTPĀ−P+Q̄−ĀTPB̄(R+B̄TPB̄)−1B̄TPĀ=0. (13)

C. Value Iteration

We see that the optimal state-feedback controller design
relies on the solution to ARE (13) that is nonlinear inP.
However, solving it, directly, is often hard, especially for
high-dimensional dynamical systems. The VI algorithm 1
developed in [27] is able to approximate the solution to (13)
with assured convergence.

Algorithm 1VI Algorithm [27]

1:j← 0.Pj← 0. Select a thresholdν >0.
2:repeat

Pj+1← Ā
TPjĀ−Ā

TPj̄B

×(R+B̄TPj̄B)
−1B̄TPjĀ+Q̄ (14)

Kj+1← (R+B̄
TPj+1B̄)

−1B̄TPj+1Ā

j← j+1 (15)

3:until|Pj−Pj−1|<ν

It is shown in [27, Lemma 17.5.4] that, forj=0,1,2,...,
consideringPjandKjdefined in (14) and (15), the following
properties hold.
1) P∗≥ Pj+1≥ Pj.
2) lim

j→∞
Kj= K

∗, lim
j→∞
Pj= P

∗.

Therefore, when the model is perfectly known and the
state is available, one can use the model-based Algorithm 1
to approximate the optimal state-feedback control gainK∗.
We are going to show an output-feedback optimal con-
troller design through state reconstruction when the state is
unavailable.

D. Model-Based Output-Feedback Optimal
Controller Design

The dynamics of (10) can be written on a time horizon
[k−n,k−1]as the expanded state and output equations

x̄k= A
nxk−n+C1̃uk−1,k−n

ẽk−1,k−n= Oxk−n+Tũk−1,k−n (16)

where vectors

ũk−1,k−n=[ūk−1,̄uk−2,...,̄uk−n]
T∈Rn

ẽk−1,k−n=[ek−1,ek−2,...,ek−n]
T∈Rn

and matrices

C=[B,AB,...,An−1B]∈Rn×n

O =[(CAn−1)T,...,(CA)T,CT]T∈Rn×n

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 CB  CAB ··· CAn−2B
0 0 CB ··· CAn−3B
...

...
...

...
...

0 0 ··· 0 CB
0 0   0   0   0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈Rn×n.
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Since the sampling period is non-pathological, we have that
the pair(A,B)is controllable and(C,A)is observable, which
implies that the observability matrixO is always invertible.
Therefore, the state ̄xk can be reconstructed uniquely by
the retrospective input and measurement output information,
i.e., ̄xk= Mχkwith

M =[AnO−1,C−AnO−1T]∈Rn×2n

χk=[ẽ
T
k−1,k−n,̃u

T
k−1,k−n]

T∈R2n.

From (18), one can see that the optimal controller (12) is
equivalent to the following output-feedback controller:

ūk=−K
∗
xχk−K

∗
z̄zk:= −K

∗wk (17)

whereK∗x= K
∗
xM. Moreover, we have

wk=
M 0
0 1

wk:=M wk. (18)

However, the optimal control policy designed in this way is
essentially model-based, which relies on the perfect knowledge
of system model. Due to parametric variations or unmodeled
dynamics, it is usually hard to know the exact model of a
power system. We will design data-driven control approaches
in the absence of the precise knowledge of the dynamic model.
The optimal controller can be learned using online input and
output data.

E. Output-Feedback Adaptive Optimal Controller Design

In this section, we will propose a data-driven adaptive opti-
mal control approach for frequency control of power system
with unknown system dynamics and unmeasurable state ̄xk.
Based on the error system (10) and (14), we have

wk
ūk

T
Q̄+ĀTPj+1Ā ĀTPj+1B̄
B̄TPj+1Ā R+B̄TPj+1B̄

wk
ūk

=
wk+1
−Kjwk+1

T
Q̄+ĀTPjĀ ĀTPj̄B
B̄TPjĀ R+B̄TPj̄B

wk+1
−Kjwk+1

+Q1e
2
k+Q2̄z

2
k+R̄u

2
k. (19)

