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Abstract— This paper presents a data-driven algorithm to
solve the problem of infinite-horizon linear quadratic regulation
(LQR), for a class of discrete-time linear time-invariant systems
subjected to state and control constraints. The problem is
divided into a constrained finite-horizon LQR subproblem and
an unconstrained infinite-horizon LQR subproblem, which can
be solved directly from collected input/state data, separately.
Under certain conditions, the combination of the solutions
of the subproblems converges to the optimal solution of the
original problem. The effectiveness of the proposed approach
is validated by a numerical example.

I. INTRODUCTION

For the past decade, data-driven control has become a
popular research topic in control theory and applications [1],
[2]. In data-driven control, the target control strategy is di-
rectly synthesized using the data collected from the systems,
without an intermediate explicit modeling or identification
step. Thus data-driven control is deemed more suitable in
cases where modeling from first principles is difficult, or
implementation of system identification algorithms is both
costly and time-consuming.

One important subfield of data-driven control is data-
driven optimal control, where reinforcement learning (RL)
and approximate/adaptive dynamic programming (ADP)
techniques have played a dominant role. A variety of
RL/ADP methods have been proposed to achieve optimal
stabilization/tracking/disturbance rejection tasks and so on,
directly from the data (see [3], [4], [5], [6] and many
references therein). However, most of the optimal control
problems studied there do not consider state and input
constraints. Due to physical limits, quality specifications,
safety concerns or the limits of the hardware, state and con-
trol constraints are common in various control engineering
applications. Very often, ignorance of these constraints in
the controller design phase can lead to undesirable system
performance or sometimes instability.

One of the reasons leading to the above difficulty is the
lack of predictive capability in most of data-driven optimal
control methods. This is in sharp contrast to the model
predictive control (MPC), which is a powerful tool for
handling state and input constraints, thanks to its predictive
capability. However, in traditional MPC an explicit model
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must be available, which conflicts with the features of data-
driven control. Recently, the emergence of data-driven MPC
[7], [8], [9], [10] has mitigated this conflict. In [11], it is
shown that any input/output trajectories with finite length of
a discrete-time linear time-invariant (LTI) systems lies in the
linear span of a finite set of persistently exciting input/output
data. This fundamental result is exploited in the data-driven
MPC [7], [8], [9], [10], to realize the prediction, so that the
control strategies could still be obtained directly from the
data.

In this paper, the infinite-horizon linear quadratic reg-
ulation (LQR) problem of discrete-time LTI systems with
state and input constraints is revisited. In [12], it is shown
that the optimal state trajectory of certain finite-horizon
constrained LQR problem with enough long horizon, will
enter an invariant set, in which the optimal solutions of the
infinite-horizon unconstrained LQR problem coincide with
those of the infinite-horizon constrained LQR problem. This
result is exploited and extended in our paper, to propose
a simple and intuitive data-driven approach to find near-
optimal solutions of the constrained infinite-horizon LQR
problem. The proposed approach firstly adopts a finite-
horizon constrained LQR, to bring the state into an invariant
set, and then uses a near-optimal controller of the infinite-
horizon unconstrained LQR problem, to regulate the state to
the origin. The resulting control law converges to the optimal
control law of the original constrained infinite-horizon LQR,
under certain conditions. Using RL/ADP techniques and the
fundamental result in [11] mentioned in the last paragraph,
we demonstrate that this control law could be directly
synthesized from a finite set of the input/state data.

It is worth noting that even for the most basic linear
quadratic setting, the problem of data-driven infinite-horizon
optimal control in the presence of state and input constraints
is still an active research topic and not fully solved. A safe
learning method is proposed in [13], to find the best constant
linear state-feedback control gain; global stabilization is
achieved in [14], with the existence of actuator saturation;
RL/ADP techniques are modified in [15], to asymptotically
find the optimal solutions to the unconstrained LQR without
violating the constraints, by assuming the state matrix is
unknown. In our method, the optimal control law among all
the possible control laws satisfying the state and control con-
straints, is directly approached from the collected input/state
data, without the exact knowledge of any system matrices.

