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ABSTRACT

This monograph presents a new framework for learning-
based control synthesis of continuous-time dynamical sys-
tems with unknown dynamics. The new design paradigm
proposed here is fundamentally different from traditional
control theory. In the classical paradigm, controllers are
often designed for a given class of dynamical control sys-
tems; it is a model-based design. Under the learning-based
control framework, controllers are learned online from real-
time input–output data collected along the trajectories of
the control system in question. An entanglement of tech-
niques from reinforcement learning and model-based control
theory is advocated to find a sequence of suboptimal con-
trollers that converge to the optimal solution as learning
steps increase. On the one hand, this learning-based design
approach attempts to overcome the well-known “curse of
dimensionality” and the “curse of modeling” associated with
Bellman’s Dynamic Programming. On the other hand, rig-
orous stability and robustness analysis can be derived for
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the closed-loop system with real-time learning-based con-
trollers. The effectiveness of the proposed learning-based
control framework is demonstrated via its applications to the-
oretical optimal control problems tied to various important
classes of continuous-time dynamical systems and practical
problems arising from biological motor control, connected
and autonomous vehicles.
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1
Introduction

The idea of learning-based control can be traced back at least to the
Ph.D. dissertation (Minsky, 1954), where Minsky for the first time
introduced the concept of reinforcement learning (RL) motivated by the
problem of gaining further insight into the learning, memorizing, and
thinking processes in human brain. Borrowing the words from Sutton
et al. (1992), RL is direct adaptive optimal control. The field of RL is
vibrant and is far from being saturated as clearly shown in numerous
review articles and books (Bertsekas, 2011, 2013; Schmidhuber, 2015;
Silver, 2015; Sutton and Barto, 2018; Szepesvári, 2010). Sixty years
later after Minsky’s original work, Google DeepMind developed perhaps
one of the most advanced artificial intelligence (AI) system based on
RL, and defeated the human world champion in the game of Go (Silver
et al., 2016, 2017). Indeed, besides Google DeepMind’s AI system, RL
has demonstrated its advantage in multiple industry applications (Barto
et al., 2017; Lorica, 2017). The recent success of RL and related methods
can be attributed to several key factors. First, RL is driven by reward
signals obtained through the interaction with the environment. Different
from other machine learning (ML) techniques, this learning architecture
is especially useful when the learning objective is to find the optimal
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4 Introduction

behavior or policy over a time interval. Second, RL is closely related
to the human learning behavior. It has been identified in a number of
papers that the learning behavior in the frontal cortex and the basal
ganglia is driven by the neuron spikes in dopamine neurons. These
spikes encode the temporal difference error signal (Dayan and Balleine,
2002; Doya, 2002; Glimcher, 2011; Lo and Wang, 2006; Wang et al.,
2018; Wise, 2004), which is a key element in the RL theory (Sutton
and Barto, 2018, Chapter 6). Hence, it is not surprising that we can
achieve human-level intelligence through RL. Third, RL has a solid
mathematical foundation. The main theoretical result behind RL is
the dynamic programming (DP) theory (Bellman, 1957), which is a
powerful tool for solving sequential decision making problems. The
mathematical guarantee from DP theory gives the advantage of RL
over other heuristic AI methods. Finally, RL can be incorporated with
other ML and optimization methods to build a sophisticated learning
system. For example, the learning performance of RL methods can be
significantly improved by incorporating the recently developed deep
neural network technique (Mnih et al., 2015, 2016; Schmidhuber, 2015;
Silver et al., 2016, 2017). Because of these important features, RL and its
extensions have become one of the most active research topics in AI and
ML communities. Nonetheless, conventional RL theory exhibits some
shortcomings. A common feature of most RL algorithms is that they are
only applicable for discrete environments described by Markov decision
processes (MDP) or discrete-time systems. To overcome this limitation,
several researchers Baird, III (1993, 1994), Munos (2000), Doya (2000),
Doya et al. (2002), van Hasselt and Wiering (2007), Theodorou et al.
(2010), and van Hasselt (2012), have made significant efforts in adapting
RL into the continuous environment, by discretizing and interpolating
the time-state-action spaces. Alternatively, Bradtke and Duff (1994),
Sutton et al. (1999), and Das et al. (1999) investigated RL for the
semi-Markov process, a continuous-time dynamical system equipped
with discrete state space. It should be mentioned that these methods
may suffer from high computational burden when performing the dis-
cretization and approximation for continuous-time dynamical systems
evolving in continuous state and action spaces. More recently, RL-based
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methods, mostly known under the name of adaptive dynamic program-
ming (ADP), have been developed for continuous learning environments
(Russell and Norvig, 2010, Chapter 2) described by ordinary differential
equations (ODEs) or stochastic differential equations (SDEs). Another
limitation of traditional RL methods is that the stability and robustness
of the controlled process is usually not considered. In fact, a common
assumption in the convergence analysis of various RL methods is that
the underlying MDP always has a steady state distribution (Bhatnagar
et al., 2009; Nedić and Bertsekas, 2003; Sutton et al., 2000; Tsitsiklis,
1994; Tsitsiklis and Van Roy, 1997). However, few results have been
proposed to guarantee this assumption, especially when there exist poli-
cies under which the MDP does not have steady state distribution. In
contrast with these limitations, experimental results have demonstrated
that biological systems exhibit the ability of learning complicated motor
movements in an unstable environment composed with high-dimensional
continuous state space (Adams, 1971; Shadmehr and Mussa-Ivaldi, 2012;
Wolpert et al., 2011). Traditional RL theory is insufficient in explaining
this type of learning process.

The purpose of this tutorial is to present a learning-based approach to
control dynamical systems from real-time data and to review some major
developments in this relatively young field. Due to space limitation, we
will focus on continuous-time dynamical systems described by ODEs
and SDEs. With input–output data at hand, we can certainly opt for
the indirect route as in model-based control theory, that is, first build
a mathematical model and then design controllers for the practical
system in question. This indirect method has proven successful for a
variety of problems arising in the contexts of engineering and sciences.
However, it is widely known that building precise mathematical models
that can describe the motion of dynamical systems is time-consuming
and costly. For certain classes of optimal control problems, especially
when the dynamical systems under consideration are strongly nonlinear,
it is very hard, if not impossible, to solve the Bellman equation. This
observation has led Bellman (1957) to state: “Turning to the succor
of modern computing machines, let us renounce all analytic tools.” In
this monograph, we aim to develop a framework for learning-based
control theory that shows how to learn directly suboptimal controllers
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6 Introduction

from input–output data. Ultimately, these suboptimal controllers are
expected to converge to the (unknown) optimal solution to the Bellman
equation. Besides the benefit of direct vs indirect control methods, the
learning-based control theory overcomes the curse of modeling tied to
the traditional DP. There are three main challenges on the development
of learning-based control. First, there is a need to generalize existing
recursive methods, known under the names of policy iteration (PI) and
value iteration (VI), from model-based to data-driven contexts when the
system dynamics are completely unknown. Previous RL-based learning
algorithms are not directly extendable to the setting of continuous-
time dynamical systems, let alone convergence and sensitivity analyses.
Second, as a fundamental difference between learning-based control and
RL, stability and robustness are important issues that must be addressed
for the safety-critical engineering systems such as self-driving cars.
Therefore, there is a need to develop new tools and methods, beyond
the present literature of RL, that can provide theoretic guarantees
on the stability and robustness of the controller learned from real-
time data collected online along the trajectories of the control system
under consideration. Third, data efficiency of RL algorithms need be
addressed for safety-critical engineering systems. In this monograph,
we will address the first two issues and only discuss the third issue
from the perspective of numerical and experimental studies by means
of some case studies. The learning-based control theory as reviewed in
this monograph is closely tied to the literature of safe RL and ADP,
and is a new direction in control theory that is still in its infancy
and especially so for continuous-time dynamical systems described by
differential equations. For prior work of others on ADP-based optimal
control, the reader may consult (Jiang and Jiang, 2017; Lewis and
Vrabie, 2009; Lewis et al., 2012b; Liu et al., 2017; Luo et al., 2014;
Song et al., 2015; Vrabie et al., 2013; Wang et al., 2009; Werbos, 1968)
and many references therein. For recent developments in learning-based
control for other types of systems and problems, see Antsaklis et al.
(1991), Antsaklis and Rahnama (2018), Rahnama and Antsaklis (2019),
Werbos (2013, 2014, 2018), Kiumarsi et al. (2017), He and Zhong (2018),
Recht (2019), Bertsekas (2019), Kamalapurkar et al. (2018), Chen et al.
(2019), Pang et al. (2020), and references therein.
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The rest of the monograph is organized as follows. Section 2 de-
scribes the learning-based optimal control of continuous-time linear
and nonlinear systems described by (ordinary or stochastic) differential
equations. Section 3 is concerned with the learning-based optimal con-
trol of a class of large-scale dynamical systems. Section 4 deals with the
learning-based adaptive optimal tracking with disturbance rejection,
the so-called adaptive optimal output regulation problem, for classes
of linear and nonlinear control systems. Applications of the presented
learning-based control theory to autonomous vehicles and human motor
control are given in Section 5. Finally, some concluding remarks and
discussions on future work are provided in Section 6.
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2
Learning-Based Control of Continuous-Time

Dynamical Systems

2.1 Uncertain Linear Time-Invariant Systems

The linear quadratic regulator (LQR for short) problem was for the
first time solved by Kalman (1960), and has been perceived as a key
design method in automatic control. For a review of earlier results on
LQR theory, the reader should consult Willems (1971), Kučera (1973),
and Anderson and Moore (1989), to name a few. For applications of
LQR and its extensions in different fields of engineering and sciences,
the reader should consult Bryson (1994), Todorov and Jordan (2002),
Lewis et al. (2004), and Kolm et al. (2014).

2.1.1 The Linear Quadratic Regulator Problem

In this subsection, we review some key properties of LQR control that
will be explored in the synthesis of our RL and ADP algorithms and
controllers. Consider the following linear time-invariant system:

ẋ = Ax+Bu, (2.1)

where x ∈ Rn and u ∈ Rm are the state and input of the system, and A
and B are constant real-valued matrices with appropriate dimensions.
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2.1. Uncertain Linear Time-Invariant Systems 9

The finite-horizon LQR problem with respect to (2.1) consists in
finding a control law u to minimize the following cost functional:

Jτ−t0(u;x0) = xT (τ)Mx(τ) +
∫ τ

t0
r(t)dt, x(t0) = x0, (2.2)

where r = xTQx+uTRu,M = MT ≥ 0, Q = QT ≥ 0, and R = RT > 0.
From a RL perspective, (2.1) and (2.2) represent the interaction

between the agent and the environment throughout a continuous-time
interval [t0, τ ]. At each time instant t ≥ t0, x(t) represents the environ-
ment’s state, on the basis of which the agent selects a control action u(t).
Then, as a consequent of (x(t), u(t)), the agent receives a cost r(t)dt,
and the environment state also transits from x(t) to x(t) + ẋ(t)dt. r(t)
here is directly observed from the environment, and generally we do not
know its mathematical representation. This process continues until the
terminal time τ , when a terminal cost xT (τ)Mx(τ) is received. As in
RL, the goal of the agent here is to find an optimal controller, denoted
u∗(t), t ∈ [t0, τ ], such that the cumulative cost Jτ−t0 is minimized.

Following the standard argument in LQR theory (Kučera, 1973),
Jτ−t0 achieves its minimum value minu Jτ−t0 = xT0 P (t0)x0 under the
optimal controller u∗(t) = −K(t)x(t), with P and K defined as

K = R−1BTP,

−Ṗ = Ricc(P ), P (τ) = M, (2.3)

where

Ricc(P ) := ATP + PA− PBR−1BTP +Q.

(2.3) is known as the differential matrix Riccati equation (DMRE), which
is a backward matrix differential equation, in the sense that given the
terminal/boundary condition P (τ) = M , (2.3) admits a unique real
symmetric and positive definite solution on [t0, τ ], which can be solved
backward in time (Kučera, 1973).

By fixing t0 = 0 and letting τ go to infinity in (2.2), we have the
following infinite-horizon cost:

J (u;x0) =
∫ ∞

0
r(t)dt. (2.4)
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10 Learning-Based Control of Continuous-Time Dynamical Systems

Note that the terminal cost is removed because to ensure (2.4) is finite,
x must converge to the origin as time goes to infinity, in which case the
terminal cost defined in (2.2) is always 0.

Obviously, (2.4) may not be bounded under some controllers. Here,
we say a controller u is admissible, if system (2.1) under u is globally
asymptotically stable at the origin, and J (u;x0) <∞.

It is well known that under stabilizability and observability assump-
tions (Kalman, 1960), J is minimized under the optimal controller
u∗ = −K∗x, where

K∗ = R−1BTP ∗, (2.5)
0 = Ricc(P ∗). (2.6)

(2.6) is called algebraic Riccati equation (ARE), implying both P ∗ and
K∗ are constant matrices. As we have expected, for any real symmetric
and positive semidefinite P (0), (2.3) is asymptotically stable at P ∗,
backward in time (Kučera, 1973; Shayman, 1986; Willems, 1971):

lim
t→−∞

P (t) = P ∗.

In this monograph, we mainly focus on discussing ADP and RL
methods in the context of infinite-horizon optimal control. For the
infinite-horizon case, we can carry out the learning process continuously
along a single learning path, because of the fact that the interaction
between the agent and the environment does not stop naturally at some
prescribed terminal time. Alternatively, we can also break the learning
process into episodes. After finishing one learning episode, the system
is reset to an initial state, from where the next learning episode starts.
Both of these two setups are explored in the learning algorithms in the
following sections.

2.1.2 Policy Iteration

In Kleinman (1968), Kleinman developed the continuous-time policy
iteration algorithm to approximate P ∗. Instead of solving the ARE (2.6)
directly, Kleinman’s algorithm aims at deriving a sequence {Pk}∞k=0
from the following Lyapunov equation iteratively

0 = G(Kk, Pk), k = 0, 1, . . . ,
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2.1. Uncertain Linear Time-Invariant Systems 11

Algorithm 2.1 PI for continuous-time LQR
Initialize: Choose an arbitrary admissible control gain matrix K0.
Let k ← 0.
repeat
Policy Evaluation: Given Kk, solve for Pk from

0 = G(Kk, Pk). (2.7)

Policy Improvement: Update

Kk+1 ← R−1BTPk. (2.8)

Let k ← k + 1.
until |Pk − Pk+1| < ε (a small positive number)

where

G(K,P ) := (A−BK)TP + P (A−BK) +KTRK +Q,

Kk+1 := R−1BTPk.

Kleinman’s algorithm starts from an admissible control gain matrix K0,
i.e., A−BK0 is a Hurwitz matrix. Once Pk is solved, the cost associated
with the controller uk = −Kkx is readily given in a closed form: Vk(x) =
xTPkx. On top of Pk, the control gain matrix is then updated from Kk

to Kk+1. It can be shown that Pk converges monotonically to P ∗, in
the sense that xTPkx ≥ xTPk+1x ≥ · · · for any x ∈ Rn. The complete
policy iteration algorithm is given in Algorithm 2.1. Different from (2.6),
(2.7) is a linear matrix equation of Pk in each iteration, and hence it is
much easier to solve for high-dimensional problems. In addition, as a
Lyapunov equation, (2.7) implies that Kk is admissible.

A key observation here is that the PI is equivalent to the Newton-
Raphson method (Dahlquist and Björck, 1973) in matrix space. Indeed,
it is easily checked using (2.7) and (2.8) that

0=(A−BKk+1)T (Pk+1 − Pk)+(Pk+1 − Pk)(A−BKk+1) + Ricc(Pk),

which takes the same form as (6.3.1) in Dahlquist and Björck (1973).
Hence, as a standard convergence result for Newton-Raphson method, Pk
in the PI algorithm converges quadratically to the optimal solution P ∗.
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12 Learning-Based Control of Continuous-Time Dynamical Systems

On top of Kleinman’s seminal work, several extensions of Algo-
rithm 2.1 have been proposed to solve AREs and LQR problems; see
Sandell (1974), Banks and Ito (1991), Benner and Byers (1998), Benner
et al. (2008), and Lanzon et al. (2008), to name a few.

In 2012, Jiang and Jiang (2012a) proposed the first continuous-
time PI-based off-policy ADP method. Different from the traditional
on-policy methods (Jiang and Jiang, 2011; Modares and Lewis, 2014;
Murray et al., 2002; Vamvoudakis, 2017; Vrabie et al., 2009, 2013), the
behavior policy that is used to generate data is not necessarily the
same as the target policy to be evaluated in off-policy learning. A key
idea in developing the off-policy method for continuous-time dynamical
systems is to estimate the following Hamiltonian rather than Pk and
Kk separately:

Hk(x, u) =
[
x

u

]T [
ATPk + PkA+Q PkB

BTPk R

] [
x

u

]
.

Introducing the Hamiltonian provides at least two benefits. First, the two
PI equations (2.7) and (2.8) in Algorithm 2.1 can be directly rewritten
in terms of Hk as

0 = Hk(x, uk) and uk+1 = arg inf
a
Hk(x, a),

for all x, respectively. Note that matrices A, B, Q and R no longer
appear explicitly in above equations. In addition, by taking the time
derivative along the trajectories of system (2.1), we have

d

dt
Vk(x) + r = Hk(x, u). (2.9)

It is interesting to note that the left-hand side of Equation (2.9) is a
continuous-time version of the temporal-difference (TD) error (Sutton
and Barto, 2018). Indeed, since the left-hand side of Equation (2.9)
involves a differential term, as opposed to the TD error, a more appro-
priate name should be the temporal-differential error. More importantly,
this equation holds for any input u, as long as the system solution is well
defined. This provides the possibility of developing off-policy learning.