One can obtain the following equation based on the state
reconstruction results:

wk
ūk

T

Pj+1
wk
ūk
= Q1e

2
k+Q2̄z

2
k+R̄u

2
k

+
wk+1
ūk+1

T

Pj
wk+1
ūk+1

:=φ
j
k (20)

where

Pj=
MT(̄Q+ĀTPjĀ)M MTĀTPj̄B

B̄TPjĀM R+BTPjB

:=
P11j P12j
P21j P22j

Kj= KjM . (21)

Given a sufficiently large positive integersand a sequence
{ak}

∞
k=0,whereak∈R

na,define

(ak)=[vecv(ak0),vecv(ak0+1),...,vecv(ak0+s)]
T

withk0>n.Let

=
wk
ūk

.

Forj=0,1,2,...we define

j= φ
j
k0
,φ
j
k0+1
,...,φ

j
k0+s

T

.

Then, (20) implies

vecs(Pj+1)= j. (22)

The  VI-based  ADP  algorithm  is  proposed  in
Algorithm 2, which does not rely on an initial stabilizing
control gain.

Algorithm  2 VI-Based  Measurement  Feedback  ADP
Algorithm

1:Select a thresholdν >0.j← 0
2:Apply an arbitrary control policy on[0,k0+s]
3:repeat
4: SolvePj+1from (22)
5: SolveKj+1by

Kj+1← (P
22
j+1)

−1P21j+1 (23)

6: j← j+1
7:until|Pj−Pj−1|<ν
8:j∗← j. Obtain the approximated optimal control gainKj∗

We will state a result on the convergence of the proposed
Algorithm 2.
Theorem 1:Sequences{Pj}

∞
j=1and{Kj}

∞
j=2obtained from

solving Algorithm 2 converge toP∗andK∗,where

P∗=
MT(̄Q+ĀTP∗Ā)M MTĀTP∗B̄

B̄TP∗ĀM R+BTP∗B

K∗= (P22)−1P21. (24)

Proof: Given any symmetric matrix Pj,Pj+1= P
T
j+1

andKj+1are uniquely determined by (14) and (15). One
can check that the corresponding matricesPj+1andKj+1
defined in (21) satisfy (22) and (23). IfP andK solve (22)
and (23), then we immediately haveP = Pj+1andK =
Kj+1.SinceP andK are unique under the full-rank con-
dition,Pj+1= P andKj+1= K are uniquely determined.
Given property 2) in Algorithm 1, we have lim

j→∞
Pj= P

∗,

lim
j→∞
Kj=K

∗.

Afterward, we show the closed-loop system stability in the
following theorem.
Theorem 2:Given a control gain K∗j learned from
Algorithm 2. The control policy

ūk=−K
∗
jwk (25)

exponentially stabilizes the system (4) and lim
k→∞
ek=0.

Proof: Based on the state reconstruction shown in
Section III-D, it is checkable that (25) is equivalent to
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ūk= −K
j∗
xx̄k−K̄

j∗
zz̄k, and the system (4) in closed loop

with the approximated controller satisfies

x̄k+1
z̄k+1

=
A−BK

j∗
x −BK

j∗
z

C 1

x̄k
z̄k
:=Āc

x̄k
z̄k

ek= Cx̄k. (26)

From Theorem 1, there always exists a small enough
thresholdν >0 in Algorithm 2 such thatĀcis a Schur matrix,
which implies that lim

k→∞
x̄k=0 and lim

k→∞
z̄k=0. Then, we have

lim
k→∞
ek= lim

k→∞
Cx̄k=0. The proof is thus completed.

Besides stability, one can analyze the suboptimality of
the developed control policy (25), which has been shown as
follows.
Theorem 3:LetJ†be the cost for the system (4) in closed
loop with the approximate optimal control policy (25). Let
J∗be the cost for the system (4) with the optimal control
policy (12). There exists a positive numberµ such that
µJ†≤ J∗.
Proof: The system (4) in closed loop with (25)

satisfies (26), which is equivalent to

wk+1=Ācwk:=Ā−B̄K
∗
jwk (27)

where K∗j= K
j∗
x K̄

j∗
z .