Notation. N denotes the set of natural numbers including
zero; N(a) = {a, a+1, · · · } where a ∈ N; N(a, b) = {a, a+
1, · · · , b} where a < b < ∞ and a, b ∈ N; ⊗ denotes the
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Kronecker product. For a discrete-time signal z : N → Rn,
with slight abuse of notation, we also let zk = z(k), k ∈ N.
We denote by z[k,k+T ], T ∈ N, the restriction in vectorized
form of signal z to the interval [k, k + T ],

z[k,k+T ] =
[
zTk zTk+1 · · · zTk+T

]T
.

When there is no confusion, z[k,k+T ] is also used to denote
sequence {zk, · · · , zk+T }. z[0,∞] is simply denoted as bold-
face letter z. The Hankel matrix associated to z is defined
as

Zj,t,T =
[
z[j,j+t−1] z[j+1,j+t] · · · z[j+T−1,j+T+t−2]

]
,

where j, t, T ∈ N. When t = 1, we simply write Zj,T =
Zj,1,T .

II. PROBLEM FORMULATION AND PRELIMINARIES

For a discrete-time LTI system,

xk+1 = Axk +Buk, (1)

where xk ∈ Rn, uk ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, consider
the following constrained infinite-horizon linear quadratic
regulation problem:

J(x0) = inf
u,x

∞∑
k=0

r(xk, uk)

s.t. xk+1 = Axk +Buk, ∀k ≥ 0, x0 = x0,

u ∈ U, x ∈ X,

(PC)

where X = {x|xk ∈ X, ∀k ≥ 0}, U = {u|uk ∈ U, ∀k ≥
0}, and r(xk, uk) = xTkQxk+uTkRuk. Throughout the paper,
we impose the following hypotheses on (1):
(H1) Q = QT > 0, R = RT > 0.
(H2) (A,B) is controllable.
(H3) X and U are closed, bounded and convex.
(H4) 0 ∈ intX , 0 ∈ intU .
(H5) x0 ∈ X0 , {x0 ∈ Rn|∃ u ∈ U, s.t. x ∈

X, and J(x0) <∞}.
Consider also the unconstrained infinite-horizon linear
quadratic regulation problem:

JU (x0) = min
u,x

∞∑
k=0

r(xk, uk)

s.t. xk+1 = Axk +Buk, ∀k ≥ 0, x0 = x0.

(PU )

The Problem PU admits the unique solution uk = −K∗xk,
and xk+1 = (A−BK∗)xk, where

K∗ = (R+BTP ∗B)−1BTP ∗A

and P ∗ = (P ∗)T is the unique positive-definite solution of
the algebraic Riccati equation

P ∗ = ATP ∗A−ATP ∗B(R+BTPB)−1BTP ∗A+Q.

In this work, we assume that system matrices A and B
are unknown, while the constraint sets X and U are known.
Especially, we are interested in solving the Problem PC

directly from the system input/state data, without the explicit
identification of the parameters in the system dynamics.

Before proceeding, we first introduce some necessary
preliminaries.

Definition 1. A nonempty set Z is a positively invariant set
for system xk+1 = Axk, if for any x ∈ Z, Akx ∈ Z, ∀k ≥ 0.

Define set

Xmax =

{
x0|∃ u ∈ U, s.t. x ∈ X, and lim

k→∞
xk = 0

}
.

Lemma 1 ([12, Lemma 1]). Xmax is convex, and Xmax =
X0.

Lemma 1 implies that Hypothesis (H5) is not restrictive.
X0 includes all the initial states that could be stabilized
without violating the constraints, given A, B, X , U .

III. PREVIEW OF THE PROPOSED APPROACH

Our method is based on the following observation. Let
K ∈ Rm×n be a stabilizing control gain for (1) (that is, the
spectral radius of A-BK is less than one), and PK denote
the unique solution of Lyapunov equation

AT
KPKAK − PK +Q+KTRK = 0, (2)

where AK = A−BK. Define

X̄K = {x ∈ Rn|x ∈ X,−Kx ∈ U},
ZK,c = {x ∈ Rn|xTPKx ≤ c},
OK,∞ = {x ∈ Rn|(AK)kx ∈ X̄K , ∀k ≥ 0},

where c > 0. By (2), it is easy to know that ZK,c is positively
invariant. Since X̄K is convex, by Hypothesis (H4) there
exists a sufficiently small c, such that ZK,c ⊂ X̄K . Then
ZK,c is said to be admissible. That is ZK,c ⊂ OK,∞. This
implies that for any k0 ∈ N, if xk0

∈ ZK,c ⊂ OK,∞,
the constraints will be automatically satisfied by subsequent
motion of the close-loop system with control gain K at
k ≥ k0, as if there is no constraint at all.