Using the above two important features of Hk, an off-policy PI-
based ADP algorithm is given in Algorithm 2.2. In this algorithm,
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2.1. Uncertain Linear Time-Invariant Systems 13

Algorithm 2.2 PI-based ADP for continuous-time LQR
Initialize: Choose a linear admissible controller u0. Let k ← 0.
for each episode do
Collect data (x, u) and running cost r from the environment.
repeat
Given uk, solve (Vk, Hk) from

0 =
∫ tj+1

tj

Hk(x, uk)dt, (2.10)

Vk(x)|tj+1
tj =

∫ tj+1

tj

(Hk(x, u)− r) dt, (2.11)

where j = 0, 1, . . . , J .
Update uk+1 ← arg infaHk(x, a). Let k ← k + 1.

until |Vk(x) − Vk+1(x)| < ε|x|2, or hits the maximum iteration
number in one episode

end for

(2.10) is deduced from the policy evaluation step (2.7) in Algorithm 2.1,
and (2.11) is due to the continuous-time TD error. In particular, if we
subtract (2.10) from (2.11) directly, the resulting equation reduces to
the original ADP algorithm proposed by Jiang and Jiang (2012a).

Suppose the set of linear equations in the form of (2.10) and (2.11)
are not degenerate for a sufficiently large J . Then we can solve Vk and
Hk uniquely from (2.10) and (2.11) via standard least squares technique;
see Jiang and Jiang (2012a) for detailed derivation. Once Hk is obtained,
uk+1 is readily obtained. Note that the knowledge on A, B, Q and R is
not required throughout the learning process. Despite the similarity of
notations, uk is completely different from u. The actual system input
u is used to generate the online data, and hence corresponds to the
behavior policy. On the other hand, uk (including u0) is the controller
updated through the policy improvement, and hence is in fact the
target policy. That being said, uk is a function of x, while u is just a
control input (function of time) that theoretically can even be an open-
loop state-independent signal. This separation of u from uk classifies
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14 Learning-Based Control of Continuous-Time Dynamical Systems

Algorithm 2.2 together with its extensions (see sections below) as an
off-policy method.

To ensure the non-degeneration assumption on (2.10) and (2.11) is
satisfied, we can inject an exploration noise, such as sinusoidal waves or
harmonic signals, into the input u while generating the online data. Since
Algorithm 2.2 is an off-policy method, injecting the exploration noise
into the control input does not compromise the estimation accuracy
of the target policy being learned, as long as the persistent excitation
(PE) condition (Åström and Wittenmark, 1997; Tao, 2003) is satisfied.
In fact, matrix Pk in the definition of Vk that is solved from (2.10) and
(2.11) is exactly the same matrix in Algorithm 2.1. The technique of
injecting an exploration noise has been widely used in RL to improve
learning performance (Thrun, 1992) and adaptive control to guarantee
the PE condition. As we shall see in the rest of this monograph, the
non-degenerate assumption on the linear equations for a sufficiently
large J will be repeatedly required, although under various formats, in
different ADP and RL algorithms to ensure the convergence of these
algorithms. In this monograph, we always use the term “PE condition”
to denote this type of assumptions.

2.1.3 Value Iteration

In this subsection, we introduce the continuous-time VI algorithm that
leads to the development of new RL and ADP methods for solving
continuous-time LQR problems. Compared with PI, employing the VI
has at least two advantages: (1) the knowledge of an initial admissible
controller is not required to start the iteration; and (2) there is no need to
solve the policy evaluation equation in each iteration. Due to these two
advantages, VI has become the most widely used and best understood
algorithm for solving discounted Markov decision problems (Puterman,
2005). Furthermore, VI methods for discrete-time, continuous-state-
action space systems can also be found in Lancaster and Rodman (1995,
Section 17.5) and Bertsekas (2005, Proposition 4.4.1), for the setting of
linear systems; and in Bertsekas (2017), for a nonlinear extension.

To understand the VI in the continuous-time setting, we start with
the continuous-time VI algorithm in integration form. For any real
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2.1. Uncertain Linear Time-Invariant Systems 15

symmetric and positive semidefinite matrix M , define the continuous-
time DP mapping Tτ as

xT0 Tτ (M)x0 = inf
u

{
xT (τ)Mx(τ) +

∫ τ

0
(xTQx+ uTRu)dt

}
. (2.12)

System (2.1) together with (2.12) formulates a finite-horizon linear
quadratic optimization problem. Hence, from Section 2.1.1 we have
Tτ (M) = P (0), where P is the solution to (2.3) on [0, τ ] with boundary
condition P (τ) = M . It is not difficult to see that the definition of Tτ
matches the definition of DP mapping for MDPs in Bertsekas (2007,
Eq. (1.4)). In particular, the fixed-point equation and the monotonicity
property still hold:

P ∗ = Tτ (P ∗), P1 ≥ P2 ⇒ Tτ (P1) ≥ Tτ (P2).

Once the DP operator Tτ is defined, the continuous-time VI in integral
form is naturally obtained:

Pk+1 = Tτ (Pk), k = 0, 1, . . . . (2.13)

Based on the asymptotic stability property of the DMRE, the conver-
gence of Pk to P ∗ is easily obtained.

It is not difficult to see the similarity between (2.13) and the VI
algorithm for discrete-time linear systems (Bertsekas, 2005, Proposi-
tion 4.4.1) and MDPs (Puterman, 2005, Theorem 6.3.1). By letting τ
goes to 0, we develop the continuous-time VI in stochastic approximation
form in Algorithm 2.3.

Obviously, (2.14) is just a discrete-time approximation of (2.3) (after
reverting the time line) with step size hk. Finding a suitable hk is not
an easy task in practice. If hk is too small at the beginning of learning,
then the convergence tends to be very slow and could even terminate
before reaching the optimal value. On the other hand, if hk is too
large, then the algorithm may simply diverge. Because hk is decreasing
to 0, the convergence speed of Algorithm 2.3 is sub-linear, just as
in other stochastic algorithms including the famous Robbins–Monro
algorithm (Robbins and Monro, 1951). Nevertheless, since there is no
need to solve a matrix equation in each iteration as in Algorithm 2.1,
the computational complexity for each step in Algorithm 2.3 is not
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16 Learning-Based Control of Continuous-Time Dynamical Systems

Algorithm 2.3 VI for continuous-time LQR
Initialize: Choose P0 = P T0 > 0. k ← 0. hk > 0,

∑∞
k=0 hk = ∞,

limk→∞ hk = 0.
repeat
Given Pk, update Pk+1 from

Pk+ 1
2
← Pk + hk Ricc(Pk),

Pk+1 ← Pk+ 1
2

+ Zk. (2.14)

Let k ← k + 1.
until |Pk − Pk+1| < ε

high, and the VI algorithm is still an efficient method to solve the LQR
control problem.

To ensure (2.14) does not diverge due to the large step size hk
at the early stage of learning, a projection term Zk is introduced in
Algorithm 2.3, with the following definition:Zk = P0 − Pk+ 1

2
, increase q to q+1, if Pk+ 1

2
6∈ Bq,

Zk = 0, otherwise,

where {Bq}∞q=0 is a sequence of bounded sets such that B0 ⊆ B1 ⊆
· · · ⊆ Bq ⊆ Bq+1 ⊆ · · · , and B∞ is the space of all real symmetric
and positive semidefinite matrices. Note that the definition of Zk is
independent of the system dynamics. Zk is designed to project Pk+ 1

2
back to P0, whenever Pk+ 1

2
becomes non-positive definite or |Pk+ 1

2
|

becomes unrealistically large. Different from PI, Pk in VI does not have
the monotone convergence property. Hence, Zk is used as a safeguard to
control the approximation error caused by the large step size hk during
initial learning iterations. In addition, if we know P ∗ is in a known
bounded set, then we can simplify the above design of Zk by fixing Bq
as this bounded set.

Different from Algorithm 2.1, instead of starting from an initial
admissible controller, Algorithm 2.3 starts from an arbitrary positive
definite real symmetric matrix representing the initial guess on the
optimal value function.
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2.1. Uncertain Linear Time-Invariant Systems 17

Algorithm 2.4 VI-based ADP for continuous-time LQR
Initialize: Choose V0(x) = xTP0x, P0 = P T0 > 0. k ← 0.
for each episode do
Collect data (x, u) and running cost r from the environment.
repeat
Given Vk, solve Hk from

Vk(x)|tj+1
tj =

∫ tj+1

tj

(Hk(x, u)− r) dt, (2.15)

where j = 0, 1, . . . , J .
Update

Vk+1(x)← Vk(x) + hk inf
a
Hk(x, a) + xTZkx, ∀x ∈ Rn.

(2.16)

Let k ← k + 1.
until |Vk(x) − Vk+1(x)| < ε|x|2, or hits the maximum iteration
number in one episode

end for

The convergence of Algorithm 2.3 is guaranteed by the asymptotic
stability property of the DMRE; see Bian and Jiang (2016b,c, 2018)
for more details. In addition, we have shown in Bian and Jiang (2019a)
that Algorithm 2.3 is robust to external disturbances with a linear L2

gain (van der Schaft, 2017). More importantly, this L2 gain can be
assigned to be arbitrarily small, by tuning Q and R matrices in the
running cost. This important property allows us to apply the VI method
in environments with various types of noises and disturbances, with
guaranteed convergence result.

The stochastic approximation setup allows us to develop continuous-
time VI-based RL and ADP methods. On the basis of Algorithm 2.3, a
VI-based ADP algorithm is given in Algorithm 2.4. Similar to
Algorithm 2.3, Algorithm 2.4 starts from an arbitrary positive definite
real symmetric matrix. This dramatically increases the wide usability
of Algorithm 2.4 in practice.
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In addition, Algorithm 2.4 is an off-policy method. Each iteration
of Algorithm 2.4 contains two steps, aiming at updating Hk and Vk,
respectively. In the first step, given Vk, the Hamiltonian Hk is solved
from (2.15). As in Algorithm 2.2, by injecting the exploration noise in
the input u, the PE condition can be satisfied in the sense that the set
of linear equations (2.15) are not degenerate for a large enough J . It is
worth noting that, in this case, (2.15) in fact defines a linear mapping
from Vk to Hk that is independent of the learning iterations. As a result,
we can directly map Vk to Hk through this mapping, without solving the
linear equation (2.15) repeatedly in each iteration. In the second step,
once Hk is obtained, Vk+1 is directly obtained from (2.16), which is just
an alternative representation of (2.14) based on Hk. The convergence
analysis of Vk to V ∗ has been given in Bian and Jiang (2016b).

Finally, it is interesting to note that Algorithm 2.4 shares some
similarity with TD learning. Indeed, when hk is sufficiently small, we
easily see from Algorithm 2.4 that for any t ≥ 0 and x(t),

hk inf
u
Hk(x(t), u)

= hk inf
u

{
(Ax+Bu)TPk + Pk(Ax+Bu) + xTQx+ uTRu

}
≈ inf

u

{
Vk(x)|t+hkt +

∫ t+hk

t
rds

}
, (2.17)

which is consistent with the definition of TD(0) algorithm in RL (Sutton
and Barto, 2018).

Besides the papers mentioned above in this section, other off-
policy ADP papers on different types of optimal control problems
for continuous-time linear systems have been given in Jiang and Jiang
(2013a,b, 2014b, 2017), Bian et al. (2014, 2015, 2016), Gao and Jiang
(2016a), Gao et al. (2018), Kiumarsi et al. (2017), Vamvoudakis (2017),
Vamvoudakis and Ferraz (2018), Rizvi and Lin (2019), Yang et al. (2019),
Chen et al. (2019), Pang et al. (2019, 2020), and Pang and Jiang (2020),
to name a few. Generalizations of PI and VI based learning control
results to nonlinear systems can be found in Vrabie et al. (2013), Liu
et al. (2017), and Jiang and Jiang (2017) and many references therein.
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2.2 Uncertain Linear Stochastic Systems

The methods reviewed in the previous section are designed for learning in
the noise-free environment. Obviously this assumption is too restrictive,
since in most real-world systems, stochastic noise is not only unavoidable,
but plays a critical role in the learning system (Section 5.1.4).

Generally speaking, learning in stochastic environments is a difficult
task, as the learning algorithm is required to be robust to stochastic
noises (Bian and Jiang, 2019a) to some degree, so that the convergence
to the optimal solution can be guaranteed.

In this section, we review some preliminary results on RL and
ADP methods for continuous stochastic environments. In addition, we
also point out some key difficulties that need to be addressed when
developing stochastic ADP methods in continuous time.

2.2.1 Continuous-Time Stochastic Optimal Control

Suppose w is a (q1 +q2)-dimensional standard Brownian motion. Denote
Ft as the σ-field generated by w(s), 0 ≤ s ≤ t. Consider the following
linear stochastic system with additive and multiplicative noises:

dx = (Ax+Bu)dt+
q1∑
i=1

(Aix+Biu)dwi +
q2∑
i=1

σidwi, (2.18)

where x ∈ Rn and u ∈ Rm are {Ft}-adapted random processes repre-
senting the state and the input of the system, respectively; x(0) = x0 is
deterministic; A, B, Ai and Bi are constant real matrices; and σi are
constant real vectors.

Borrowing the definition in Haussmann (1971), we say a controller u
is admissible, if it is Lipschitz continuous, and an invariant probability
measure π exists such that Eπ[|x|2] <∞.

In the setting of stochastic optimal control, several types of cost
functionals can be considered, each of which has its own advantages
and usage in practice. In this section, we discuss three cost functionals
defined on the infinite horizon. All of these costs are associated with the
same running cost xTQx+ uTRu, where Q and R are real symmetric
and positive definite matrices.

The version of record is available at: http://dx.doi.org/10.1561/2600000023



20 Learning-Based Control of Continuous-Time Dynamical Systems

Ergodic Control

The objective of ergodic control is to minimize (with probability one)

ρ(u) = lim sup
T→∞

1
T

∫ T

0
r(t)dt,

or to minimize

ρ̄(u) = lim sup
T→∞

1
T

∫ T

0
E0[r(t)]dt,

where r = xTQx+ uTRu, E0 is the expectation conditional on F0.
It has been shown by Wonham (1967), Kleinman (1969), and

Haussmann (1971) that if
∑q2
i=1 σiσ

T
i > 0, then there exists an er-

godic stationary probability measure π on Rn × Rm for system (2.18)
under an admissible linear controller u = −Kx. Kleinman (1969) has
shown that in this case ρ̄(u) and ρ(u) are equal to Eπ[r] =

∑q2
i=1 σ

T
i Pσi

(with probability one in the later case), where P is the solution to the
following Lyapunov equation for stochastic systems:

0 = G(K,P ),

where

G(K,P ) := (A−BK)TP + P (A−BK) +Q

+
q1∑
i=1

ATi PAi +KT

( q1∑
i=1

BT
i PBi +R

)
K.

In particular, the ergodic controller that minimizes ρ and ρ̄ is
u∗ = −K∗x, and ρ̄(u∗) = ρ(u∗) =

∑q2
i=1 σ

T
i P
∗σi, with K∗ and P ∗

defined as

0 = Ricc(P ∗), (2.19)

K∗ =
( q1∑
i=1

BT
i P
∗Bi +R

)−1(
P ∗B +

q1∑
i=1

ATi P
∗Bi

)T
, (2.20)

where

Ricc(P ) := ATP + PA+Q

+
q1∑
i=1

ATi PAi − (K∗)T
( q1∑
i=1

BT
i PBi +R

)
K∗.
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Note that under certain assumptions, the non-degeneration assump-
tion

∑q2
i=1 σiσ

T
i > 0 in the above ergodic control problem can be relaxed

(Haussmann, 1971; Zakai, 1969).
The ergodic control is one of the most widely studied stochastic opti-

mal control problems. For instance, the ergodic controller characterizes
the long-term behavior of the underlying processes, and hence is espe-
cially useful in developing Monte-Carlo samplers and RL algorithms. In
addition, the ergodic property is closely related to some important prop-
erties (e.g., aperiodicity and recurrence) of stochastic processes (Meyn
and Tweedie, 1993a,b). For more details on the ergodic control-related
methods for continuous-time models, see Wonham (1967), Khas’minskii
(1967), and Haussmann (1971, 1973), for linear diffusion processes, and
Meyn and Tweedie (1993a,b), Borkar (2006), Arapostathis et al. (2012),
and Khas’minskii (2012) for more general stochastic processes.

However, in many applications, especially when the noise is degen-
erated, the ergodic control costs ρ and ρ̄ may not be good performance
indicators, since the ergodic control problem cannot characterize the
transient performance of the control system. Indeed, the values of ρ̄(u)
and ρ(u) are independent of the initial state x0 for admissible u. In the
extreme case where there is no stochastic noise in the system, all the
stabilizing controllers for system (2.18) minimize the ergodic control
costs, and infu ρ(u) = infu ρ̄(u) = 0.

Discount-Optimal Control

Given x0 ∈ Rn, denote the discounted cost as

Jλ(u;x0) = E0

[∫ ∞
0

e−λtr(t)dt
]
, λ > 0. (2.21)

(2.21) is quite similar to the cost in deterministic LQR problem. The
main difference here is that a discounting term e−λt is introduced to add
more weights on the running cost during the initial control period. Since
the discounting term decreases to 0 as t goes to the infinity, the total
cost value is finite under admissible controllers, even in the presence
of additive noises. Different from ergodic control costs, the discounted
cost also takes into account the initial state of the controlled system.
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It has been shown in Kushner (1967, Theorem 4) that Jλ is min-
imized under the discount-optimal controller u∗ = −K∗x, where K∗
follows the same definition in (2.20), and P ∗ satisfies

λP ∗ = Ricc(P ∗). (2.22)

Moreover, the minimum cost is

inf
u
Jλ(u;x) = xTP ∗x+ 1

λ

q2∑
i=1

σTi P
∗σi.

Note that if we introduce a new matrix A′ = A − 1
2λI where I is

an identity matrix with appropriate dimension, then (2.22) reduces to
(2.19) in which A is replaced by A′. Hence, the analysis on (2.19) can
be directly carried over to (2.22).

Different from the ergodic control problem, both the transient per-
formance and the stationary distribution are taken into account in
the discount-optimal control problem. As we can see, λ represents the
tradeoff between the contributions of the initial state and the steady
state distribution to the total cost.

However, introducing the discounting factor λ brings up the concern
about stability guarantee for the closed-loop system. Because of the
discounting term e−λt in the discounted cost, (2.22) may still be finite
even if the closed-loop system is not stable. Nevertheless, this stability
challenge can be resolved by applying the PI approach with a carefully
selected initial controller (Bian and Jiang, 2016a).