SinceĀcis a Schur matrix, there exists a positive-definite
matrix P†solving the following Lyapunov equation:

ĀTcP
†Āc−Āc+

Q1 0
0 Q2

+ K∗j
T
RK∗j=0. (28)

Therefore, it can be obtained that the cost of system (4)
in closed loop with (25) isJ† = wT0P

†w0, and the cost
of (4) with (12) isJ∗= wT0P

∗w0. The proof is completed
by selectingµ=1/λM,whereλM is the largest eigenvalue of
matrix P†(P∗)−1.

IV. EXPERIMENTSBASED ONHARDWARE-
IN-THE-LOOPTESTING

As an experimental method and testing procedure, due to the
value that it offers in research, education, and manufacturing,
HIL systems have found a wide range of applications in smart
grids, power systems, power electronic systems, aircraft and
missile industries, automotive industry, motion control, mecha-
tronics, and robotics because of providing ultrahigh-fidelity
simulations. The aforementioned experimental methods are
currently revolutionizing test engineering in many disciplines,
including, but not limited to, smart grids, vehicle and commu-
nication systems, civil structures, robotics, aerospace, process
control, and naval warships (see [28]–[32] and references
therein).
To examine the effectiveness of the proposed primary con-

troller, we have implemented a two-machine MMG on an
HIL402 device from Typhoon HIL Inc. [33] and tested the
primary controller under the umbrella of smart grids.
It is noteworthy that the system under test here is based on

the HIL402’s capabilityof modeling our system, including
the proposed controller—thus limiting us to Fig. 1 as the
MMG under test. To this end, the abovementioned smart

Fig. 3.  HIL setup. (a) Employed HIL setup for validations. (b) Structure of
the implemented frequency regulator, including controller values.

grid employing the suggested primary frequency controller
has been examined for investigating its performance under the
islanded mode of operation of the formed MMG.

A. Hardware-in-the-Loop Setup

The complete configuration of the setup is shown
in Fig. 3(a). The implemented “frequency regulator,” shown
in Fig. 2, has been demonstrated in Fig. 3(b).
Typhoon HIL402, with 4 processing cores, 16 analog out-
puts, 16 digital inputs, and 16-bit resolution, is tailored for
the most demanding microgrid and controller test, verification,
and precertification tasks. It cantest the data-driven algorithm
proposed in this article with highfidelity, i.e., 20-ns sampling
HIL, and infinitesimal latency, i.e., 1µs. Indeed, for smart grid
testing, HIL402’s emulation error and latency are so small
that it is difficult to tell the difference between real smart
grid and HIL emulator measured waveforms. Moreover, with
making use of HIL402, it is possible to simulate our signals
with multiple execution rates in a real-time way and improve
the overall performance of our HIL testing by maximizing
the use of available resources. The built-in multirate interval
overrun monitor closely supervises real-time execution and
informs the user in case of potential performance issues. This
feature is highly required to test the performance of any
control algorithm, e.g., the control methodology proposed in
this article.
In addition, HIL402 leverages a small simulation time

step and advanced numerical algorithms for extremely wide-
dynamic-range models. It emulates fast switching dynamics
with a simulation time step, as low as 0.5 µs, and has full
peace of mind that the part of our model with extremely long
time constants will run with high fidelity as well. Indeed,
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TABLE I

PARAMETERS OFEACHSET OFENGINEGENERATORS INFIG.1USED INHIL VALIDATIONS

advanced numerical algorithms in HIL402 handle the full
dynamic range models masterfully and run them in real time.
HIL402 can also automate testing with Python, which is a
powerful way of conducting the tests and the ultimate ease
of use; it automates controller testing processes with Python
scripting and HIL402 platform.