The above observation indicates a simple and intuitive way
to stabilize the system (1) without violating the constraints:
Firstly, find a finite sequence of control inputs {uk}N−1

k=0 ,
N <∞, to make the state xN enter an admissible set ZK,c;
Secondly, use the stabilizing control gain K, to regulate the
state to the origin for k ≥ N . This suggests solving the
following constrained finite-horizon LQR problem

JN (x0, F ) = min
{uk}N−1

k=0 ,

{xk}Nk=0

{
xTNFxN +

N−1∑
k=0

r(xk, uk)

}

s.t. xk+1 = Axk +Buk, ∀k = N(0, N − 1),

x0 = x0, x ∈ XN ,u ∈ UN ,

(PN )

where XN = {x|xk ∈ X, 0 ≤ k ≤ N}, UN = {u|uk ∈
U, 0 ≤ k ≤ N − 1}, F = FT ∈ Rn×n. Let uN and xN

denote the optimal input/state trajectory of Problem PN . The
method is viable due to the following theorem, which is an
extension of [12, Theorem 1].

6011

Authorized licensed use limited to: New York University. Downloaded on July 03,2021 at 23:27:39 UTC from IEEE Xplore.  Restrictions apply. 



Theorem 1. Given a stabilizing control gain K, if F ≥ 0
in Problem PN , then for any admissible ZK,c ⊂ OK,∞,
∃N <∞, such that xNN ∈ ZK,c.

Proof. Firstly, set F = P ∗, and let uN,∗, xN,∗ denote
corresponding optimal input/state trajectory of Problem PN .
Since ZK∗,c is positively invariant, if xN,∗

N /∈ ZK∗,c, then
xN,∗
k /∈ ZK∗,c, ∀k ∈ N(0, N). Let q, p be any real numbers

such that 0 < q ≤ qm ≡ infx/∈ZK∗,c
{xTQx}, 0 < p ≤ pm ≡

infx/∈ZK∗,c
{xTP ∗x}. Then

JN (x0, P ∗) = (xN,∗
N )TP ∗xN,∗

N +
N−1∑
k=0

r(xN,∗
k , uN,∗

k )

≥ Nq + p.

Thus xN,∗
N /∈ ZK∗,c implies JN (x0, P ∗) → ∞ as N → ∞,

which contradicts (H5). Therefore, there exists an integer
N <∞, such that xN,∗

N ∈ ZK∗,c.
Now let F be any real symmetric and positive semi-

definite matrix, and

GN (x0) = JN (x0, P ∗) +
(
xN,∗
N

)T
(F − P ∗)xN,∗

N .

From the last paragraph, we know that {GN (x0)}∞N=1 is
uniformly bounded. This fact yields

0 ≤ JN (x0, F ) ≤ GN (x0) <∞,

for all N ∈ N(1). By Hypothesis (H1), there must exist
N <∞, such that xNN ∈ ZK,c.

From the proof of Theorem 1, it is not hard to obtain the
following corollary.

Corollary 1. If F = P ∗ in Problem PN , and N is chosen
such that xNN ∈ ZK∗,c, then control law

uk =

{
uNk , k ∈ N(0, N − 1)

−K∗xk, k ∈ N(N)
(3)

is the optimal control law for Problem PC .

The discussions above suggest the following data-driven
approach to solve the Problem PC , without the exact knowl-
edge of system dynamics:
(S1) Find near-optimal controller K̂ and its associated PK̂

of the Problem PU , directly from the data.
(S2) Compute an admissible set ZK̂,c ⊂ X̄K̂ .
(S3) Solve the Problem PN directly from the data with

F = PK̂ , for increasing value of N until xNN ∈ ZK̂,c.