It should be mentioned that the discount-optimal control problem
has been extensively studied in the context of MDPs and RL. In the
continuous-time setting, the discounted cost has also attracted attention
from many practitioners, since the discounting feature makes it a more
realistic cost candidate in optimal controller design. Take the finance
as an example. Participants in the finance field show more interests in
the short-term profit/loss. In fact, according to the arbitrage pricing
theory (Ross, 1976), it is necessary to include the discounting factor in
portfolio optimization as it reflects the risk-free rate in the market. For
more details on discount optimal control-related methods, see Kushner
(1967), Pliska (1986), and Bensoussan and Frehse (1992), to name a
few.
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Bias-Optimal Control

An alternative way to bypass the stability issue in discount-optimal
control is to consider the bias-optimal control.

Given x0 ∈ Rn, denote the biased cost as

Jb(u;x0) = E0

[∫ ∞
0

(r − ρ̄(u))dt
]
. (2.23)

Borrowing the definition in Mahadevan (1996) for MDPs, we call a
controller u bias-optimal, if it is admissible and minimizes both ρ̄(u)
and the biased cost Jb(u;x0). Note from (2.23) that Jb represents the
accumulated difference between r and ρ̄(u). If the initial state x0 is
a random variable following the steady state distribution associated
with u, then Jb(u;x0) = 0 by the law of large numbers. In other words,
Jb(u;x0) characterizes the relative difference in the total cost gained
from starting in state x0 as opposed to some other states (Mahadevan,
1996). Due to this feature, the biased cost has been extensively studied
for MDPs (Mahadevan, 1996; Puterman, 2005; Schwartz, 1993; Tsitsiklis
and Van Roy, 1999, 2002; Yu and Bertsekas, 2009). An extension to
non-degenerate diffusions can be found in Arapostathis et al. (2012,
Chapter 3, 2014).

It has been shown in the literature (Arapostathis et al., 2014; Bian
and Jiang, 2016a) that the bias-optimal controller is u∗ = −K∗x,
where K∗ is defined by (2.20) and (2.19). To see this, note that u∗
minimizes ρ̄(u) by definition. Moreover, compared with other controllers
which also minimize ρ̄(u), one can easily see that only u∗ minimizes
Jb, by following standard DP arguments. Finally, the minimum cost is
Jb(u∗;x0) = xT0 P

∗x0 − Eπ[xTP ∗x].
It is not difficult to see that the three stochastic optimal control

problems discussed above share almost the same ARE. This is not a
coincidence, as they are not independent from each other. To be more
specific, one can show (Bian and Jiang, 2016a) that for any admissible
u = −Kx,

lim
λ→0

∣∣∣∣Jλ(u;x)− 1
λ
ρ̄(u)− Jb(u;x)

∣∣∣∣ = 0.

A similar result has been obtained for MDPs (Puterman, 2005,
Corollary 8.2.4).
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In the rest of this section, we focus on RL and ADP algorithms
used to solve the ergodic control problem. Extensions to the other two
stochastic optimal control problems are straightforward given that they
have similar AREs.

2.2.2 Policy Iteration

The PI algorithm for stochastic LQR problems was first developed by
Kleinman (1969) to solve an optimal stationary controller, and then was
extended to more general problems by different authors (Damm, 2004;
Damm and Hinrichsen, 2001). Although these papers did not consider
the discounted cost, it is a trivial extension to apply existing results to
solve the discount-optimal control problem.

The PI algorithm for solving the ergodic control problem follows the
exact same structure as its deterministic counterpart in Algorithm 2.1,
except that G(·) andKk follow different definitions; see Kleinman (1969),
Damm and Hinrichsen (2001), Damm (2004), and Bian et al. (2016) for
details.

To develop PI-based ADP to solve continuous-time stochastic LQR
problems, we consider the following special case of (2.18):

dx = Axdt+B(u+ v)dt, (2.24)

vdt =
q1∑
i=1

(Aix+Biu)dwi +
q2∑
i=1

σidwi.

Note that all the stochastic noises are passed into the system through
the input channel B in (2.24). Here v can be viewed as a bundle of
white noises in the input channel. As a result, the running-cost from
the environment in this case is defined as r = xTQx+ (u+ v)TR(u+ v),

By following the same procedure as in the deterministic case, we
introduce the following value function and Hamiltonian:

Vk(x) = xTPkx, Hk(x, u) =
[
x

u

]T [
Fk,11 Fk,12
F Tk,12 Fk,22

] [
x

u

]
,
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Algorithm 2.5 PI-based ADP for continuous-time stochastic LQR
Initialize: Choose a linear admissible controller u0. k ← 0.
for each episode do
Collect data (x, u, v) and running cost r from environment.
repeat
Given uk, solve (Vk, Hk, ρ̄k) from

0 =
∫ tj+1

tj

Hk(x, uk)dt,

Vk(x(t))|tj+1
tj =

∫ tj+1

tj

(Hk(x, u+ v) + ρ̄k − r) dt,

where j = 0, . . . , J .
Update uk+1 ← arg minaHk(x, a). Let k ← k + 1.

until |Vk(x) − Vk+1(x)| < ε|x|2, or hits the maximum iteration
number in one episode

end for

where

Fk,11 = ATPk + PkA+
q1∑
i=1

ATi PkAi +Q,

Fk,12 = PkB +
q1∑
i=1

ATi PkBi, Fk,22 =
q1∑
i=1

BT
i PkBi +R.

The extra terms in Hk compared with the deterministic case are due
to the presence of stochastic noise. It is not hard to check that Hk

inherits all the properties of the Hamiltonian in the deterministic case.
As a result, we can derive the PI-based stochastic ADP algorithm
(Algorithm 2.5) by mimicking the same structure in Algorithm 2.2.

Compared with Algorithm 2.2, an extra term ρ̄k is introduced in
Algorithm 2.5. This term is the Itô’s correction term caused by the
additive noise in (2.24). One can show (Bian and Jiang, 2016a) that
both Pk and ρ̄k converge to P ∗ and ρ̄(u∗) in the ergodic control problem.

As in the deterministic case, we can solve Vk, Hk, and ρ̄k simulta-
neously, provided that the PE condition is satisfied for a sufficiently
large J . In fact, since the stochastic noise also serves as the exploration
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Algorithm 2.6 VI-based ADP for continuous-time stochastic LQR
Initialize: Choose V0(x) = xTP0x, where P0 = P T0 > 0. k ← 0.
for each episode do
Collect data (x, u, v) and running cost r from environment.
repeat
Given Vk, solve (Vk, ρ̄k) from

Vk(x)|tj+1
tj =

∫ tj+1

tj

(Hk(x, u+ v) + ρ̄k − r) dt,

where j = 0, . . . , J .
Update

Vk+1 ← Vk + hk inf
a
Hk(x, a) + xTZkx.

Let k ← k + 1.
until |Vk(x) − Vk+1(x)| < ε|x|2, or hits the maximum iteration
number in one episode

end for

noise in this case, the PE condition is much easier to satisfy. Similar to
Algorithm 2.2, Algorithm 2.5 is also an off-policy method. Once Hk is
obtained, uk+1 is readily updated. The knowledge on system matrices
is not required in this setting. For detailed convergence analysis for
Algorithm 2.5, see Jiang and Jiang (2014a), Bian and Jiang (2016a),
and Bian et al. (2016).

2.2.3 Value Iteration

The VI algorithm for solving the ergodic control problem can be de-
veloped in the same fashion as for its deterministic counterpart in
Algorithm 2.3, except that Ricc(·) is defined differently.

Now, under the assumption that the stochastic noise enters into
the system through the input channel, we obtain the VI-based ADP
algorithm in Algorithm 2.6 for system (2.24).
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Compared with Algorithm 2.4, Algorithm 2.6 also contains an extra
term due to the stochastic nature of the problem. Our analysis on Algo-
rithm 2.4 can be carried over to Algorithm 2.6 with minor modifications.
See Bian and Jiang (2016c, 2018) for detailed convergence analysis on
Algorithm 2.6.

2.3 Uncertain Nonlinear Systems

Despite its wide-ranged applications in industry, LQR control has a
restrictive requirement on the controlled system and the cost functional.
Hence, it is usually not applicable in the situation where both the
system model and the running cost take general nonlinear forms. In
this section, we focus on developing RL and ADP methods for general
nonlinear optimal control problems.

2.3.1 Optimal Control of General Nonlinear Systems

Consider a continuous-time nonlinear system taking the nonaffine form:

ẋ = f(x, u), (2.25)

where x ∈ Rn, u ∈ Rm, and f is locally Lipschitz and satisfies
f(0, 0) = 0.

We aim at finding an optimal controller u∗ to minimize the following
infinite-horizon cost with respect to system (2.25):

J (u;x0) =
∫ ∞

0
r(x, u)dt, (2.26)

where x(0) = x0, and r is continuous and positive definite. Similar to
the linear case, we say a controller u is admissible, if system (2.25) is
asymptotically stable at the origin, and J (u;x0) is finite. In addition,
we say a feedback control policy µ admissible, if u = µ(x) is admissible.

Suppose at least one admissible controller exists. Then the minimum
cost value exists, and we can denote the minimum value of J at x0
as V ∗(x0). By DP theory, if V ∗ and u∗ are sufficiently smooth, then
V ∗ satisfies the following Hamilton-Jacobi-Bellman (HJB) equation
(Bellman, 1954) over Rn:

0 = inf
a∈Rm

{∂xV ∗(x)f(x, a) + r(x, a)}, V ∗(0) = 0. (2.27)
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Moreover, u∗(t) = µ∗(x(t)), where

µ∗(x) = arg inf
a∈Rm

{∂xV ∗(x)f(x, a) + r(x, a)}. (2.28)

On the other hand, if (2.27) admits a solution V ∗, with the infimum
achieved at a = µ∗(x), then V ∗(x) = infu J (u;x), and u∗ (or µ∗, resp.)
is the corresponding optimal controller (or policy, resp.). In addition, if
V ∗ is proper and u∗ is continuous, then u∗ is a stabilizing controller,
and hence u∗ is admissible.

For more details on DP and optimal control theory for continuous-
time dynamical processes, see Bellman (1957), Fleming and Rishel
(1975), Evans (2005), Liberzon (2012), Lewis et al. (2012a), and Clarke
(2013), and references therein.

2.3.2 Policy Iteration

The idea of PI in continuous-time dynamical systems can be traced
back to the early work of Leake and Liu (1967), under the name of
successive approximation. The ingenious idea behind this paper is to
define two mappings, one from the controller space to the value function
space, and another one in the reverse direction. It can be shown that the
composition of these two mappings forms a contraction, and its fixed
point is the optimal value function. This naturally leads to a fixed-point
iteration to solve the HJB equation. From the perspective of DP, the
two mappings identified in Leake and Liu (1967) are actually the policy
evaluation and policy improvement, respectively. However, the iterative
method in Leake and Liu (1967) is not popular within the optimal
control community, as it requires several technical assumptions that are
hard to verify.

The first PI, successive approximation algorithm that was brought to
the community’s attention in solving nonlinear optimal control problems
was developed in a series of papers by Saridis and his co-workers (Beard,
1995; Beard et al., 1997; Saridis and Lee, 1979). Although these papers
were developed only for affine nonlinear systems, i.e., the control input
is assumed to appear linearly in the standard state model, they relaxed
and improved several restrictive assumptions in Leake and Liu (1967).
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Algorithm 2.7 PI for continuous-time nonlinear optimal control
Initialize: Choose an arbitrary admissible control policy µ0 and
compact set K. k ← 0
repeat
Policy Evaluation: Given µk, solve Vk from

0 = ∂xVk(x)f(x, µk(x)) + r(x, µk(x)), Vk(0) = 0. (2.29)

Policy Improvement: Update µk+1 via

µk+1(x)← arg inf
a
{∂xVk(x)f(x, a) + r(x, a)} . (2.30)

Let k ← k + 1
until ‖Vk − Vk+1‖∞ < ε on K

In Bian et al. (2014), we further extended the successive approxi-
mation method in Leake and Liu (1967) and Beard (1995) to general
nonaffine nonlinear systems. The PI for general nonlinear systems is
summarized in Algorithm 2.7. Obviously, solving (2.29) and (2.30) is
much easier than solving (2.27), which is a nonlinear partial differential
equation (PDE). Another observation is that Vk serves as a Lyapunov
function in (2.29), implying µk is admissible. In addition, Kleinman’s
algorithm (Algorithm 2.1) becomes a special case of Algorithm 2.7.
Moreover, we can rewrite (2.29) and (2.30) as

0 = (pk+1 − pk)f(x, a′) + pkf(x, a′) + r(x, a′),

where pk = ∂xVk(x) for all k, and a′ = arg infa{pkf(x, a) + r(x, a)}.
If f(x, a) and r(x, a) are continuously differentiable in a, then similar
to the PI for LQR problem, the above equation is a Newton-Raphson
method that aims at solving a vector p from the nonlinear equation
0 = infa{pT f(x, a) + r(x, a)}, pointwise in Rn. Hence, the nonlinear PI
algorithm is also expected to have quadratic convergence speed. For
detailed convergence analysis of Algorithm 2.7, see Bian et al. (2014).

Unfortunately, the methods discussed above are plagued by some
serious implementation issues in practical applications. First, since the
value functions and control policies in PI (Vk and µk in Algorithm 2.7)
could take general nonlinear forms, solving these functions could still be
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computationally expensive, especially with high-dimensional state space.
In addition, since the value functions and control policies converge to
their optimal values pointwise, the stopping criteria in PI is in the
supremum norm of Vk − Vk+1, and hence we must check the value of
Vk(x) for each x in K, which is impossible in practice. Nevertheless,
these difficulties can be lifted by using various types of numerical
approximations. For instance, Beard (1995) and Beard et al. (1997)
adopted Galerkin’s method in Saridis’s successive approximation design
to approximate the value function via a linear combination of basis
functions. Here, we will discuss in details the approach of using the
neural network (NN) approximation directly in the continuous-time
setting. The main advantage of this approach is that it allows us to
develop continuous-time RL and ADP methods directly with concrete
convergence and stability analysis.

The first off-policy ADP methods for continuous-time nonlinear
systems were developed in Jiang and Jiang (2014b) and Bian et al.
(2014), by implementing the single-layer NN approximation in nonlinear
PI algorithms. As in Section 2.1.2, before introducing these off-policy
ADP methods, we first define the Hamiltonian in the setting of nonlinear
systems:

Hk(x, u) = ∂xVk(x)f(x, u) + r(x, u), ∀(x, u) ∈ Rn × Rm.

Following this definition, (2.29) and (2.30) can be rewritten as

0 = Hk(x, µk(x)) and µk+1(x) = arg inf
a
Hk(x, a),

respectively. In addition, similar to the linear case (see Section 2.1.2),
by taking the time derivative along the trajectories of system (2.25),
we have the following continuous-time version of TD error for general
nonlinear optimal control problems:

V̇k(x) + r(x, u) = Hk(x, u).

Once Hk is defined, we can introduce NNs to approximate the
unknown functions in the above equations:

Ĥ(wk, x, u) ≈ Hk(x, u), V̂ (ck, x) ≈ Vk(x), µ̂(θk, x) ≈ µk(x).
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Algorithm 2.8 PI-based ADP for continuous-time nonlinear optimal
control problems
Initialize: Choose an arbitrary θ0 such that µ̂(θ0, ·) is admissible.
k ← 0.
for each episode do
Collect data (x, u) and running cost r from the environment.
repeat
Given θk, solve for wk and ck from

0 =
∫ tj+1

tj

Ĥ(wk, x, µ̂(θk, x))dt, (2.31)

V̂ (ck, x)|tj+1
tj =

∫ tj+1

tj

(Ĥ(wk, x, u)− r)dt, (2.32)

where j = 0, . . . , J .
Update θk+1 ← arg infθ Ĥ(wk, x, µ̂(θ, x)). Let k ← k + 1.

until |ck − ck+1| < ε, or hits the maximum iteration number in
one episode.

end for

Ĥ, V̂ , and µ̂ are three NNs uniquely determined by their NN weights
(wk, ck, and θk). Then, instead of searching Hk, Vk, and µk from some
infinite-dimensional functional spaces, we only need to find the NN
weights that lead to the best approximators.

Summarizing the above, we present the off-policy PI-based ADP
algorithm for general nonlinear systems in Algorithm 2.8.

A special choice of the NNs in our learning algorithm is the single
layer network:

Ĥ(wk, x, u) =
N∑
i=1

wi,kψi(x, u), V̂ (ck, x) =
N∑
i=1

ci,kφi(x),

µ̂(θk, x) =
N∑
i=1

θi,kϕi(x),

where ψi, φi, and ϕi represent the neurons in the network (Park and
Sandberg, 1991), and N is the size of the network. In this case, (2.31)
and (2.32) become a set of linear equations in wk and ck. Note that if
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we subtract (2.31) from (2.32) directly, the resulting equation is exactly
the ADP algorithm proposed by Bian et al. (2014) and Jiang and Jiang
(2014b). If these linear equations are non-degenerate for a sufficiently
large J , then we can solve wk and ck uniquely from (2.31) and (2.32)
using linear regression. As in the ADP design for LQR control, this non-
degeneration assumption can be satisfied by injecting the exploration
noise into the system input.

Besides the different problem formulation, a key difference between
Algorithms 2.2 and 2.8 is that the least square solution is usually
different from the true solution of the policy evaluation in Algorithm 2.2.
This difference is caused by the NN approximation errors, which do
not appear in the ADP methods for LQR problems. Because of this
approximation error, the learning algorithm converges to the optimal
solution only over a pre-selected compact set in supremum norm, when
both J and N go to the infinity; see Jiang and Jiang (2014b) and Bian
et al. (2014) for detailed convergence analysis.

2.3.3 Value Iteration

In Section 2.1.3, we have reviewed the VI for continuous-time LQR con-
trol problems. In this subsection, following the same steps in
Section 2.1.3, we develop VI and its online implementation for continuous-
time nonlinear optimal control problems.