B. Hardware-in-the-Loop Testing

In this section, we apply the proposed adaptive optimal
control Algorithm 2 via the structure shown in Fig. 3(b)
(including controller settings) for regulating the frequency of
the power system shown in Fig. 1. Its parameters have been
reported in Table I. For HIL-based experiments in this article,
the weight matrices are selected asQ1=100,Q2=10, and
R=1.
The optimal control is computed as follows based on the

accurate knowledge of system model:

K∗=[0.1364 −0.3981  0.4812 −0.2993  0.0799

4.439×10−66.377×10−5 1.36×10−4

−1.656×10−4 −4.687×10−5 1.855×10−6].

The VI algorithm 2 is tested without the accurate knowledge
of the system model. To be more specific, we collect the data
along the system trajectory to facilitate the learning of the
optimal control gain. The stopping criterion is satisfied after
180 iterations with the corresponding control gain

K180=[0.1291 −0.3768  0.4556 −0.2835  0.0757

4.115×10−6 6.024×10−5 1.29×10−4

−1.571×10−4 −4.448×10−5 1.671×10−6].

The error betweenKjat thejth iteration and its optimal
value is shown in Fig. 4. It is checkable that the difference
between the learned control gainKjand the optimal con-
trol gainK∗is monotonically decreasing as the iterationj
increases. The convergence speed of|Kj−K

∗|/|K∗|increases
in the first 100 iterations and decreases afterward. When the
convergence criterion is satisfied, this difference is only 5.67%.

Fig. 4.  Comparison of the control gainKjwith its optimal valueK
∗.

The HIL test results grained from the MMG system shown
in Fig. 1—which is controlled by Fig. 3(b)—have been pro-
vided here. Also, for comparison purposes, the responses of
the traditional method of the frequency controls in islanded
microgrids (i.e., PID controller) have been provided. A tuned
PID controller has been employed to conduct the same test
cases under which the proposed controller has been examined.
Fig. 5(a) and (b) shows the HIL test results of the so-called
“unplanned” islanding testing; in this test, the microgrid has
been made islanded without any prior information sent to
the system. They mimic the case that microgrid needs to be
self-running withoutbeing connected to the main utility grid.
Fig. 5(a) shows the output of the closed-loop dynamic system
[i.e., frequency in per unit (pu)], and Fig. 5(b) shows the input
to the plant dynamics [i.e., torque in newton meter (N.m)]—
with the horizontal axis of time in second (s).
Also, it is required to check the microgrid’s response when
it is in the steady-state condition after getting islanded and see
how the demand supply looks like in the steady state. In this
regard, the steady-state test case has been conducted, and its
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Fig. 5.  HIL test results of the so-called “unplanned” islanding testing of the
MMG under study controlled by a PID and K180. (a) Output (i.e., frequency)
in pu. (b) Input (i.e., torque) in N.m.

results have been shown in Fig. 6(a) and (b). Fig. 6(a) shows
the frequency in pu (i.e., the output of the closed-loop dynamic
system), and Fig. 5(b) shows the torque in N.m (i.e., the input
to the plant dynamics)—with the horizontal axis of time in s.
It is noteworthy that the droop mechanism’s impact on the

“unplanned” islanding test response has been diminished since
we have been interested in rather purely gauging the effect of
the primary frequency control loop on frequency dynamics.
Thus, equal power share is not evident in Fig. 5. However,
the droop mechanism makes the contribution of each engine
generator’s active power precisely balanced, as it is visible
in Fig. 6.
When the microgrid is islanded, its response to load changes

should be investigated. In this regard, different loads are
connected/disconnected to/from the grid formed. Therefore,
both cases of load increase and load decrease need to be
studied as they excite the systems differently. As a result, tests
shown in Figs. 7 and 8 have been added. Fig. 7 shows the HIL
test results associated with the increasing load in the islanded
mode. Also, Fig. 8 shows the HIL test related to the decreasing
load in the islanded MMG under test—all governed by either
the tuned PID controller orK180. Figs. 7(a) and 8(a) show the
frequency in pu (i.e., the output), and Figs. 7(b) and 8(b) show
the torque in N.m (i.e., the input to the plant dynamics)—with
the horizontal axis of time in s.
One can check that, for all these situations, the performance

of the proposed optimal controller is better than that of
the tuned PID controller. Especially, from the standpoints
of the input signal (which is the torque) applied to the

Fig. 6.  Steady-state response of the HIL test results of Fig. 5. (a) Output
(i.e., frequency) in pu. (b) Input (i.e., torque) in N.m.