(S4) Apply uNk for k ∈ N(0, N − 1), and uk = −K̂xk for
k ∈ N(N).

Remark 1. If the sets X and U are polytopes, the largest c
in Step (S2) can be computed analytically. See [16, Equation
(11)].

The rest of this paper is organized as follows: the details for
Steps (S1) and (S3) are provided in Section IV; the verifi-
cation of the proposed approach by numerical experiments
can be found in Section V.

IV. MAIN RESULTS

In this section, we explain how Steps (S1) and (S3) can
be achieved. Firstly, by the adaptive dynamic programming
techniques [17], [18], we show in subsection IV-A that
the value iteration method [19] can be used to find near-
optimal solutions of the Problem PU directly from the in-
put/state data. Secondly, inspired by the recent developments
in data-driven model predictive control [7], [8], [9], [10],
whose ideas originate from the pioneering work in [11], we
demonstrate in subsection IV-B that the Problem PN can
be transformed into an equivalent data-driven optimization
problem, where no explicit knowledge of A and B are
required. Finally, the different components are assembled to
solve the Problem PC in subsection IV-C, where it is proved
that if the near-optimal solutions in Step (S1) converge
to their optimal values, the control law in Step (S4) will
converge to the optimal control law (3).

A. Data-driven Value Iteration for the Unconstrained
Infinite-horizon LQR

The value iteration method is based on the following well-
known results.

Lemma 2 ([19, Proposition 4.4.1]). For i ∈ N, consider
iteration

Pi+1 = ATPiA−ATPiBKi +Q,

Ki = (BTPiB +R)−1BTPiA,
(4)

with P0 ≥ 0. If (A,B) is controllable, and (A,D) is
observable, where Q = DTD, then

lim
i→∞

Pi = P ∗, lim
i→∞

Ki = K∗.

Lemma 2 implies that we can find the optimal solutions by
iterating a difference equation, starting from an initial con-
dition. However, system matrices A and B appear explicitly
in (4). Next we show that (4) can be solved directly from
the input/state data.

Note that
xTk+1Pixk+1 = (Axk +Buk)TPi(Axk +Buk)

= xTkA
TPiAxk + 2uTkB

TPiAxk + uTkB
TPiBuk.

By the property of Kronecker product, we have

x̃Tk+1 vecs(Pi) = x̃Tk vecs(ATPiA)

+ (2xk ⊗ uk)T vec(BTPiA) + ũTk vecs(BTPiB).
(5)

where the definitions of x̃k, vec(·), and vecs(·) can be
found in [20, Notations]. Suppose input/state data xd[0,M ] and
ud[0,M ], M ∈ N are available, where the superscript d is used
to emphasize that they are the collected data to be used for
the control design. We can organize (5) for the collected data
into a single linear matrix equation

ΦΘi = Ψ vecs(Pi), (6)

where

Θi =
[

vecsT (Θi,1) vecT (Θi,2) vecsT (Θi,3)
]T
,

Θi,1 = ATPiA, Θi,2 = BTPiA, Θi,3 = BTPiB

Ψ =
[
x̃d1 x̃d2 · · · x̃dM

]T
,
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Φ =
[
δ0 δ1 · · · δM−1

]T
,

δTj =
[

(x̃dj )T 2(xdj ⊗ udj )T (ũdj )T
]
.

Note that Φ and Ψ only depend on xd[0,M ] and ud[0,M ]. Thus
the form of (6) suggests that Θi can be uniquely determined,
if Φ has full column rank and Pi is known. To this end,
the following assumption is imposed on the data xd[0,M ] and
ud[0,M ].

Assumption 1. Given M ∈ N, xd[0,M ] and ud[0,M ], Φ has full
column rank.

With Assumption 1, Algorithm 1 is proposed to find a
near-optimal solution of Problem PU .

Theorem 2. Under Assumption 1, in Algorithm 1,

lim
Ī→∞

P̂Ī = P ∗, lim
Ī→∞

K̂Ī = K∗.

Proof. By (6) and Assumption 1, if P0 = P̂0 ≥ 0, then
solving (4) is equivalent to solving steps 4 to 6 in Algorithm
1, i.e. Pi = P̂i for all i ∈ N(0, Ī). Thus the convergence is
obtained by Lemma 2.