We start with the definition of continuous-time DP mapping. For
any positive semidefinite function V defined on Rn, we can define the
continuous-time DP mapping Tτ as

Tτ (V )(x0) = inf
u

{
V (x(τ)) +

∫ τ

0
r(x, u)dt

}
, x(0) = x0. (2.33)

The right-hand side of (2.33) is a finite-horizon optimal control problem.
Then, we can connect V and Tτ (V ) through the following finite-horizon
HJB equation:

−∂tv(x, t) = inf
a∈Rm

{∂xv(x, t)f(x, a) + r(x, a)}, (2.34)

for all (x, t) ∈ Rn× [0, τ ]. Given the boundary condition v(x, τ) = V (x),
one can easily derive Tτ (V )(x) = v(x, 0), provided that (2.34) admits a
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classical solution. Moreover, the minimizer in (2.33) is defined as

u(t) = µ(x, t) = arg inf
a∈Rm

{∂xv(x, t)f(x, a) + r(x, a)}.

Since f and r are time homogeneous, the finite-horizon cost is stationary,
and hence we can safely shift the time interval [0, τ ] in (2.33) and (2.34)
to any interval of length τ , without altering the definition of Tτ (V )
and µ.

Once the DP operator Tτ is defined, the continuous-time VI in
integral form is naturally obtained as

Vk+1 = Tτ (Vk), k = 0, 1, . . . .

On the basis of the above updating equation, we can show (Bian and
Jiang, 2016c) that the solution to (2.34) converges backward in time to
the infinite-horizon optimal value function V ∗ uniformly on any compact
set:

lim
t→−∞

v(·, t) = V ∗(·),

given that the boundary condition V is positive semidefinite and proper,
and (2.27) and (2.34) are well-defined.

Given the convergence of v, we can follow the steps in Section 2.3.2
to represent (2.34) and the TD error in terms of the Hamiltonian:

∂sv(x, s) = inf
a∈Rm

Hs(x, a), v̇s(x) + r(x, u) = Hs(x, u). (2.35)

In the above equations, x is the trajectory of system (2.25) generated
by u. To avoid confusion, here we use t and s to represent the actual
system time and the time evolution of the HJB equation (2.34), respec-
tively. In addition, we reversed the time in (2.34), so that v is evolving
forward in s in our learning algorithm.

Based on the above formulation, an off-policy VI-based ADP al-
gorithm for continuous-time nonlinear optimal control problems is
introduced in Algorithm 2.9. Similar to Algorithm 2.8, we introduce
NNs (v̂ and Ĥ) in Algorithm 2.9 to approximate the unknown functions
in (2.35). Moreover, in order to cope the iterative updating scheme of
NN weights, the stochastic approximation is used in Algorithm 2.9 to
approximate the updating equation of v̂. Similar to (2.31) and (2.32), if
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Algorithm 2.9 VI-based ADP for continuous-time nonlinear optimal
control problems
Initialize: Choose an arbitrary c0 such that v̂(c0, ·) is positive semidef-
inite and proper. k ← 0.
for each episode do
Collect data (x, u) and running cost r from the environment.
repeat
Given ck, solve for wk from

v̂(ck, x)|tj+1
tj =

∫ tj+1

tj

(Ĥ(wk, x, u)− r)dt, (2.36)

where j = 0, . . . , J .
Update ck+1 via

v̂(ck+1, x) = v̂(ck, x) + hk inf
a∈Rm

Ĥ(wk, x, a). (2.37)

until |ck − ck+1| < ε, or hits the maximum iteration number in
one episode.

end for

we use single layer NNs in (2.36) and (2.37), then wk and ck+1 can be
solved via linear regression in each iteration, provided the PE condition
is satisfied for a sufficiently large J .

Because of the NN approximation errors, the convergence result
holds over a compact set as in Algorithm 2.8. Detailed convergence
proof of Algorithm 2.9 is given in Bian and Jiang (2016c).

Finally, interested readers are referred to Jiang and Jiang (2015b),
Gao and Jiang (2016b), Kiumarsi et al. (2017), Liu et al. (2017), Gao
and Jiang (2018), and Pang and Jiang (2020) for additional papers on
off-policy continuous-time nonlinear ADP methods.

2.3.4 Numerical Stability of PI- and VI-Based Algorithms

The algorithms reviewed in this monograph so far are mainly discussed
under ideal implementation scenarios. In real-world applications, one
must consider the errors induced from the numerical calculations, such
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as the numerical integration and numerical matrix inverse, when im-
plementing these algorithms. In fact, the NN approximation error we
mentioned previously may also be an alternative source of numerical
errors.

When discussing the convergence of a numerical method, two criteria,
i.e., the consistency and the stability, must be considered. Consistency
here means that, in each learning iteration, we can make the residual er-
ror arbitrarily small, by increasing the precision of numerical calculation
and NN approximation. This condition is relatively easy to check, and
indeed all the ADP algorithms discussed before satisfy this condition.
Stability, on the other hand, is a much more serious issue. Roughly
speaking, a numerical algorithm is stable, if it does not magnify the
errors (due to truncation, round-off, etc.) during the numerical process.
From a control-theoretic point of view, this is equivalent to saying the
algorithm is to some extent robust to the numerical errors.

We have shown in Bian and Jiang (2019a) that the VI algorithm for
the LQR control problem indeed shows a promising robustness property
to different types of disturbances in the learning algorithm. In addition,
one can even tune the input-to-state stable (ISS) gain (Sontag, 2008)
of the VI algorithm, by selecting the weighting matrices in the cost
properly. Besides the numerical error, we see in Section 2.2.3 that VI
is also robust to stochastic noise. In the setting of nonlinear optimal
control, we can see from (2.34) that if the numerical error induced
from one iteration is sufficiently small, it can be dominated by the
running cost r. Then, the ADP algorithm with numerical errors can
be considered as an algorithm learning in an ideal scenario but under
a different cost. As a result, the ADP algorithm will converge to a
suboptimal solution, and the sub-optimality is characterized by the
time integration of the numerical error.

PI algorithms are essentially Newton-Raphson methods, and hence
should also inherit the numerical stability property from standard
Newton-Raphson method. However, it is not surprising that they may
not be robust to stochastic noise (Spall, 2003, Chapter 1), especially
when the value function corresponding to the initial controller is far
from the optimal solution. Nevertheless, it is possible to address this
issue via stochastic approximation (Kushner and Yin, 2003; Spall, 2003).
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3
Learning-Based Control of Large-Scale

Interconnected Systems

The RL and ADP methods reviewed so far are mainly designed for
learning and control problems concerned with a centralized system.
In modern engineering and natural systems, we often face large-scale
interconnected systems that form a complex network with involved
interactions. Examples include robotic networks, smart grids with thou-
sands of distributed generators and an internet of connected, automated
and human-driven vehicles. Finance and financial engineering indus-
tries provide other challenging examples such as the high frequency
trading in an electronic market, where orders are managed by a limit
order book (LOB). Every time an order is changed in the LOB, traders
in the market will observe this change and take their corresponding
actions. In this sense, all the traders in the market form a trading
network through the LOB. As a result, it is of paramount theoretical
and practical importance to investigate how the previously developed
learning algorithms are scalable to decentralized dynamical networks.
Instead of modeling the whole network as a centralized environment
directly, decentralized RL and ADP methods conduct online learning
for each subsystem in the network. The main difficulty in studying
decentralized learning algorithms is that the behavior of a single system

36
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or agent in the network may have direct or indirect influences to other
systems or agents, which in turn pass these impacts back to this agent
through loops in the network. As a result, besides the state and reward
information received from the environment, each agent in the network
also receives a dynamic disturbance from its neighbors. Such distur-
bance could be the power fluctuation from other DG units in the power
grid, or the market impact of other traders in an electronic market.
This leads to at least two basic questions that need to be answered
while considering the decentralized RL and ADP. First, the stability
and optimality of a dynamical network cannot be reduced down to
checking the stability and optimality of individual systems. That is,
even if each agent by itself is stable or made stable by feedback, there
is no guarantee that the entire network with strong couplings is stable.
To ensure the stability of the connected network, while still retaining
good performance for each individual agent, a robust optimal control
strategy is desirable. More specifically, we will model the interaction
between two agents as dynamic uncertainty, which can be handled using
the small-gain theory (Jiang and Liu, 2018; Jiang et al., 1994). The
second question is how to design a learning algorithm to achieve the
robust optimality without knowing the model information. Different
from traditional RL and ADP methods, the network interconnection
must be considered in the decentralized learning algorithm.

3.1 Input-to-State Stability and Small-Gain Techniques

Before introducing the decentralized RL and ADP methods, we briefly
review Sontag’s concept of input-to-state stability (ISS) (Sontag, 2008)
and an ISS small-gain theorem (Jiang et al., 1996), that will serve as
design ingredients in learning-based controller synthesis.

Consider the following system

ẋ = f(x,∆), (3.1)

where f is a locally Lipschitz function vanishing at the origin, and ∆ is
an external disturbance input to the system. System (3.1) is said to be
ISS, if the solutions x(t) satisfy

|x(t)| ≤ max{β(|x(0)|, t), γf (‖∆‖∞)}, (3.2)
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where β is a KL function and γf is a K∞ function.1 Roughly speaking,
(3.2) says that when ∆ ≡ 0, system (3.1) is globally asymptotically
stable at the origin, and its transient behavior and rate of convergence
are characterized by the KL function β. When ∆ is bounded, then the
solution to system (3.1) stays in a neighborhood of the origin that is
characterized by the nonlinear gain function γf and the L∞-norm of ∆.
Hence, the ISS gain function γf serves as a quantifier of the robustness
of (3.1) to the external disturbance.

Now, let us consider a special case where the disturbance ∆ in (3.1)
is an output from another ISS system:

ζ̇ = g(ζ, x), ∆ := ∆(x, ζ), (3.3)

where g and ∆ are locally Lipschitz functions vanishing at the origin.
The nonlinear system (3.3) is referred to as the dynamic uncertainty.
In the literature of nonlinear control theory, the dynamic uncertainty
can represent a large class of uncertainties, including the mismatch
between the nominal model and the real plant when the order of the
nominal model is lower than the order of the real plant. Similar to (3.1),
we can also define a gain γg from the input x to the output ∆, called
input-to-output stability (IOS) gain, to quantify the robustness of (3.3)
to the external input x.

Note that even if both (3.1) and (3.3) are ISS, the interconnected
system is not guaranteed to be stable. In Jiang et al. (1994), it is shown
that, under the small-gain condition γf ◦ γg < Id, the interconnected
system remains IOS, and under certain observability condition, is ISS.
For more details on the ISS and small-gain theory, see Sontag (2008),
Karafyllis and Jiang (2011), Liu et al. (2014), and Jiang and Liu (2018)
and numerous references therein.

3.2 Robust Optimal Control for Large-Scale Systems

In this subsection, we review some recent developments in robust optimal
control theory for a continuous-time large-scale network composed of

1A class K function is a continuous mapping from R+ to R+ that is non-decreasing
and vanishes at the origin. A class K∞ function is an unbounded K function. A class
KL function is a mapping from R+×R+ to R+ that is of class K in the first argument
and converges to 0 in the second argument.
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N systems:

ζ̇i = gi(ζi, xi), (3.4)
ẋi = Aixi +Bi(zi + ∆1i(ζi, y)), (3.5)
żi = Fizi +Gi(ui + ∆2i(ζi, zi, y)), (3.6)
yi = xi, i = 1, 2, . . . , N, (3.7)

where g, ∆1i, and ∆2i are locally Lipschitz functions vanishing at the
origin; (Ai, Bi) is stabilizable and Gi has full rank. y = (y1, y2, . . . , yN )
denotes the outputs of all subsystems in the network. For each ith
subsystem, ∆1i and ∆2i represent the combined disturbances from its
neighbors and the dynamic uncertainty (3.4).

When the network is decoupled (i.e., ∆1i = ∆2i ≡ 0), one way to
stabilize system (3.5) and (3.6) is to use the backstepping technique
(Krstić et al., 1995) by breaking the controller design procedure into
two steps. In the first step, we aim at designing a virtual controller
z∗i under which system (3.5) is ISS from the mismatch zi − z∗i to xi.
In the second step, we design the real controller u that forces zi − z∗i
go to zero. As a consequence, system (3.5) and (3.6) is transformed to
a cascade connection of an ISS system and a globally asymptotically
stable (GAS)-system, and thus is GAS at the origin.

Obviously, the choice of z∗i and u is not unique. To retain good
transient performance of the controlled system, each network node
solves a cascaded optimal control problem composed with the following
two costs while conducting the backstepping design:

J1,i(xi; zi) =
∫ ∞

0
(xTi Q1,ixi + zTi R1,izi)dt, (3.8)

J2,i(zi, z∗i ;ui) =
∫ ∞

0
((zi − z∗i )TQ2,i(zi − z∗i ) + uTi R2,iui)dt, (3.9)

where Q1,i, Q2,i, R1,i, and R2,i are symmetric positive definite matrices
with appropriate dimensions. In the absence of ∆1i, system (3.5) and
cost (3.8) form a standard LQR control problem, and the optimal
virtual controller z∗i can be derived as a linear function in xi. Once z∗i is
obtained, (3.9) becomes a quadratic cost as (3.8). Denoting z̃i = zi− z∗i ,
we can derive from (3.6) that

˙̃zi = −∂xz∗i (xi)(Aixi +Bi(zi + ∆1i)) + Fizi +Gi(ui + ∆2i). (3.10)
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Without considering the interconnections, system (3.10) and cost (3.9)
again form an LQR control problem, from which we can solve the
optimal controller u∗i .

As we have argued before, finding an optimal controller is not enough
in large-scale networks. Even if each node in the network is made
stable, the interconnection between these nodes may cause instability
in the network. To handle this problem, we will adopt robust optimal
controllers. A controller ui is called robust optimal if it is optimal for
the costs (3.8) and (3.9) and the nominal system (3.5) and (3.6) in the
absence of ∆1i and ∆2i, and is robustly stabilizing in the presence of
these disturbances.

The main challenge facing robust optimal controller design is to
guarantee the stability of the large-scale network. The small-gain theory
provides a powerful tool to solve this problem simply by analyzing the
composition of the gains along each simple cycle in the network. One
way to fulfill the small-gain condition is to assign an appropriate gain,
if possible, by means of feedback, for the subsystem (3.5)–(3.6). This
is widely known as the gain assignment technique (Jiang and Mareels,
1997; Jiang et al., 1994; Praly and Wang, 1996). As we have shown in
Jiang and Jiang (2012b, 2013a) and Bian et al. (2015), the ISS gain of
system (3.5) and (3.6) under the optimal controller depends on the cost
matrices in (3.8) and (3.9). Hence, if the cost functionals are properly
chosen, the small-gain condition can be fulfilled, therefore guaranteeing
the stability of the large-scale network.

Finally, note that system (3.4)–(3.7) can be extended to higher-order
systems where a repeated use of backstepping is required.

3.3 Decentralized Learning-Based Controllers for
Large-Scale Systems

Recently, some preliminary results have been proposed on the design of
robust optimal control policies via robust adaptive dynamic program-
ming (for short RADP) algorithms (Bian and Jiang, 2018; Bian et al.,
2015; Jiang and Jiang 2012a, 2013a,b, 2014b, 2017). The idea of RADP
was originally introduced by Jiang and Jiang (2011). Different from the
traditional ADP methods, RADP addresses the presence of dynamic
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uncertainty in linear and nonlinear systems. By employing the RADP
algorithm, neither the system dynamics nor the system order need to be
known exactly. Robust optimal control laws are learned directly from
real-time input/output data along the trajectories of the control system.

3.3.1 PI-Based RADP for Continuous-Time Large-Scale Systems

The PI-based off-policy RADP algorithm is given in Algorithm 3.1. Since
the robust optimal control problem discussed in Section 3.2 involves two
cascaded costs, it is natural to use a two-phase design in Algorithm 3.1.

The first phase aims at solving z∗i with respect to system (3.5) and
cost (3.8). Following similar analysis in Section 2.1.2, we introduce the
value function V1,i,k and the Hamiltonian H1,i,k for each subsystem i:

V1,i,k(x) = xTP1,i,kx,

H1,i,k(x, u) =
[
x

u

]T [
ATi P1,i,k + P1,i,kAi +Q1,i P1,i,kBi

BT
i P1,i,k R1,i

] [
x

u

]
.

However, different from (2.11), the disturbance term ∆1,i appears in
(3.12). In addition, the running cost in (3.12) is defined as

r1,i = xTi Q1,ixi + (zi + ∆1,i)TR1,i(zi + ∆1,i)

since the disturbed input zi+∆1,i is fed to the environment. Once H1,i,k
is obtained, the virtual controller z∗i,k can be directly updated.

The second phase of the robust optimal control design aims at
solving u∗i with respect to the error system (3.10) and cost (3.9), with
z∗i approximated by ẑ∗i . Different from the first phase, the RADP design
is more complicated in this phase, as the online data from both (3.5)
and (3.6) are involved in the learning process. As a result, the value
function V2,i,k and the Hamiltonian H2,i,k in the second learning phase
are defined as

V2,i,k(z) = zTP2,i,kz,

H2,i,k(z, u, x,∆) =


z

u

x

∆


T 

Mi,k,11 Mi,k,12 Mi,k,13 Mi,k,14
MT
i,k,12 Mi,k,22 0 0

MT
i,k,13 0 0 0

MT
i,k,14 0 0 0



z

u

x

∆

 ,
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Algorithm 3.1 PI-based RADP for continuous-time large-scale systems
Initialize: Choose an admissible linear virtual controller z∗i,0. Let
k ← 0.
For each agent i, collect data (xi, zi + ∆1,i, zi, ui + ∆2,i), and running
costs r1,i and r2,i from environment.
repeat
Given z∗i,k, solve (V1,i,k, H1,i,k) from

0 =
∫ tj+1

tj

H1,i,k(xi, z∗i,k)dt, (3.11)

V1,i,k(xi)|
tj+1
tj =

∫ tj+1

tj

(H1,i,k(xi, zi,∆)− r1,i)dt, (3.12)

where zi,∆ = zi + ∆1,i and j = 0, . . . , J .
Update z∗i,k+1 ← arg infzH1,i,k (xi, z). Let k ← k + 1.

until |Vi,k(x)− Vi,k+1(x)| < ε|x|2.
Choose an admissible linear controller ui,0. Let ẑ∗i ← z∗i,k+1, k ← 0.
repeat
Given ui,k, solve (V2,i,k, H2,i,k) from

0 =
∫ tj+1

tj

H2,i,k (z̃i, ui,k, 0, 0) dt, (3.13)

V2,i,k(z̃i)|
tj+1
tj =

∫ tj+1

tj

(
H2,i,k

(
z̃i, ui,∆, xi, zi,∆

)
− r2,i

)
dt, (3.14)

where z̃i = zi − ẑ∗i , ui,∆ = ui + ∆2,i, and j = 0, . . . , J .
Update ui,k+1 ← arg infuH2,i,k (z̃i, u, 0, 0). Let k ← k + 1.

until |V2,i,k(z)− V2,i,k+1(z)| < ε|z|2.

where

Mi,k,11 = F Ti P2,i,k + P2,i,kFi +Q2,i, Mi,k,12 = P2,i,kGi,

Mi,k,13 = P2,i,k(KT
i Ai − FiKi), Mi,k,14 = P2,i,kK

T
i Bi, Mi,k,22 = R2,i.