Fig. 7.  HIL test results of consecutive step changes in increasing loading
of the MMG under test in the islanded mode controlled by PID controller
andK180. (a) Output (i.e., frequency) in pu. (b) Input (i.e., torque) in N.m.

system, it is evident that the PID (although tuned) creates
overshoot/undershoot torque applied to the system. Note that
drastic torques variations and oscillations are not favorable
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Fig. 8.  HIL test results of consecutive step changes in decreasing loading
of the MMG under test in the islanded mode controlled by PID controller
andK180. (a) Output (i.e., frequency) in pu. (b) Input (i.e., torque) in N.m.

(and sometimes not acceptable) in mechanical systems.
For example, Fig. 5 shows an unacceptable overshoot/
undershoot torque created by the PID controller. This over-
shoot/undershoot torque is not being made by the proposed
controller under both modes of grid-connected and islanded
operations. Another significant observation—by comparing
Figs. 7 and 8—is that the PID controller cannot behave
robustly against load variations. In other words, no matter the
system needs to supply either increasing load or decreasing
load, the proposed controller has preserved the time response
of the closed-loop system.
Besides, another critical test case in the islanded microgrid

is when an outage happens. This test is very usual as MMGs
may experience generation unit outage—e.g., during fault
cases. Regarding this experiment, Fig. 9 shows the response
of our proposed control algorithm under the blackout of the
synchronous generator #2 shown in Fig. 1, as well as its
reconnection. Fig. 9 shows that the proposed controller can
stabilize the frequency and power after the outage of one
of the generation sources and pick up the load optimally
and adequately. Besides, the moment of inertia of machines
has been reduced by 50%. Although the system needs to
update the gains for finding the best possible optimal gains
for the “newly” updated controller, the system time response
is acceptable; it looks “semi-”optimal. Undoubtedly, updating
the gains can help the time response get closer to the previous
one. Finally, after disconnecting synchronous generator #2,
the reconnection test case has been applied to the MMG
while being controlled by the PID controller for comparison.

Fig. 9.  HIL test results of the MMG under study—controlled byKfinalfor
the generators with the sameJand with the lessJ(50% less). (a) Output
(i.e., frequency) in pu during the “outage” of synchronous generator #2.
(b) Input (i.e., torque) in N.m. during the outage. (c) Output in pu during
the “reconnection” of synchronous generator #2. (d) Input in N.m. during the
reconnection.

As expected, the PID controller makes an input that has drastic
changes, which are unacceptable for mechanical systems.
Fig. 10 has shown this test case, which shows the inefficiency
of the PID controller compared with the proposed one.
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Fig. 10.  HIL test results of the “reconnection” of synchronous generator #2
of the MMG under study (after disconnecting it), which is controlled by PID.
(a) Output (i.e., frequency) in pu.(b) Input (i.e., torque) in N.m.

Indeed, Figs. 5–10 show the comparison of the PID con-
troller results with the proposed controller outcomes. Those
figures have revealed that the performance of the data-driven
control is very acceptable from the perspective of the time
response compared with a tuned PID controller.