Algorithm 1 Data-driven Value Iteration for Unconstrained
LQR

1: Choose Ī ∈ N.
2: i← 0. P̂0 ← Q.
3: repeat
4: Θ̂i ← (ΦT Φ)−1ΦT Ψ vecs(P̂i)
5: K̂i ← (Θ̂i,3 +R)−1Θ̂i,2

6: P̂i+1 ← Θ̂i,1 + Θ̂T
i,2K̂i +Q

7: i← i+ 1
8: until i > Ī

Now suppose K̂Ī is stabilizing, we derive its associated
matrix PK̂Ī

in (2) directly from the data. Note that

xdk+1 = AK̂Ī
xdk +B(K̂Īx

d
k + udk).

By (2) we have

(xdk+1)TPK̂Ī
xdk+1 − (xdk)TPK̂Ī

xdk = −(xdk)T (K̂T
Ī RK̂Ī

+Q)xdk + (udk + K̂Īx
d
k)TBTPK̂Ī

(2Axdk +B(udk − K̂Īx
d
k)).

Similar derivations to those of (6) yield

Π

 vecs(PK̂Ī
)

vec(BTPK̂Ī
A)

vecs(BTPK̂Ī
B)

 = Γ vecs(Q+ K̂T
Ī RK̂Ī), (7)

where

Γ =
[
x̃d0 x̃d1 · · · x̃dM−1

]T
,

Π =
[
ξ0 ξ1 · · · ξM−1

]T
,

ξTj =
[

(x̃dj − x̃dj+1)T 2(xdj ⊗ (udj + K̂Īx
d
j ))T φTj

]
,

φTj = (udj − K̂Īx
d
j )T ⊗ (udj + K̂Īx

d
j )T .

Lemma 3. If K̂Ī is stabilizing, under Assumption 1, Π in
(7) has full column rank.

Proof. The proof is analogous to those of [17, Theorem 3]
and [18, Lemma 3.1.]. Thus it is omitted.

Lemma 3 implies that PK̂Ī
can be obtained directly from

the data by solving (7), while the existence of Ī such that
K̂Ī is stabilizing is guaranteed by the following lemma.

Lemma 4. There exists Ī0 ∈ N, such that for any Ī ∈ N(Ī0+
1),

P̂Ī > 0, P̂Ī+1 − P̂Ī < Q+ K̂T
Ī RK̂Ī , (8)

and K̂Ī is stabilizing.

Proof. Since P ∗ > 0, by continuity, Theorem 2 and Hypoth-
esis (H1), there exists Ī0 ∈ N such that (8) is satisfied. From
the proof of Theorem 2, Pi = P̂i for all i ∈ N(0, Ī). Thus
inserting (4) into the second inequality of (8) yields

(A−BK̂Ī)TPĪ(A−BK̂Ī)− PĪ < 0.

By the Lyapunov lemma, K̂Ī is stabilizing.

Condition (8) is helpful because it can be checked in
Algorithm 1.

B. A Data-driven Method for the Constrained Finite-horizon
LQR

In this subsection, we assume horizon N of the Problem
PN is fixed, and sequences of input/state data xd[0,T−1] and
ud[0,T−1] generated by system (1) are available, where T ∈
N(1).

Definition 2 ([11]). The signal z[0,T−1] is persistently excit-
ing of order L if its associated Hankel matrix Z0,L,T−L+1

has full rank σL, where σ ∈ N is the dimension of the signal.

The following results are key ingredients of this sub-
section, where for t ∈ N(1), X0,t,T−t+1 and U0,t,T−t+1

are Hankel matrices associated with xd[0,T−1] and ud[0,T−1],
respectively.