Mi,k,13 and Mi,k,14 in the above definition are cross product terms due
to the interconnection between (3.5) and (3.6). However, they do not
appear in (3.13) which is derived from the policy evaluation. Similar to
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the first phase, the perturbed running cost in (3.14) is

r2,i = (zi − ẑ∗i )TQ2,i(zi − ẑ∗i ) + (ui + ∆2,i)TR2,i(ui + ∆2,i).

Still, the second learning phase follows the same structure as in the first
phase.

Again, if the PE condition is satisfied for a sufficiently large J ,
then the convergence of Algorithm 3.1 is guaranteed (Bian et al., 2015;
Jiang and Jiang, 2012b, 2013a). In fact, the disturbances ∆1,i and ∆2,i
automatically serve as the exploration noise during the RADP learning.
As a result, it is much easier to satisfy the PE condition, which leads
to the convergence to the robust optimal solution.

3.3.2 VI-Based RADP for Continuous-Time Large-Scale Systems

The VI-based RADP scheme can also be developed in the two phase
manner as in the above subsection. Alternatively, given that the VI
algorithm is inherently robust in the sense of ISS, we can simultaneously
update the two learning processes with respect to xi and zi subsystems
together (Bian and Jiang, 2019b), since a cascaded ISS system is still
ISS and hence retains the convergence property. The VI-based off-policy
RADP algorithm is summarized in Algorithm 3.2, where the step sizes
h1,i,k, h2,i,k, and the projection terms Z1,k and Z2,k follow the same
definitions in Algorithm 2.4.

The two Hamiltonians H1,i,k and H2,i,k in Algorithm 3.2 share the
same structure of the Hamiltonians in Section 3.3.1. In addition, the
online data zi,∆, ui,∆, the disturbed running costs r1,i, r2,i, and z∗i,k all
have the same definitions as the ones in Algorithm 3.1, except that ẑ∗i
in r2,i is now replaced by z∗i,k. It is worth mentioning that Algorithm 3.2
inherits all the advantages of VI-based ADP, including the less restrictive
initial condition.

From Algorithms 3.1 and 3.2, we observe that the “strict-feedback”
structure in the network plays a crucial role in the RADP design. This
special structure has been used explicitly for recursive learning and
also been exploited to assign arbitrarily the ISS gain of each subsystem.
The latter ensures the cyclic-small-gain conditions for the robustness of
stability of the closed-loop large-scale system.
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Algorithm 3.2 VI-based RADP for continuous-time large-scale systems
Initialize: Choose V1,i,0(x) = xTP1,i,0x and V2,i,0(z) = zTP2,i,0z,
where P1,i,0 = P T1,i,0 > 0 and P2,i,0 = P T2,i,0 > 0 for all i. k ← 0.
For each agent i, collect data (xi, zi + ∆1,i, zi, ui + ∆2,i), and running
costs r1,i and r2,i from environment.
repeat
Given V1,i,k and V2,i,k, solve H1,i,k and H2,i,k from

V1,i,k(xi)|
tj+1
tj =

∫ tj+1

tj

(H1,i,k(xi, zi,∆)− r1,i)dt,

V2,i,k(z̃i,k)|
tj+1
tj =

∫ tj+1

tj

(H2,i,k(z̃i,k, ui,∆, xi, zi,∆)− r2,i)dt,

where z̃i,k = zi − z∗i,k, j = 0, . . . , J .
Update

V1,i,k+1(x)← V1,i,k(x) + h1,i,k inf
z
H1,i,k(x, z) + xTZ1,kx, ∀x,

V2,i,k+1(z)← V2,i,k(z) + h2,i,k inf
u
H2,i,k(z, u, 0, 0) + zTZ2,kz, ∀z.

Let k ← k + 1.
until |V1,i,k(x) − V1,i,k+1(x)| < ε|x|2 and |V2,i,k(z) − V2,i,k+1(z)| <
ε|z|2.

3.3.3 Extensions to Stochastic and Nonlinear Systems

When the stochastic noise is accessible, it is not difficult to combine the
above RADP algorithms with the stochastic ADP algorithms developed
in Section 2.2. Stochastic noises can still be properly handled during
the backstepping process to guarantee the robust stability of the control
system (Bian and Jiang, 2017; Bian et al., 2016). Resulting stochastic
RADP algorithms still follow the structure of Algorithms 3.1 and 3.2,
with additional terms due to the stochastic noises. Interested readers
can refer to Jiang and Jiang (2015a), Bian et al. (2016), and Bian
and Jiang (2016a, 2018) for more details on various types of RADP
algorithms in stochastic environment.
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Extending RADP to nonlinear optimal control problems is more
difficult. Since existing ADP and RL methods for continuous-time
nonlinear systems are mainly based on NN approximation, the system
stability can only be guaranteed over a predefined compact set, i.e.,
only semi-global stability is achieved. Analyzing the robustness of the
nonlinear system and assigning the ISS gain in this case are much more
difficult. As a result, only a few preliminary results have been developed
to study this problem (Jiang and Jiang, 2014b).

Robustness of stability is an important research topic that deserves
more attention in the interdisciplinary field of learning-based control.
Besides the papers discussed above, the interested reader should consult
Wang et al. (2017), Jiang and Jiang (2017), Wang and Mu (2019), Gao
et al. (2019b), and the references therein.
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The output regulation problem concerns designing a feedback controller
to achieve nonvanishing disturbance rejection and asymptotic tracking
for dynamical control systems, in which both the disturbance and
reference signals are generated by a class of autonomous systems, named
exosystems; see Francis (1977), Isidori and Byrnes (1990), Marino and
Tomei (2003), Huang (2004), Su and Huang (2012), Wang et al. (2010),
and Ding (2013). There are two major approaches to addressing a
typical output regulation problem: feedforward-feedback and internal
model principle. By means of the internal model principle (Francis and
Wonham, 1976; Huang and Chen, 2004), one can convert an output
regulation problem into a stabilization problem of an augmented system
composed of the plant and a dynamic compensator named as internal
model.

Considering parametric uncertainty in the system model, some
adaptive control algorithms were proposed for dealing with output reg-
ulation problems (Ding, 2006; Liu et al., 2009; Serrani et al., 2001).
However, a general characteristic of these algorithms is that the de-
signed controllers are not optimal. The optimal output regulation prob-
lem was first studied for linear systems with matched disturbances in

46
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Johnson (1971). In Krener (1992), Krener advanced the solutions to
nonlinear model-based optimal output regulation problems, by means of
a feedforward-feedback controller. The feedforward control input relies
on the solution of certain nonlinear regulator equations and the optimal
feedback control input relies on the solution of certain Hamilton-Jacobi-
Bellman (HJB) equation. This is a model-based approach as the optimal
controller requires the accurate knowledge of the controlled plant and
relies on the analytical solution of the HJB equation which is by no
means easy, if not impossible, for nonlinear systems. For these reasons,
solving adaptive optimal output regulation problems for uncertain lin-
ear and nonlinear systems is an extremely challenging, yet important,
control task.

Over the last decade, a trend in adaptive optimal control is to invoke
RL (Sutton and Barto, 2018) and ADP (Jiang and Jiang, 2017; Lewis
and Vrabie, 2009) for feedback control of dynamical systems. While
data-driven stabilization has been a focus in the early developments
of ADP for dynamical systems, the extension to tracking control via
ADP has quickly attracted attention of several researchers. For instance,
Kamalapurkar et al. (2015) proposed a model-based approximate op-
timal tracking control approach to guarantee the ultimately bounded
tracking of nonlinear systems. Ni et al. (2013) developed an adaptive
tracker by ADP for nonlinear affine systems with the input function
being an identity function. Adaptive optimal trackers have also been
developed by introducing discounting factors to the infinite-horizon
cost functions; see Modares and Lewis (2014) and Luo et al. (2016).
However, a straightforward application of these ADP approaches to
adaptive optimal output regulation problems is not promising, due to
either assuming the a prior knowledge of system model, or the difficulty
in ensuring the asymptotic tracking of reference signals and the perfect
rejection of nonvanishing disturbances.

This section presents a novel RL and ADP framework for the adap-
tive optimal output regulation of linear, nonlinear and multi-agent
systems, which integrates the ADP and output regulation theory; see
Figure 4.1. Based on the traditional output regulation problem setting,
an exosystem is introduced that generates both references and distur-
bances for the system/environment. The agent needs to interact with
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Figure 4.1: Configuration of an ADP-based control system for adaptive optimal
output regulation.

both system and exosystem to seek the optimal control policy and the
corresponding value function, and simultaneously achieve output regula-
tion. Different from existing ADP for stabilization and tracking control
problems, the value function is evaluated in the critic by not only reward,
input and state data, but also the exostate. Based on the evaluated value
function, the actor is able to update the control policy that is a function
of both state and exostate. Notably, the adaptive optimal controller
designed in this framework not only ensures asymptotic tracking of the
closed-loop system, but also effectively asymptotically rejects nonvan-
ishing disturbances. Moreover, the whole controller design process does
not rely on the knowledge or identification of the system dynamics.

4.1 Uncertain Linear Systems

In this section, we aim to solve the problem of adaptive optimal track-
ing with disturbance rejection for continuous-time linear systems. We
approach this task by taking advantage of techniques from two sepa-
rately studied areas: ADP and output regulation theory. A data-driven
learning-based algorithm is proposed on the basis of input and partial-
state data.

4.1.1 Problem Formulation

Consider a class of continuous-time linear systems described by

ẋ = Ax+Bu+Dv, (4.1)
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v̇ = Ev, (4.2)
e = Cx+ Ju+ Fv, (4.3)

where x ∈ Rn is the state vector, u ∈ Rm the control input, and v ∈ Rq

the state of the exosystem (4.2). A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n,
D ∈ Rn×q, E ∈ Rq×q, F ∈ Rr×q, and J ∈ Rr×m are constant matrices.
d = Dv represents the exogenous disturbance, y = Cx+ Ju the output
of the plant, yd = −Fv the reference signal and e ∈ Rr the tracking
error. It is assumed that the measurement of v is unavailable to the
designer.

Several assumptions are made on the system (4.1)–(4.3).

Assumption 4.1. The minimal polynomial of E is known and takes the
form

αm(s) =
M∏
i=1

(s− λi)ai
N∏
j=1

(s2 − 2µjs+ µ2
j + ω2

j )bj , (4.4)

with degree qm ≤ q, where ai and bj are positive integers and λi, µj , ωj ∈
R for i = 1, 2, . . . ,M, j = 1, 2, . . . , N .

Assumption 4.2. (A,B) is stabilizable.

Assumption 4.3. rank
[
A− λI B
C J

]
= n+ r, ∀λ ∈ σ(E).

Under Assumption 4.1, we can always find a vector w ∈ Rqm and a
matrix Ê ∈ Rqm×qm such that

ẇ(t) = Êw(t), (4.5)
v(t) = Gw(t), ∀t ≥ 0, (4.6)

with G ∈ Rq×qm an unknown constant matrix.
Therefore, Equations (4.1) and (4.3) are equivalent to

ẋ = Ax+Bu+ D̂w, (4.7)
e = Cx+ Ju+ F̂w, (4.8)

where D̂ = DG and F̂ = FG.
Two output regulation problems are formulated as follows.
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Definition 4.1. Linear Output Regulation Problem (LORP): Design a
controller

u = −Kx+ Lw (4.9)

such that (1) the closed-loop system is exponentially stable with σ(A−
BK) ⊂ C−. (2) the tracking error e(t) asymptotically converges to 0,
where K ∈ Rm×n is a feedback control gain matrix and L ∈ Rm×qm is
a feedforward control gain matrix.

Definition 4.2. Linear Optimal Output Regulation Problem (LOORP):
Design a controller (4.9) to solve the LORP. Moreover, (4.9) is optimal
with respect to some predefined cost.

To begin with, let us review a sufficient condition on the solvability
of LORP.

Theorem 4.1 (Francis, 1977). Under Assumptions 4.1 and 4.2, choose
a K such that σ(A − BK) ⊂ C−. The LORP is solvable by the con-
troller (4.9) if there exist X ∈ Rn×qm , U ∈ Rm×qm solving the following
regulator equations:

XÊ = AX +BU + D̂, (4.10)
0 = CX + JU + F̂ , (4.11)

with

L = U +KX. (4.12)

Under the controller (4.9) that solves the LORP, for any initial state
x(0) and w(0), one can satisfy lim

t→∞
u(t) − Uw(t) = 0 and lim

t→∞
x(t) −

Xw(t) = 0.

It should be mentioned that the LOORP includes both asymptotic
tracking and transient performance of the linear control system in
question. To this end, we solve the static optimization Problem 1 to
find the optimal solution (X∗, U∗) to regulator equations (4.10)–(4.11)
and the dynamic optimization Problem 2 to find the optimal feedback
control policy; see Krener (1992).
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Problem 4.1.

min
(X,U)

Tr(XT Q̄X + UT R̄U) (4.13)

subject to (4.10)–(4.11),

where Q̄ = Q̄T > 0 and R̄ = R̄T > 0.

Letting x̄ = x −X∗w and ū = u − U∗w, it is direct to obtain the
following error system

˙̄x = Ax̄+Bū, (4.14)
e = Cx̄+ Jū. (4.15)

The optimal feedback controller ū = −K∗x̄ is found by solving the
following constrained minimization problem.

Problem 4.2.

min
ū

∫ ∞
0

(x̄TQx̄+ ūTRū)dt

subject to (4.14)

where Q = QT ≥ 0, R = RT > 0, with (A,
√
Q) observable.

Therefore, when the system parameters are known, the LOORP is
solved if we design a controller u = −K∗x+ L∗w where:

(1) K∗ is computed by solving Problem 4.2.

(2) L∗ = U∗+K∗X∗, where (X∗, U∗) is the minimizer of Problem 4.1.

Problem 4.2 is a standard LQR problem. By linear optimal control
theory, the optimal feedback gain K∗ is

K∗ = R−1BTP ∗, (4.16)

where P ∗ = P ∗T > 0 is the unique solution to the following ARE

ATP + PA+Q− PBR−1BTP = 0. (4.17)
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4.1.2 Optimal Output Regulator Design

We first present a solution to regulator equations with known parameters.
Then, we develop an adaptive learning strategy to solve X∗, U∗ and
to find data-based approximation of optimal values P ∗ and K∗ under
Assumptions 4.1–4.3 when the system matrices A,B, D̂ are unknown.

Define two maps S: Rn×qm → Rn×qm and S̄(X,U): Rn×qm

× Rm×qm → Rn×qm by

S(X) = XÊ −AX,
S̄(X,U) = XE −AX −BU, X ∈ Rn×qm , U ∈ Rm×qm . (4.18)

Pick two constant matrices X1 ∈ Rn×qm and U1 ∈ Rm×qm such that
CX1 + JU1 + F̂ = 0. Then we select Xi ∈ Rn×qm and Ui ∈ Rm×qm for
i = 2, . . . , h+ 1 such that all the vectors vec

([
Xi
Ui

])
for i = 2, . . . , h+ 1

form a basis for ker(Iqm ⊗ [C J ]), where h = (n + m − r)qm is the
dimension of the null space of Iqm ⊗ [C J ].

A general solution to (4.11) can be described by a sequence of αi ∈ R,
with i = 2, . . . , h+ 1, as

(X,U) =(X1, U1) +
h+1∑
i=2

αi(Xi, Ui). (4.19)

Then, (4.10) implies

S̄(X,U) = S̄(X1, U1) +
h+1∑
i=2

αiS̄(Xi, Ui) = D̂. (4.20)

Equations (4.19)–(4.20) can be rewritten as

Aχ = b, (4.21)

where

A =

 vec
([
X2
U2

])
. . . vec

([
Xh+1
Uh+1

])
−I

vec(S̄(X2, U2)) . . . vec(S̄(Xh+1, Uh+1)) 0

 ,
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χT =

α2, . . . , αh+1,

(
vec

([
X

U

]))T ,

b =

 vec
([
X1
U1

])

−vec(S̄(X1, U1)) + D̂

 .
The interested reader can consult Odekunle et al. (2020) for the
details.

4.1.3 Data-Driven Adaptive Design of Optimal Output Regulators

Defining x̄i = x −Xiw for i = 0, 1, 2, . . . , h + 1 with X0 = 0n×qm , we
have

˙̄xi = Ax+Bu+ (D̂ −XiÊ)w

= Aj x̄i +B(Kj x̄i + u) + (D̂ − S(Xi))w, (4.22)

where Aj = A−BKj . Then, by policy evaluation, we have

x̄i(t+ δt)TPj x̄i(t+ δt)− x̄i(t)TPj x̄i(t)

=
∫ t+δt

t
[x̄Ti (ATj Pj + PjAj)x̄i

+ 2(u+Kj x̄i)TBTPj x̄i + 2wT (D̂ − S(Xi))TPj x̄i]dτ

= −
∫ t+δt

t
x̄Ti (Q+KT

j RKj)x̄idτ + 2
∫ t+δt

t
(u+Kj x̄i)TRKj+1x̄idτ

+ 2
∫ t+δt

t
wT (D̂ − S(Xi))TPj x̄idτ. (4.23)

For positive integer s, define

δx̄ix̄i = [vecv(x̄i(t1))− vecv(x̄i(t0)), vecv(x̄i(t2))

− vecv(x̄i(t1)), . . . , vecv(x̄i(ts))− vecv(x̄i(ts−1))]T ,
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Γx̄ix̄i =
[∫ t1

t0
x̄i ⊗ x̄idτ,

∫ t2

t1
x̄i ⊗ x̄idτ, . . . ,

∫ ts

ts−1
x̄i ⊗ x̄idτ

]T
,

Γx̄iu =
[∫ t1

t0
x̄i ⊗ udτ,

∫ t2

t1
x̄i ⊗ udτ, . . . ,

∫ ts

ts−1
x̄i ⊗ udτ

]T
,

Γx̄iw =
[∫ t1

t0
x̄i ⊗ wdτ,

∫ t2

t1
x̄i ⊗ wdτ, . . . ,

∫ ts

ts−1
x̄i ⊗ wdτ

]T
,

where t0 < t1 < · · · < ts are positive time instants.
(4.23) implies the following linear equation

Ψij

 vecs(Pj)
vec(Kj+1)

vec((D̂ − S(Xi))TPj)

 = Φij , (4.24)

where

Ψij = [δx̄ix̄i ,−2Γx̄ix̄i(In ⊗KT
j R)− 2Γx̄iu(In ⊗R),−2Γx̄iw],

Φij = −Γx̄ix̄ivec(Q+KT
j RKj).