V. CONCLUSION ANDFUTUREWORK

The primary frequency control of future MMGs is a vital
task in the smart grid paradigm, primarily when the MMG is
being operated in the islanded mode. Among all entities taking
care of primary frequency control, the engine generators are
still being employed in many pilot microgrid projects in
industrial R&D sections, as well as naval power systems.
Challenges associated with this crucial task are as follows:
1) existing uncertainties of the mechanical parameters; 2) the
occurrence of uncertain disturbances that are coming from
other control loops of electrical variables and uncertainty
of loads; 3) operating point variations due to load changes;
and 4) last but not least, the appearance of nonminimum
phase dynamics associated with the engine delay. This article
presents a novel primary frequency control of engine gener-
ators of MMGs of the future using measurement feedback
control solution to the optimal output regulation of time-delay
linear systems with unknown system dynamics and unmea-
surable disturbance. An online VI approach is proposed for
the design of data-driven adaptive optimal trackers with com-
plete disturbance rejection. HIL-based experiments have been
conducted on an MMG using two sets of engine generators in

order to validate and examine the effectiveness of the proposed
approaches.
In future research, in case morecapable real-time simulation

platforms (e.g., Typhoon HIL602 and RTDS) are available to
us, we will be able to address the optimal control of the MMGs
with multiple sources of electric power. Then, we can also
consider the power system of more complicated MMGs. Those
real-time devices should allow us to implement and examine
them in a real-time fashion. Besides, we will target the optimal
control for the MMGs’ secondary controls. We plan to propose
data-driven methods for solvingmultiobjective optimization
problems [34], [35]. We also plan to generalize the pre-
sented methodology to nonlinear power systems through the
learning-based optimal control framework of [36].

APPENDIX

DERIVATION OFSTATE-SPACEREPRESENTATION

The derivation of the state-space representation of the
systems shown in Fig. 2 has been detailed here. Based on
Fig. 2, one can find the relation between the outputωr(s),
the inputu(s), and the disturbanceTe(s)in the Laplace domain
as follows:

ωr(s)=
(Td1s+1)(−0.5TDs+1)u(s)

s(Td2s+1)(Td3s+1)(0.5TDs+1)(Jms+D)

−
Te(s)

Jms+D

=
β12s

2+β11s+β10

s5+α4s4+α3s3+α2s2+α1s
u(s)

+
β24s

4+β23s
3+β22s

2+β21s

s5+α4s4+α3s3+α2s2+α1s
Te(s) (29)

where

α4=
2JmT2aT3a+JmT2aTD+JmT3aTD+DT2aT3aTD

JmT2aT3aTD

α3=
2Jm(T2a+T3a+TD/2)

JmT2aT3aTD

+
D(2T2aT3a+(T2a+T3a)TD)

JmT2aT3aTD

α2=
2(Jm+DT2a+DT3a)+DTD

JmT2aT3aTD

α1=
2D

JmT2aT3aTD

β12=
−T1a

JmT2aT3a

β11=
2T1a−TD

JmT2aT3aTD

β10=
2

JmT2aT3aTD

β24= −
1

Jm

β23= −
2T2aT3a+(T2a+T3a)TD

JmT2aT3aTD

β22= −
2T2a+2T3a+TD

JmT2aT3aTD

β21= −
2

JmT2aT3aTD
.

Authorized licensed use limited to: New York University. Downloaded on July 03,2021 at 22:30:29 UTC from IEEE Xplore.  Restrictions apply. 



1120 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

One can convert the transfer function to the state-space
representation (3) in terms of observable canonical form,
where the states are

x5(t)=
t

0

β10udτ

x4(t)=
t

0

(−α1ωr+β11u+β21Te+x5)dτ

x3(t)=
t

0

(−α2ωr+β12u+β22Te+x4)dτ

x2(t)=
t

0

(−α3ωr+β23Te+x3)dτ

x1(t)= ωr(t).

The corresponding system matrices are

Ac=

⎡

⎢
⎢
⎢
⎢
⎣

−α4 1 0 0 0
−α3 0 1 0 0
−α2 0 0 1 0
−α1 0 0 0 1
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
,Bc=

⎡

⎢
⎢
⎢
⎢
⎣

0
0
β12
β11
β10

⎤

⎥
⎥
⎥
⎥
⎦
, Ec=

⎡

⎢
⎢
⎢
⎢
⎣

β24
β23
β22
β21
0

⎤

⎥
⎥
⎥
⎥
⎦

C= −1 0 0 0 0.
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