Lemma 5 ([11, Corollary 2]). If the input ud[0,T−1] is
persistently exciting of order n+ t, t ∈ N(1), then

rank

[
U0,t,T−t+1

X0,T−t+1

]
= n+ tm. (9)

Lemma 6 ([11, Theorem 1]). Given t ∈ N(1),
i) If ud[0,T−1] is persistently exciting of order n + t, then

any t-long input/state trajectory of system (1) can be
expressed as[

u[0,t−1]

x[0,t−1]

]
=

[
U0,t,T−t+1

X0,t,T−t+1

]
g,

where g ∈ RT−t+1.
ii) For any g ∈ RT−t+1,[

U0,t,T−t+1

X0,t,T−t+1

]
g

is a t-long input/state trajectory of system (1).
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Lemma 6 is originally proven in [11, Theorem 1] in
the behavioral framework. It makes the replacement of the
parametric description of system (1) with finite data possible.
A recent proof of this result in the state-space framework can
be found in [2, Lemma 2].

At first glance, it seems by Lemma 6 that only t-long
input/state trajectory can be represented by the collected data
with persistent excitation of order t + n. And the longer
the trajectory we want to represent, the larger the order of
persistent excitation of the data should be. But this is not
necessary, as demonstrated in [10] for input/output systems.
Actually, state/input trajectory of arbitrary finite length can
be represented by collected data with a fixed order 2 + n of
persistent excitation, by weaving pieces of 2-long trajectories
one after another.

Lemma 7. If ud[0,T−1] is persistently exciting of order n+2,
then any state/input trajectory of system (1) with length H <
∞ can be represented by[

u[j,j+1]

xj

]
=

[
U0,2,T−1

X0,T−1

]
gj , (10)

x[j,j+1] = [X0,2,T−1] gj , (11)

for all j ∈ N(0, H − 2), where gj ∈ RT−1.

Proof. For each j ∈ N(0, H − 2), by (9) and the Rouché
Capelli theorem, there exists a gj satisfying (10). Then (11)
follows from

[X1,T−1]gj = A [X0,T−1] gj +B [U0,T−1] gj

= Axj +Buj = xj+1.

This completes the proof.

Analogous to Lemma 6, we also have the following result.

Lemma 8. For any gj ∈ RT−1, j ∈ N(0, H − 2), if

[X1,T−1] gj = [X0,T−1] gj+1, ∀j ∈ N(0, H − 3), (12)

then for each j ∈ N(0, H − 2), [U0,2,T−1] gj and
[X0,2,T−1] gj are the restrictions in vectorized form of cer-
tain state/input trajectory u[0,H−1] and x[0,H−1] of system
(1) to the interval [j, j + 1].

Proof. By Item ii) in Lemma 6, [U0,2,T−1] gj and
[X0,2,T−1] gj are 2-long state/input trajectories of system
(1). Condition (12) weaves these 2-long trajectories into one
single H-long trajectory, which completes the proof.

Using Lemmas 7 and 8, we are able to substitute system
(1) with (10)–(12) in the Problem PN , to obtain an opti-
mization problem only involving collected data, without the
exact knowledge of system matrices.

JN,D(x0, F ) = min
{gk}N−1

k=0

{
xTNFxN +

N−1∑
k=0

r(xk, uk)

}(PN,D)

s.t.
[
u[k,k+1]

x[k,k+1]

]
=

[
U0,2,T−1

X0,2,T−1

]
gk, x0 = x0, (13)

[X1,T−1] gk = [X0,T−1] gk+1, (14)

x ∈ XN ,u ∈ UN , ∀k ∈ N(0, N − 2).

In the above optimization problem, u[0,N ] and x[0,N ]

are completely determined by the collected data ud[0,T−1],
xd[0,T−1] and gk, k ∈ N(0, N−1). Thus the only independent
decision variables are gk, k ∈ N(0, N − 1).

Theorem 3. If ud[0,T−1] is persistently exciting of order n+2,
then Problem PN,D is feasible, and the optimal state and
control trajectories of Problem PN,D coincide with those of
Problem PN .

Proof. Let BN,1 denote the set of all N -long input/state
trajectories satisfying (1) with initial condition x0. Let BN,2

denote the set of all N -long input/state trajectories that
can be generated by (13) and (14). By Lemmas 7 and 8,
BN,1 = BN,2. Thus the feasible sets and cost functions of
the two optimization problems are same. So do their optimal
solutions.

C. Synthesized Algorithm for the Data-driven Constrained
Infinite-horizon LQR

Finally, all the components discussed above are assembled
into Algorithm 2.