The uniqueness of solution to (4.24) is guaranteed under some rank
condition as shown in Lemma 4.2, where the proof is shown in Gao and
Jiang (2016a).

Lemma 4.2. For i = 0, 1, . . . , h+ 1, if there exists a s∗ ∈ Z+ such that
for all s > s∗, for any sequence t0 < t1 < · · · < ts,

rank([Γx̄ix̄i ,Γx̄iu,Γx̄iw]) = n(n+ 1)
2 + (m+ qm)n, (4.25)

then Ψij has full column rank for all j ∈ Z+.

Equation (4.24) can be uniquely solved when matrix Ψij is of full
column rank, i.e., vecs(Pj)

vec(Kj+1)
vec((D̂ − S(Xi))TPj)

 = (ΨT
ijΨij)−1ΨT

ijΦij . (4.26)

We can compute D̂ for i = 0 and S(Xi) for i = 1, 2, . . . , h+ 1. From
Kleinman (1968), we obtain that B = P−1

j KT
j+1R, and S̄(Xi, Ui). Thus,

both A and b in (4.21) are computable.
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Algorithm 4.1 ADP Learning Algorithm for Solving LOORP
Initialize: Compute matrices X0, X1, . . . , Xh+1. Utilize u = −K0x+
ξ on [t0, ts] with (bounded) exploration noise ξ and σ(A−BK0) ⊂ C−.
Select a threshold ε > 0. Let i← 0, j ← 0
repeat
Solve Pj ,Kj+1 from (4.26)
j ← j + 1

until |Pj − Pj−1| ≤ ε
j∗ ← j, i← i+ 1
repeat
Solve S(Xi) from (4.26)

until i = h+ 1
Find (X∗, U∗) by solving Problem 4.1

The ADP-based Algorithm 4.1 for dealing with LOORP is presented
as follows. The convergence of this algorithm and the stability of the
closed-loop systems are shown in Theorems 4.3 and 4.4.

Theorem 4.3. If (4.25) holds, given a stabilizing K0 ∈ Rm×n, the
sequences {Pj}∞j=0, {Kj}∞j=1 obtained from solving (4.26) converge to
P ∗ and K∗, respectively.

Theorem 4.4. Considering the continuous-time linear system (4.1)–
(4.3), let u = −Kj∗x+Lj∗w be the approximated optimal control policy
obtained from Algorithm 4.1. Then:

(1) The control policy exponentially stabilizes the closed-loop system.

(2) The tracking error e(t) converges to 0 as t goes to infinity.

4.2 Nonlinear Strict-Feedback Systems

In this section, we present a data-driven control approach to address the
problem of adaptive optimal output regulation for a class of nonlinear
strict-feedback systems. ADP and nonlinear output regulation theories
are integrated to compute an adaptive near-optimal tracker without
any a priori knowledge of the system dynamics.
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4.2.1 Problem Formulation

Consider the class of strict-feedback nonlinear systems described by

ξ̇1 = f̄1(ξ1, w) + ξ2,

ξ̇2 = f̄2(ξ1, ξ2, w) + ξ3,
...

ξ̇n = f̄n(ξ1, ξ2, . . . , ξn, w) + ν,

e = ξ1 − qd(w)

(4.27)

with an exosystem described by

ẇ = Ew (4.28)

where ξ = [ξ1, . . . , ξn]T ∈ Rn is the state, f̄1, . . . , f̄n and qd are suffi-
ciently smooth functions vanishing at the origin. ν := ξn+1 ∈ R is the
input. e ∈ R is the tracking error. w ∈W is the exostate with W ⊂ Rp

a compact and invariant set with respect to the exosystem (4.28). The
class of signals I(W) consists of solutions w(t) = w(t, w(0)) of the
exosystem starting at w(0) ∈W. As in conventional output regulation
problems, it is assumed that all the eigenvalues of matrix E ∈ Rp×p are
simple with zero real part.

By nonlinear output regulation theory, the corresponding nonlinear
output regulator equation is(

∂ξ1(w)
∂w

)
Ew = f̄1(ξ1(w), w) + ξ2(w),(

∂ξ2(w)
∂w

)
Ew = f̄2(ξ1(w), ξ2(w), w) + ξ3(w),

... (4.29)(
∂ξn(w)
∂w

)
Ew = f̄n(ξ1(w), . . . , ξn(w), w) + ν(w),

ξ1(w) = qd(w)

where, for i = 1, 2, . . . , n, the solutions ξi(w) and ν(w) are sufficiently
smooth functions vanishing at the origin with ∂ξi(w)/∂w ∈ R1×p.
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Define the state and input transformations by xi = ξi − ξi(w), i =
1, 2, . . . , n, and u = ν − ν(w). The error system is

ẋ1 = f1(x1, w) + x2,

ẋ2 = f2(x1, x2, w) + x3,
...

ẋn = fn(x1, x2, . . . , xn, w) + u

(4.30)

where, for i = 1, 2, . . . , n,

fi(x1, . . . , xi, w) = f̄i(ξ1, . . . , ξi, w)− f̄i(ξ1, . . . , ξi, w).

Note that (4.30) can be rewritten in a compact form

ẋ = f(x,w) + g(x,w)u (4.31)

where x = [x1, . . . , xn]T . f and g are two locally Lipschitz functions
satisfying f(0, w) = 0 for any w ∈W.

Choose a cost criterion associated with (4.28) and (4.31) by

J(x0, w0, u) =
∫ ∞

0
(Q(x) + ru2)dt (4.32)

where Q: Rn → R is positive definite and proper, r is a positive constant,
and x0 = x(0) and w0 = w(0) are initial conditions.

Letting ξ(w) = [ξ1(w), . . . , ξn(w)]T , the nonlinear model-based
optimal tracking control problem is formulated as follows.

Problem 4.3. Given the nonlinear plant (4.27) with exosystem (4.28),
find a controller

ν∗(ξ, w) = u∗(x,w) + ν(w)
:= u∗(ξ − ξ(w), w) + ν(w) (4.33)

such that:

(1) For any w0 ∈W, the trajectory of (4.27)–(4.28) with (4.33) start-
ing from any initial state exists and is bounded for all t ≥ 0.
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(2) The tracking error satisfies lim
t→∞

e(t) = 0.

(3) The performance index (4.32) achieves its minimum.

Let P̄ denote the set of all continuously differentiable functions from
Rn ×W to R. Each function V ∈ P̄ has the property that, for any
fixed w̄ ∈W, V (x, w̄) is a positive definite and proper function on Rn.
Similar to Jiang and Jiang (2015b), we make the following assumption.

Assumption 4.4. There exists a V ∗ ∈ P̄ solving the following HJB
equation(

∂V

∂w

)
Ew +

(
∂V

∂x

)
f +Q− 1

4r

[(
∂V

∂x

)
g

]2
= 0. (4.34)

For any continuously differentiable function V and any u ∈ R, define

L(V, u) = −
(
∂V

∂w

)
Ew −

(
∂V

∂x

)
(f + gu)−Q− ru2.

The stability of the system (4.31) is discussed in the following
theorem.

Theorem 4.5. For any V o(x,w) ∈ P̄ and any uo(x,w) such that
L(V o, uo) ≥ 0,∀(x,w) ∈ Rn × W, the equilibrium point x = 0 of
system (4.31) with uo is GAS for any w ∈ I(W).

Proof. See Gao and Jiang (2018).
Select a control policy based on the gradient of V ∗:

u∗ = − 1
2rg

T
(
∂V ∗

∂x

)T
. (4.35)

From (4.34), we see that the pair (V ∗, u∗) satisfies that L(V ∗, u∗) = 0.
Hence, the system (4.31) with u∗ is GAS at the origin. For any other u
that achieves lim

t→∞
x(t) = 0, we have

J(x0, w0, u) = V ∗(x0, w0) +
∫ ∞

0
r(u− u∗)2dt.

Thus, u∗ is the optimal control policy and

V ∗(x0, w0) = min
u
J(x0, w0, u) = J(x0, w0, u

∗), ∀(x0, w0) ∈ Rn ×W.

(4.36)
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4.2.2 A Novel Policy Iteration (PI) Approach for Solving
HJB Equations

It is checkable from the previous section that the key strategy for
addressing the Problem 4.3 is to solve both the regulator equation (4.29)
and the HJB equation (4.34). Note that (4.34) is a PDE and the solution
is positive semidefinite in (x,w), solving it analytically is by no means
easy. We will propose a novel PI approach to solve (4.34) with assured
convergence. Since the system (4.28) with (4.31) is not stabilizable, the
concept of admissible control policy is relaxed as follows.
Definition 4.3. A control policy u: Rn×W→ R is said to be admissible
with respect to the cost (4.32) if the following properties hold:
(1) u is continuous on Rn ×W.

(2) System (4.31) with u is GAS at the origin for any w ∈ I(W).

(3) J(x0, w0, u) <∞ for any (x0, w0) ∈ Rn ×W.
Then, we present a model-based PI method starting from an admis-

sible u1:
(1) Policy evaluation: For any integer i > 0, solve Vi(x,w) with

Vi(0, w) = 0 from

0 =
(
∂Vi
∂w

)
Ew +

(
∂Vi
∂x

)
(f + gui) +Q+ ru2

i . (4.37)

(2) Policy improvement: Update the control policy by

ui+1(x,w) = − 1
2rg

T (x,w)
(
∂Vi
∂x

(x,w)
)T

. (4.38)

The following theorem discusses the convergence of Vi and ui gener-
ated by the PI method.
Theorem 4.6. Given an admissible control input u1, consider Vi and
ui+1 defined by (4.37)–(4.38). For any i = 1, 2, . . .
(1) V ∗(x,w) ≤ Vi+1(x,w) ≤ Vi(x,w),∀(x,w) ∈ Rn ×W.

(2) ui+1 is admissible.

(3) For each fixed (x,w) ∈ Rn ×W, {Vi(x,w)}∞i=1 and {ui(x,w)}∞i=1
converge monotonically to V ∗(x,w) and u∗(x,w), respectively.
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4.2.3 Data-Driven Nonlinear and Adaptive Optimal
Tracking Controller Design

A two-phase data-driven learning strategy is presented to solve the non-
linear optimal tracking control problem with unknown system dynamics
f̄1, . . . , f̄n. We approximate the solution to regulator equation (4.29) in
phase one, while the approximate optimal feedback controller is learned
by an online PI approach in phase two. The following assumption indi-
cates that the sets where the system is operating are known. Then, one
can employ the function approximation technique on these sets.

Assumption 4.5. Suppose an initial controller ν(t) := µ(t) is known for
system (4.27) such that the closed-loop trajectory (ξ(t), w(t)) remains
in a compact set A×W ⊂ Rn×W for any (ξ(0), w(0)) ∈ A0×W, where
A0 ⊂ A.

The data-driven approximate optimal tracking control problem is
described as follows.

Problem 4.4. Given the nonlinear plant (4.27) with exosystem (4.28),
design a controller such that, for any initial condition (ξ(0), w(0)) ∈
A0 ×W:

(1) The trajectory of the closed-loop system is bounded for all t ≥ 0.

(2) The tracking error is uniformly ultimately bounded (UUB) with
arbitrarily small ultimate bound.

(3) The designed controller is a suboptimal controller.

Phase-One learning: solving regulator equations
We will approximate the solution to the regulator equation step

by step. Let {φj(w)}∞j=1 be a sequence of linearly independent smooth
basis functions on W. By approximation theory, for i = 1, 2, . . . , N , the
solution ξi+1 to regulator equations (4.29) can be approximated by
ξ̂i+1(w) =

∑Nξi+1
j=1 d̂i+1,jφj(w), where Nξi+1 is a sufficiently large inte-

ger, and d̂i+1,j is a constant weight to be trained. For i = 1, 2, . . . , n, let
{ψi,j}∞j=1 be a sequence of linearly independent smooth basis functions
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on a compact set Di containing {0} ×W and {[ξ1 − ξ̂1(w), . . . , ξi −
ξ̂i(w), wT ]T |ξ ∈ A, w ∈ W} ⊂ Di with ξ1 = ξ̂1. For i = 2, . . . , N + 1,
letting x̂i = ξi − ξ̂i and x̂1 = x1, then by (4.27) and (4.29), we have

ẋi = fi(x1, . . . , xi, w) + ξi+1 − ξi+1

= fi(x̂1, . . . , x̂i, w) + ξi+1 − ξi+1 + efi (4.39)

where efi = fi(x1, . . . , xi, w)− fi(x̂1, . . . , x̂i, w).
(4.39) implies that

1
2 x̂

2
i

∣∣∣∣tk+1

tk

= exi,k +
∫ tk+1

tk

Nfi∑
j=1

ĉi,jψi,j(x̂1, . . . , x̂i, w)

−
Nξi+1∑
j=1

d̂i+1,jφj(w)

 x̂idτ +
∫ tk+1

tk

ξi+1x̂idτ (4.40)

where
∑Nfi
j=1 ĉi,jψi,j := f̂i with Nfi > 0 and ĉi,j constant weights. The

approximation error exi,k is

exi,k = 1
2(x̂2

i − x2
i )
∣∣∣∣tk+1

tk

+
∫ tk+1

tk

[(fi − ξi+1)xi + efixi]dτ

−
∫ tk+1

tk

(f̂i − ξ̂i+1)x̂i + ξi+1(xi − x̂i)dτ.

Let {tk}lk=0 be a strictly increasing sequence with l a sufficiently
large positive integer, then the weights ĉi,j and d̂i,j can be solved in terms
of least squares solutions (by minimizing

∑l
k=0 e

2
xi,k) if the following

assumption holds

Assumption 4.6. There exist l0 > 0 and δ > 0, such that for any l ≥ l0,
we have

1
l

l∑
k=0

θTi,kθi,k ≥ δINfi+Nξi+1
(4.41)

where

θi,k =
[∫ tk+1

tk

x̂iψi,1dτ, . . . ,

∫ tk+1

tk

x̂iψi,Nfidτ,

−
∫ tk+1

tk

x̂iφ1dτ, . . . ,−
∫ tk+1

tk

x̂iφNξi+1
dτ

]
.
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Now, we are ready to present an online and data-driven algorithm,
Algorithm 4.2, to approximate the solution to (4.29).

Algorithm 4.2 Online Algorithm Solving Regulator Equations
Initialize: Employ µ(t) and collect the input-state data. i← 1.
repeat
Solve ĉi,1, . . . , ĉi,Nfi and d̂i+1,1, . . . , d̂i+1,Nξi+1

from (4.40)
i← i+ 1

until i = n+ 1

Theorem 4.7. Under Assumption 4.6, for i = 2, . . . , n+1 and arbitrarily
small constant ε > 0, there exists a large enough integer N∗1 > 0 such
that ∣∣∣∣∣∣

Nξi∑
j=0

d̂i,jφj(w)− ξi(w)

∣∣∣∣∣∣ < ε (4.42)

for any w ∈W if

N1 := min{Nf1, . . . , Nfn, Nξ2 . . . , Nξn+1} > N∗1 .

Phase-Two learning: solving HJB equations
To begin with, we rewrite the system (4.27) as

ẋ = f(x,w) + g(x,w)(ν − ν(w)) (4.43)
= f(x,w) + g(x,w)ui(x,w) + g(x,w)vi (4.44)

where vi = ν − ν − ui.
For each iteration i ≥ 1, the derivative of Vi(x,w) along the solutions

to (4.44) satisfies

V̇i = ∂Vi
∂w

Ew + ∂Vi
∂x

[f(x,w) + gui(x,w) + gvi]

= −Q(x)− ru2
i (x,w)− 2rui+1(x,w)vi. (4.45)

Integrating both sides of the equation on an interval [tk, tk+1], it
follows that

Vi(x(tk+1), w(tk+1))− Vi(x(tk), w(tk)

=
∫ tk+1

tk

[−Q(x)− ru2
i (x,w)− 2rui+1(x,w)vi]dτ. (4.46)
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This implies that

Vi(x̂(tk+1), w(tk+1))− Vi(x̂(tk), w(tk)) = eV i

+
∫ tk+1

tk

[−Q(x̂)− ru2
i (x̂, w)− 2rui+1(x̂, w)v̄i]dτ (4.47)

where v̄i = ν − ν̂(w) − ui(x̂, w). From Theorem 4.7, x − x̂ → 0 as
N1 →∞, by continuity, so is the error term eV i.

By approximation theory, the unknown functions Vi(x̂, w) and
ui+1(x̂, w) can be approximated by

V̂i(x̂, w) =
N2∑
j=1

ŝi,jψ
V
n,j(x̂, w), (4.48)

ûi+1(x̂, w) =
N3∑
j=1

ẑi,jψ
u
n,j(x̂, w) (4.49)

where {ψVn,j}∞j=1 and {ψun,j}∞j=1 are two sequences of linearly independent
smooth basis functions on the compact set Dn. ŝi,j and ẑi,j are weights
with N2 and N3 two sufficiently large integers.

One can replace Vi and ui+1 in (4.47) by their approximations

N2∑
j=1

ŝi,j [ψVn,j(x̂(tk+1), w(tk+1))− ψVn,j(x̂(tk), w(tk))]

+
∫ tk+1

tk

2r
N3∑
j=1

ẑi,jψ
u
n,j(x̂, w)v̂idτ + Ei,k

= −
∫ tk+1

tk

[Q(x̂) + rû2
i (x̂, w)]dτ (4.50)

where û1(x̂, w) = u1(x̂, w), v̂i = ν − ν̂(w)− ûi(x̂, w), Ei,k is the approx-
imation error. Similar to the phase-one learning, the weights ŝi,j and
ẑi,j are obtained in terms of least squares.

The online ADP Algorithm 4.3 for solving the HJB equation is
provided as follows, while its convergence analysis is elucidated in the
following Theorem 4.8.
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Algorithm 4.3 Online ADP Algorithm
Initialize: Choose a sufficiently small threshold ε > 0. Employ µ(t)
and collect input-state data online. i← 1.
repeat
Solve ŝi,1, . . . , ŝi,N2 and ẑi,1, . . . , ẑi,N3 from (4.50)
i← i+ 1

until
∑N2
j=1 |ŝi,j − ŝi−1,j |2 ≤ ε

Theorem 4.8. Under Assumption 4.6, for any arbitrary ε1 > 0, there
exist positive integers i∗, N∗1 , N∗2 and N∗3 such that∣∣∣∣∣∣

N2∑
j=1

ŝi∗,jψ
V
n,j(x̂, w)− V ∗(x,w)

∣∣∣∣∣∣ ≤ ε1,∣∣∣∣∣∣
N3∑
j=1

ẑi∗,jψ
u
n,j(x̂, w)− u∗(x,w)

∣∣∣∣∣∣ ≤ ε1 (4.51)

for any (x,w) ∈ Dn, if N1 > N∗1 , N2 > N∗2 and N3 > N∗3 .

The following lemma provides a sufficient condition on the uniform
boundedness and ultimate boundedness of the solution to (4.43).

Lemma 4.9. If there exists a V ∈ P̄ such that V and its derivative
along the trajectories of (4.43) with some input ν satisfies

α4(|x|) ≤ V (x,w) ≤ α5(|x|),
V̇ (x,w) ≤ −Q(x) + d, ∀(x,w) ∈ D,

where d > 0 is a constant with α4 and α5 two functions of class K.
Let γ > 0 such that Bγ(0) ×W ⊂ D and a function α6 of class K
such that Q(x) > α6(|x|). Suppose d < α6 ◦ α−1

5 ◦ α4(γ). Then, for any
|x0| ≤ α−1

5 ◦α4(γ) and w0 ∈W, (x(t), w(t)) stays in Bγ(0)×W for any
t ≥ 0. Moreover, x(t) is UUB with the ultimate bound α−1

4 ◦α5 ◦α−1
6 (d).

Theorem 4.10. Consider the nonlinear plant (4.27), the exosystem
(4.28) in closed-loop with the approximate optimal controller obtained
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by Algorithms 4.2–4.3, i.e.,

νi∗ = ûi∗(x̂, w) + ν̂(w)
:= ûi∗(ξ − ξ̂(w), w) + ν̂(w), (4.52)

where i∗ is defined in Theorem 4.8. Then, for any initial condition
(ξ(0), w(0)) ∈ A0 ×W, the following properties hold:

(1) The trajectory of the closed-loop system is bounded for any t ≥ 0.

(2) The tracking error e(t) is UUB with its ultimate bound approach-
ing zero as i∗, N1, N2, N3 all tend to infinity.

Combining Theorems 4.8 and 4.10, we see that the data-driven
approximate optimal tracking control Problem 4.4 is solved through
the controller (4.52) designed by Algorithms 4.2–4.3.

4.3 Multi-Agent Systems

The main purpose of this section is to address the cooperative adaptive
optimal output regulation of linear multi-agent systems via ADP and
the internal model principle. First, we develop a data-driven distributed
control policy to ensure that each follower with uncertain models can
achieve asymptotic tracking with disturbance rejection in an optimal
sense. Second, we combine ADP and the internal model principle to
generalize the result in Section 4.1 to the distributed adaptive optimal
output regulation problem. Third, we consider a more practical situ-
ation where the leader model (or, the exosystem here) is subject to
external disturbance. We will show that, under the proposed data-driven
distributed control law, the closed-loop system is leader-to-formation
stable (LFS) (see Tanner et al., 2004).

4.3.1 Problem Formulation and Preliminaries

Consider the following class of linear multi-agent systems

v̇ = Ev +Hw, (4.53)
ẋi = Aixi +Biui +Div, (4.54)
ei = Cixi + Fiv, i = 1, 2, . . . , N (4.55)
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where xi ∈ Rni , ui ∈ R and ei ∈ R are the state, control input and
tracking error of the ith subsystem (follower), respectively. v ∈ Rq is the
state of the leader, modeled by the exosystem (4.53) which generates
both the disturbance Div and the reference signal −Fiv (to be tracked
by the output yi = Cixi) of each follower. The leader is assumed to
track a desired trajectory y∗0 = −F0v

∗(t) with the signal v∗ satisfying
v̇∗ = Ev∗. In this setting, the leader input is composed by two parts:
w = ŵ+ w̃, where ŵ is a feedback control input ŵ = −K0(v − v∗) with
σ(E −HK0) ⊂ C− and w̃ is an external disturbance input. Given the
exosystem (4.53) and the plant (4.55), define a time-varying digraph
Gρ(t) = {V, Eρ(t)}. V = {0, 1, . . . , N} is the node set with node 0 denoting
the leader and the remaining N nodes being identified as followers
described by (4.55). Eρ(t) ⊂ V × V refers to the edge set. Denote Ni(t)
the set of all the nodes j such that (j, i) ∈ Eρ(t). The adjacency matrix
Aρ(t) = [aij(t)] ∈ R(N+1)×(N+1) is defined by aij(t) > 0 if (j, i) ∈ Eρ(t)
and otherwise aij(t) = 0.

Some standard assumptions are made on the system (4.53)–(4.55).

Assumption 4.7. All the eigenvalues of E are simple with zero real
part.

Assumption 4.8. (Ai, Bi) is stabilizable, ∀1 ≤ i ≤ N .

Assumption 4.9. rank
[
Ai − λI Bi
Ci 0

]
= ni + 1, ∀λ ∈ σ(E), ∀1 ≤ i ≤ N .

Assumption 4.10. There exists a subsequence {ik} of {i: i = 0, 1, . . .}
with tik+1 − tik < T for some positive T such that each node j =
1, 2, . . . , N is reachable from node 0 in the union graph ∪ik+1−1

l=ik Gρ(tj).

The LFS of multi-agent system (4.53)–(4.55) is defined as follows.
Note that this definition is in light of IOS, which is slightly different
from Tanner et al. (2004).

Definition 4.4. System (4.53)–(4.55) achieves LFS if there exist a func-
tion β of class KL and a function γ of class K such that, for any initial
state error η(0) and any measurable essentially bounded input w̃ and
t ≥ 0:

|e(t)| ≤ β(|η(0)|, t) + γ(‖w̃‖) (4.56)
where e(t) = [e1(t) e2(t) . . . eN (t)]T .
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Under Assumptions 4.7–4.9, LFS can be achieved by system (4.53)–
(4.55) in closed-loop with a decentralized controller

ui = −Kxixi −Kzizi, (4.57)
żi = G1zi +G2ei, ∀1 ≤ i ≤ N (4.58)

where the characteristic polynomial of G1 is the same as the minimal
polynomial of E, and the pair (G1, G2) is controllable. In this setting,
the pair (G1, G2) incorporates an internal model of the matrix E, and
(4.58) is an internal model of the ith follower. For i = 1, 2, . . . , N ,
matrices Kxi,Kzi are chosen such that

Aci =
[
Ai −BiKxi −BiKzi

G2Ci G1

]

is a Hurwitz matrix.
The following proposition analyzes the leader-to-formation stability

of the closed-loop system with respect to the disturbance w̃.

Proposition 4.1. Under Assumptions 4.7–4.9, for i = 1, 2, . . . , N , the
multi-agent system (4.53)–(4.55) in closed-loop with (4.57)–(4.58) is
LFS.

In order to ameliorate the transient performance of each subsystem,
we develop a robust optimal controller such that the closed-loop system
is leader-to-formation stable with respect to the leader disturbance w̃.
Moreover, as v ≡ v∗, the developed controller is optimal in the sense
that it minimizes the following cost

J =
∫ ∞

0
(ξ̃TQξ̃ + uTRu)dt (4.59)

for the open-loop system
˙̃ξ = Āξ̃ + B̄ũ (4.60)

where, for i = 1, 2, . . . , N , ũi = ui − Uiv
∗, Qi = QTi > 0, Ri =

RTi > 0. ũ = [ũ1, ũ2, . . . , ũN ]T , Ā = blockdiag(Ā1, Ā2, . . . , ĀN ), B̄ =
blockdiag(B̄1, B̄2, . . . , B̄N ), Q = blockdiag(Q1, Q2, . . . , QN ) and R =
blockdiag(R1, R2, . . . , RN ).
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Based upon optimal control theory, the locally robust optimal control
policy is (4.58) with

u∗i = ũ∗i + Uiv
∗

= −K∗xix̃i −K∗ziz̃i + Uiv
∗

= −K∗xixi −K∗zizi, i = 1, 2, . . . , N. (4.61)

The optimal control gains are

[K∗xi K∗zi] = R−1
i B̄T

i P
∗
i := K∗i (4.62)

where P ∗i is the unique solution to the following Riccati equation

ĀTi P
∗
i + P ∗i Āi +Qi − P ∗i B̄iR−1

i B̄T
i P
∗
i = 0. (4.63)

4.3.2 Main Results

We will design a data-driven distributed controller via ADP to achieve
LFS under switching network topology. The developed approach is able
to approximate the control gains K∗i for each follower without relying
on the knowledge of system matrices Ai, Bi and Di. To begin with, the
internal model (4.58) is modified by

żi = G1zi +G2êi, i = 1, 2, . . . , N (4.64)

where êi = yi + Fζi. The dynamics of ζi ∈ Rq depends on the following
equation

ζ̇i = Eζi +
∑

j∈Ni(t)
aij(t)(ζj − ζi) i = 1, 2, . . . , N (4.65)

where ζ0 = v.
Then, we rewrite the ith subsystem augmented with the internal

model (4.64):

ξ̇i = Āiξi + B̄iui + D̄iψi

= Ā
(k)
i ξi + B̄i(K(k)

i ξi + ui) + D̄iψi

where, for i = 1, 2, . . . , N , Ā(k)
i = Āi−B̄iK(k)

i , D̄i = blockdiag(Di, G2Fi),
ξi = [xTi zTi ]T ∈ Rmi , ψi = [vTi ζTi ]T ∈ R2q.
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By policy evaluation, we have

ξi(t+ δt)TP (k)
i ξi(t+ δt)− ξi(t)TP (k)

i ξi(t)

=
∫ t+δt

t
[ξTi ((Ā(k)

i )TP (k)
i + P

(k)
i Ā

(k)
i )ξi + 2ψTi D̄T

i P
(k)
i ξi

+ 2(ui +K
(k)
i ξi)T B̄T

i P
(k)
i ξi]dτ

=
∫ t+δt

t
[−ξTi (Qi + (K(k)

i )TRiK(k)
i )ξi + 2ψTi D̄T

i P
(k)
i ξi.

+ 2(ui +K
(k)
i ξi)TRiK(k+1)

i ξi]dτ. (4.66)

For any two vectors a, b and a sufficiently large number s > 0, define

δa = [vecv(a(t1))− vecv(a(t0)), . . . , vecv(a(ts))− vecv(a(ts−1))]T ,

Γa,b =
[∫ t1

t0
a⊗ bdτ,

∫ t2

t1
a⊗ bdτ, . . . ,

∫ ts

ts−1
a⊗ bdτ

]T
.

(4.66) implies the following linear equation

Ψ(k)
i


vecs(P (k)

i )
vec(K(k+1)

i )
vec(D̄T

i P
(k)
i )

 = Φ(k)
i (4.67)

where

Ψ(k)
i = [δξi ,−2Γξiξi(I ⊗ (K(k)

i )TRi)− 2Γξiui(I ⊗Ri),−2Γξiψi ],

Φ(k)
i = −Γξiξivec(Qi + (K(k)

i )TRiK(k)
i ).

Now, we are ready to present a data-driven ADP algorithm 4.4
which yields approximate solutions to the unknown optimal values K∗i
and P ∗i .

The convergence of Algorithm 4.4 is shown in Theorem 4.11, while
the LFS of the closed-loop system is analyzed in Theorem 4.12. The
proofs of these theorems are given in Gao et al. (2018).

Theorem 4.11. For i = 1, 2, . . . , N , sequences {P (k)
i }∞k=0 and {K(k)

i }∞k=1
computed by Algorithm 4.4 converge to P ∗i and K∗i .
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Algorithm 4.4 Data-driven ADP Algorithm for Distributed Optimal
Controller Design
Initialize: Find a pair (G1, G2) such that it incorporates an internal
model of E. Select a small ε > 0. Apply ui = −K(0)

i ξi + νi on [t0, ts]
with νi an exploration noise. Let i← 1
repeat
k ← −1
repeat
k ← k + 1
Solve P (k)

i and K(k+1)
i from (4.67)

until |P (k)
i − P (k−1)

i | < ε for k ≥ 1
P †i ← P

(k)
i

The learned controller is (4.64), (4.65), and

ui = −K(k+1)
i ξi := −K†i ξi (4.68)

i← i+ 1
until i = N + 1

Theorem 4.12. Under Assumptions 4.7–4.10, the multi-agent system
(4.53)–(4.55) in closed-loop with the learned controller (4.64), (4.65)
and (4.68) is leader-to-formation stable.

The following result compares the cost J�, for the decentralized
controller (4.58), (4.61) with the cost J† for the distributed controller
(4.64), (4.65) and (4.68).

Theorem 4.13. There always exist constants d1, d2 > 0 such that
J† ≤ d1J

� + d2|ζ̃(0)|2 if v ≡ v∗.
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Applications

5.1 Model-Free Optimal Biological Motor Control

Humans coordinate movements and interact with the environment
through sensory information and motor adaptation in their daily lives.
Although extensive research has been made (Bhushan and Shadmehr,
1999; Flash and Hogan, 1985; Harris and Wolpert, 1998; Haruno and
Wolpert, 2005; Shadmehr and Mussa-Ivaldi, 1994; Todorov, 2004, 2005;
Todorov and Jordan, 2002; Uno et al., 1989; Wolpert and Ghahramani,
2000), the underlying computational mechanism of sensorimotor control
and learning is still largely an open problem. Indeed, several recent
research findings, including the model-free learning (Haith and Krakauer,
2013; Huang et al., 2011), the active regulation of the motor variability
(Cashaback et al., 2015; Lisberger and Medina, 2015; Pekny et al.,
2015; Renart and Machens, 2014; Vaswani et al., 2015; Wu et al.,
2014), and the presence of suboptimal inference (Acerbi et al., 2014;
Bach and Dolan, 2012; Beck et al., 2012; Renart and Machens, 2014),
have challenged some of the traditional viewpoints on the sensorimotor
learning model. As a result, developing a new computational and system
framework is not only necessary but also of great importance.
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5.1.1 Single-Joint Human Arm Movement Model

Throughout this section, we focus on the sensorimotor learning model
considered by Harris and Wolpert (1998) and Burdet et al. (2001). In
this experimental setup, the human subject moves a parallel-link direct
drive air-magnet floating manipulandum (PFM) in a series of forward
point-to-point reaching movements performed on a horizontal tabletop.

The mathematical model of the arm movement is given as follows:

dp = vdt, (5.1)
mdv = (a− bv + f) dt, (5.2)
τda = (u− a)dt+G1udw1 +G2udw2, (5.3)

where p = [px py]T , v = [vx vy]T , a = [ax ay]T , and u = [ux uy]T denote
the two-dimensional hand position, velocity, actuator state, and the
control input, respectively; m denotes the mass of the hand, b is the
viscosity constant, and τ is the time constant; w1 and w2 are standard
Brownian motion;

G1 =
[
c1 0
c2 0

]
and G2 =

[
0 −c2
0 c1

]

are gain matrices of the signal dependent noise (Harris and Wolpert,
1998; Liu and Todorov, 2007); and f = βpx with β > 0 is the divergence
force field (DF) generated by the PFM. The values of the system
parameters are provided in Table 5.1, which are consistent with the
values in Liu and Todorov (2007) and Jiang and Jiang (2014a).

Following Todorov and Jordan (2002) and Liu and Todorov (2007),
the optimal control problem is formulated as the one of finding an
optimal controller to minimize cost (2.4), where x = [pT vT aT ]T , and
Q and R represent the tradeoff between moving accuracy (Q) and
the effort exerted by the human subject to accomplish the task (R).
Generally, Q and R may have different values in different motor tasks.
Even in the same motor task, it is possible that Q and R may slowly
change over time.
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Table 5.1: Parameters of the hand movement model

Parameters Description Value

m Hand mass 1.3 kg
b Viscosity constant 10 N · s/m
τ Time constant 0.05 s
c1 Noise magnitude 0.075
c2 Noise magnitude 0.025
β Force magnitude 150

5.1.2 Model-Free Learning in Human Sensorimotor Systems

Now, the optimal motor control problem fits into the standard LQR
framework. Hence, ADP methods discussed in Sections 5.1.2 and 5.1.3
can be adapted to validate the learning behavior in human sensorimotor
system. For more detailed discussion, see Bian et al. (2020).

Since, before conducting the experiment, the human subjects are
asked to practice in the null field (NF) for a long period, we assume
that the human subject has already adapted to this NF, i.e., an optimal
controller with respect to the NF has been obtained. We denote the
control gain matrix with respect to this optimal controller in the NF as
K0, and the corresponding performance matrix as P0.

Once the adaptation to the NF is achieved, i.e., the human subjects
have achieved a number of successful trials, the DF will be activated. At
this stage, subjects practice in the DF. No information is given to the
human subject as when the force field trials will begin. The trajectories
in the first five trials in DF are shown in Figure 5.1(a). We can easily
see that when the human subject is first exposed to the DF, due to the
presence of the force field (f = βpx), the variations are amplified by
the divergence force, and thus the movement is no longer stable under
u = −K0x.