Algorithm 2 Data-driven Constrained LQR
Input: constraint sets X and U , weighting matrices Q and

R, input/state data (ud,1, xd,1) satisfying Assumption
1, input/state data (ud,2, xd,2) with persistent excitation
order n+ 2, initial state x0, Ī ∈ N.

1: Find K̂Ī using Algorithm 1, and PK̂Ī
by solving (7).

2: Find an admissible ZK̂Ī ,c
∈ X̄K̂Ī

(e.g. use Remark 1).
3: N ← 0.
4: repeat
5: N ← N + 1.
6: Solve Problem PN,D with F = PK̂Ī

.
7: until xNN ∈ ZK̂Ī ,c

.
8: Apply uN for k ∈ N(0, N − 1), and uk = −K̂Īxk for
k ∈ N(N).

The convergence of Algorithm 2 is presented in the
following theorem.

Theorem 4. As Ī →∞, the control law given by Algorithm
2 converges to the optimal control law for Problem PC .

Proof. By Lemma 4, K̂Ī is stabilizing and PK̂Ī
> 0 for all

Ī ∈ N(Ī0 + 1). Then Theorem 1 implies that Algorithm 2
will stop in finite steps. As Ī → ∞, K̂Ī and PK̂Ī

converge
to K∗ and P ∗ respectively. Then Corollary 1 and Theorem
3 complete the proof.

Remark 2. When the open-loop system (1) is stable, to
satisfy Assumption 1 and the persistently exciting condition,
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white noise or sum of sufficiently large number of sinusoids
with different frequencies can be used as the control input
during the data collection phase [21, Section 13.2]. If the
constraints must not be violated during the data collection
phase, sinusoidal signal is preferred. Since a stable LTI sys-
tem is input-to-state stable [22, Section 4.9], the constraints
can be satisfied by choosing small enough initial condition
and the magnitude of the sinusoidal signal, see Section V for
an example. When the open-loop system (1) is unstable, the
situation is more complex. If suitable a priori information
about the system is known, a linear state-feedback control
gain (not necessarily optimal) can be derived by robust
control techniques to stabilize the system, using e.g. [23].

V. NUMERICAL EXAMPLE

Consider system

xk+1 =

[
0.8 1
0 0.9

]
xk +

[
0.5
1

]
uk,

which is open-loop stable. Let

X = {x ∈ R2| ‖x‖∞ ≤ 5}, U = {u ∈ R| |u| ≤ 1}, (15)

and Q = I2, R = 1. In the simulation, to collect input/state
data,

uk = 0.1(sin(−1.66k) + sin(4.41k))

is applied to the system with initial condition [0.1, 0.2]T ,
where the frequencies of the sinusoids are randomly sampled
from interval [−10, 10]. Input/state data of length 7 is ob-
tained, without violating the constraint sets (see Remark 2). It
is checked that both the Assumption 1 and the requirement of
a persistent excitation order 4 on the input data are satisfied.
Algorithm 2 is implemented with Ī = 4000, for different
values of initial condition x0. Obviously the constraints
(15) are polytopes, thus an admissible ZK̂Ī ,c

is obtained
by Remark 1 with c = 2.8871. The simulation results are
summarized in Table I, where the differences of the costs
given by Algorithm 2 and the true costs of Problem PC are
less than 10−4. This validates Theorem 2 and Theorem 4.

TABLE I

x0 N JN
(
x0, PK̂Ī

)
J(x0) JU (x0)

[1,−1]T 2 2.5410 2.5410 2.5410
[−4, 3]T 3 32.2644 32.2644 30.4255

[−0.5,−2]T 4 15.6490 15.6490 11.2998
[3, 2]T 5 49.8544 49.8544 34.1136

[−0.5,−3]T 6 48.6237 48.6237 23.7368

VI. CONCLUSION

A data-driven approach to solve the constrained infinite-
horizon optimal control problem for linear discrete-time
systems is proposed in this paper. Near-optimal controllers
can be derived directly from a finite set of input/state data.
The application of the proposed approach to a numerical
example validates its feasibility. Robustness of the proposed
method to external disturbance and measurement noises, is
left for future work.
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