Starting from K0 and P0, a suboptimal control gain matrix is ob-
tained after 50 learning trials. The simulation results of the sensorimotor
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Figure 5.1: Hand movements in X–Y coordinates.

system under this new control policy are given in Figure 5.1(b). Com-
paring Figures 5.1(b) with 5.1(a), we can see that after learning, the
human subject has regained the stability in the DF.

To test the after-effect, we suddenly remove the DF. The after-effect
trials are shown in Figure 5.1(c). Obviously, the trajectories are much
closer to the y-axis. This is due to the high-gain controller learned in
the DF. Here, different from Burdet et al. (2001) and Franklin et al.
(2003), we conjecture that during the (at least, early phase of) learning
process, the central nervous system, instead of relying on the internal
model completely, simply updates the control strategy through online
model-free learning. This is because conducting the model identification
is slow and computationally expensive (Shadmehr and Mussa-Ivaldi,
2012, Chapter 9), and thus can only provide limited information to
guide the motor adaptation in the early phase of learning. On the other
hand, visual and motor sensory feedbacks are extremely active during
this phase in the motor learning, which in turn provide a large amount
of online data to conduct ADP learning. During the later phase of motor
learning, a complete internal model has established, and predictions
drawn from the internal model can be incorporated with the visual
feedback to provide better estimates of the state.
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5.1.3 Two-Joint Human Arm Movement Model

The above learning result can also be extended to the nonlinear two-joint
robotic manipulator model (Bhushan and Shadmehr, 1999; Uno et al.,
1989):

Ts = Ds(θ)θ̈ + Cs(θ, θ̇)θ̇,

where θ = [θ1 θ2]T ; θ1 and θ2 are the joint angles corresponding to the
shoulder and the elbow, respectively; and

Ds =
[

ks1 ks3 cos(θ2 − θ1)
ks3 cos(θ2 − θ1) ks2

]
,

Cs =
[

0 −ks3 sin(θ2 − θ1)θ̇2
ks3 sin(θ2 − θ1)θ̇1 0

]
,

and (ks1, ks2, ks3) are the model parameters related on the mass distri-
bution and lengths of the human arm (Bhushan and Shadmehr, 1999).
See Figure 5.2 for more details. Note that in practice, the exact values
of these parameters may be unknown due to parameter variations. The
initial value is given as θ(0) = [0 π/2]T .

The nonlinear VI-based ADP is used to simulation the arm move-
ment. As we can see form Figure 5.3, the trajectory under the new
controller obtained from ADP algorithms is approximately a straight
line.

Figure 5.2: A two-joint robotic manipulator. The origin of the (X,Y ) coordinates
represents the location of the shoulder. X and Y axes represent the side direction
and the front direction of the body (Uno et al., 1989).
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Figure 5.3: Hand movement trajectories. The thick lines represent the initial
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Finally, note that our simulation results in above two subsections are
consistent with the experimental results provided by different research
groups (Burdet et al., 2001; Franklin et al., 2003; Zhou et al., 2016).

5.1.4 Sensorimotor Noise Enhances the Motor Exploration

It has been conjectured (Beers et al., 2002; Harris and Wolpert, 1998;
Haruno and Wolpert, 2005) over the past decade that the goal of
the motor system is to minimize the endpoint variance caused by
the signal-dependent noise. Later, Todorov and Jordan (2002) and
Todorov (2004, 2005) further explored this idea by using linear optimal
control theory based on the LQR or linear quadratic Gaussian (LQG)
methods. However, recently several experimental results (Cashaback
et al., 2015; Wu et al., 2014) suggested that the motor variability
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facilitates the motor exploration, and as a result increases the learning
speed. These surprising results have challenged the optimal control
viewpoint in the sense that the motor variability is not purely an
unwanted consequence of sensorimotor noise whose effects should by
minimized. In this section, we have justified the contribution of motor
variability from a robust/adaptive optimal control perspective based
on ADP and RADP. Indeed, the motor variability serves a similar role
as an exploration noise, which has been proved essential to the ADP
and RADP learning. Moreover, our model also shows that the existence
of exploration noise does not destabilize the motor system even for
learning tasks in an unstable environment.

5.2 Learning-Based Control of Connected and
Autonomous Vehicles

The construction of intelligent transportation systems (ITS) attracts
considerable attention because of the increasing number of traffic acci-
dents, congestion, and pollution all over the world. Autonomous vehicle
technology is the turning-point of development in ITS, which is aimed
at reducing driving faults and fuel consumption. By integration of the
recent wireless vehicular networking technology in connected vehicles,
the connected and autonomous vehicle (CAV) technology is able to
further prevent secondary crashes, reducing property damage and in-
jury, congestion and emissions. Among all CAV studies, the controller
design of CAV has attracted considerable attention among researchers
in the field of control, optimization and communication. For instance,
cooperative adaptive cruise controllers (CACC) have been designed for
a longitudinal platoon of CAV (see Guo and Yue, 2014; Oncu et al.,
2014). The effectiveness of CACC on the safety, traffic flow, and envi-
ronment has also been tested in different traffic scenarios with mixed
human-driven and autonomous vehicles (Arem et al., 2006; Shladover
et al., 2012). Cooperative vehicle intersection control (CVIC) is another
approach of CAVs (see Lee and Park, 2012). The objective of CVIC is to
let vehicles automatically run across the intersection without requiring
the traffic signals. Simulation results in Lee and Park (2012) demon-
strated that CVIC is able to potentially decrease the traffic pollution
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and delay. However, to completely remove the traffic lights may be not
easy to realize in the near future. Asadi and Vahidi (2011) proposed the
predictive cruise control (PCC). The main idea in PCC is to reduce the
idle time of vehicles by using the upcoming traffic signal information.
The PCC can help promote a smooth traffic by decreasing the use of
breaks, also increase the safety by excluding the red-light violation.

To address the adaptive optimal control problem for CAVs with
assured stability, this section will present several intelligent cruise control
design strategies under the framework of ADP. Approximate optimal
control policies are learned by collected online data from vehicles without
relying on the knowledge of either human or vehicle models. They can
increase traffic throughput while reducing fuel usage. Most importantly,
the stability of the connected vehicle system, which is closely related
with safety, is rigorously ensured. We start from the shared robust
optimal control design of semi-autonomous vehicles in terms of robust
ADP; see Section 5.2.1. In Section 5.2.2, we present an ADP algorithm
for CAV platoons with linear dynamics. The presented algorithm is
validated through a microscopic traffic simulation in a scenario on
Lincoln Tunnel corridor. In Section 5.2.3, a data-driven PCC algorithm
is developed in order to regulate the dynamics of CAVs at the vicinity
of intersections.

5.2.1 Shared Control of Semi-Autonomous Vehicles

Unlike fully-automated vehicles, semi-autonomous vehicles are operated
jointly by a co-pilot controller and a human driver. Here, we will present
a novel data-driven cooperative framework that takes into human-
vehicle interaction and achieves desired vehicle steering performance.
A crucial strategy is to treat the human-vehicle combined system as
an interconnected system and to exploit the small-gain theory in the
synthesis of vehicle controllers. The proposed shared steering controller
is developed without using the (unmeasured) internal states of human
driver, but is learned from real-time data collected along the trajectories
of the interconnected human-vehicle system.
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Figure 5.4: Vehicle model illustration.

The vehicle model for steering control consists of the lateral vehicle
dynamics, the steering column and the vision-position model for lane-
keeping task. Under the assumptions of small angles and constant
longitudinal speed, it can be described by

ẋ = Ax+B(u+ Td) +Dρi,

y = Cx, (5.4)

where x = [vy ra ψL yL δ δ̇]T , y = yc, and ψL = ψv − ψr as illustrated
in Figure 5.4.

We consider the two-point visual driver model developed in Salvucci
and Gray (2004):

ζ̇ = Adζ +Bdx+Ddρi,

Td = Cdζ, (5.5)

where ζ = [ζ1 ζ2]T .
Combining (5.4) and (5.5), we obtain an interconnected system

model that captures the interaction between the driver and the vehicle.
For this system, the learning-based framework in Section 4 can be
applied to derive a data-driven learning algorithm for vehicle steering
control with stability guarantee. See Huang et al. (2019) for the details.

The performance of the proposed learning-based steering assistance
system is evaluated on a test road. The lane-keeping error during the
whole process is presented in Figure 5.5, where the improved lane-keeping
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Figure 5.5: Lane-keeping performance comparison between driver and shared control
strategies with different Q values.

performance is self-evident with all three configurations. The undershoot
and overshoot have been reduced compared to the driver-only scenario.

5.2.2 Adaptive Optimal Cooperative Driving

In this section, we propose a learning-based CACC algorithm that
aims to minimize a cost function for CAVs along the exclusive bus lane
(XBL) in Lincoln Tunnel corridor. Different from existing model-based
CACC algorithms, the proposed approach employs the idea of RL, which
does not rely on accurate knowledge of bus dynamics. Considering a
time-varying topology where each autonomous vehicle can only receive
information from preceding vehicles that are within its communication
range, a distributed controller is learned real-time by online headway,
velocity, and acceleration data collected from the system trajectories.

Consider a platoon of n autonomous buses. Let hi be the headway of
ith vehicle in the platoon, i.e., the bumper-to-bumper distance between
the ith vehicle and the (i− 1)th vehicle. Time headway (Ioannou and
Chien, 1993) and constant spacing (Seiler et al., 2004) are two main
spacing policies in CACC. We adopt the former policy since there are
different speed limits in each snap of the road. The desired headway
is chosen by h∗i (t) = τvi(t) + h0, where τ is the time headway and
h0 is named the standstill headway. Define ∆hi(t) = hi(t) − h∗i (t)
and ∆vi(t) = vi−1(t) − vi(t). The dynamics of the ith vehicle can be
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Figure 5.6: Vehicle platoon with time-varying topology.

described by

ẋi(t) = Aixi(t) +Biui(t) +Dixi−1(t) (5.6)

where ui represents the desired acceleration of vehicle i. For j = i− 1, i,
xk = [∆hk,∆vk, ak]T includes the headway and velocity errors, and the
acceleration of vehicle k.

Given the system (5.6), define a time-varying digraph G(t) =
{V, E(t)}. V = {1, . . . , n} is the node set. E(t) ⊂ V × V refers to the
edge set. If the distance between vehicles i and k is smaller than the
minimum between the communication range of vehicle k and i at time t,
then the edge (k, i) ∈ E(t). Denote Ni(t) the set of all the nodes k such
that (k, i) ∈ E(t). For instance, the set Ni(t) = {i− 1, i− 2} at time t
since there are only two preceding vehicles staying in the communication
range of vehicle i in Figure 5.6.

One of the control objectives is to let the headway and velocity
errors and the acceleration of each bus asymptotically converge to zero,
i.e., lim

t→∞
xi(t) = 0 for i = 1, 2, . . . , n. In order to improve the transient

response of the system, one can design an optimal controller through
minimizing the following cost function

J =
∫ ∞

0
(xTQx+ uTRu)dτ (5.7)

where Q = blockdiag(Q1, Q2, . . . , Qn), R = blockdiag(R1, R2, . . . , Rn),
x = [xT1 , xT2 , . . . , xTn ]T , and u = [u1, u2, . . . , un]T .

Since it is almost impossible to know the system matrices of all the
vehicles considering different types and conditions of vehicles on the
road, we propose a data-driven CACC Algorithm in Gao et al. (2019a)
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Figure 5.7: Snapshot of buses on XBL in closed-loop with data-driven CACC
controller, simulation in paramics.

to learn a distributed controller without knowledge of system matrices
Ai and Bi.

For microscopic traffic simulation (see Figure 5.7), we use the real
XBL travel time data (field data) collected from the Lincoln Tunnel. We
collect the travel times every 15 minutes using the proposed data-driven
CACC algorithm. We conclude that the travel time is overall shorter
than the present case (field) while the bus volume is increased by 30%
from 6:15 AM to 9 AM. Therefore, the proposed data-driven CACC
method is able to further improve the traffic conditions for the whole
corridor.

5.2.3 Data-Driven Predictive Cruise Control

We have presented an adaptive optimal control approach in Gao et al.
(2019c) based on ADP to solve the PCC problem of a platoon of CAVs.
Similar to CACC, the vehicles in the platoon can exchange its ki-
netic data through vehicle-to-vehicle (V2V) communication. Moreover,
the leader in the platoon can access to the signal phase and time of
upcoming traffic intersections through vehicle-to-infrastructure (V2I)
communication. In order to develop the presented PCC approach, the
reference velocity is first determined for each autonomous vehicle in the
platoon. Second, a data-driven adaptive optimal control algorithm was
developed to approximate the gains of desired distributed optimal con-
trollers without the exact knowledge of system dynamics. The obtained
controller is able to regulate the headway, velocity and acceleration of
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Figure 5.8: Trajectories of vehicles.

each vehicle in a suboptimal sense. The goal of trip time reduction is
achieved without compromising vehicle safety and passenger comfort.

Consider a platoon of 4 autonomous vehicles with different dynamics.
The allowed maximum and minimum velocity are Vmax = 30 m/s and
Vmin = 0 m/s. There are four traffic intersection located at 11000 m,
12000 m, 13000 m and 14000 m, respectively. The specific timing infor-
mation can be referred to Figure 5.8. We first determine the reference
velocity for vehicles given the upcoming traffic light information based
on the three-phase approach. Then, the online input and state data are
collected from t = 0 s to t = 6 s to approximate the optimal distributed
control gain. We update by the learned near-optimal distributed control
gains after t = 6 s. The trajectories of vehicles using the designed PCC
strategy are depicted in Figure 5.8. It can be observed that, without
accurate knowledge of system parameters, the designed controller is able
to track the desired trajectory timely and reliably, which attests to the
safety of the designed control policy. Moreover, by proper determination
on reference velocity and design of data-driven controllers, one can see
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that the vehicles are able to go across the traffic intersection without
unnecessary stopping which increases the traffic mobility.
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6
Perspective and Future Work

In this monograph, a novel framework for learning-based optimal control
is presented for various important classes of continuous-time linear and
nonlinear dynamical systems described by differential equations. We
systematically exploit advances in reinforcement learning and adap-
tive dynamic programming combined with tools in control theory to
design learning-based adaptive optimal controllers with guaranteed
closed-system stability. The PI and VI methods that have shown
great success in solving traditional DP and approximate DP problems
(Bellman, 1957; Bertsekas, 2007; Bertsekas and Ioffe, 1996; Howard, 1960;
Puterman, 2005) have been generalized to the setting of continuous-time
unknown systems evolving in continuous state and input spaces. With
the proposed data-driven PI and VI algorithms, the benchmark LQR,
LQG, and output regulation problems are revisited from the perspective
of learning-based control theory, along with extensions to classes of
nonlinear systems, large-scale interconnected systems and multi-agent
systems. Rigorous convergence analysis of the adaptive learning algo-
rithms and the stability analysis of the closed-loop systems are studied

85
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in greater details. Robustness of the learning-based controllers is investi-
gated by means of the network/nonlinear small-gain theory as reviewed
in Jiang and Liu (2018).

It is our firm belief that the proposed learning-based control ap-
proach has wide-ranged applications in the era of robotics and AI.
Due to space limitation, in this monograph, we have validated the effi-
cacy of the proposed learning-based design paradigm by means of two
representative applications: human motor control and connected and
autonomous vehicles. We have used the proposed learning-based control
theory to explain how human brain coordinates various challenging
hand movement tasks such as reaching and tracking. In particular, the
obtained model successfully explains various recent experimental discov-
eries in the literature, such as the presence of model-free learning (Haith
and Krakauer, 2013; Huang et al., 2011), alternative source of motor
variability (Acerbi et al., 2014; Bach and Dolan, 2012; Beck et al., 2012;
Renart and Machens, 2014), and the fact that actively regulated motor
variability promotes sensorimotor learning (Cashaback et al., 2015; Lis-
berger and Medina, 2015; Pekny et al., 2015; Renart and Machens, 2014;
Vaswani et al., 2015; Wu et al., 2014). The experimental phenomena
reported in the work of others (Burdet et al., 2001; Franklin et al., 2003;
Zhou et al., 2016) are reproduced. Interestingly, our conjecture that
learning-based control theory serves as a sound computational principle
for human movement is aligned with the vision of Minsky (1954) in the
original development of reinforcement learning.

Our future work will be directed at generalizing the proposed
learning-based control methods and tools in several directions:

• Learning-Based Output-Feedback Control. As most of the learning-
based controllers presented in the monograph assume the knowl-
edge of full-state information, the corresponding output-feedback
control problem has received little attention. Essentially, we aim
to develop tools for learning suboptimal controllers from real-time
data that are related to the outputs or partial-states only. Despite
its high relevance to practical applications with partially observ-
able states, the conventional model-based observer theory and the
separation principle are not directly applicable.
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• Learning-Based Control of Stochastic Nonlinear Systems. In view
of the rich literature of modern nonlinear control, there are many
opportunities to generalize the presented results to much broader
classes of nonlinear systems, beyond the benchmark class of linear
stochastic systems considered in this monograph.

• Learning-Based Control of Hybrid and Switching Systems. Hybrid
systems (Goebel et al., 2012; Haddad et al., 2014; van der Schaft
and Schumacher, 2000) and switching systems (Lee and Jiang,
2008; Liberzon, 2003) are two important classes of dynamical
systems that exhibit both continuous- and discrete-time dynamics.
How to generalize the learning-based control approach developed
here for continuous-time systems to important classes of hybrid
systems and switching systems is an interesting topic that deserves
deep investigation.

• Learning-Based Control of Infinite-Dimensional Systems. Systems
represented by functional differential equations (Hale and Lunel,
1993; Karafyllis and Jiang, 2011) and partial differential equations
(Christofides, 2001; Karafyllis and Krstić, 2018; Krstić, 2009)
are two important classes of infinite-dimensional systems. There
has been few research devoted to the learning-based control for
this type of infinite-dimensional dynamical systems, in spite of
their clear importance in theory and applications. New tools and
methods need to be developed that go beyond the results proposed
here for the learning-based control of finite-dimensional dynamical
systems.

Last but not least, as RL has found many applications in robotics
(Kober et al., 2013; Sutton and Barto, 2018), it is a very promising area
that demands more learning-based control solutions.
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